

CFR 47 FCC PART 15 SUBPART C TEST REPORT

For

Internal Sensor

MODEL NUMBER: TN05, S-6

REPORT NUMBER: E04A24090590F00301

ISSUE DATE: October 23, 2024

FCC ID: 2AP2YTN05

Prepared for

SINOTEK CO., LTD.
Industry Zone, High and New Technology Industry Development Zone, Zhaoqing, 526238, China

Prepared by

Guangdong Global Testing Technology Co., Ltd.

Room 101-105, 203-210, Building 1, No.2, Keji 8 Road, Songshan Lake Park, Dongguan city, Guangdong, People's Republic of China, 523808

This report is based on a single evaluation of the submitted sample(s) of the above mentioned Product, it does not imply an assessment of the production of the products.

This report shall not be reproduced, except in full, without the written approval of Guangdong Global Testing Technology Co., Ltd.

TRF No.: 04-E001-0B TRF Originator: GTG TRF Date: 2023-12-13 Web: www.gtggroup.com E-mail: info@gtggroup.com Tel.: 86-400 755 8988

REPORT NO.: E04A24090590F00301 Page 2 of 31

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	October 23, 2024	Initial Issue	

REPORT NO.: E04A24090590F00301 Page 3 of 31

Summary of Test Results

Test Item	Limit/Requirement	Result
Antenna Requirement	FCC Part 15.203	Pass
AC Power Line Conducted Emission	FCC Part 15.207	N/A
20dB Bandwidth	FCC Part 15.231(c)	Pass
Transmission Time	FCC Part 15.231(a)	Pass
Radiated Emission	FCC Part 15.205/15.209 FCC Part 15.231(b)	Pass

^{*}This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

^{*}The measurement result for the sample received is <Pass> according to <CFR 47 FCC PART 15 SUBPART C> when <Accuracy Method> decision rule is applied.

CONTENTS

1. ATT	ESTATION OF TEST RESULTS	5
2. TES	T METHODOLOGY	6
3. FAC	ILITIES AND ACCREDITATION	6
4. CAL	IBRATION AND UNCERTAINTY	7
4.1.	MEASURING INSTRUMENT CALIBRATION	7
4.2.	MEASUREMENT UNCERTAINTY	7
5. EQU	IPMENT UNDER TEST	8
5.1.	DESCRIPTION OF EUT	8
5.2.	CHANNEL LIST	8
5.3.	MAX FIELD STRENGTH	8
5.4.	TEST CHANNEL CONFIGURATION	8
5.5.	THE WORSE CASE POWER SETTING PARAMETER	9
5.6.	DESCRIPTION OF AVAILABLE ANTENNAS	9
5.7.	SUPPORT UNITS FOR SYSTEM TEST	9
5.8.	SETUP DIAGRAM	9
6. MEA	SURING EQUIPMENT AND SOFTWARE USED	10
7. ANT	ENNA PORT TEST RESULTS	12
7.1.	ON TIME AND DUTY CYCLE	12
7.2.	20DB BANDWIDTH	14
7.3.	TRANSMISSION TIME	16
8. RAD	NATED TEST RESULTS	18
8.1.	RADIATED EMISSION	23
9. ANT	ENNA REQUIREMENT	29
10.	AC POWER LINE CONDUCTED EMISSION	30
APPEND	IX: PHOTOGRAPHS OF TEST CONFIGURATION	31

REPORT NO.: E04A24090590F00301

Page 5 of 31

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: SINOTEK CO., LTD.

Address: Industry Zone, High and New Technology Industry Development

Zone, Zhaoqing, 526238, China

Manufacturer Information

Company Name: SINOTEK CO., LTD.

