

Page 1 of 92 JQA File No. : KL80160313 Issue Date : August 9, 2016

TEST REPORT

Applicant	:	SHARP CORPORATION, Consumer Electronics Company, Communication Systems Division
Address	:	2-13-1, Iida Hachihonmatsu, Higashi-Hiroshima City, Hiroshima, 739-0192, Japan
Products	:	Cellular Phone
Model No.	:	SH-01J
Serial No.	:	004401115830891
		004401115830727
FCC ID	:	APYHRO00240
Test Standard	:	CFR 47 FCC Rules and Regulations Part 15
Test Results	:	Passed
Date of Test	:	July 22 ~ 30, 2016

Kousei Shibata Manager Japan Quality Assurance Organization KITA-KANSAI Testing Center SAITO EMC Branch 7-3-10, Saito-asagi, Ibaraki-shi, Osaka 567-0085, Japan

- The test results in this test report was made by using the measuring instruments which are traceable to national standards of measurement in accordance with ISO/IEC 17025.
- The applicable standard, testing condition and testing method which were used for the tests are based on the request of the applicant.
- The test results presented in this report relate only to the offered test sample.
- The contents of this test report cannot be used for the purposes, such as advertisement for consumers.
- This test report shall not be reproduced except in full without the written approval of JQA.
- $\bullet~$ VLAC does not approve, certify or warrant the product by this test report.

JAPAN QUALITY ASSURANCE ORGANIZATION

Page 2 of 92

TABLE OF CONTENTS

Page

1	Description of the Equipment Under Test	3
2	Summary of Test Results	4
3	Test Procedure	
4	Test Location	5
5	Recognition of Test Laboratory	5
6	Description of Test Setup	6
7	Test Requirements	9
	-	

DEFINITIONS FOR ABBREVIATION AND SYMBOLS USED IN THIS TEST REPORT

- $\textbf{EUT} \quad : \text{Equipment Under Test}$
- **AE** : Associated Equipment
- N/A : Not Applicable
- N/T : Not Tested

- **EMC** : Electromagnetic Compatibility
- **EMI** : Electromagnetic Interference
- **EMS** : Electromagnetic Susceptibility
- $\ensuremath{\boxtimes}$ $\ensuremath{$ indicates that the listed condition, standard or equipment is applicable for this report.
- \Box indicates that the listed condition, standard or equipment is not applicable for this report.

Page 3 of 92

1 Description of the Equipment Under Test

1.	Manufacturer	:	SHARP CORPORATION, Consumer Electronics Company, Communication Systems Division 2-13-1, Iida Hachihonmatsu, Higashi-Hiroshima City, Hiroshima, 739-0192, Japan
2.	Products	:	Cellular Phone
3.	Model No.	:	SH-01J
4.	Serial No.	:	004401115830891
			004401115830727
5.	Product Type	:	Pre-production
6.	Date of Manufacture	:	June, 2016
7.	Power Rating	:	4.0VDC (Lithium-ion Battery SH44 1800mAh)
8.	Grounding	:	None
9.	Transmitting Frequency	: :	WLAN: 2412.0 MHz(01CH) –2462.0MHz(11CH) Bluetooth LE: 2402.0 MHz(00CH) – 2480.0MHz(39CH)
10.	Receiving Frequency	:	WLAN: 2412.0 MHz(01CH) –2462.0MHz(11CH) Bluetooth LE: 2402.0 MHz(00CH) – 2480.0MHz(39CH)
11.	Max. RF Output Power	: : :	17.94 dBm(Measure Value of IEEE802.11b) 21.25 dBm(Measure Value of IEEE802.11g) 20.35 dBm(Measure Value of IEEE802.11n) 5.53 dBm(Measure Value of Bluetooth LE)
12.	Antenna Type	:	Inverted-L Type Antenna (Integral)
13.	Antenna Gain	:	0 dBi
14.	Category	:	DTS
15.	EUT Authorization	:	Certification
16.	Received Date of EUT	:	July 20, 2016

17. Channel Plan

WLAN:

The carrier spacing is 5 MHz.

The carrier frequency is designated by the absolute frequency channel number (ARFCN). The carrier frequency is expressed in the equation shown as follows:

Transmitting Frequency (in MHz) = 2407.0 + 5*nReceiving Frequency (in MHz) = 2407.0 + 5*nwhere, n : channel number ($1 \le n \le 11$)

Bluetooth Low Energy Mode: The carrier spacing is 2 MHz. The carrier frequency is designated by the absolute frequency channel number (ARFCN). The carrier frequency is expressed in the equation shown as follows:

Transmitting Frequency (in MHz) = 2402.0 + 2*nReceiving Frequency (in MHz) = 2402.0 + 2*nwhere, n : channel number ($0 \le n \le 39$)

Page 4 of 92

2 Summary of Test Results

Applied Standard : CFR 47 FCC Rules and Regulations Part 15 Subpart C – Intentional Radiators

The EUT described in clause 1 was tested according to the applied standard shown above. Details of the test configuration is shown in clause 6.

The conclusion for the test items of which are required by the applied standard is indicated under the test result.

 \square - The test result was **passed** for the test requirements of the applied standard.

 \Box - The test result was **failed** for the test requirements of the applied standard.

 \Box - The test result was **not judged** the test requirements of the applied standard.

In the approval of test results,

- Determining compliance with the limits in this report was based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.
- No deviations were employed from the applied standard.
- No modifications were conducted by JQA to achieve compliance to the limitations.

Reviewed by:

Shigeru Kinoshita Assistant Manager JQA KITA-KANSAI Testing Center SAITO EMC Branch

Tested by:

higen Osawa

Shigeru Osawa Deputy Manager JQA KITA-KANSAI Testing Center SAITO EMC Branch

Page 5 of 92

3 Test Procedure

Test Requirements	: §15.247, §15.207 and §15.209
Test Procedure	: ANSI C63.10–2013 Testing unlicensed wireless devices.
	KDB 558074 D01 DTS Meas Guidance v03r05: April 8, 2016.
	KDB937606 (Publication Date: October 10, 2014) Test Site Requirements for Part 15 and 18 Devices Operating Below 30MHz.

4 Test Location

Japan Quality Assurance Organization (JQA) KITA-KANSAI Testing Center 7-7, Ishimaru, 1-chome, Minoh-shi, Osaka, 562-0027, Japan SAITO EMC Branch 7-3-10, Saito-asagi, Ibaraki-shi, Osaka 567-0085, Japan

5 Recognition of Test Laboratory

JQA KITA-KANSAI Testing Center SAITO EMC Branch is accredited under ISO/IEC 17025 by following accreditation bodies and the test facility is registered by the following bodies.

VLAC Accreditation No.	:	VLAC-001-2 (Expiry date : March 30, 2018)
VCCI Registration No.	:	A-0002 (Expiry date : March 30, 2018)
BSMI Registration No.	:	SL2-IS-E-6006, SL2-IN-E-6006, SL2-R1/R2-E-6006, SL2-A1-E-6006
		(Expiry date : September 14, 2016)
IC Registration No.	:	2079E-3, 2079E-4 (Expiry date : July 16, 2017)

Accredited as conformity assessment body for Japan electrical appliances and material law by METI. (Expiry date : February 22, 2019)

Page 6 of 92

6 Description of Test Setup

6.1 Test Configuration

The equipment under test (EUT) consists of :

	Item	Manufacturer	Model No.	Serial No.	FCC ID	
А	Cellular Phone	Sharp	SH-01J	004401115830891 *1) 004401115830727 *2)	APYHRO00240	
В	AC Adapter	Fujitsu Corporation	05	XEA	N/A	
С	Stereo Handsfree	Sharp	SHLDL1		N/A	
D	Conversion Cable	NTT docomo	02		N/A	

*1) Used for AC Powerline Conducted Emission and Field Strength of Spurious Emission.

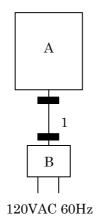
*2) Used for Antenna Conducted Emission.

The auxiliary equipment used for testing :

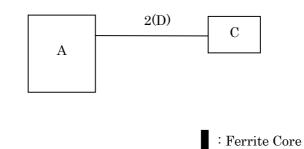
None

Type of Cable:

No.	Description	Identification (Manu. etc.)	Connector Shielded	Cable Shielded	Ferrite Core	Length (m)
1	USB conversion cable			NO	YES	1.2
2	Handsfree Cable (Including Conversion cable)			NO	NO	1.6


Page 7 of 92

6.2 Test Arrangement (Drawings)


a) Single Unit

b) AC Adapter used

c) Earphone used

Page 8 of 92

6.3 Operating Condition

Power Supply Voltage :	4.0 VDC (for Battery)
	120 VAC, 60 Hz (For AC Adapter)
Transmitting/Receiving	
WLAN:	
Transmitting frequency	: 2412.0 MHz(1CH) – 2462.0 MHz(11CH)
Receiver frequency	: 2412.0 MHz(1CH) – 2462.0 MHz(11CH)
Bluetooth Low Energy Mo	de(Bluetooth 4.0 + EDR + LE):
Transmitting frequency	: 2402.0 MHz(0CH) – 2480.0 MHz(39CH)
Receiver frequency	: 2402.0 MHz(0CH) – 2480.0 MHz(39CH)
Modulation Type	
1. 802.11b : DSSS	
2. 802.11g : OFDM	
3. 802.11n : OFDM	
4. LE Packet (Modulation	Type : GFSK)

Other Clock Frequency 19.2MHz, 27MHz, 27.12MHz

The tests were performed in the following worst condition.

Mode	Condition
IEEE802.11b	11 Mbps
IEEE802.11g	24 Mbps
IEEE802.11n	MCS2 (19.5 Mbps)

Note: The worst condition was determined based on the test result of Maximum Peak Output Power(Mid channel).

The EUT was rotated through three orthogonal axis (X, Y and Z axis) in radiated measurement. The EUT with temporary antenna port was used in conducted measurement.

The test were carried out using the following test program supplied by applicant;

- Software Name: SH-01J_WLAN_BT Manual test mode operation
- Software Version: -- (Dated 2016/07/12)
- Storage Location: Controller PC(supplied by applicant)

Page 9 of 92

7 Test Requirements

7.0 Summary of the Test Results

Test Item	FCC Specification	Reference of the Test Report	Results	Remarks
Antenna Requirement	Section 15.203	Section 1.12	Passed	-
Channel Separation	Section 15.247(a)(1)	-		-
Minimum Hopping Channel	Section 15.247(a)(1)(iii)	-	-	-
Occupied Bandwidth	Section 15.247(a)(2)	Section 7.3	Passed	-
Dwell Time	Section 15.247(a)(1)(iii)	-	-	-
Peak Output Power	Section 15.247(b)(3)	Section 7.5	Passed	-
(Conduction)				
Peak Power Density	Section 15.247(e)	Section 7.6	Passed	-
(Conduction)				
Spurious Emissions	Section 15.247(d)	Section 7.7	Passed	-
(Conduction)				
AC Powerline Conducted	Section 15.207	Section 7.8	Passed	-
Emission				
Radiated Emission	Section 15.247(d)	Section 7.9	Passed	-

Page 10 of 92

7.1 Channel Separation

For the requirements, \Box - Applicable [\Box - Tested. \Box - Not tested by applicant request.] \Box - Not Applicable

Remarks:

7.2 Minimum Hopping Channel

For the requirements, \Box - Applicable [\Box - Tested. \Box - Not tested by applicant request.] \Box - Not Applicable

Remarks:

7.3 Occupied Bandwidth

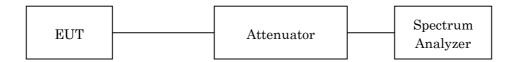
For the requirements, \square - Applicable [\square - Tested. \square - Not tested by applicant request.] \square - Not Applicable

7.3.1 Test Results

For the standard,	\square - Passed	\Box - Failed	🗆 - Not j	udged			
The 99% Bandwidth o The 99% Bandwidth o The 99% Bandwidth o The 99% Bandwidth o	of IEEE802.11g is of IEEE802.11n is		$ \begin{array}{r} 12.874 \\ 16.473 \\ 17.665 \\ 1091.2 \\ \end{array} $	MHz MHz MHz kHz	at at at at	$\begin{array}{r} \underline{2462.0}\\ \underline{2412.0}\\ \underline{2437.0}\\ \underline{2402/2440} \end{array}$	MHz MHz MHz MHz
The 6dB Bandwidth o The 6dB Bandwidth o The 6dB Bandwidth o The 6dB Bandwidth o	of IEEE802.11g is of IEEE802.11n is		$ \begin{array}{r} $	MHz MHz MHz kHz	at at at at	$\begin{array}{r} \underline{2462.0} \\ \underline{2412.0} \\ \underline{2437.0} \\ \underline{2440.0} \end{array}$	MHz MHz MHz MHz
Uncertainty of Measu	rement Results					± 0.9	%(20)

Remarks:

Page 11 of 92


7.3.2 Test Instruments

Shielded Room S4							
TypeModelSerial No. (ID)ManufacturerCal. Due							
Spectrum Analyzer	E4446A	US44300388 (A-39)	Agilent	2016/08/11			
Attenuator	54A-10	W5675 (D-28)	Weinschel	2016/08/16			
RF Cable	SUCOFLEX102	14253/2 (C-52)	HUBER+SUHNER	2016/08/16			

NOTE : The calibration interval of the above test instruments is 12 months.

