TCC Copenhagen

4.2 Phantoms

The phantom used for all tests i.e. for both validation testing and device testing, was the twin-headed "SAM Phantom", manufactured by SPEAG. The phantom conforms to the requirements of IEEE P1528/D1.2, April 21, 2003 (as established by sub committee SCC-34/SC-2).

Validation tests were performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

The SPEAG device holder (see Section 5.1) was used to position the test device in all tests whilst a tripod was used to position the validation dipoles against the flat section of phantom.

4.3 Simulating Liquids

Recommended values for the dielectric parameters of the simulating liquids are given in IEEE P1528/D1.2, April 21, 2003 and FCC Supplement C to 0ET Bulletin 65. All tests were carried out using liquids whose dielectric parameters were within \pm 5% of the recommended values. All tests were carried out within 24 hours of measuring the dielectric parameters.

The depth of the liquid was 15.0 \pm 0.5 cm measured from the ear reference point during validation and device measurements.

4.3.1 Liquid recipes

The following recipes were used for Head and Body liquids:

1900MHz band					
Ingredient	Head (% by weight)	Muscle (% by weight)			
Deionised Water	54.88	69.02			
Butyl Diglycol	44.91	30.76			
Salt	0.21	0.22			

Copyright © 2003 TCC Copenhagen

4.3.2 Verification of the System

The manufacturer calibrates the probes annually. Dielectric parameters of the simulating liquids were measured every day using the dielectric probe kit and the network analyser. A SAR measurement was made following the determination of the dielectric parameters of the liquids, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The validation results (dielectric parameters and SAR values) are given in the table below.

System verification	System verification, head tissue simulant				
		Dielectric Para			

	f [MHz] Description		Dielectric F	Dielectric Parameters	
<i>f</i> [MHz]			Er	σ [S/m]	Temp [°C]
	Reference result	10.4	38.6	1.46	N/A
1900	$\pm10\%$ window	9.36 to 11.44			
	09/01/2003	10.8	38.30	1.47	22 ±1

System verification, body tissue simulant

		SAR [W/kg],	Dielectric F	Parameters	
f [MHz]	Description	1g	εr	σ [S/m]	Temp [°C]
	Reference result	10.6	51.2	1.59	N/A
1900	$\pm10\%$ window	9.54 to 11.66			
	08/12/2003	10.6	50.62	1.56	22 ±1
	08/13/2003	10.7	50.66	1.57	22 ±1

Plots of the Verification scans are given in Appendix A.

4.3.3 Tissue simulants used in the measurements

Head tissue simulant measurements						
		Dielectric I	Parameters			
f [MHz]	Description	٤r	σ [S/m]	Temp [°C]		
	Recommended value	40.0	1.40	N/A		
1880	\pm 5% window	38.0 to 42.0	1.33 to 1.47			
	09/01/2003	38.36	1.45	22 ±1		

Body tissue simulant measurements

		Dielectric Parameters		
f [MHz]	Description	٤r	σ [S/m]	Temp [°C]
	Recommended value	53.3	1.52	N/A
1880	± 5% window	50.6 to 56.0	1.44 to 1.60	
	08/12/2003	50.65	1.54	22 ±1
	08/13/2003	50.72	1.55	22 ±1

Copyright © 2003 TCC Copenhagen

5. DESCRIPTION OF THE TEST PROCEDURE

5.1 Device Holder

The test device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of the Dasy system.

Device holder supplied by SPEAG

A Nokia designed spacer (illustrated below) was used to position the test device within the SPEAG holder. The spacer positions the test device so that the holder has minimal effect on the test results but still holds the device securely. The spacer was removed before the tests.

Nokia spacer

TCC Copenhagen

5.2 Test Positions

5.2.1 Against Phantom Head

Measurements were made in "cheek" and "tilt" positions on both the left hand and right hand sides of the phantom.

The positions used in the measurements were according to IEEE P1528/D1.2 April 21 2003 "Recommended Practice for Determining the Spatial-Peak Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques".

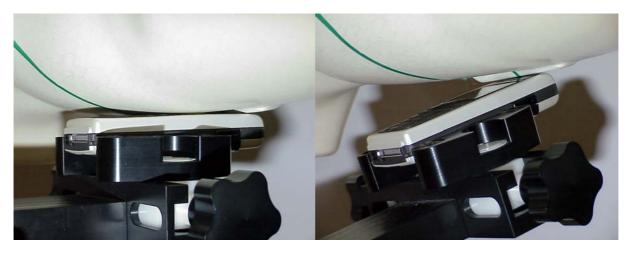


Photo of the device in "cheek" position

Photo of the device in "tilt" position

5.2.2 Body Worn Configuration

The device was placed in the SPEAG holder using the Nokia spacer and placed below the flat section of the phantom. The distance between the device and the phantom was kept at 1.5 cm using a separate flat spacer that was removed before the start of the measurements. The device was oriented with its antenna facing the phantom since this orientation gave higher results.

Photo of the device positioned for Body SAR measurement. A headset was connected and the spacer was removed for the tests.

5.3 Scan Procedures

First coarse scans were used for determination of the field distribution. Next a cube scan, 5x5x7 was performed around the highest E-field value to determine the averaged SAR value. Drift was determined by measuring the same point at the start of the coarse scan and again at the end of the cube scan.

5.4 SAR Averaging Methods

The maximum SAR value was averaged over a cube of tissue using interpolation and extrapolation.

The interpolation of the points was done with a 3d-Spline. The 3d-Spline comprised three one-dimensional splines with the "Not a knot" -condition [W. Gander, Computermathematik, p. 141-150] (x, y and z -directions) [Numerical Recipes in C, Second Edition, p 123].