Address: Industry Zone, High and New Technology Industry Development

Zone, Zhaoqing, 526238, China

EUT Information

Product Description: Internal Sensor Model: TN05, S-6 Brand: Promata

Sample Received Date: September 24, 2024

Sample Status: Normal

Sample ID: A24090590 001

Date of Tested: September 24, 2024 to October 15, 2024

APPLICABLE STANDARDS			
STANDARD TEST RESULTS			
CFR 47 FCC PART 15 SUBPART C	Pass		

Prepared By:

Sject |

Alan He

Checked By:

Laboratory Leader

Shawn Wen

psoved By:

Laboratory Manager

REPORT NO.: E04A24090590F00301 Page 6 of 31

2. TEST METHODOLOGY

All tests were performed in accordance with the standard CFR 47 FCC PART 15 SUBPART C

3. FACILITIES AND ACCREDITATION

	A2LA (Certificate No.: 6947.01)
	Guangdong Global Testing Technology Co., Ltd.
	has been assessed and proved to be in compliance with A2LA.
	FCC (FCC Designation No.: CN1343)
	Guangdong Global Testing Technology Co., Ltd.
	has been recognized to perform compliance testing on equipment
Accreditation Certificate	subject to Supplier's Declaration of Conformity (SDoC) and
	Certification rules
	ISED (Company No.: 30714)
	Guangdong Global Testing Technology Co., Ltd.
	has been registered and fully described in a report filed with ISED.
	The Company Number is 30714 and the test lab Conformity
	Assessment Body Identifier (CABID) is CN0148.

Note: All tests measurement facilities use to collect the measurement data are located at Room 101-105, 203-210, Building 1, No.2, Keji 8 Road, Songshan Lake Park, Dongguan city, Guangdong, People's Republic of China, 523808

REPORT NO.: E04A24090590F00301 Page 7 of 31

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Items	k	Uncertainty
20dB Emission Bandwidth	1.96	±9.2 PPM
Conducted Output Power	1.96	±1.5 dB
Power Spectral Density Level	1.96	±1.9 dB
Conducted Spurious Emission	1.96	9 kHz-30 MHz: ± 0.95 dB 30 MHz-1 GHz: ± 1.5 dB 1GHz-12.75GHz: ± 1.8 dB 12.75 GHz-26.5 GHz: ± 2.1dB

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Test Item	Measurement Frequency Range	K	U(dB)
Conducted emissions from the AC mains power ports (AMN)	150 kHz ~ 30 MHz	2	3.37
Radiated emissions	9 kHz ~ 30 MHz	2	4.16
Radiated emissions	30 MHz ~ 1 GHz	2	3.79
Radiated emissions	1 GHz ~ 18 GHz	2	5.62
Radiated emissions	18 GHz ~ 40 GHz	2	5.54

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

REPORT NO.: E04A24090590F00301 Page 8 of 31

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name		Internal Sensor
Model		TN05
Series Model		S-6
Hardware Version		V1.0
Software Version		V1.0
Ratings		Battery 3V
Power Supply Battery		3V

Frequency Band:	433.92 MHz
Frequency Range:	433.92 MHz
Type of Modulation:	FSK
Number of Channels:	1
Max field strength:	41.77 dBµV/m
Antenna Type:	Internal antenna
Antenna Gain:	0 dBi
EUT Test software:	1
Note:	The Antenna Gain was provided by customer, and this information may affect the validity of the results, customer should be responsible for this.

5.2. CHANNEL LIST

Channel List							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	433.92	1	1	1	1	1	1

5.3. MAX FIELD STRENGTH

Frequency (MHz)	Channel Number	Max field strength (dBμV/m)
433.92	1	41.77

5.4. TEST CHANNEL CONFIGURATION

Test Channel Number	Frequency	
CH 1	433.92 MHz	

REPORT NO.: E04A24090590F00301

Page 9 of 31

5.5. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter				
Test Software /				
Modulation	Transmit		Test Channel	
Mode	Antenna Number	CH 1		
FSK	1	Default		

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna	Frequency (MHz)	Antenna Type	MAX Antenna Gain (dBi)
1	433.92	Internal antenna	0

Test Mode	Transmit and Receive Mode	Description
FSK	⊠1TX	ANT 1 can be used as transmitting antenna.

Note: The value of the antenna gain was declared by customer.