7.3.3 Test Method and Test Setup (Diagrammatic illustration)

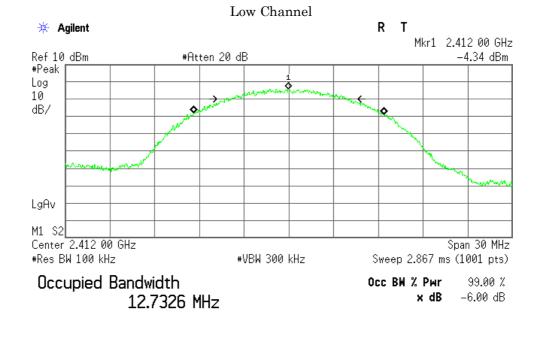
The test system is shown as follows:

The setting of the spectrum analyzer are shown as follows:

	WLAN	Bluetooth
Res. Bandwidth	100 kHz	$100 \mathrm{kHz}$
Video Bandwidth	300 kHz	$300 \mathrm{kHz}$
Span	$30 \mathrm{~MHz}$	3 MHz
Sweep Time	AUTO	AUTO
Trace	Maxhold	Maxhold

Page 12 of 92

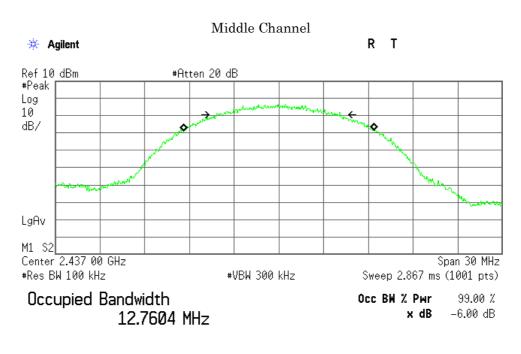
7.3.4 Test Data

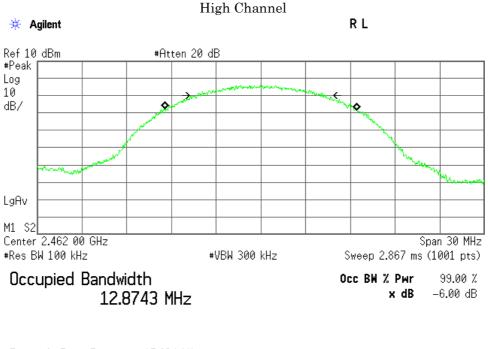

Mode of EUT : WLAN

<u>Test Date</u> :July 23, 2016 <u>Temp.:27°C, Humi:59%</u>

The resolution bandwidth was set to 100 kHz, -6dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

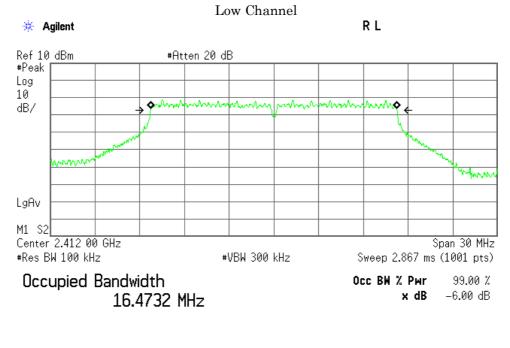
1) IEEE 802.11b


Channel	Frequency (MHz)	99% Bandwidth (MHz)	-6dBc Bandwidth (MHz)	Minimum -6dBc Bandwidth Limit (kHz)
01	2412.0	12.733	8.408	500
06	2437.0	12.760	8.306	500
11	2462.0	12.874	8.645	500


Transmit Freq Error -14.406 kHz Occupied Bandwidth 8.408 MHz

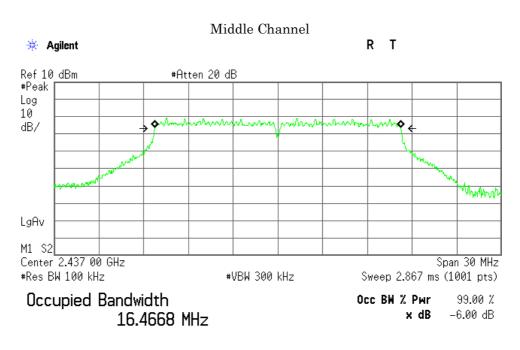
Page 13 of 92

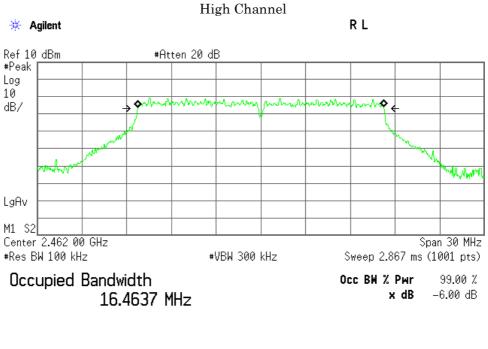
Transmit Freq Error	-22.216 kHz	
Occupied Bandwidth	8.306 MHz	


Transmit Freq Error	–15.834 kHz
Occupied Bandwidth	8.645 MHz

Page 14 of 92

2) IEEE 802.11g

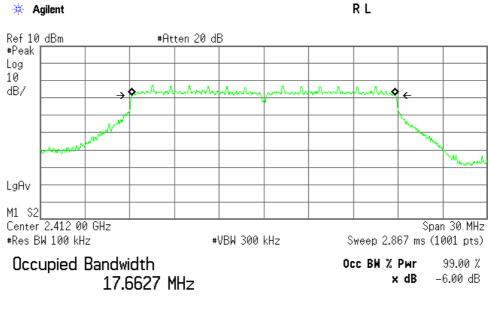

Channel	Frequency (MHz)	99% Bandwidth (MHz)	-6dBc Bandwidth (MHz)	Minimum -6dBc Bandwidth Limit (kHz)
01	2412.0	16.473	16.521	500
06	2437.0	16.467	16.494	500
11	2462.0	16.464	16.489	500


Transmit Freq Error	-8.148 kHz
Occupied Bandwidth	16.521 MHz

Page 15 of 92

Transmit Freq Error	-11.149 kHz
Occupied Bandwidth	16.494 MHz

Transmit Freq Error	–11.978 kHz
Occupied Bandwidth	16.489 MHz

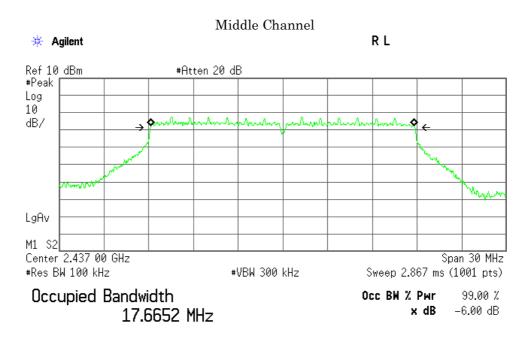


Page 16 of 92

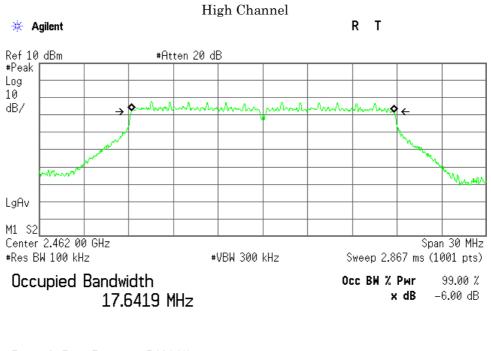
3) IEEE 802.11n

Channel	Frequency (MHz)	99% Bandwidth (MHz)	-6dBc Bandwidth (MHz)	Minimum -6dBc Bandwidth Limit (kHz)
01	2412.0	17.663	17.673	500
06	2437.0	17.665	17.713	500
11	2462.0	17.642	17.648	500

Low Channel



Transmit Freq Error	-5.201 kHz
Occupied Bandwidth	17.673 MHz


L

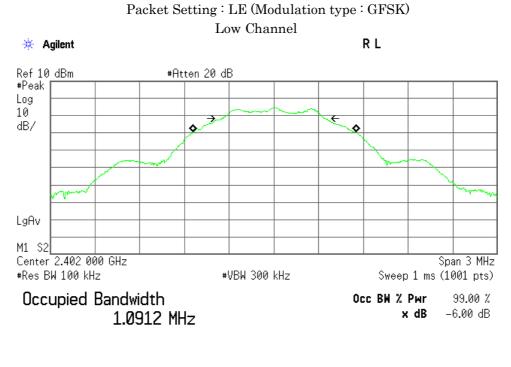
Page 17 of 92

Transmit Freq Error	–9.588 kHz
Occupied Bandwidth	17.713 MHz

Transmit Freq Error	-5.164 kHz	
Occupied Bandwidth	17.648 MHz	

Page 18 of 92

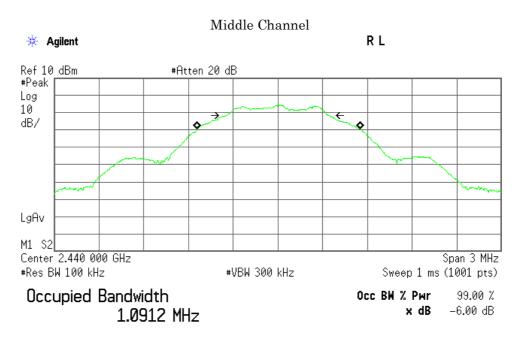
Mode of EUT : Bluetooth Low Energy

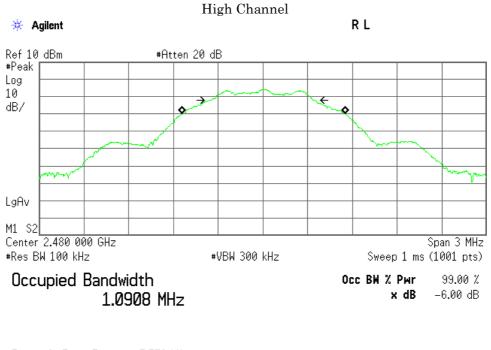

Test Date :July 25, 2016

<u>Temp.:27°C, Humi:62%</u>

The resolution bandwidth was set to 100 kHz, -6dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

4) Packet Setting : LE (Modulation type : GFSK)	4)	Packet Setting	ELE	(Modulation	type : GFSK)
---	----	----------------	-----	-------------	--------------


Channel	Frequency (MHz)	99% Bandwidth (kHz)	-6dBc Bandwidth (kHz)	Minimum -6dBc Bandwidth Limit (kHz)
00	2402.0	1091.2	679.9	500
19	2440.0	1091.2	684.3	500
39	2480.0	1090.8	677.0	500


Transmit Freq Error	5.870 kHz
Occupied Bandwidth	679.861 kHz

Page 19 of 92

Transmit Freq Error	6.148 kHz
Occupied Bandwidth	684.256 kHz

Transmit Freq Error	5.778 kHz
Occupied Bandwidth	676.965 kHz

Page 20 of 92

7.4 Dwell Time

For the requirements, \Box - Applicable [\Box - Tested. \Box - Not tested by applicant request.] \Box - Not Applicable

Remarks :

7.5 Peak Output Power(Conduction)

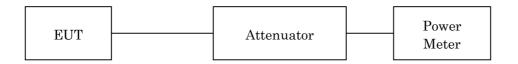
For the requirements, \square - Applicable [\square - Tested. \square - Not tested by applicant request.] \square - Not Applicable

7.5.1 Test Results

For the standard,	\square - Passed	\Box - Failed	🗆 - Not j	judged			
Peak Output Power of Peak Output Power of Peak Output Power of Peak Output Power of	f IEEE802.11g is f IEEE802.11n is		$ \begin{array}{r} 17.94 \\ 21.25 \\ 20.35 \\ 5.53 \\ 5.53 \\ \end{array} $	dBm dBm dBm dBm	at at at at	$\begin{array}{r} \underline{2437.0}\\ \underline{2437.0}\\ \underline{2437.0}\\ \underline{2437.0}\\ \underline{2402.0} \end{array}$	MHz MHz MHz MHz
Uncertainty of Measu	rement Results					± 0.9	_ dB(2o)

Remarks:

Page 21 of 92


7.5.2 Test Instruments

Shielded Room S4							
Туре	Model	Serial No. (ID)	Manufacturer	Cal. Due			
Power Meter	N1911A	GB45100291 (B-63)	Agilent	2017/07/10			
Power Sensor	N1921A	US44510470 (B-64)	Agilent	2017/07/10			
Attenuator	54A-10	W5675 (D-28)	Weinschel	2016/08/16			
RF Cable	SUCOFLEX102	14253/2 (C-52)	HUBER+SUHNER	2016/08/16			

NOTE : The calibration interval of the above test instruments is 12 months.

7.5.3 Test Method and Test Setup (Diagrammatic illustration)

The Conducted RF Power Output was measured with a power meter, one attenuator and a short, low loss cable.

Page 22 of 92

7.5.4 Test Data

1) IEEE 802.11b

Data Rate : 1	1 Mbps		Date: July 22, 2016 : 27 °C, Humi: 53 %				
Trans mi	tting Fre que ncy	Correction Factor	Meter Reading		lucted tput Power	Limits	Margin
СН	[MHz]	[dB]	[dBm]	[dBm]	[mW]	[dBm]	[dB]
01	2412	10.39	7.30	17.69	58.75	30.00	+12.31
06	2437	10.41	7.53	17.94	62.23	30.00	+12.06
11	2462	10.42	7.44	17.86	61.09	30.00	+12.14

Correction Factor	=	10.41 dB
+) Meter Reading	=	7.53 dBm
Result	=	17.94 dBm = 62.23 mW

NOTES

1. The correction factor shows the attenuation pad loss including the short, low loss cable or adapter.

2. Setting of measuring instrument(s) :

[Detector Function	Video B.W.
	Peak	OFF

СН	[MHz]
06	2437

Rate	Meter Reading	Remark
	[dBm]	
1Mbps	7.43	
2Mbps	7.52	
5.5Mbps	7.51	
11Mbps	7.53	*

* : Worst Rate

All comparison were performed on the same measurement condition.