The extrapolation was based on least square algorithm [W. Gander, Computermathematik, p.168-180]. Through the points in the first 30 mm in all z-axis, a fourth order polynomial was calculated. This polynomial was then used to evaluate the points between the phantom surface and the probe tip. The points, calculated from the phantom surface, were at 1 mm spacing.

Copyright © 2003 TCC Copenhagen

TCC Copenhagen

6. MEASUREMENT UNCERTAINTY

Table 6.1 – Measure	ement unce	rtainty e		n			
Uncertainty Component	P1528 Sec	Tol. (%)	Prob Dist	Div	Ci	ui (%)	Vi
Measurement System							
Probe Calibration	E2.1	±4.8	Ν	1	1	±4.8	∞
Axial Isotropy	E2.2	±4.7	R	√3	(1-c _p) ^{1/2}	±1.9	∞
Hemispherical Isotropy	E2.2	±9.6	R	√3	(C _p) ^{1/2}	±3.9	8
Boundary Effect	E2.3	±8.3	R	√3	1	±4.8	8
Linearity	E2.4	±4.7	R	√3	1	±2.7	8
System Detection Limits	E2.5	±1.0	R	√3	1	±0.6	8
Readout Electronics	E2.6	±1.0	Ν	1	1	±1.0	∞
Response Time	E2.7	±0.8	R	√3	1	±0.5	8
Integration Time	E2.8	±2.6	R	√3	1	±1.5	∞
RF Ambient Conditions - Noise	E6.1	±3.0	R	√3	1	±1.7	∞
RF Ambient Conditions - Reflections	E6.1	±3.0	R	√3	1	±1.7	∞
Probe Positioner Mechanical Tolerance	E6.2	±0.4	R	√3	1	±0.2	∞
Probe Positioning with respect to Phantom Shell	E6.3	±2.9	R	√3	1	±1.7	x
Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	E5.2	±3.9	R	√3	1	±2.3	œ
Test sample Related							
Test Sample Positioning	E4.2.1	±6.0	N	1	1	±6.0	11
Device Holder Uncertainty	E4.1.1	±5.0	N	1	1	±5.0	7
Output Power Variation - SAR drift measurement	6.6.3	±10.0	R	√3	1	±5.8	œ
Phantom and Tissue Parameters							
Phantom Uncertainty (shape and thickness tolerances)	E3.1	±4.0	R	√3	1	±2.3	×
Liquid Conductivity Target - tolerance	E3.2	±5.0	R	√3	0.64	±1.8	∞
Liquid Conductivity - measurement uncertainty	E3.3	±5.5	N	1	0.64	±3.5	5
Liquid Permittivity Target tolerance	E3.2	±5.0	R	√3	0.6	±1.7	~
Liquid Permittivity - measurement uncertainty	E3.3	±2.9	N	1	0.6	±1.7	5
Combined Standard Uncertainty			RSS			±14.5	187
Coverage Factor for 95%			k=2				_
Expanded Standard Uncertainty						±29.1	1

Table 6.1 – Measurement uncertainty evaluation

Copyright © 2003 TCC Copenhagen

TCC Copenhagen

$\overline{\mathbf{7.}}$ RESULTS

The measured Head SAR values for the test device are tabulated below: 1900 MHz Head SAR results

Mode and	Position		SAR, averaged over 1g (W/kg)			
Band			Ch 518 1851.4 MHz	Ch 661 1880.0 MHz	Ch 804 1908.6 MHz	
	Power level		30.4 dBm	30.4 dBm	30.5 dBm	
		Cheek		0.469		
	Left	Cheek, 2 nd max		0.481		
GSM 1900		Tilt	0.634	0.645	0.596	
	Right	Cheek		0.435		
		Cheek, 2 nd max		0.385		
	Tilt			0.593		
GSM 1900	Highest SAR value measurement in this band repeated with BT active		0.644	0.646	0.597	

All head SAR measurements performed with MMC card

The measured Body SAR values for the test device are tabulated below:

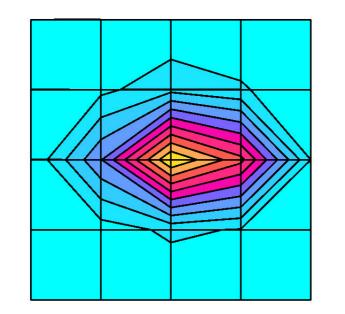
Mode and		SAR, averaged over 1g (W/kg)						
Band	Body-worn location setup	Ch 518 1851.4 MHz	Ch 661 1880.0 MHz	Ch 804 1908.6 MHz				
	Power level	30.4 dBm	30.4 dBm	30.5 dBm				
GPRS 1900	Headset HDS-3	0.932	0.903	0.878				
	Headset HDB-4	0.931	0.912	0.906				
GPRS 1900	Highest SAR value measurement in this mode repeated with MMC Card	1.02	0.965	0.957				

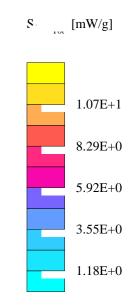
1900 MHz Body SAR results

All body SAR measurements performed with Bluetooth active.

Plots of the Measurement scans are given in Appendix B.

APPENDIX A: VALIDATION SCANS

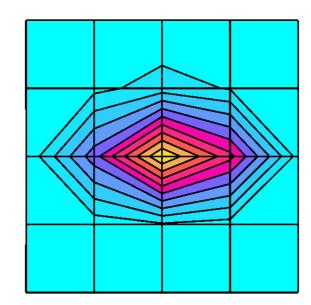

See the following pages.