5.7. SUPPORT UNITS FOR SYSTEM TEST

The EUT has been tested as an independent unit

5.8. SETUP DIAGRAM

Radiated Emission:

EUT

RF conducted:

EUT

REPORT NO.: E04A24090590F00301 Page 10 of 31

6. MEASURING EQUIPMENT AND SOFTWARE USED

	Tes	st Equipment of (Conducted RF		
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
Spectrum Analyzer	Rohde & Schwarz	FSV40	102257	2024/09/14	2025/09/13
Spectrum Analyzer	KEYSIGHT	N9020A	MY51285127	2024/09/14	2025/09/13
EXG Analog Signal Generator	KEYSIGHT	N5173B	MY61253075	2024/09/14	2025/09/13
Vector Signal Generator	Rohde & Schwarz	SMM100A	101899	2024/09/14	2025/09/13
RF Control box	MWRF-test	MW100-RFCB	MW220926GTG	2024/09/14	2025/09/13
Wideband Radio Communication Tester	Rohde & Schwarz	CMW270	102792	2024/09/14	2025/09/13
Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	103235	2024/09/14	2025/09/13
temperature humidity chamber	Espec	SH-241	SH-241-2014	2024/09/14	2025/09/13
RF Test Software	MWRF-test	MTS8310E (Ver. V2/0)	N/A	N/A	N/A

	Test Equipment of Radiated emissions below 1GHz					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date	
3m Semi-anechoic Chamber	ETS	9m*6m*6m	Q2146	2022/08/30	2025/08/29	
EMI Test Receiver	Rohde & Schwarz	ESCI3	101409	2024/09/14	2025/09/13	
Spectrum Analyzer	KEYSIGHT	N9020A	MY51283932	2024/09/14	2025/09/13	
Pre-Amplifier	HzEMC	HPA-9K0130	HYPA21001	2024/09/14	2025/09/13	
Biconilog Antenna	Schwarzbeck	VULB 9168	01315	2022/10/10	2025/10/09	
Biconilog Antenna	ETS	3142E	00243646	2022/03/23	2025/03/22	
Loop Antenna	ETS	6502	243668	2022/03/30	2025/03/29	
Test Software	Farad	EZ-EMC (Ver.FA-03A2 RE)	N/A	N/A	N/A	

Test Equipment of Radiated emissions above 1GHz						
Equipment Manufacturer Model No. Serial No. Last Cal. Due Date						
3m Semi-anechoic Chamber	ETS	9m*6m*6m	Q2149	2022/08/30	2025/08/29	
Spectrum Analyzer	Rohde & Schwarz	FSV40	101413	2024/09/14	2025/09/13	
Spectrum Analyzer	KEYSIGHT	N9020A	MY51283932	2024/09/14	2025/09/13	
Pre-Amplifier	A-INFO	HPA-1G1850	HYPA21003	2024/09/14	2025/09/13	

REPORT NO.: E04A24090590F00301 Page 11 of 31

Horn antenna	A-INFO	3117	246069	2022/03/11	2025/03/10
Pre-Amplifier	ZKJC	HPA-184057	HYPA21004	2024/09/14	2025/09/13
Horn antenna	ZKJC	3116C	246265	2022/03/29	2025/03/28
Test Software	Farad	EZ-EMC (Ver.FA-03A2 RE+)	N/A	N/A	N/A

REPORT NO.: E04A24090590F00301 Page 12 of 31

7. ANTENNA PORT TEST RESULTS

7.1. ON TIME AND DUTY CYCLE

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

Refer to ANSI C63.10-2013 Zero - Span Spectrum Analyzer method.

TEST SETUP

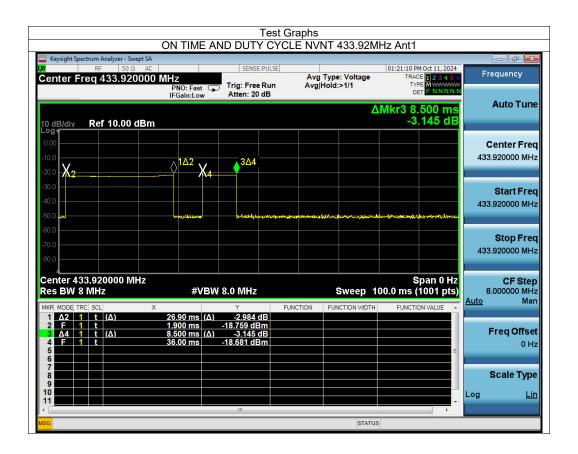
TEST ENVIRONMENT

Temperature	23.5℃	Relative Humidity	54%
Atmosphere Pressure	101kPa		

TEST RESULTS

433.92MHz

On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (db)	1/T Minimum VBW (kHz)	Final setting For VBW (kHz)
35.4	100	0.354	35.4	-9.02	0.03	1


Note:

Duty Cycle Correction Factor=20log(x).