2) IEEE 802.11g

Page 23 of 92

Test Date: J	uly 22,	2016
Temp.: 27 °C,	Humi:	53%

Data Rate : 2	4Mbps					<u>Temp.</u>	27 °C, Humi: 53 %	
Trans mi	tting Frequency	Correction Factor	Meter Reading		ducte d tput Powe r	Limits	Margin	
СН	[MHz]	[dB]	[dBm]	[dBm]	[mW]	[dBm]	[dB]	
01	2412	10.39	10.74	21.13	129.72	30.00	+ 8.87	
06	2437	10.41	10.84	21.25	133.35	30.00	+ 8.75	
11	2462	10.42	10.60	21.02	126.47	30.00	+ 8.98	

Correction Factor	=	10.41 dB
+) Meter Reading	=	10.84 dBm
Result	=	21.25 dBm = 133.35 mW

NOTES

1. The correction factor shows the attenuation pad loss including the short, low loss cable or adapter.

2. Setting of measuring instrument(s) :

Detector Function	Video B.W.
Peak	OFF

СН 06	[MHz] 2437	
Rate	Meter Reading	Remark
	[dBm]	
6Mbps	10.49	
9Mbps	10.61	
12Mbps	10.73	
18Mbps	10.70	
24Mbps	10.84	*
36Mbps	10.69	
48Mbps	10.67	
54Mbps	10.76	

* : Worst Rate

All comparison were performed on the same measurement condition.

3) IEEE 802.11n

Page 24 of 92 $\,$

Data Rate : M	ACS2						Date: July 22, 2016 : 27 °C, Humi: 53 %
Trans mi	tting Frequency	Correction Factor	Meter Reading		ducted tput Power	Limits	Margin
СН	[MHz]	[dB]	[dBm]	[dBm]	[mW]	[dBm]	[dB]
01	2412	10.39	9.76	20.15	103.51	30.00	+ 9.85
06	2437	10.41	9.94	20.35	108.39	30.00	+ 9.65
11	2462	10.42	9.85	20.27	106.41	30.00	+ 9.73

Correction Factor	=	10.41 dB
+) Meter Reading	=	9.94 dBm
Result	=	20.35 dBm = 108.39 mW

NOTES

1. The correction factor shows the attenuation pad loss including the short, low loss cable or adapter.

2. Setting of measuring instrument(s) :

Detector Function	Video B.W.
Peak	OFF

СН 06	[MHz] 2437	
Rate	Meter Reading	Remark
	[dBm]	
MCS0	9.49	
MCS1	9.72	
MCS2	9.94	*
MCS3	9.86	
MCS4	9.71	
MCS5	9.77	
MCS6	9.83	
MCS7	9.81	

* : Worst Rate

All comparison were performed on the same measurement condition.

Page 25 of 92

4) Bluetooth LE(Modulation type : GFSK)

<u>Test Date: July 22, 2016</u>
Temp.: 27 °C, Humi: 53 %

Trans mi	tting Fre que ncy	Correction Factor	Meter Reading		lucted put Power	Limits	Margin
СН	[MHz]	[dB]	[dBm]	[dBm]	[mW]	[dBm]	[dB]
00	2402	10.39	-4.86	5.53	3.57	30.00	+24.47
19	2440	10.42	-4.96	5.46	3.52	30.00	+24.54
39	2480	10.43	-5.20	5.23	3.33	30.00	+24.77

alculated result at 2402.000	MHz, as the wors	t point shown on underline:
Correction Factor	=	10.39 dB
+) Meter Reading	=	-4.86 dBm
Result	=	5.53 dBm = 3.57 mW
Minimum Margin: 30.00 - 5.53	= 24.47 (dB)	

NOTES

- 1. The correction factor shows the attenuation pad loss including the short, low loss cable or adapter.
- 2. Setting of measuring instrument(s) :

Detector Function	Video B.W.
Peak	Off

Page 26 of 92

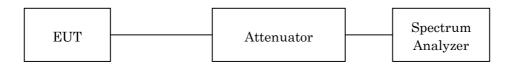
7.6 Peak Power Density(Conduction)

For the requirements, \square - Applicable [\square - Tested. \square - Not tested by applicant request.] \square - Not Applicable

7.6.1 Test Results

For the standard,	\square - Passed	\Box - Failed	🗆 - Not j	udged			
Peak Power Density of Peak Power Density of Peak Power Density of Peak Power Density of	TEEE802.11g is TEEE802.11n is	- - -	$ \begin{array}{r} 2.32 \\ -4.68 \\ -7.35 \\ 1.65 \end{array} $	dBm dBm dBm dBm	at at at at	$\begin{array}{r} \underline{2462.0} \\ \underline{2437.0} \\ \underline{2462.0} \\ \underline{2402.0} \end{array}$	MHz MHz MHz MHz
Uncertainty of Measur	ement Results					± 1.7	_ dB(2σ)

Remarks :


7.6.2 Test Instruments

	Shielded Room S4						
Туре	Model	Serial No. (ID)	Manufacturer	Cal. Due			
Spectrum Analyzer	E4446A	US44300388 (A-39)	Agilent	2016/08/11			
Attenuator	54A-10	W5675 (D-28)	Weinschel	2016/08/16			
RF Cable	SUCOFLEX102	14253/2 (C-52)	HUBER+SUHNER	2016/08/16			

NOTE : The calibration interval of the above test instruments is 12 months.

7.6.3 Test Method and Test Setup (Diagrammatic illustration)

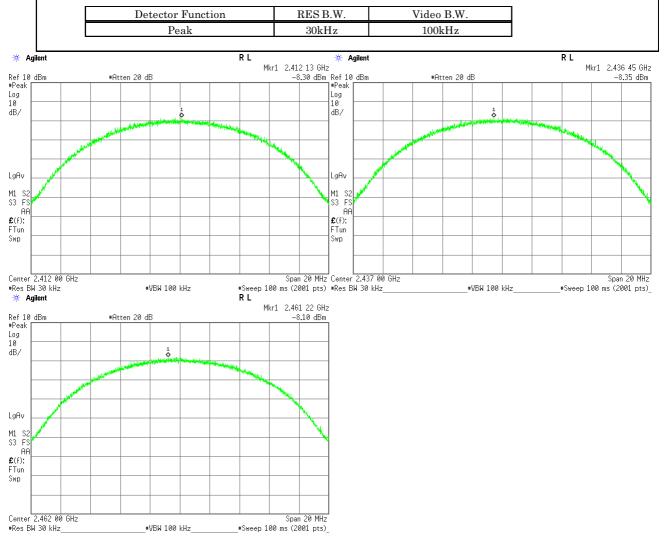
The test system is shown as follows:

7.6.4 Test Data

1) IEEE 802.11b

Data Rate : 1	1Mbps						ate: July 23, 2016 7 °C, Humi: 59 %
Transm	itting Frequency	Correction Factor	Meter Reading		lucted er Density	Limits	Margin
СН	[MHz]	[dB]	[dBm]	[dBm]	[mW]	[dBm]	[dB]
01	2412	10.39	-8.30	2.09	1.62	8.00	+ 5.91
06	2437	10.41	-8.35	2.06	1.61	8.00	+ 5.94
11	2462	10.42	-8.10	2.32	1.71	8.00	+ 5.68

Calculated result at 2462.000 I	MHz, as the wor	st point shown on underline:
Correction Factor	=	10.42 dB
+) Meter Reading	=	-8.10 dBm
Result	=	2.32 dBm = 1.71 mW
30 . 30	= aa (1D)	


Minimum Margin: 8.00 - 2.32 = 5.68 (dB)

NOTES

1. The peak power density complied with the limit using 30 kHz resolution bandwidth of Spectrum Analyzer.

2. The correction factor shows the attenuation pad loss including the short, low loss cable or adapter.

3. Setting of measuring instrument(s) :

Page 28 of 92

2) IEEE 802.11g

ata Rate : 1	a Rate : 18Mbps						<u>Test Date: July 23, 2016</u> <u>Temp.: 27 °C</u> , Humi: 59 %		
Transmi	itting Frequency	Correction Factor	Meter Reading	Cond Peak Powe		Limits	Margin		
СН	[MHz]	[dB]	[dBm]	[dBm]	[mW]	[dBm]	[dB]		
01	2412	10.39	-15.94	-5.55	0.28	8.00	+13.55		
06	2437	10.41	-15.09	-4.68	0.34	8.00	+12.68		
11	2462	10.42	-15.38	-4.96	0.32	8.00	+12.96		

Calculated result at 2437.000 MI	Hz, as the w	orst point shown on underline:	
Compation Foston	_	10 (1 JD	

Correction Factor	=	10.41 dB
+) Meter Reading	=	-15.09 dBm
Result	=	-4.68 dBm = 0.34 mW
Minimum Margin: 8.004.68 =	12.68 (dB)	

NOTES

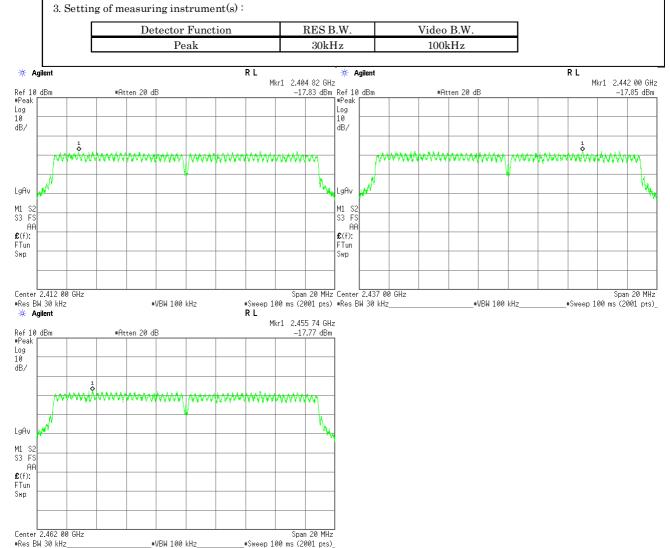
1. The peak power density complied with the limit using 30 kHz resolution bandwidth of Spectrum Analyzer.

- 2. The correction factor shows the attenuation pad loss including the short, low loss cable or adapter.
- 3. Setting of measuring instrument(s) :

Page 29 of 92

3) IEEE 802.11n

pata Rate : MCS2							ate: July 23, 2010 7 °C, Humi: 59 %
Transm	itting Frequency	Correction Factor	Meter Reading	Cond Peak Powe		Limits	Margin
СН	[MHz]	[dB]	[dBm]	[dBm]	[mW]	[dBm]	[dB]
01	2412	10.39	-17.83	-7.44	0.18	8.00	+15.44
06	2437	10.41	-17.85	-7.44	0.18	8.00	+15.44
11	2462	10.42	-17.77	-7.35	0.18	8.00	+15.35


Calculated result at 2462.000 MHz, as the worst point shown on underline: Correction Factor = 10.42 dB +) Meter Reading = -17.77 dBm

Result	=	-7.35 dBm = 0.18 mW
Minimum Margin [:] 8.0	00 - 7.35 = 15.35 (dB)	

NOTES

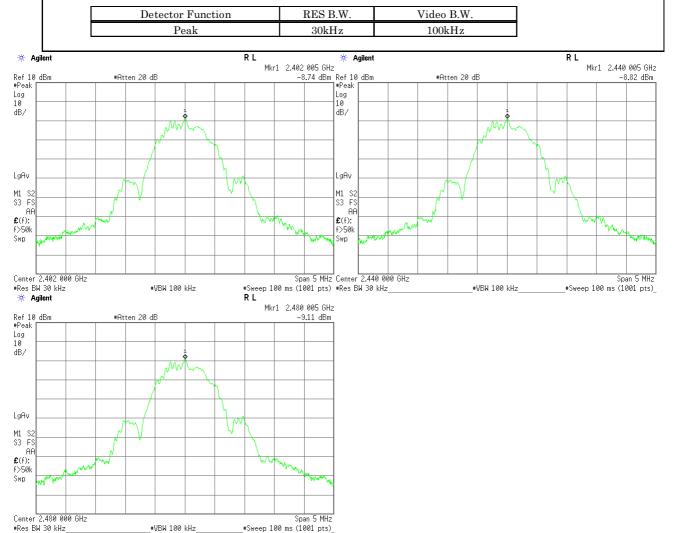
1. The peak power density complied with the limit using 30 kHz resolution bandwidth of Spectrum Analyzer.

 $\mathbf{2}.$ The correction factor shows the attenuation pad loss including the short, low loss cable or adapter.