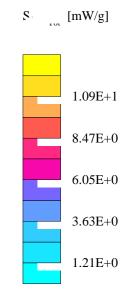

09/01/03

Dipole 1900 MHz Continous Wave, 1900 MHz; Crest factor: 1.0

Phantom: SAM High Band; Section: Medium Name: Head 1900 MHz: $\sigma = 1.47$ mho/m $\epsilon_r = 38.3~\rho = 1.00~g/cm^3$ Probe: ET3DV6R - SN1431; ConvF(4.70,4.70,4.70) Cube 5x5x7: SAR (1g): 10.8 mW/g, SAR (10g): 5.57 mW/g, (Advanced extrapolation) Antenna out: Dx = 20.0, Dy = 20.0, Dz = 10.0Powerdrift: 0.17 dB Temperature (°C) = 22 ± 1

Filename: Head - 01,09,03 - 1

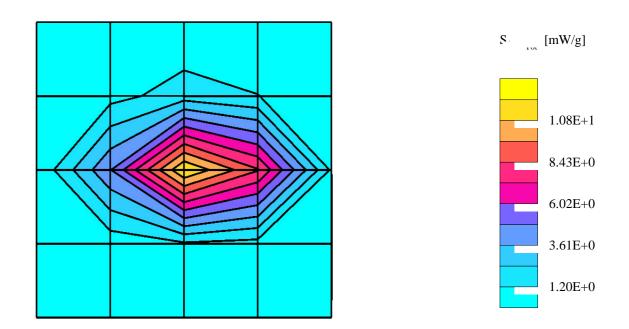



08/12/03

Dipole 1900 MHz Continous Wave, 1900 MHz; Crest factor: 1.0

Phantom: SAM High Band; Section: Medium Name: Body 1900 MHz: $\sigma = 1.56$ mho/m $\epsilon_r = 50.6~\rho = 1.00~g/cm^3$ Probe: ET3DV6R - SN1431; ConvF(4.40,4.40,4.40) Cube 5x5x7: SAR (1g): 10.6 mW/g, SAR (10g): 5.60 mW/g, (Advanced extrapolation) Antenna out: Dx = 20.0, Dy = 20.0, Dz = 10.0Powerdrift: 0.12 dB Temperature (°C) = 22 ± 1

Filename: Body - 12,08,03 - 1

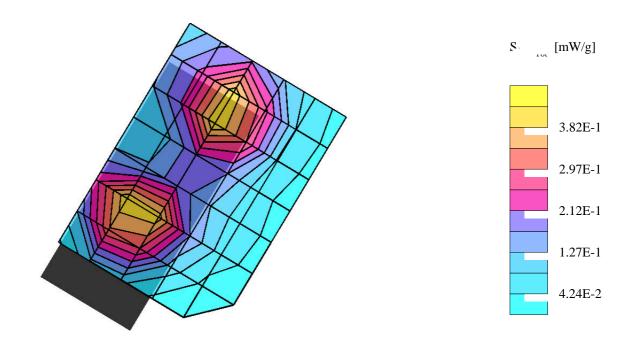


08/13/03

Dipole 1900 MHz Continous Wave, 1900 MHz; Crest factor: 1.0

Phantom: SAM High Band; Section: Medium Name: Body 1900 MHz: $\sigma = 1.57$ mho/m $\epsilon_r = 50.7~\rho = 1.00~g/cm^3$ Probe: ET3DV6R - SN1431; ConvF(4.40,4.40,4.40) Cube 5x5x7: SAR (1g): 10.7 mW/g, SAR (10g): 5.66 mW/g, (Advanced extrapolation) Antenna out: Dx = 20.0, Dy = 20.0, Dz = 10.0Powerdrift: 0.12 dB Temperature (°C) = 22 ± 1

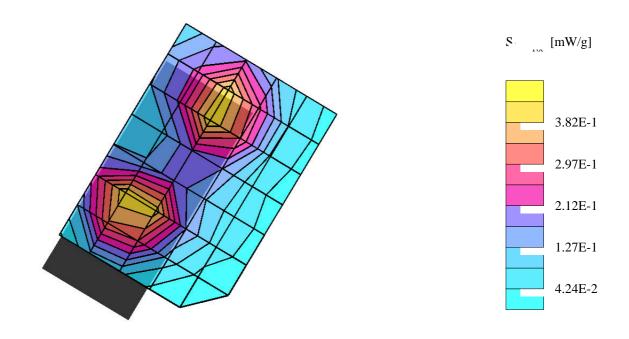
Filename: Body - 13,08,03 - 1


APPENDIX B: MEASUREMENT SCANS

See the following pages.

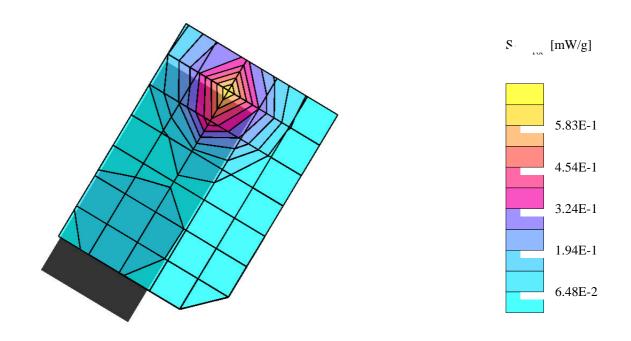
Mode: GSM; CH 661 = 1880.0 MHz; Crest factor: 8.0

Phantom: SAM High Band; Section: Left Hand Medium Name: Head 1900 MHz (SAM): σ = 1.45 mho/m ϵ_r = 38.4 ρ = 1.00 g/cm³ Probe: ET3DV6R - SN1431; ConvF(4.70,4.70,4.70) Cube 5x5x7: SAR (1g): 0.469 mW/g, SAR (10g): 0.278 mW/g, (Worst-case extrapolation) Coarse Scan: Dx = 15.0, Dy = 15.0, Dz = 10.0 Powerdrift: 0.26 dB Temperature (°C) = 22 ±1