Where: x is Duty Cycle (Linear)

Where: T is On Time (transmitting duration)

If that calculated VBW is not available on the analyzer then the next higher value should be used.

REPORT NO.: E04A24090590F00301 Page 14 of 31

7.2. 20DB BANDWIDTH

LIMITS

CFR 47 FCC Part15 (15.231) Subpart C				
Section Test Item Limit Frequency Range (MHz)				
CFR 47 FCC 15.231(a)(2)	20 dB Bandwidth	≤ 1084.8 kHz	433.92	

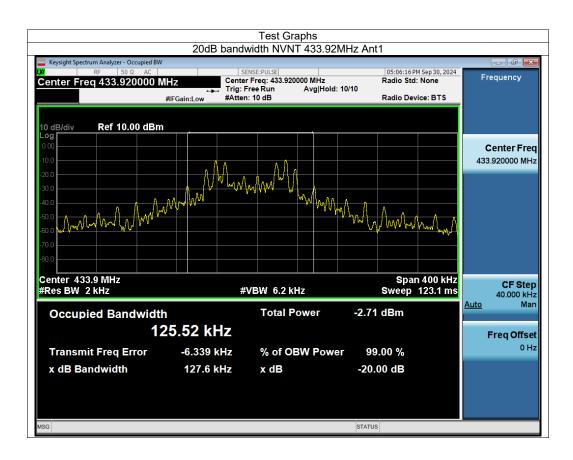

TEST PROCEDURE

Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Frequency Span	Approximately 2 to 3 times the 20dB bandwidth
Detector	Peak
RBW	1 % to 5 % of the 20 dB bandwidth
VBW	approximately 3×RBW
Trace	Max hold
Sweep	Auto couple

a) Use the occupied bandwidth function of the instrument, allow the trace to stabilize and report the measured 20 dB Bandwidth.

TEST SETUP


TEST ENVIRONMENT

Temperature	23.5℃	Relative Humidity	54%
Atmosphere Pressure	101kPa		

REPORT NO.: E04A24090590F00301 Page 15 of 31

TEST RESULTS

Frequency (MHz)	20dB bandwidth (kHz)	Limit (kHz)	Result
433.92	127.6	≤1084.8	Pass

REPORT NO.: E04A24090590F00301

Page 16 of 31

7.3. TRANSMISSION TIME

LIMITS

CFR 47 FCC Part15 (15.231) Subpart C			
Section Test Item Limit			
CFR 47 FCC §15.231 (a)	Transmission Time	A transmitter activated automatically shall cease transmission within 5 seconds after activation.	

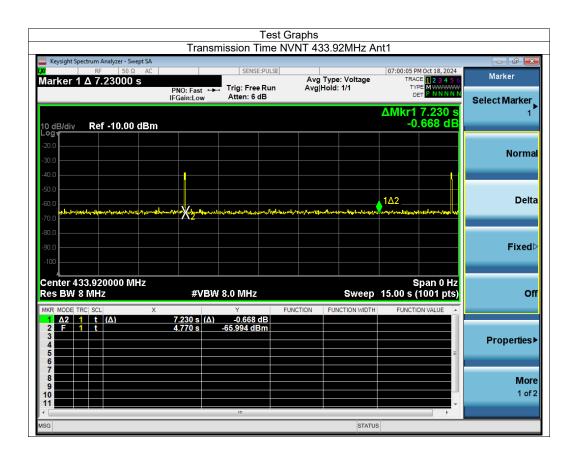
TEST PROCEDURE

Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	PEAK
RBW	8MHz
VBW	8MHz
Span	0Hz
Sweep time	Auto couple

Allow trace to fully stabilize and record value.