Page 30 of 92

4) Bluetooth LE(Modulation type : GFSK)

							ate: July 25, 2016 7 °C, Humi: 62 %
Transm	itting Frequency	Correction Factor	Meter Reading		lucted er Density	Limits	Margin
СН	[MHz]	[dB]	[dBm]	[dBm]	[mW]	[dBm]	[dB]
00	2402	10.39	-8.74	1.65	1.46	8.00	+ 6.35
19	2440	10.42	-8.82	1.60	1.45	8.00	+ 6.40
39	2480	10.43	-9.11	1.32	1.36	8.00	+ 6.68


Calculated result at 2402.000 M	Hz, as the wor	rst point shown on underline:
Correction Factor	=	10.39 dB
+) Meter Reading	=	-8.74 dBm
Result	=	1.65 dBm = 1.46 mW
Minimum Margin: 8.00 - 1.65 =	3.35 (dB)	

NOTES

1. The peak power density complied with the limit using 30 kHz resolution bandwidth of Spectrum Analyzer.

2. The correction factor shows the attenuation pad loss including the short, low loss cable or adapter.

Page 31 of 92

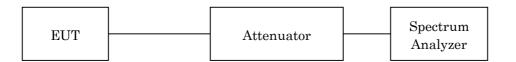
7.7 Spurious Emissions(Conduction)

For the requirements, \square - Applicable [\square - Tested. \square - Not tested by applicant request.] \square - Not Applicable

7.7.1 Test Results

For the standard,	\square - Passed	\Box - Failed	\Box - Not judged	
Uncertainty of Measur	ement Results		9 kHz – 1 GHz 1 GHz – 18 GHz 18 GHz – 40 GHz	_ dB(2σ) _ dB(2σ) _ dB(2σ)

Remarks :


7.7.2 Test Instruments

Shielded Room S4							
Туре	Model	Serial No. (ID)	Manufacturer	Cal. Due			
Spectrum Analyzer	E4446A	US44300388 (A-39)	Agilent	2016/08/11			
Attenuator	54A-10	W5675 (D-28)	Weinschel	2016/08/16			
RF Cable	SUCOFLEX102	14253/2 (C-52)	HUBER+SUHNER	2016/08/16			

NOTE : The calibration interval of the above test instruments is 12 months.

7.7.3 Test Method and Test Setup (Diagrammatic illustration)

The test system is shown as follows:

The setting of the spectrum analyzer are shown as follows:

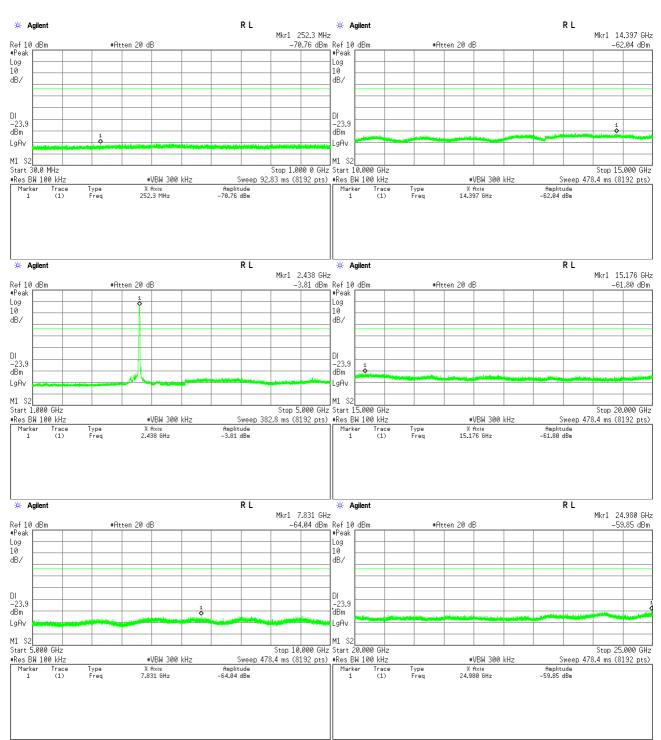
Frequency Range	30 MHz - 25 GHz	Band-Edge
Res. Bandwidth	$100 \mathrm{kHz}$	$100 \mathrm{kHz}$
Video Bandwidth	$300 \mathrm{kHz}$	$300 \mathrm{kHz}$
Sweep Time	AUTO	AUTO
Trace	Maxhold	Maxhold



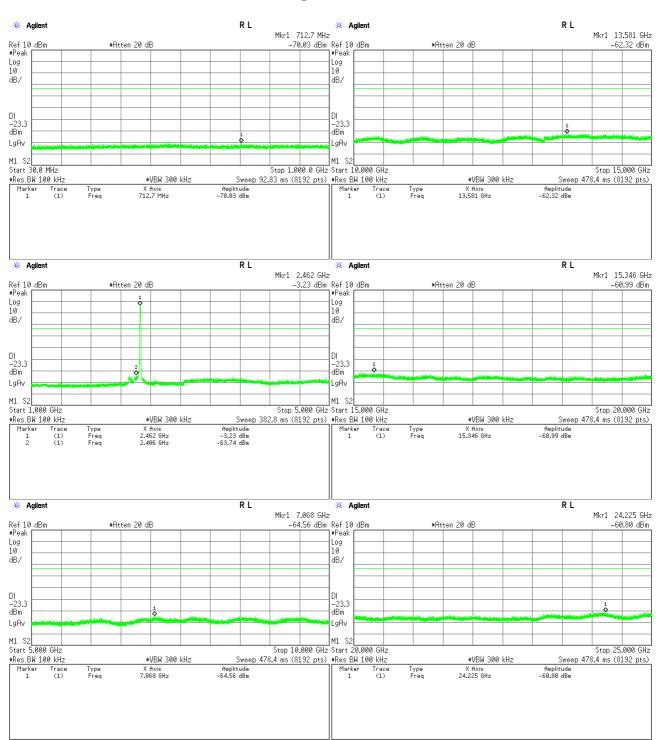
Page 32 of 92

7.7.4 Test Data

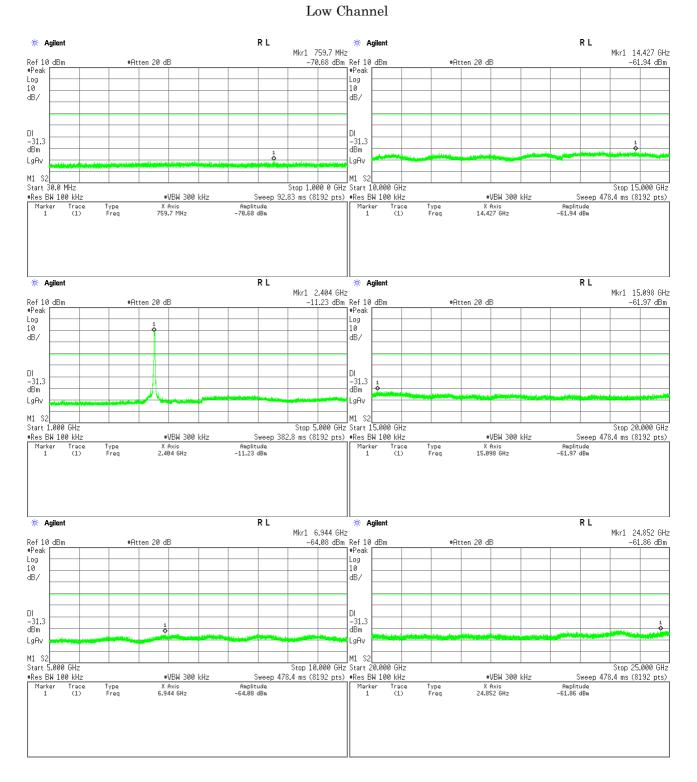
<u>Test Date</u> :July 23, 2016 <u>Temp.:27°C, Humi:59%</u>