Filename: SAM touch left 1900 MHz Ant in CH 661

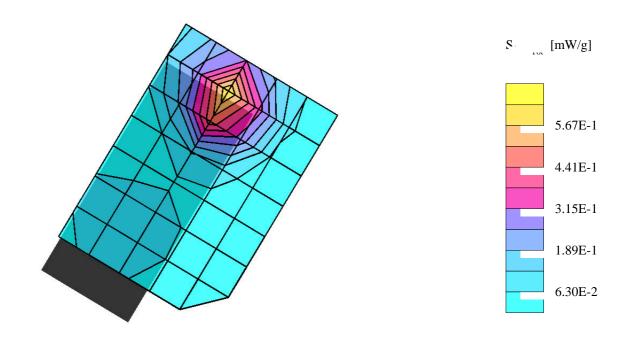
Mode: GSM; CH 661 = 1880.0 MHz; Crest factor: 8.0

Phantom: SAM High Band; Section: Left Hand Medium Name: Head 1900 MHz (SAM): $\sigma = 1.45$ mho/m $\epsilon_r = 38.4 \ \rho = 1.00$ g/cm³ Probe: ET3DV6R - SN1431; ConvF(4.70,4.70,4.70) Cube 5x5x7: SAR (1g): 0.481 mW/g, SAR (10g): 0.264 mW/g * Max outside, (Worst-case extrapolation) Coarse Scan: Dx = 15.0, Dy = 15.0, Dz = 10.0 Powerdrift: -0.01 dB Temperature (°C) = 22 ±1


Filename: SAM touch left 1900 MHz Ant in CH 661

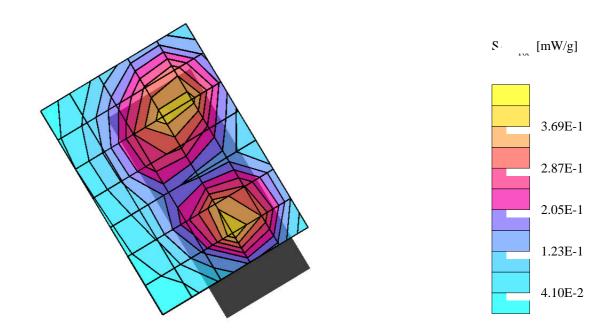
Mode: GSM; CH 661 = 1880.0 MHz; Crest factor: 8.0

Phantom: SAM High Band; Section: Left Hand Medium Name: Head 1900 MHz (SAM): σ = 1.45 mho/m ϵ_r = 38.4 ρ = 1.00 g/cm³ Probe: ET3DV6R - SN1431; ConvF(4.70,4.70,4.70) Cube 5x5x7: SAR (1g): 0.645 mW/g, SAR (10g): 0.342 mW/g, (Worst-case extrapolation) Coarse Scan: Dx = 15.0, Dy = 15.0, Dz = 10.0 Powerdrift: -0.44 dB Temperature (°C) = 22 ±1


Filename: SAM plus15° left 1900 MHz Ant in CH 661

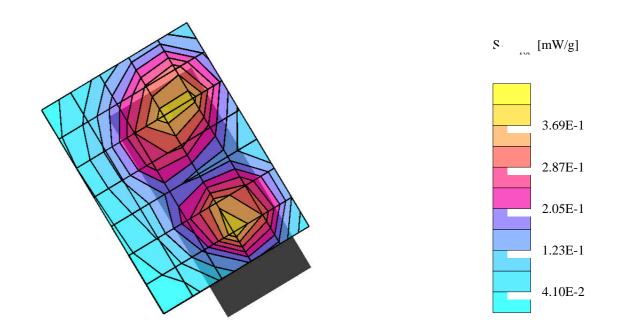
Mode: GSM; CH 661 = 1880.0 MHz; Crest factor: 8.0

Phantom: SAM High Band; Section: Left Hand Medium Name: Head 1900 MHz (SAM): σ = 1.45 mho/m ϵ_r = 38.4 ρ = 1.00 g/cm³ Probe: ET3DV6R - SN1431; ConvF(4.70,4.70,4.70) Cube 5x5x7: SAR (1g): 0.646 mW/g, SAR (10g): 0.343 mW/g, (Worst-case extrapolation) Coarse Scan: Dx = 15.0, Dy = 15.0, Dz = 10.0 Powerdrift: -0.19 dB Temperature (°C) = 22 ±1


Filename: SAM plus15° left 1900 MHz Ant in CH 661+BT

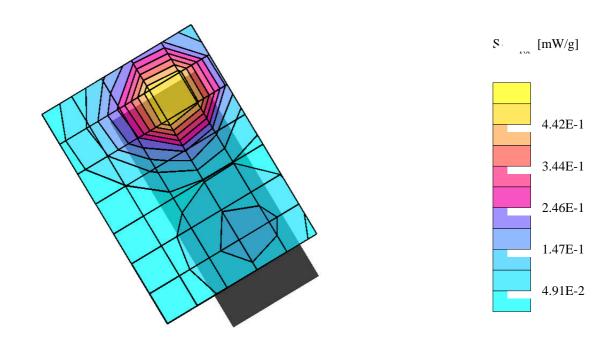
Mode: GSM; CH 661 = 1880.0 MHz; Crest factor: 8.0

Phantom: SAM High Band; Section: Righ Hand Medium Name: Head 1900 MHz (SAM): σ = 1.45 mho/m ϵ_r = 38.4 ρ = 1.00 g/cm³ Probe: ET3DV6R - SN1431; ConvF(4.70,4.70,4.70) Cube 5x5x7: SAR (1g): 0.435 mW/g, SAR (10g): 0.259 mW/g, (Worst-case extrapolation) Coarse Scan: Dx = 15.0, Dy = 15.0, Dz = 10.0 Powerdrift: -0.12 dB Temperature (°C) = 22 ±1