TEST SETUP


TEST ENVIRONMENT

Temperature	23.5℃	Relative Humidity	54%
Atmosphere Pressure	101kPa		

REPORT NO.: E04A24090590F00301 Page 17 of 31

TEST RESULTS

Frequency (MHz)	TRANSMISSION TIME (s)	Limit (s)	Result
433.92	see test graph	≤ 5	Pass

REPORT NO.: E04A24090590F00301 Page 18 of 31

8. RADIATED TEST RESULTS

LIMITS

Please refer to CFR 47 FCC §15.231(b)

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emission (microvolts/meter)
40.66-40.70	2,250	225
70-130	1,250	125
130-174	¹ 1,250 to 3,750	¹ 125 to 375
174-260	3,750	375
260-470	¹ 3,750 to 12,500	¹ 375 to 1,250
Above 470	12,500	1,250

Note: 1. Linear interpolations.

Please refer to CFR 47 FCC §15.205 and §15.209.

Radiation Disturbance Test Limit for FCC (Class B) (9 kHz ~ 1 GHz)

Emissions radiated outside of the specified frequency bands above 30 MHz				
Frequency Range	Field Strength Limit	Field Strength Limit		
(MHz)	(uV/m) at 3 m	(dBuV/m) at 3 m		
		Quasi-Peak		
30 - 88	100	40		
88 - 216	150	43.	5	
216 - 960	200	46		
Above 960	500	54		
Above 1000	500	Peak	Average	
Above 1000	300	74	54	

FCC Emissions radiated outside of the specified frequency bands below 30 MHz				
Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)		
0.009-0.490	2400/F(kHz)	300		
0.490-1.705	24000/F(kHz)	30		
1.705-30.0	30	30		

REPORT NO.: E04A24090590F00301 Page 19 of 31

TEST PROCEDURE

Below 30 MHz

The setting of the spectrum analyser

RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto

- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.
- 2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 80 cm above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.
- 5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz Radiated emission limits in these three bands are based on measurements employing an average detector.
- 6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.
- 7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.
- 8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X KHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

Below 1 GHz and above 30 MHz

The setting of the spectrum analyser

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

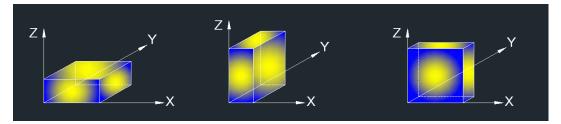
1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.

REPORT NO.: E04A24090590F00301 Page 20 of 31

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

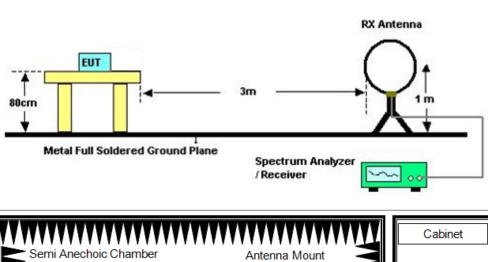
- 3. The EUT was placed on a turntable with 80 cm above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

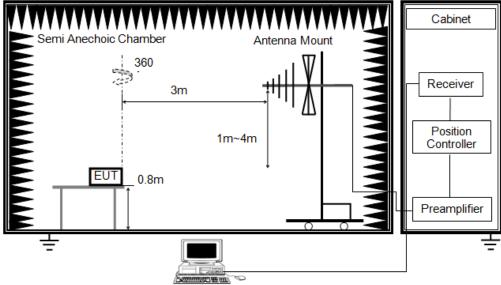
Above 1G

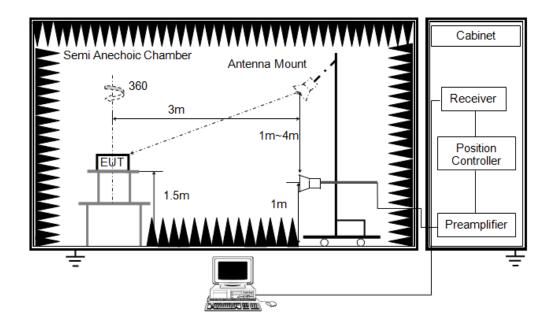

The setting of the spectrum analyser

RBW	1 MHz
IV/BW	PEAK: 3 MHz AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.6.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 1.5 m above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.
- 6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.1.ON TIME AND DUTY CYCLE.