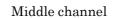

1) IEEE 802.11b

Middle Channel

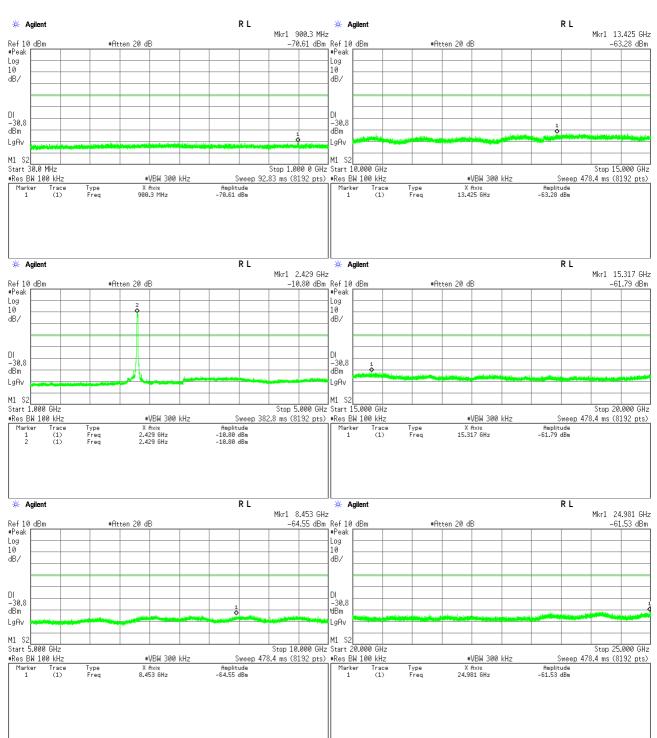

Page 33 of 92

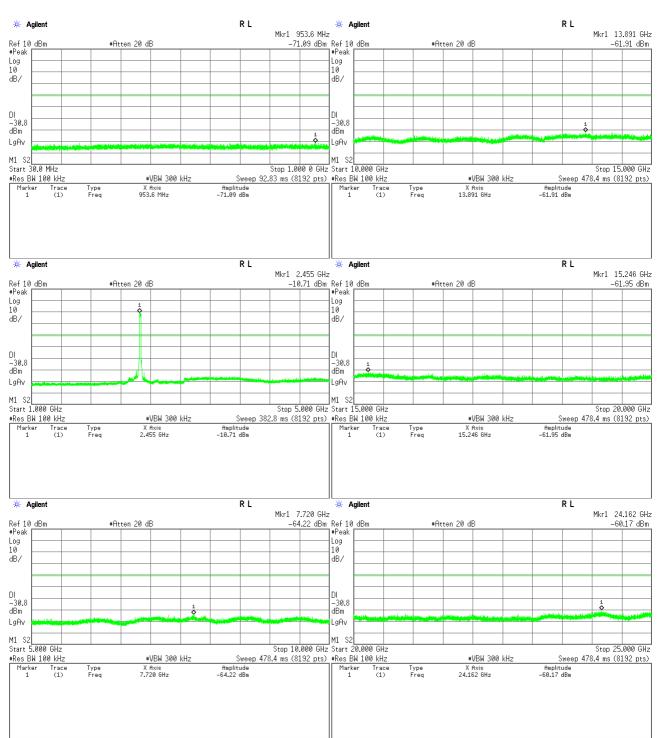
High Channel


Page 34 of 92



Page 35 of 92

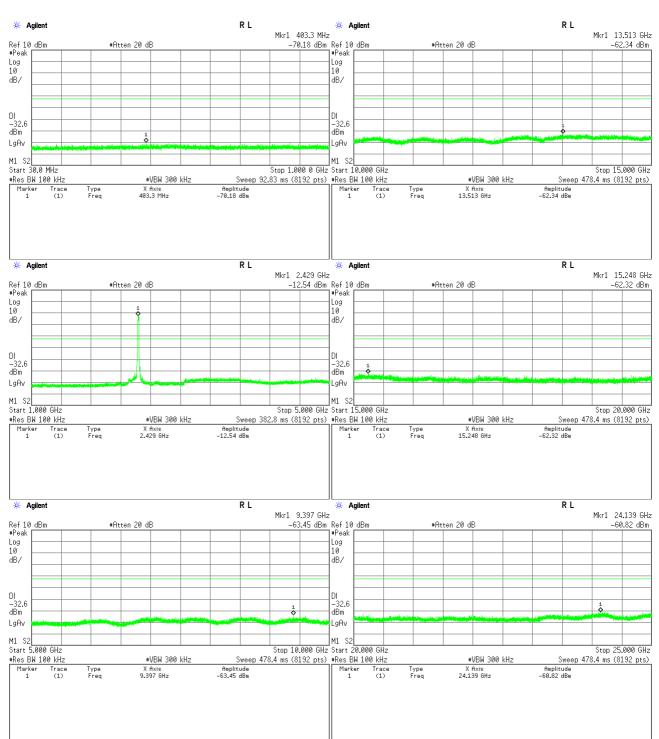

2) IEEE 802.11g


Page 36 of 92

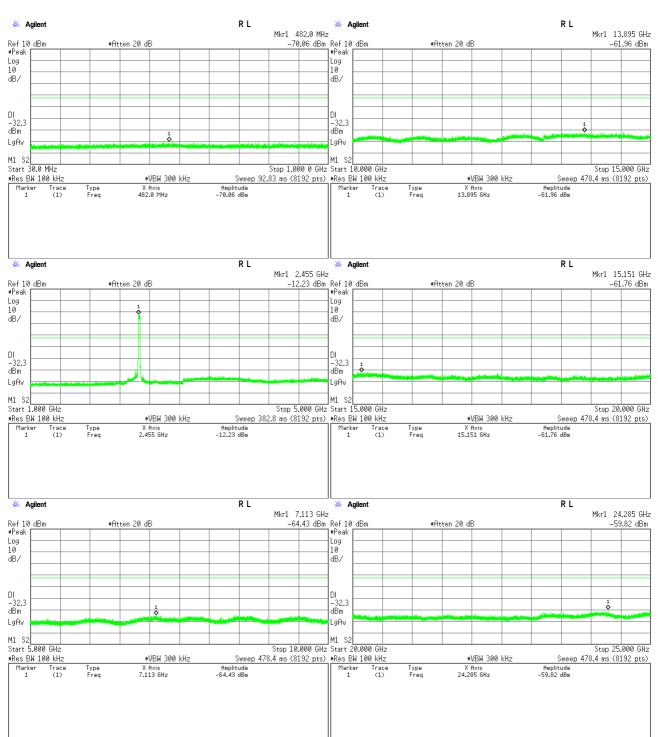
High Channel

Page 37 of 92

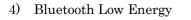
Page 38 of 92

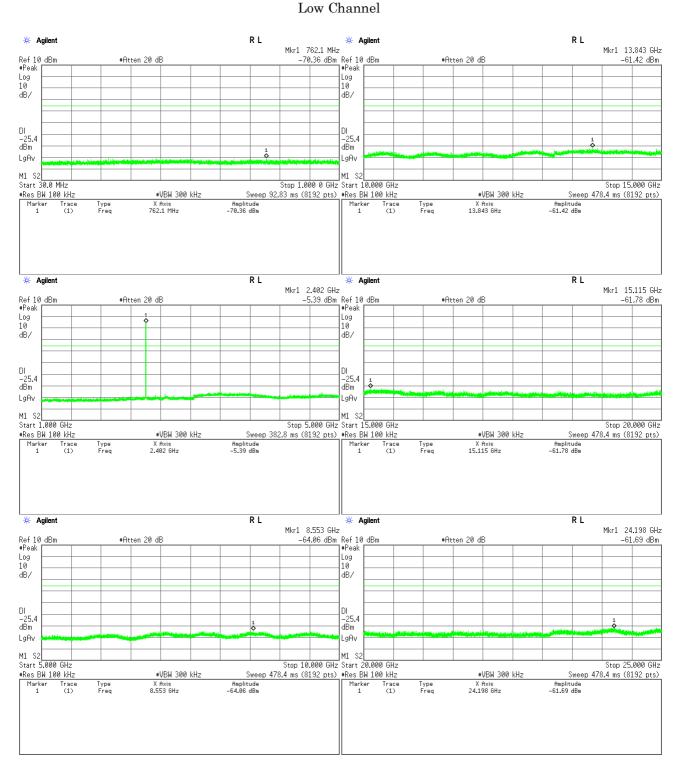

3) IEEE 802.11n

Middle Channel


Page 39 of 92

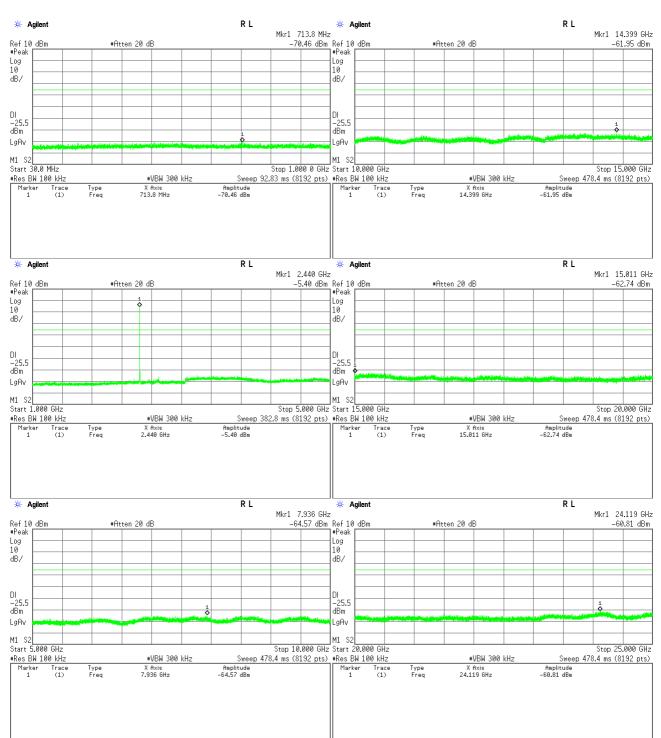
High Channel


Page 40 of 92

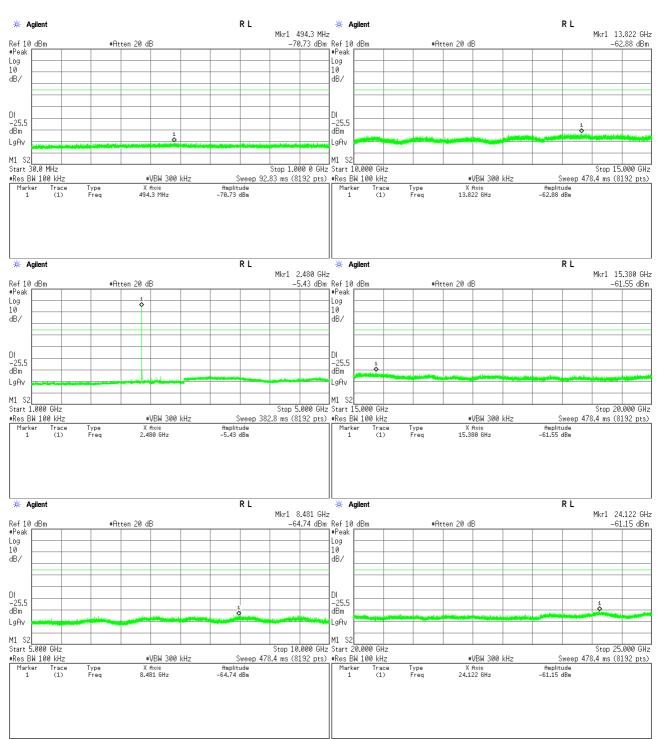


Page 41 of 92

Test Date : July 25, 2016 Temp.:27°C, Humi:62

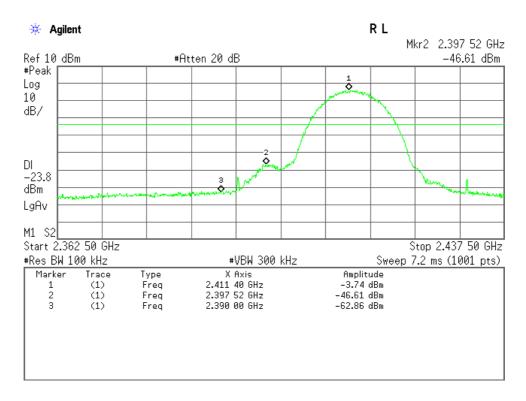


Middle Channel

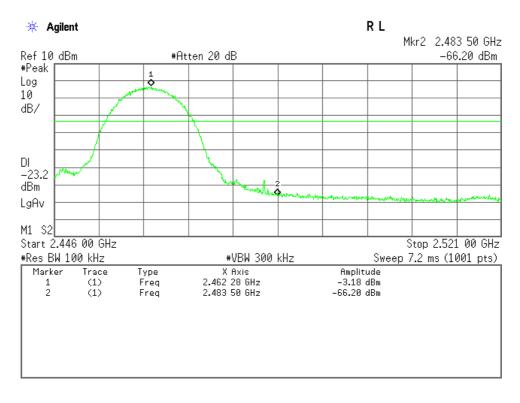

Page 42 of 92

High Channel

Page 43 of 92

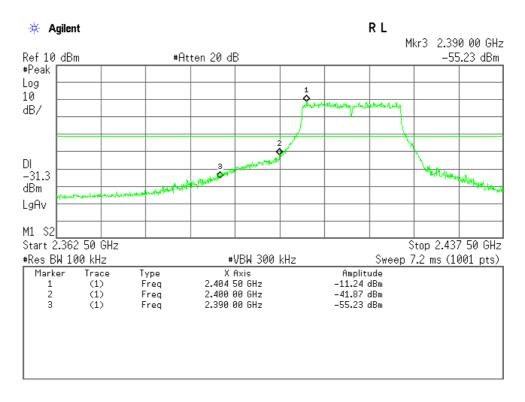

Band-Edge Emission

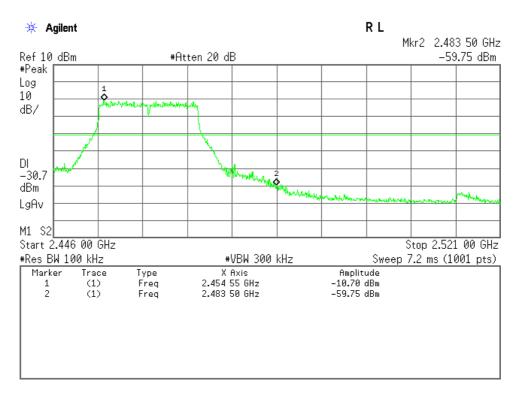
Page 44 of 92


<u>Test Date :July 23, 2016</u> <u>Temp.:27°C, Humi:59%</u>

1) IEEE 802.11b

Low Channel

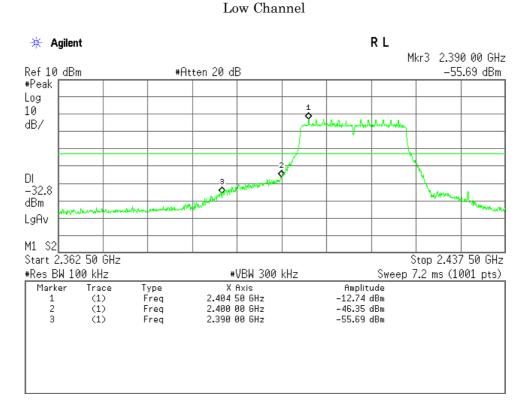

High Channel



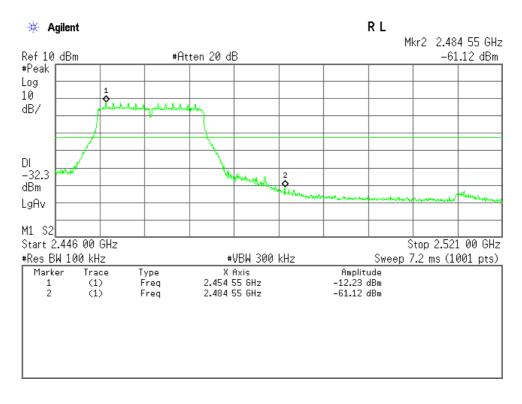
2) IEEE 802.11g

Low Channel

High Channel



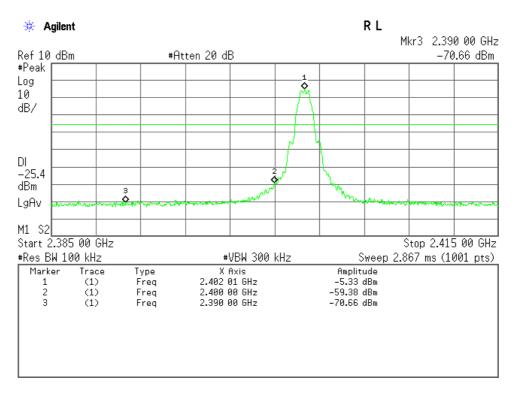
Page 45 of 92

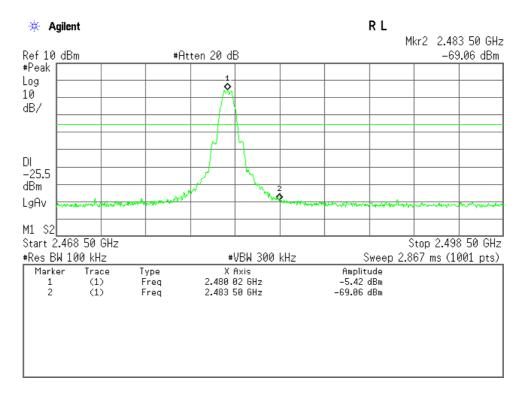


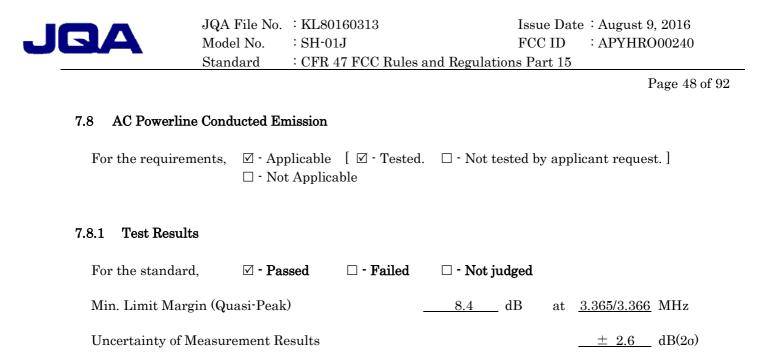
Page 46 of 92

3) IEEE 802.11n

High Channel




Page 47 of 92 <u>Test Date</u> :July 25, 2016 <u>Temp.:27°C, Humi:62%</u>


4) Bluetooth Low Energy

High Channel

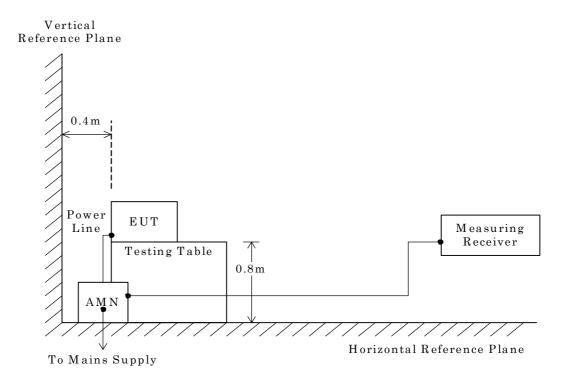
Remarks: <u>WLAN/Bluetooth mode</u>

7.8.2 Test Instruments

Measurement Room M2									
TypeModelSerial No. (ID)ManufacturerCal. Du									
Test Receiver	ESCI	100453 (A-42)	Rohde & Schwarz	2016/12/09					
AMN (main)	KNW-407R	8-1832-1 (D-39)	Kyoritsu	2016/09/17					
RF Cable	RG223/U	(H-34)	HUBER+SUHNER	2017/05/30					

NOTE: The calibration interval of the above test instruments is 12 months.