Filename: SAM touch right 1900 MHz Ant in CH 661-2

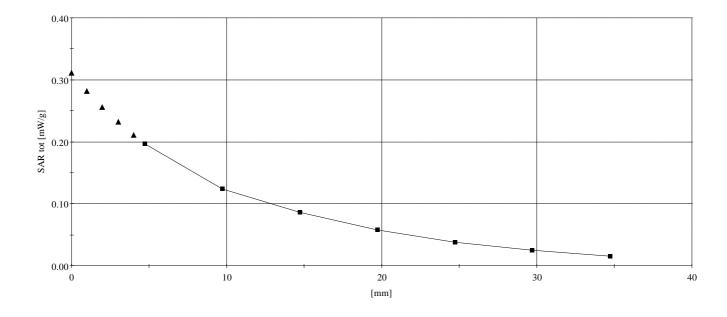
Mode: GSM; CH 661 = 1880.0 MHz; Crest factor: 8.0

Phantom: SAM High Band; Section: Righ Hand Medium Name: Head 1900 MHz (SAM): $\sigma = 1.45$ mho/m $\epsilon_r = 38.4 \ \rho = 1.00$ g/cm³ Probe: ET3DV6R - SN1431; ConvF(4.70,4.70,4.70) Cube 5x5x7: SAR (1g): 0.385 mW/g * , SAR (10g): 0.213 mW/g Max outside, (Worst-case extrapolation) Coarse Scan: Dx = 15.0, Dy = 15.0, Dz = 10.0 Powerdrift: 0.04 dB Temperature (°C) = 22 ±1

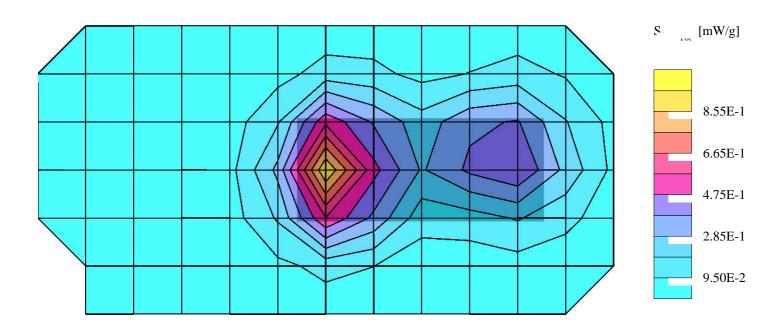

Filename: SAM touch right 1900 MHz Ant in CH 661-2

Mode: GSM; CH 661 = 1880.0 MHz; Crest factor: 8.0

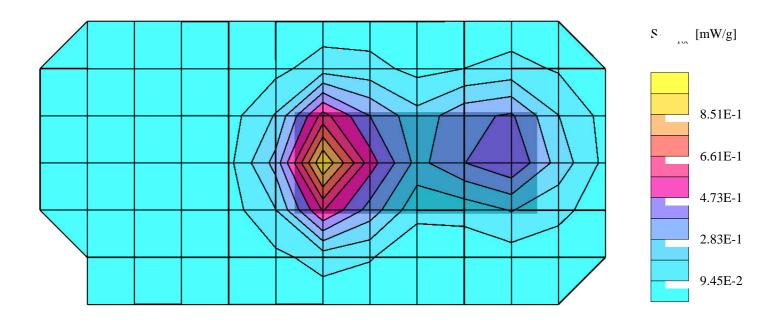
Phantom: SAM High Band; Section: Righ Hand Medium Name: Head 1900 MHz (SAM): σ = 1.45 mho/m ϵ_r = 38.4 ρ = 1.00 g/cm³ Probe: ET3DV6R - SN1431; ConvF(4.70,4.70,4.70) Cube 5x5x7: SAR (1g): 0.593 mW/g, SAR (10g): 0.325 mW/g, (Worst-case extrapolation) Coarse Scan: Dx = 15.0, Dy = 15.0, Dz = 10.0 Powerdrift: -0.16 dB Temperature (°C) = 22 ±1


Filename: SAM plus15° right 1900 MHz Ant in CH 661

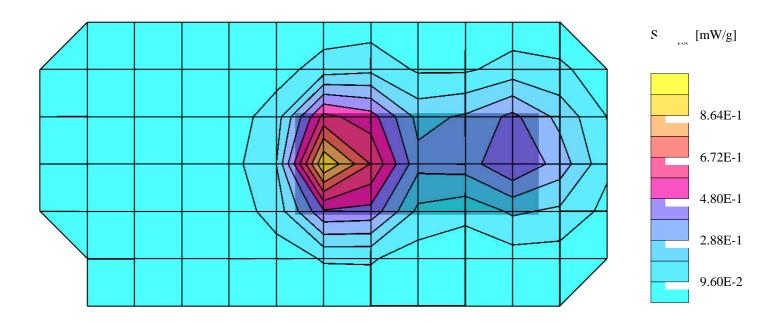
Mode: GSM; CH 661 = 1880.0 MHz; Crest factor: 8.0


Phantom: SAM High Band; Section: Left Hand Medium Name: Head 1900 MHz (SAM): σ = 1.45 mho/m ϵ_r = 38.4 ρ = 1.00 g/cm³ Probe: ET3DV6R - SN1431; ConvF(4.70,4.70,4.70) Cube 5x5x7: SAR (1g): 0.646 mW/g, SAR (10g): 0.343 mW/g, (Worst-case extrapolation) Cube 5x5x7: Dx = 8.0, Dy = 8.0, Dz = 5.0 Powerdrift: -0.19 dB Temperature (°C) = 22 ±1