REPORT NO.: E04A24090590F00301 Page 21 of 31


X axis, Y axis, Z axis positions:

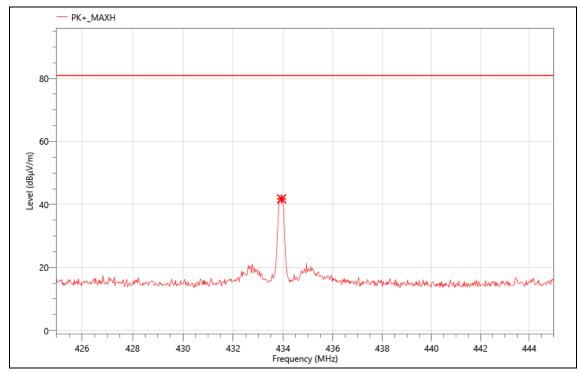

Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

TEST SETUP

REPORT NO.: E04A24090590F00301 Page 22 of 31

TEST ENVIRONMENT

Temperature	22.5℃	Relative Humidity	51%
Atmosphere Pressure	101kPa		

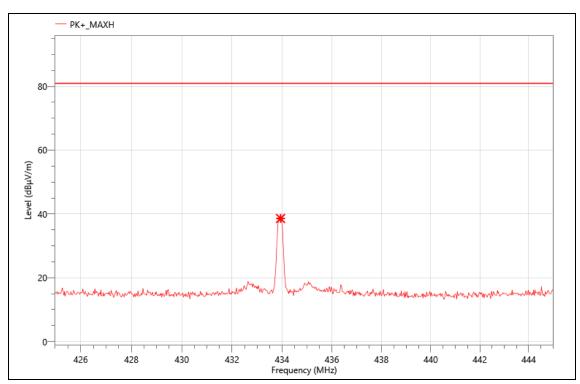

TEST RESULTS

Please refer to section 8.1.

8.1. RADIATED EMISSION

Field Strength of fundamental frequency

Mode:	433.92MHz
Power:	Battery 3V
TE:	Berny
Date	2024/9/30
T/A/P	22.5°C/51%/101Kpa



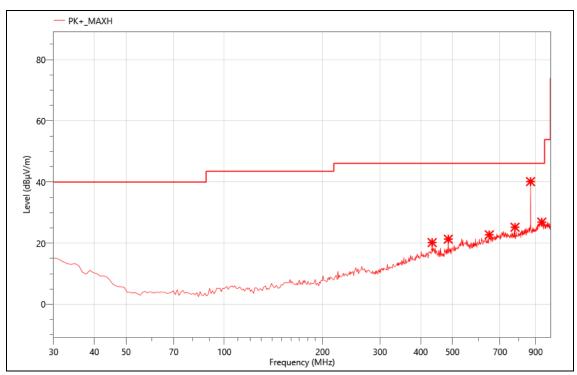
Critical_Freqs

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	433.940	55.97	-14.2	41.77	80.83	39.06	PK+	I

Note: [Margin=Limit-Meas.]; [Meas.=Reading+Corr.]

Mode:	433.92MHz
Power:	Battery 3V
TE:	Berny
Date	2024/9/30
T/A/P	22.5°C/51%/101Kpa

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	433.940	52.79	-14.2	38.59	80.83	42.24	PK+	V

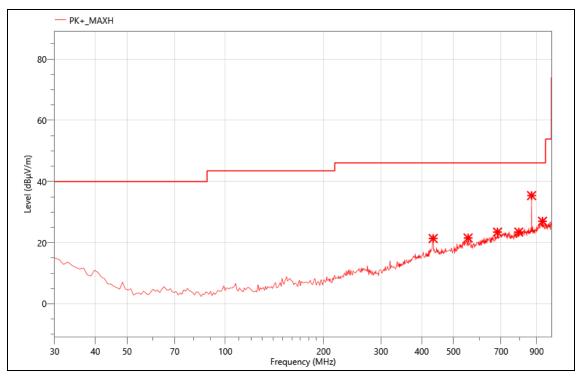

Note: [Margin=Limit-Meas.]; [Meas.=Reading+Corr.]