Page 49 of 92


7.8.3 Test Method and Test Setup (Diagrammatic illustration)

The preliminary tests were performed using the scan mode of test receiver or spectrum analyzer to observe the emissions characteristics of the EUT.

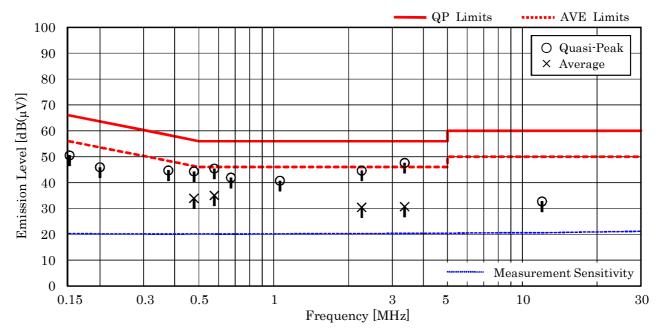
The EUT configuration, cable configuration and mode of operation were determined for producing the maximum level of emissions.

This configurations was used for final tests.

- Side View -

Page 50 of 92

7.8.4 Test Data


1) Mode of EUT : (WLAN) All modes have been investigated and the worst case mode for channel (06ch: 2437MHz / IEEE 802.11b, IEEE 802.11g and IEEE 802.11n) has been listed.

Test voltage : 120VAC 60Hz

<u>Test Date: July 30, 2016</u> <u>Temp.: 25 °C, Humi.: 67 %</u>

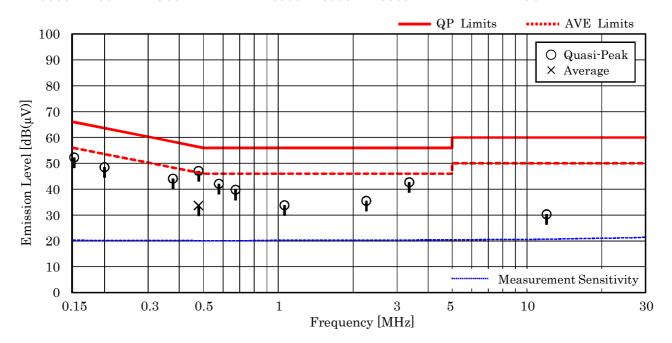
Measured phase : L1

Frequency	Corr. Factor	Meter R [dB()	8		nits µV)]	Res [dB(Mar [dF	8	Remarks
[MHz]	[dB]	QP	AVE	QP	AVE	QP	AVE	QP	AVE	
0.151	10.3	40.2		65.9	55.9	50.5		+15.4		_
0.200	10.2	35.7		63.6	53.6	45.9		+17.7		_
0.377	10.2	34.5		58.3	48.3	44.7		+13.6		_
0.478	10.1	34.2	23.8	56.4	46.4	44.3	33.9	+12.1	+12.5	_
0.577	10.2	35.2	24.8	56.0	46.0	45.4	35.0	+10.6	+11.0	-
0.673	10.1	31.8		56.0	46.0	41.9		+14.1		_
1.059	10.2	30.5		56.0	46.0	40.7		+15.3		_
2.260	10.3	34.3	20.1	56.0	46.0	44.6	30.4	+11.4	+15.6	_
3.365	10.3	37.3	20.4	56.0	46.0	47.6	30.7	+ 8.4	+15.3	_
12.003	10.6	22.1		60.0	50.0	32.7		+27.3		-

NOTES

- 1. The spectrum was checked from 150 kHz to 30 MHz.
- 2. The correction factor includes the AMN insertion loss and the cable loss.
- 3. The symbol of "<" means "or less".
- 4. The symbol of ">" means "more than".
- 5. The symbol of "--" means "not applicable".
- 6. Calculated result at 3.365 MHz, as the worst point shown on underline: Correction Factor + Meter Reading (QP) = $10.3 + 37.3 = 47.6 \text{ dB}(\mu \text{V})$
- 7. QP : Quasi-Peak Detector / AVE : Average Detector
- 8. Test receiver setting(s) : CISPR QP 9 kHz / Average 9 kHz

JAPAN QUALITY ASSURANCE ORGANIZATION


Page 51 of 92

<u>Test Date: July 30, 2016</u> <u>Temp.: 25 °C, Humi.: 67 %</u>

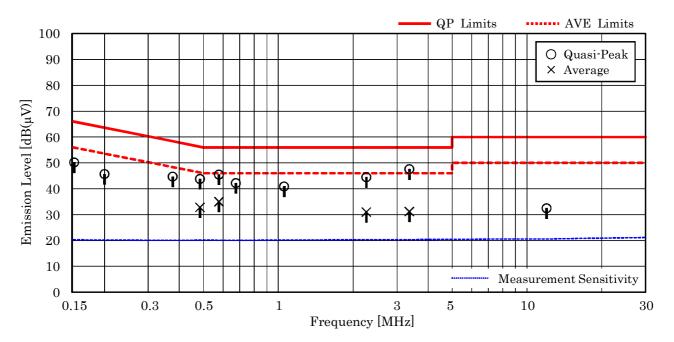
Test voltage : 120VAC 60Hz

Measured phase : L2

Frequency	Corr. Factor	Meter R [dB(8	Lin [dB(Res [dB(Mar [dB	0	Remarks
[MHz]	[dB]	QP	AVE	QP	AVE	QP	AVE	QP	AVE	
0.151	10.3	42.0		65.9	55.9	52.3		+13.6		_
0.200	10.2	38.3		63.6	53.6	48.5		+15.1		_
0.377	10.2	33.9		58.3	48.3	44.1		+14.2		-
0.478	10.1	37.0	23.6	56.4	46.4	47.1	33.7	+ 9.3	+12.7	-
0.577	10.1	32.0		56.0	46.0	42.1		+13.9		-
0.673	10.2	29.6		56.0	46.0	39.8		+16.2		-
1.059	10.3	23.5		56.0	46.0	33.8		+22.2		-
2.260	10.3	25.2		56.0	46.0	35.5		+20.5		_
3.365	10.3	32.4		56.0	46.0	42.7		+13.3		-
12.003	10.7	19.6		60.0	50.0	30.3		+29.7		-

NOTES

- 1. The spectrum was checked from 150 kHz to 30 MHz.
- 2. The correction factor includes the AMN insertion loss and the cable loss.
- 3. The symbol of "<" means "or less".
- 4. The symbol of ">" means "more than".
- 5. The symbol of "--" means "not applicable".
- 6. Calculated result at 0.478 MHz, as the worst point shown on underline: Correction Factor + Meter Reading (QP) = $10.1 + 37.0 = 47.1 \text{ dB}(\mu \text{V})$
- 7. QP : Quasi-Peak Detector / AVE : Average Detector
- 8. Test receiver setting (s) : CISPR QP 9 kHz / Average 9 kHz



2) Mode of EUT : Bluetooth Low Energy

Test voltage : 120VAC 60Hz

Measured phase : L1

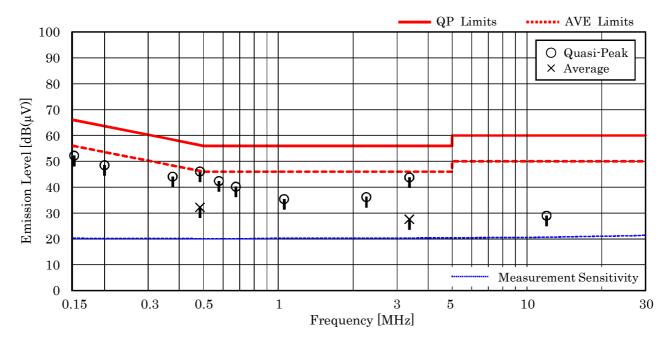
Frequency	Corr. Factor	Meter R [dB()	8		nits [µV)]	Res [dB(Mar [dł	0	Remarks
[MHz]	[dB]	QP	AVE	QP	AVE	QP	AVE	QP	AVE	
0.151	10.3	39.9		65.9	55.9	50.2		+15.7		_
0.200	10.2	35.5		63.6	53.6	45.7		+17.9		_
0.376	10.2	34.5		58.4	48.4	44.7		+13.7		_
0.484	10.1	33.7	22.7	56.3	46.3	43.8	32.8	+12.5	+13.5	_
0.577	10.2	35.3	24.8	56.0	46.0	45.5	35.0	+10.5	+11.0	-
0.675	10.1	32.1		56.0	46.0	42.2		+13.8		-
1.055	10.2	30.7		56.0	46.0	40.9		+15.1		-
2.261	10.3	34.2	20.7	56.0	46.0	44.5	31.0	+11.5	+15.0	_
3.366	10.3	37.3	20.9	56.0	46.0	47.6	31.2	+ 8.4	+14.8	-
11.995	10.6	21.9		60.0	50.0	32.5		+27.5		_

NOTES

- 1. The spectrum was checked from 150 kHz to 30 MHz.
- 2. The correction factor includes the AMN insertion loss and the cable loss.
- 3. The symbol of "<" means "or less".
- 4. The symbol of ">" means "more than".
- 5. The symbol of "--" means "not applicable".
- 6. Calculated result at 3.366 MHz, as the worst point shown on underline: Correction Factor + Meter Reading (QP) = $10.3 + 37.3 = 47.6 \text{ dB}(\mu \text{V})$
- 7. QP : Quasi-Peak Detector / AVE : Average Detector
- 8. Test receiver setting (s) : CISPR QP 9 kHz / Average 9 kHz

Page 52 of 92

<u>Test Date: July 30, 2016</u> <u>Temp.: 25 °C, Humi.: 67 %</u>


Page 53 of 92

<u>Test Date: July 30, 2016</u> <u>Temp.: 25 °C, Humi.: 67 %</u>

Test voltage : 120VAC 60Hz

Measured phase : L2

Frequency	Corr. Factor	Meter R [dB(8	Lin [dB(nits µV)]	Res [dB(ults µV)]	Mar [dB	0	Remarks
[MHz]	[dB]	QP	AVE	QP	AVE	QP	AVE	QP	AVE	
0.151	10.3	41.9		65.9	55.9	52.2		+13.7		-
0.200	10.2	38.3		63.6	53.6	48.5		+15.1		-
0.376	10.2	33.9		58.4	48.4	44.1		+14.3		_
0.484	10.1	36.0	22.1	56.3	46.3	46.1	32.2	+10.2	+14.1	_
0.577	10.1	32.3		56.0	46.0	42.4		+13.6		-
0.675	10.2	30.0		56.0	46.0	40.2		+15.8		_
1.055	10.3	25.1		56.0	46.0	35.4		+20.6		_
2.261	10.3	25.9		56.0	46.0	36.2		+19.8		_
3.366	10.3	33.5	17.3	56.0	46.0	43.8	27.6	+12.2	+18.4	_
11.995	10.7	18.3		60.0	50.0	29.0		+31.0		_

NOTES

- 1. The spectrum was checked from 150 kHz to 30 MHz.
- 2. The correction factor includes the AMN insertion loss and the cable loss.
- 3. The symbol of "<" means "or less".
- 4. The symbol of ">" means "more than".
- 5. The symbol of "--" means "not applicable".
- 6. Calculated result at 0.484 MHz, as the worst point shown on underline: Correction Factor + Meter Reading (QP) = $10.1 + 36.0 = 46.1 \text{ dB}(\mu \text{V})$
- 7. QP : Quasi-Peak Detector / AVE : Average Detector
- 8. Test receiver setting (s) : CISPR QP 9 kHz / Average 9 kHz

Page 54 of 92 $\,$

7.9 Radiated Emission

For the requirements, \square - Applicable [\square - Tested. \square - Not tested by applicant request.] \square - Not Applicable

7.9.1 Test Results

For the standard,	\square - Passed	\Box - Failed	\Box - Not judged			
Min. Limit Margin (Q	uasi-Peak)		<u>4.2</u> dB	at	262.08	MHz
Uncertainty of Measu	rement Results		9 kHz - 30 MH 30 MHz - 300 MH 300 MHz - 1000 MH 1 GHz - 6 GH 6 GHz - 18 GH 18 GHz - 40 GH	Hz Hz Hz Hz	$ \begin{array}{r} \pm 3.0 \\ \pm 3.8 \\ \pm 4.8 \\ \pm 4.7 \\ \pm 4.6 \\ \pm 5.5 \\ \end{array} $	$\begin{array}{c} dB(2\sigma) \\ dB(2\sigma) \end{array}$