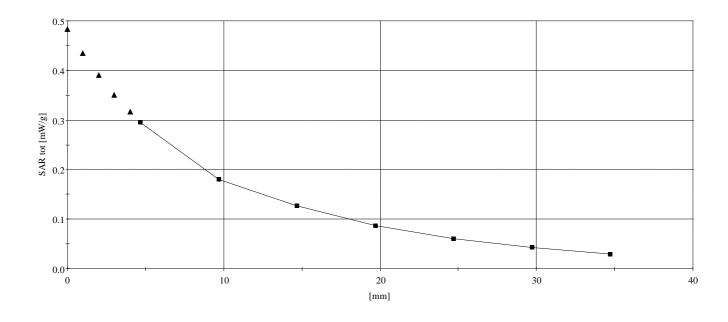
Filename: SAM plus15° left 1900 MHz Ant in CH 661+BT


Mode: GPRS, 1 Downlink 2 Uplink; CH 518 = 1851.4 MHz; Crest factor: 4.0

Phantom: SAM High Band; Section: Flat Medium Name: Body 1900 MHz (SAM): σ = 1.54 mho/m ϵ_r = 50.6 ρ = 1.00 g/cm³ Probe: ET3DV6R - SN1431; ConvF(4.40,4.40,4.40) Cube 5x5x7: SAR (1g): 0.932 mW/g, SAR (10g): 0.549 mW/g, (Worst-case extrapolation) Body: Dx = 20.0, Dy = 20.0, Dz = 10.0 Powerdrift: 0.05 dB Temperature (°C) = 22 ±1


Mode: GPRS, 1 Downlink 2 Uplink; CH 518 = 1851.4 MHz; Crest factor: 4.0

Phantom: SAM High Band; Section: Flat Medium Name: Body 1900 MHz (SAM): σ = 1.54 mho/m ϵ_r = 50.6 ρ = 1.00 g/cm³ Probe: ET3DV6R - SN1431; ConvF(4.40,4.40,4.40) Cube 5x5x7: SAR (1g): 0.931 mW/g, SAR (10g): 0.553 mW/g, (Worst-case extrapolation) Body: Dx = 20.0, Dy = 20.0, Dz = 10.0 Powerdrift: 0.06 dB Temperature (°C) = 22 ±1


Mode: GPRS, 1 Downlink 2 Uplink; CH 518 = 1851.4 MHz; Crest factor: 4.0

Phantom: SAM High Band; Section: Flat Medium Name: Body 1900 MHz (SAM): σ = 1.55 mho/m ϵ_r = 50.7 ρ = 1.00 g/cm³ Probe: ET3DV6R - SN1431; ConvF(4.40,4.40,4.40) Cube 5x5x7: SAR (1g): 1.02 mW/g, SAR (10g): 0.600 mW/g, (Worst-case extrapolation) Body: Dx = 20.0, Dy = 20.0, Dz = 10.0 Powerdrift: 0.02 dB Temperature (°C) = 22 ±1

Mode: GPRS, 1 Downlink 2 Uplink; CH 518 = 1851.4 MHz; Crest factor: 4.0

Phantom: SAM High Band; Section: Flat Medium Name: Body 1900 MHz (SAM): σ = 1.55 mho/m ϵ_r = 50.7 ρ = 1.00 g/cm³ Probe: ET3DV6R - SN1431; ConvF(4.40,4.40,4.40) Cube 5x5x7: SAR (1g): 1.02 mW/g, SAR (10g): 0.600 mW/g, (Worst-case extrapolation) Cube 5x5x7: Dx = 8.0, Dy = 8.0, Dz = 5.0 Powerdrift: 0.02 dB Temperature (°C) = 22 ±1

APPENDIX C: RELEVANT PAGES FROM PROBE CALIBRATION REPORT(S)

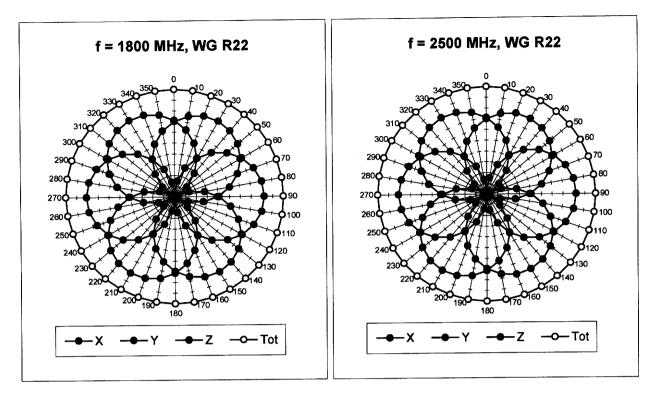
See the following pages.

Client Nokia Danmark A/S

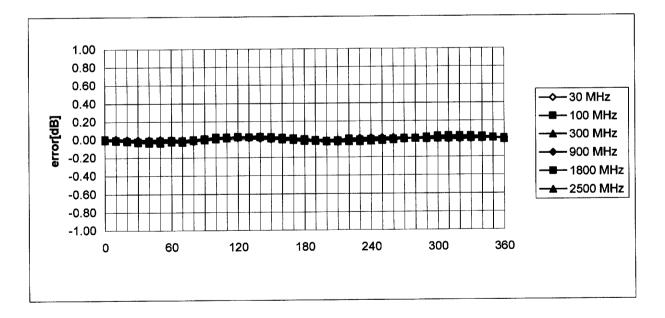
CALIBRATION	ERTIFICATE						
Object(s)	ET3DV6R - SN:1431						
Calibration procedure(s)	QA CAL-01.v2 Calibration procedure for	or dosimetric E-field probe	status en anteres en a				
Calibration date:	April 16, 2003						
Condition of the calibrated item In Tolerance (according to the specific calibration document)							
This calibration statement documer 17025 international standard.	nts traceability of M&TE used in the ca	libration procedures and conformity of t	he procedures with the ISO/IEC				
All calibrations have been conducte	ed in the closed laboratory facility: envi	ronment temperature 22 +/- 2 degrees	Celsius and humidity < 75%.				
Calibration Equipment used (M&TE	critical for calibration)						
Model Type	ID #	Cal Date	Scheduled Calibration				
RF generator HP 8684C	US3642U01700	4-Aug-99 (in house check Aug-02)	In house check: Aug-05				
Power sensor E4412A	MY41495277	2-Apr-03	Apr-04				
Power sensor HP 8481A	MY41092180	18-Sep-02	Sep-03				
Power meter EPM E4419B	GB41293874	13-Sep-02	Sep-03				
Network Analyzer HP 8753E	US38432426	3-May-00	In house check: May 03				
Fluke Process Calibrator Type 702	SN: 6295803	3-Sep-01	Sep-03				
	Name	Function	Signature				
Calibrated by:	Nico Vetterli	Technician	1). Veller				
Approved by:	Katja Pokovic	Laboratory Director	And the				
			Date issued: April 16, 2003				
This calibration certificate is issued as an intermediate solution until the accreditation process (based on ISO/IEC 17025 International Standard) for Calibration Laboratory of Schmid & Partner Engineering AG is completed.							