Note:

- 1. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.
 - 2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

Radiated Spurious Emission

Mode:	433.92MHz
Power:	Battery 3V
TE:	Berny
Date	2024/9/30
T/A/P	22.5°C/51%/101Kpa

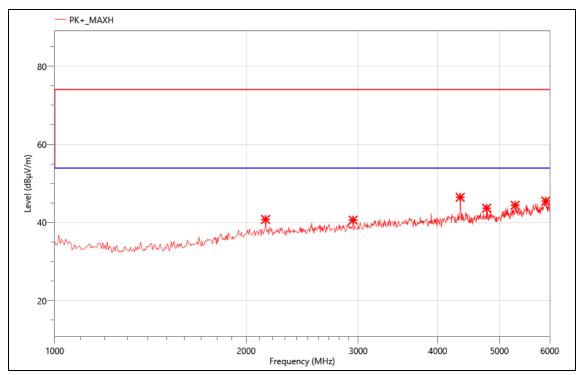


Critical_Freqs

No.	Freq.	Reading	Corr.	Meas.	Limit	Margin	Det.	Pol.
110.	(MHz)	(dBµV)	(dB)	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	Det.	1 01.
1	433.520	34.37	-14.18	20.19	46.00	25.81	PK+	Н
2	485.900	34.09	-12.79	21.30	46.00	24.70	PK+	Н
3	648.860	31.23	-8.49	22.74	46.00	23.26	PK+	Н
4	777.870	32.11	-6.9	25.21	46.00	20.79	PK+	Н
5	868.080	45.62	-5.49	40.13	46.00	5.87	PK+	Н
6	939.860	30.08	-3.2	26.88	46.00	19.12	PK+	Н

Note: [Margin=Limit-Meas.]; [Meas.=Reading+Corr.]

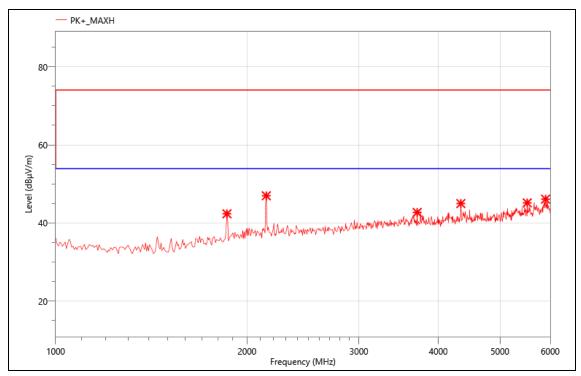
Mode:	433.92MHz
Power:	Battery 3V
TE:	Berny
Date	2024/9/30
T/A/P	22.5°C/51%/101Kpa


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	433.520	35.54	-14.18	21.36	46.00	24.64	PK+	V
2	554.770	31.52	-9.99	21.53	46.00	24.47	PK+	V
3	682.810	31.21	-7.75	23.46	46.00	22.54	PK+	V
4	793.390	30.05	-6.58	23.47	46.00	22.53	PK+	V
5	868.080	40.88	-5.49	35.39	46.00	10.61	PK+	V
6	937.920	30.18	-3.18	27.00	46.00	19.00	PK+	V

Note: [Margin=Limit-Meas.]; [Meas.=Reading+Corr.]

Note:

- 1. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.
 - 2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.


Mode:	433.92MHz
Power:	Battery 3V
TE:	Berny
Date	2024/9/30
T/A/P	22.5°C/51%/101Kpa

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2145.000	58.78	-18	40.78	74.00	33.22	PK+	Н
2	2945.000	56.57	-15.96	40.61	74.00	33.39	PK+	Н
3	4340.000	58.74	-12.27	46.47	74.00	27.53	PK+	Н
4	4775.000	55.18	-11.52	43.66	74.00	30.34	PK+	Н
5	5295.000	53.80	-9.39	44.41	74.00	29.59	PK+	Н
6	5915.000	54.00	-8.52	45.48	74.00	28.52	PK+	Н

Note: [Margin=Limit-Meas.]; [Meas.=Reading+Corr.]