Remarks: <u>Bluetooth mode, X-axis position.</u>

Page 55 of 92

7.9.2 Test Instruments

Anechoic Chamber A2									
Туре	Model	Serial No. (ID)	Manufacturer	Cal. Due					
Test Receiver	ESU 26	100170 (A-6)	Rohde & Schwarz	2017/04/27					
Loop Antenna	HFH2-Z2	872096/25 (C-2)	Rohde & Schwarz	2017/07/21					
RF Cable	RG213/U	(H-28)	HUBER+SUHNER	2017/07/21					
Pre-Amplifier	310N	304573 (A-17)	SONOMA	2017/04/03					
Biconical Antenna	VHA9103/BBA9106	2355 (C-30)	Schwarzbeck	2017/05/18					
Log-periodic Antenna	UHALP9108-A1	0694 (C-31)	Schwarzbeck	2017/05/18					
RF Cable	S 10162 B-11 etc.	(H-4)	HUBER+SUHNER	2017/04/03					
Pre-Amplifier	TPA0118-36	1010 (A-37)	ТОҮО	2017/05/17					
Horn Antenna	91888-2	562 (C-41-1)	EATON	2017/06/12					
Horn Antenna	91889-2	568 (C-41-2)	EATON	2017/06/12					
Horn Antenna	3160-04	9903-1053 (C-55)	EMCO	2017/06/13					
Horn Antenna	3160-05	9902-1061 (C-56)	ЕМСО	2017/06/13					
Horn Antenna	3160-06	9712-1045 (C-57)	ЕМСО	2017/06/13					
Horn Antenna	3160-07	9902-1113 (C-58)	EMCO	2017/06/13					
Horn Antenna	3160-08	9904-1099 (C-59)	EMCO	2017/06/13					
Horn Antenna	3160-09	9808-1117 (C-48)	ЕМСО	2017/06/15					
Attenuator	54A-10	W5713 (D-29)	Weinschel	2016/08/16					
Attenuator	2-10	BA6214 (D-79)	Weinschel	2016/11/19					
RF Cable	SUCOFLEX104	267479/4 (C-66)	HUBER+SUHNER	2017/01/06					
RF Cable	SUCOFLEX104	267414/4 (C-67)	HUBER+SUHNER	2017/01/06					
RF Cable	SUCOFLEX102EA	3041/2EA (C-69)	HUBER+SUHNER	2017/01/06					
Band Rejection Filter	BRM50701	029 (D-93)	MICRO-TRONICS	2017/02/17					

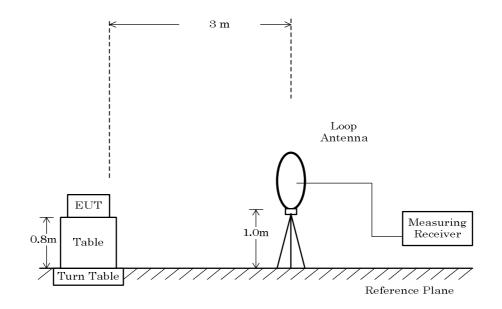
NOTE : The calibration interval of the above test instruments is 12 months.

Page 56 of 92

7.9.3 Test Method and Test Setup (Diagrammatic illustration)

7.9.3.1 Radiated Emission 9 kHz - 30 MHz

The preliminary tests were performed at the measurement distance that specified for compliance to determine the emission characteristics of the EUT.


The EUT configuration(in X, Y and Z axis), cable configuration and mode of operation were determined for producing the maximum level of emissions.

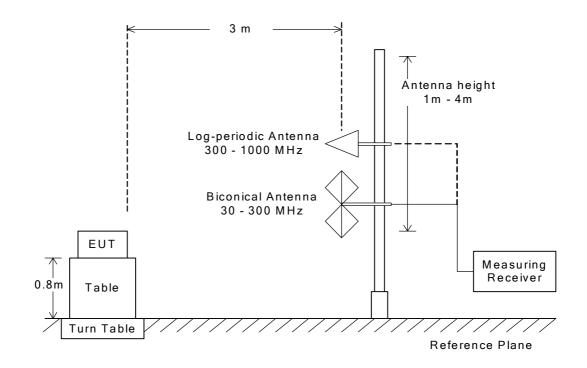
The measurement were performed about three antenna orientations (parallel, perpendicular, and ground-parallel).

According to KDB 937606, a used anechoic chamber were equivalent to those on an open fields site based on comparison measurements.

This configurations was used for the final tests.

- Side View -

Page 57 of 92


Radiated Emission 30 MHz - 1000 MHz 7.9.3.2

The preliminary tests were performed at the measurement distance that specified for compliance to determine the emission characteristics of the EUT.

The EUT configuration(in X, Y and Z axis), cable configuration and mode of operation were determined for producing the maximum level of emissions.

This configurations was used for the final tests.

- Side View -

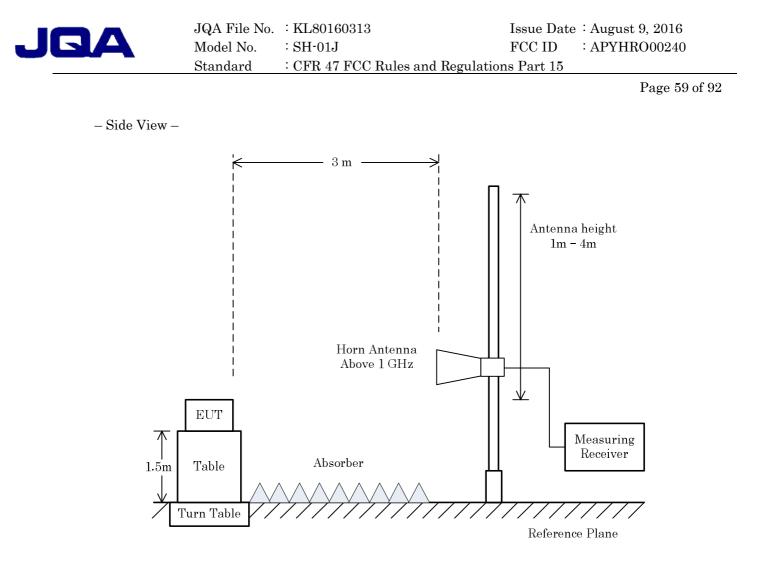
Page 58 of 92

7.9.3.3 Radiated Emission above 1 GHz

The preliminary tests were performed at the measurement distance that specified for compliance to determine the emission characteristics of the EUT.

The EUT configuration(in X, Y and Z axis), cable configuration and mode of operation were determined for producing the maximum level of emissions.

This configurations was used for the final tests.


The setting of the measuring instruments are shown as follows:

Туре	Peak	Average
Detector Function	Peak	Peak
Res. Bandwidth	1 MHz	1 MHz
Video Bandwidth	$3 \mathrm{~MHz}$	$\geq 1/T *1)$
Video Filtering	Linear Voltage	Linear Voltage
Sweep Time	AUTO	AUTO
Trace	Max Hold	Max Hold

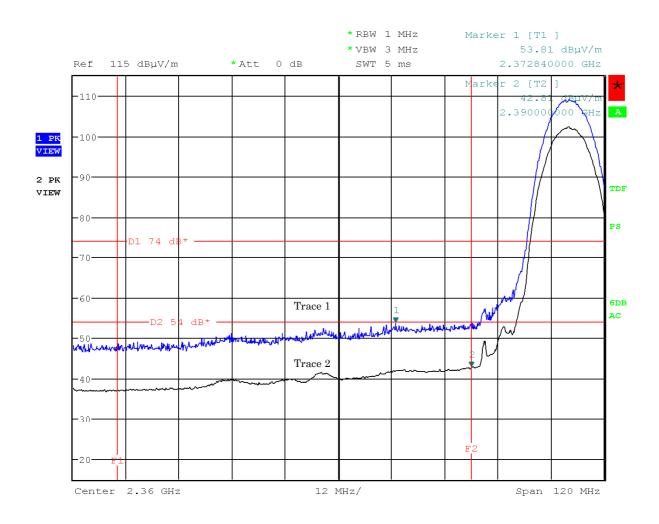
Note: 1. T: Minimum transmission duration

Average (VBW) Setting:

Mode	Interval	Cycle	Duty cycle	Burst on period(T)	Min. VBW(1/T)	VBW Setting
Mode	(msec)	(msec)	(%)	(msec)	(kHz)	(kHz))
IEEE802.11b(11Mbps)	0.02	0.94	97.9%	0.92	1.09	2.00
IEEE802.11g(24Mbps)	0.02	0.37	94.6%	0.35	2.86	3.00
IEEE802.11n HT20(MCS2)	0.02	0.47	95.7%	0.45	2.22	3.00
Bluetooth LE	0.23	0.62	62.9%	0.39	2.56	3.00

NOTE

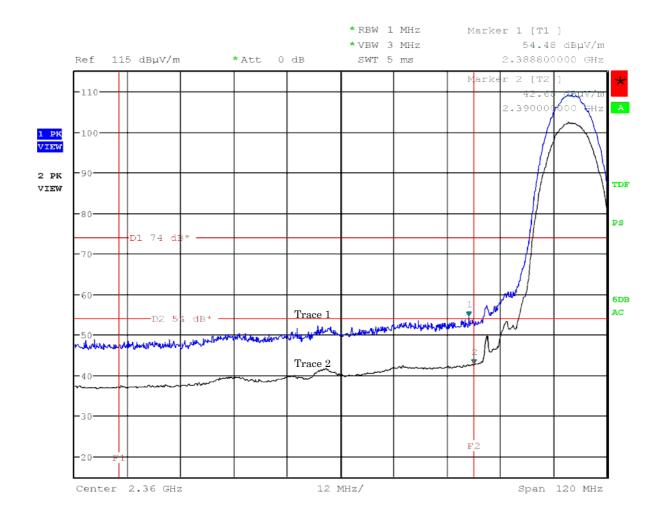
When the EUT is manipulated through three different orientations, the scan height upper range for the measurement antenna is limited to 2.5 m or 0.5 m above the top of the EUT.


Page 60 of 92

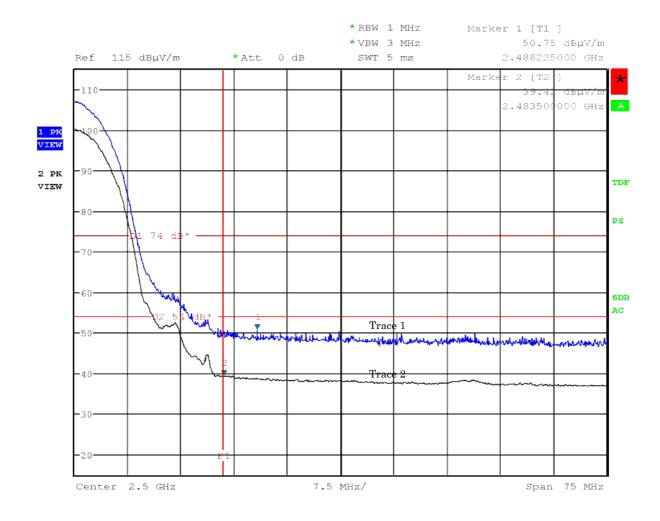
7.9.4 Test Data

7.9.4.1 Band-edge Compliance

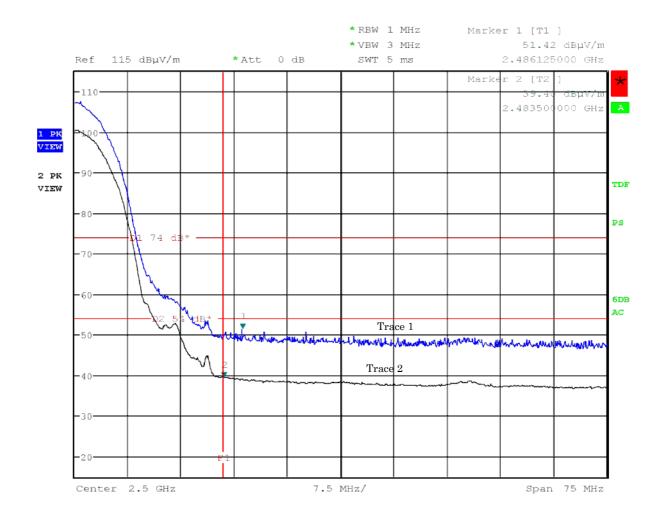
<u>Test Date</u> :July 23, 2016 <u>Temp.:24°C, Humi:68%</u>