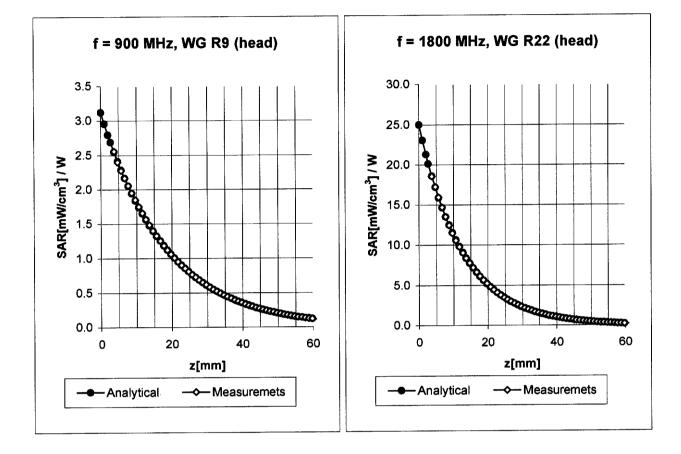
880-KP0301061-A

25/11-03 M


17752

DASY - Parameters of Probe: ET3DV6R SN:1431


Sensitivity in Free Space			Diode C	compressio	n		
	NormX	2.36	μV/(V/m) ²		DCP X	98	mV
	NormY	2.27	μV/(V/m) ²		DCP Y	98	mV
	NormZ	1.99	μV/(V/m) ²		DCP Z	98	mV
Sensitivity in Tissue Simulating Liquid							
Head	900 MHz	2	ε _r = 41.5 ± 5%	φ =	0.97 ± 5% mh	o/m	
	ConvF X	6.1	± 8.9% (k=2)		Boundary effe	ct:	
	ConvF Y	6.1	± 8.9% (k=2)		Alpha	0.40	
	ConvF Z	6.1	± 8.9% (k=2)		Depth	2.55	
Head	1800 MH:	2	ε _r = 40.0 ± 5%	σ=	• 1.40 ± 5% mh	o/m	
	ConvF X	4.9	± 8.9% (k=2)		Boundary effe	ct:	
	ConvF Y	4.9	± 8.9% (k=2)		Alpha	0.56	
	ConvF Z	4.9	± 8.9% (k=2)		Depth	2.39	


Boundary Effect

Head	900 MHz Typical SAR gradient: 5 % pe	er mm	
	Probe Tip to Boundary	1 mm	2 mm
	SAR _{be} [%] Without Correction Algorithm	10.7	6.0
	SAR _{be} [%] With Correction Algorithm	0.4	0.7
Head	1800 MHz Typical SAR gradient: 10 % p	oer mm	
	Probe Tip to Boundary	1 mm	2 mm
	SAR _{be} [%] Without Correction Algorithm	13.3	8.7
	SAR _{be} [%] With Correction Algorithm	0.1	0.2
Sensor	Offset		
	Probe Tip to Sensor Center 2.7		mm

Isotropy Error (ϕ), θ = 0°

Conversion Factor Assessment

Head	900 MHz		ε _r = 41.5 ± 5%	σ = 0.97 ± 5% mho/m	
	ConvF X	6.1	± 8.9% (k=2)	Boundary effect:	
	ConvF Y	6.1	± 8.9% (k=2)	Alpha 0.4	0
	ConvF Z	6.1	± 8.9% (k=2)	Depth 2.5	5
Head	1800 MHz		ε _r = 40.0 ± 5%	σ = 1.40 ± 5% mho/m	
	ConvF X	4.9	± 8.9% (k=2)	Boundary effect:	
	ConvF Y	4.9	± 8.9% (k=2)	Alpha 0.5	6
	ConvF Z	4.9	± 8.9% (k=2)	Depth 2.3	9

APPENDIX D: RELEVANT PAGES FROM DIPOLE VALIDATION KIT REPORT(S)

See the following pages.

Client Nokia Danmark A/S

CALIBRATION	CERTIFICATI							
Object(s)	D1900V2 - SN:5	d026						
Calibration procedure(s)	QA CAL-05.v2 Calibration proce	edure for dipole validation k	its and the second se					
Calibration date:	February 26, 2003							
Condition of the calibrated item In Tolerance (according to the specific calibration document)								
This calibration statement documents traceability of M&TE used in the calibration procedures and conformity of the procedures with the ISO/IEC 17025 international standard.								
All calibrations have been conducted in the closed laboratory facility: environment temperature 22 +/- 2 degrees Celsius and humidity < 75%.								
Calibration Equipment used (M&TE critical for calibration)								
Model Type	ID #	Cal Date	Scheduled Calibration					
RF generator R&S SML-03	100698	27-Mar-2002	In house check: Mar-05					
Power sensor HP 8481A	MY41092317	18-Oct-02	Oct-04					
Power sensor HP 8481A	US37292783	30-Oct-02	Oct-03					
Power meter EPM E442 Network Analyzer HP 8753E	GB37480704 US38432426	30-Oct-02 3-May-00	Oct-03 In house check: May 03					
		,						
	Name	Function	Signature					
Calibrated by:	Katja Pokovic	Laboratory Director	Polinic Vaya					
Approved by:	Niels Kuster	Quality Manager	NAS					
			Date issued: February 26, 2003					
This calibration certificate is issued as an intermediate solution until the accreditation process (based on ISO/IEC 17025 International Standard) for Calibration Laboratory of Schmid & Partner Engineering AG is completed.								