Mode:	433.92MHz
Power:	Battery 3V
TE:	Berny
Date	2024/9/30
T/A/P	22.5°C/51%/101Kpa

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	1860.000	61.96	-19.6	42.36	74.00	31.64	PK+	V
2	2145.000	64.98	-18	46.98	74.00	27.02	PK+	V
3	3705.000	56.53	-13.81	42.72	74.00	31.28	PK+	V
4	4340.000	57.26	-12.27	44.99	74.00	29.01	PK+	V
5	5520.000	54.53	-9.36	45.17	74.00	28.83	PK+	V
6	5900.000	54.61	-8.5	46.11	74.00	27.89	PK+	V

Note: [Margin=Limit-Meas.]; [Meas.=Reading+Corr.]

Note:

- 1. Measurement = Reading Level + Correct Factor.
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

REPORT NO.: E04A24090590F00301 Page 29 of 31

9. ANTENNA REQUIREMENT

REQUIREMENT

Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

DESCRIPTION

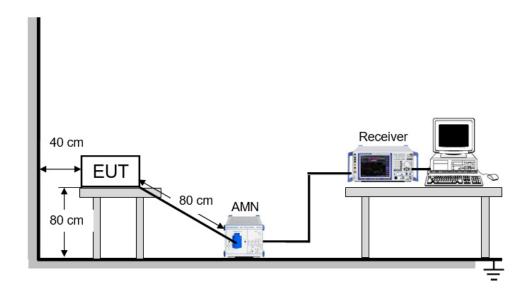
Pass

REPORT NO.: E04A24090590F00301 Page 30 of 31

10. AC POWER LINE CONDUCTED EMISSION

LIMITS

Please refer to CFR 47 FCC §15.207 (a)


FREQUENCY (MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

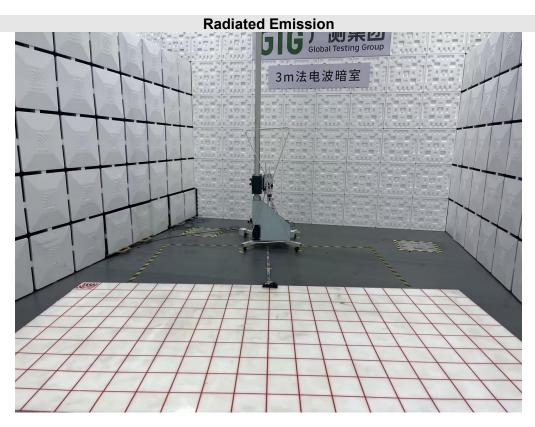
TEST PROCEDURE

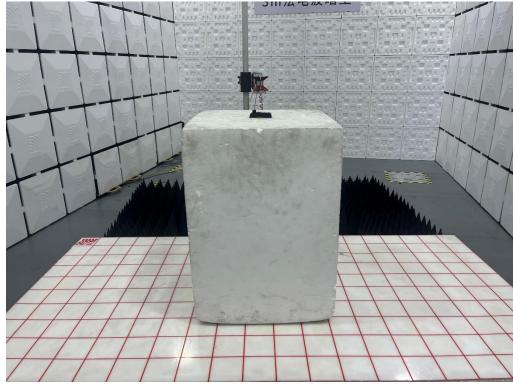
The EUT is put on a table of non-conducting material that is 80 cm high. The vertical conducting wall of shielding is located 40 cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9 kHz.

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.

TEST SETUP

TEST ENVIRONMENT


N/A


TEST RESULTS

N/A

REPORT NO.: E04A24090590F00301 Page 31 of 31

APPENDIX: PHOTOGRAPHS OF TEST CONFIGURATION

END OF REPORT

TRF No.: 04-E001-0B Global Testing , Great Quality.