18307

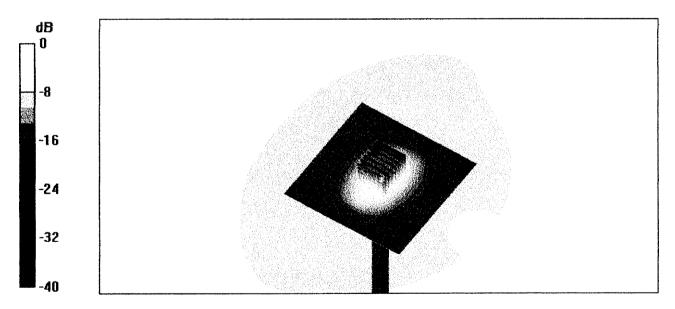
Test Laboratory: SPEAG, Zurich, Switzerland File Name: <u>SN5d026_SN1507_HSL1900_260203.da4</u>

DUT: Dipole 1900 MHz; Serial: D1900V2 - SN5d026 Program: Dipole Calibration

Communication System: CW-1900; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: HSL 1900 MHz; ($\sigma = 1.46$ mho/m, $\varepsilon_r = 38.6$, $\rho = 1000$ kg/m³) Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1507; ConvF(5.2, 5.2, 5.2); Calibrated: 1/18/2003


- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 SN411; Calibrated: 1/16/2003

- Phantom: SAM with CRP - TP1006; Type: SAM 4.0; Serial: TP:1006

- Measurement SW: DASY4, V4.1 Build 25; Postprocessing SW: SEMCAD, V1.6 Build 105

Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mmPin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mmdz=5mm

Reference Value = 95.2 V/m Peak SAR = 18.6 W/kg SAR(1 g) = 10.4 mW/g; SAR(10 g) = 5.31 mW/g Power Drift = 0.04 dB

Client Nokia Danmark A/S

CALIBRATION	CERTIFICATE							
Object(s)	D1900V2 - SN:5d026							
Calibration procedure(s)	QA CAL-05.v2 Calibration procedure I	or dipole validation kits						
Calibration date:	April 8, 2003							
Condition of the calibrated item In Tolerance (according to the specific calibration document)								
This calibration statement documents traceability of M&TE used in the calibration procedures and conformity of the procedures with the ISO/IEC 17025 international standard.								
All calibrations have been conducted in the closed laboratory facility: environment temperature 22 +/- 2 degrees Celsius and humidity < 75%.								
Calibration Equipment used (M&TE critical for calibration)								
Model Type	ID#	Cal Date	Scheduled Calibration					
RF generator R&S SML-03	100698	27-Mar-2002	In house check: Mar-05					
Power sensor HP 8481A	MY41092317	18-Oct-02	Oct-04					
Power sensor HP 8481A	US37292783	30-Oct-02	Oct-03					
Power meter EPM E442	GB37480704	30-Oct-02	Oct-03					
Network Analyzer HP 8753E	US38432426	3-May-00	In house check: May 03					
	Name	Function	Signature					
Calibrated by:	Judith Moeller	Technician	frindette					
Approved by:	Katja Poković	Laboratory Director	have they -					
			Date issued: April 12, 2003					
This calibration certificate is issued as an intermediate solution until the accreditation process (based on ISO/IEC 17025 International Standard) for Calibration Laboratory of Schmid & Partner Engineering AG is completed.								

25/4-03 NF

Date/Time: 04/08/03 13:41:14

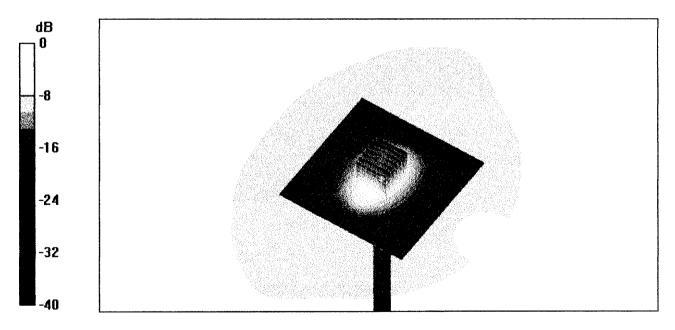
Test Laboratory: SPEAG, Zurich, Switzerland File Name: <u>SN5d026_SN1507_M1900_080403.da4</u>

DUT: Dipole 1900 MHz; Serial: D1900V2 - SN5d026 Program: Dipole Calibration

Communication System: CW-1900; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: Muscle 1900 MHz; ($\sigma = 1.59$ mho/m, $\epsilon_r = 51.2$, $\rho = 1000$ kg/m³) Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1507; ConvF(4.8, 4.8, 4.8); Calibrated: 1/18/2003


- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 SN411; Calibrated: 1/16/2003

- Phantom: SAM with CRP - TP1006; Type: SAM 4.0; Serial: TP:1006

- Measurement SW: DASY4, V4.1 Build 33; Postprocessing SW: SEMCAD, V1.6 Build 109

Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Peterence Value = 91.2 V/m

Reference Value = 91.2 V/m Peak SAR = 18.6 W/kg SAR(1 g) = 10.6 mW/g; SAR(10 g) = 5.51 mW/g Power Drift = 0.09 dB