Mode of EUT : 1ch: 2412 MHz, (IEEE 802.11b) Antenna Polarization : Horizontal

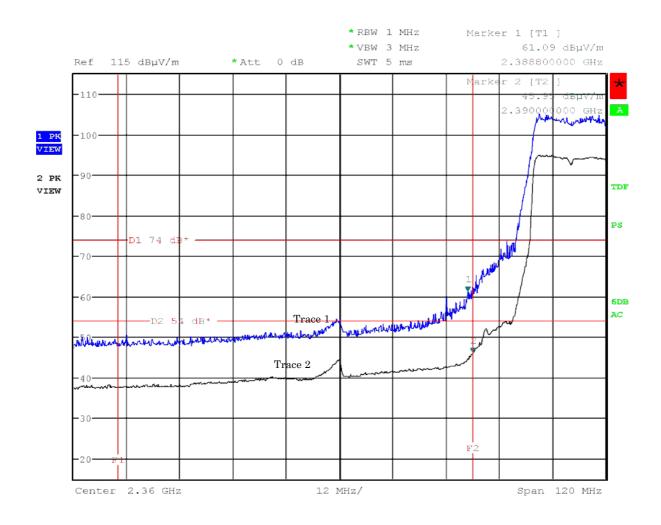
Page 61 of 92


Mode of EUT : 1ch: 2412 MHz, (IEEE 802.11b) Antenna Polarization : Vertical

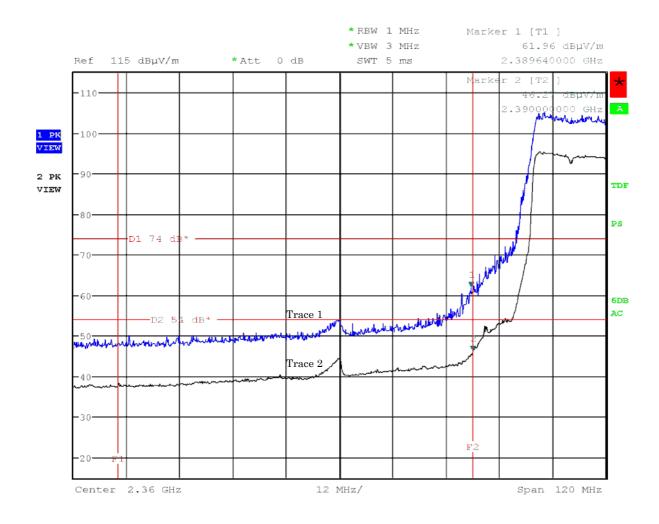
Page 62 of 92


Mode of EUT : 11ch: 2462 MHz, (IEEE 802.11b) Antenna Polarization : Horizontal

Page 63 of 92


Mode of EUT : 11ch: 2462 MHz, (IEEE 802.11b) Antenna Polarization : Vertical

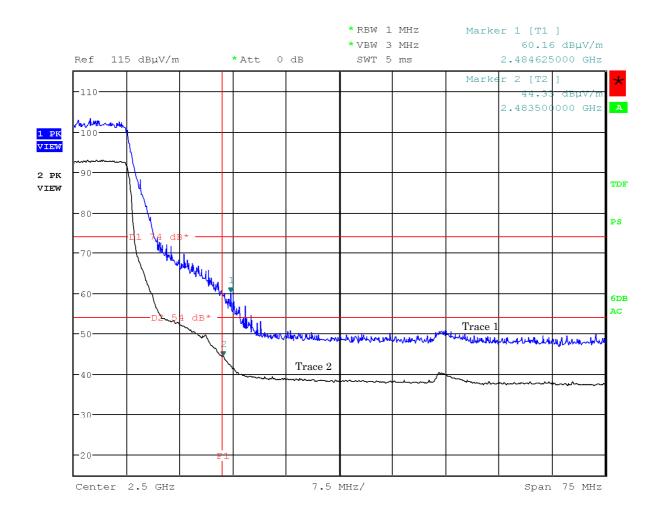
Page 64 of 92


Mode of EUT : 1ch: 2412 MHz, (IEEE 802.11g) Antenna Polarization : Horizontal

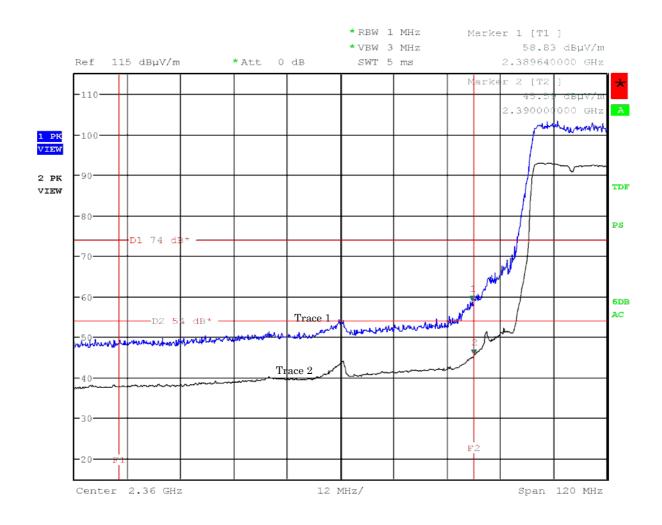
Page 65 of 92

Mode of EUT : 1ch: 2412 MHz, (IEEE 802.11g) Antenna Polarization : Vertical

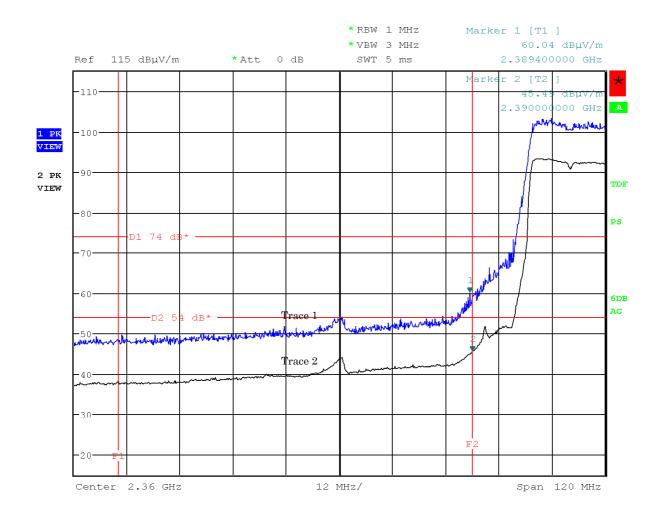
Page 66 of 92


Mode of EUT : 11ch: 2462 MHz, (IEEE 802.11g) Antenna Polarization : Horizontal

Page 67 of 92


Mode of EUT : 11ch: 2462 MHz, (IEEE 802.11g) Antenna Polarization : Vertical

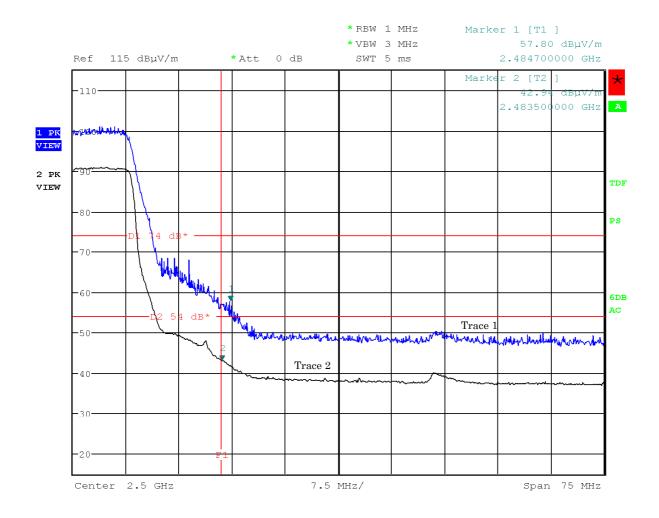
Page 68 of 92


Mode of EUT : 1ch: 2412 MHz, (IEEE 802.11n) Antenna Polarization : Horizontal

Page 69 of 92

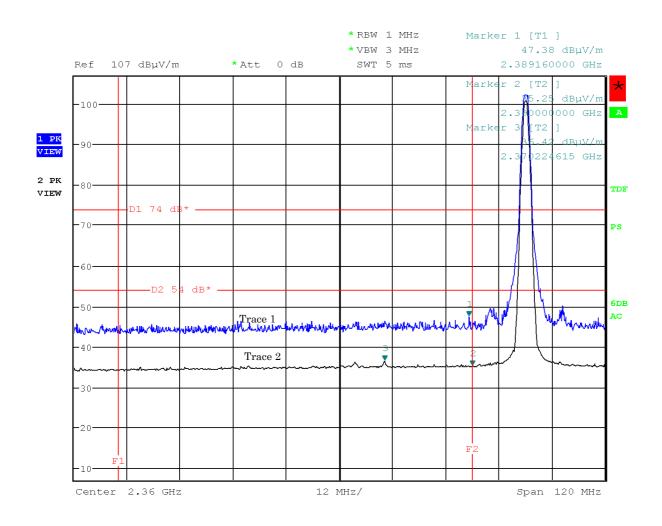
Mode of EUT : 1ch: 2412 MHz, (IEEE 802.11n) Antenna Polarization : Vertical

Page 70 of 92


Mode of EUT : 11ch: 2462 MHz, (IEEE 802.11n) Antenna Polarization : Horizontal

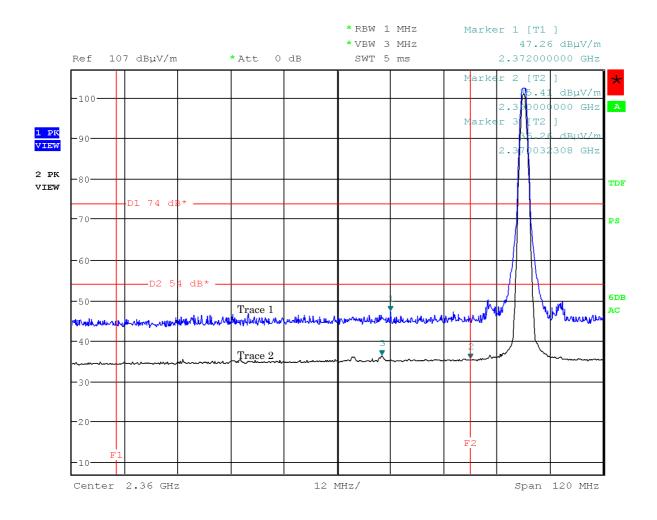
Page 71 of 92

Mode of EUT : 11ch: 2462 MHz, (IEEE 802.11n) Antenna Polarization : Vertical



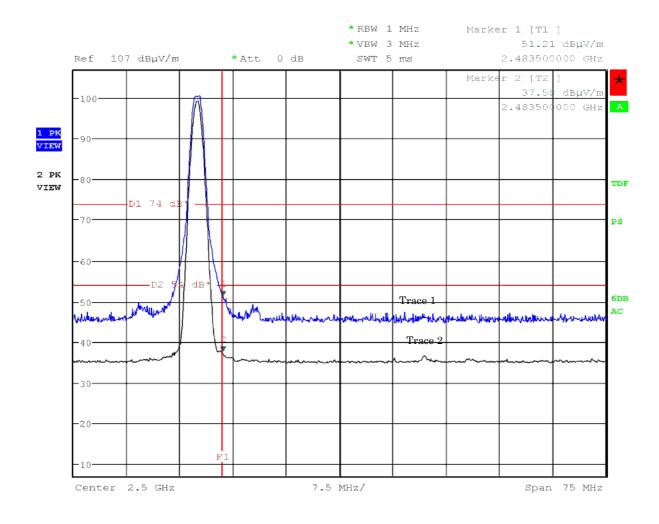
Page 72 of 92

<u>Test Date :June 23, 2016</u> <u>Temp.:24°C, Humi:68%</u>


Mode of EUT : Bluetooth Low Energy, Hopping off (0ch: 2402 MHz) Antenna Polarization : Horizontal

Page 73 of 92

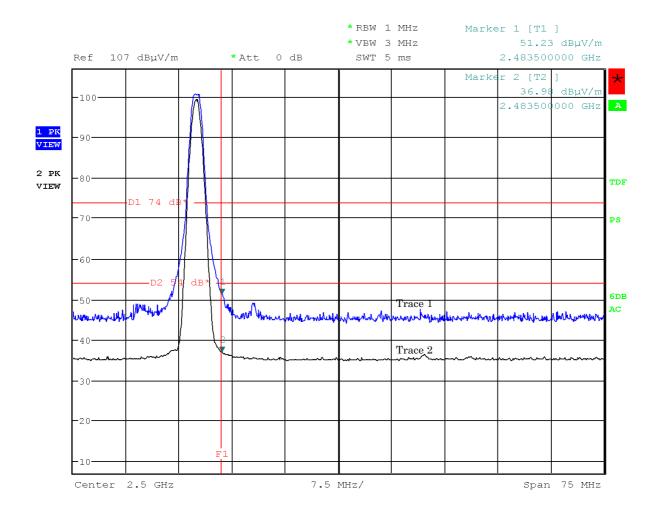
Mode of EUT : Bluetooth Low Energy, Hopping off (0ch: 2402 MHz) Antenna Polarization : Vertical



Note: The trace 1 is Peak . The trace 2 is Average.

Page 74 of 92

Mode of EUT : Bluetooth Low Energy, Hopping off (39ch: 2480 MHz) Antenna Polarization : Horizontal



Note: The trace 1 is Peak . The trace 2 is Average.

Page 75 of 92

Mode of EUT : Bluetooth Low Energy, Hopping off (39ch: 2480 MHz) Antenna Polarization : Vertical

Note: The trace 1 is Peak . The trace 2 is Average.

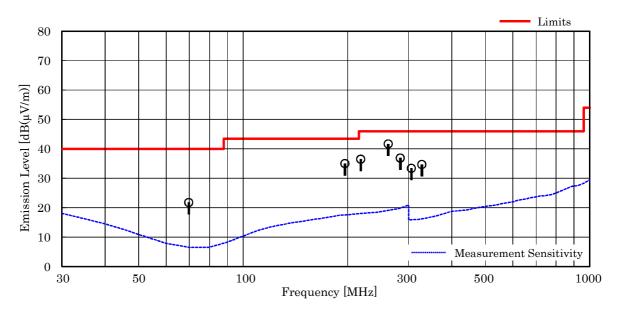
Page 76 of 92

<u>Test Date</u> :July 29, 2016 <u>Temp.:26°C, Humi:70%</u>

7.9.4.2 Other Spurious Emission (9kHz – 30MHz)

Mode of EUT : WLAN/Bluetooth LE

Results : No spurious emissions in the range 20dB below the limit.


7.9.4.3 Other Spurious Emission (30MHz - 1000MHz)

Mode of EUT : (WLAN) All modes have been investigated and the worst case mode for channel (06ch: 2437MHz / IEEE802.11b, IEEE802.11g and IEEE802.11n) has been listed.

Test Date: July 29,	2016
Temp.: 26 °C, Humi:	70%

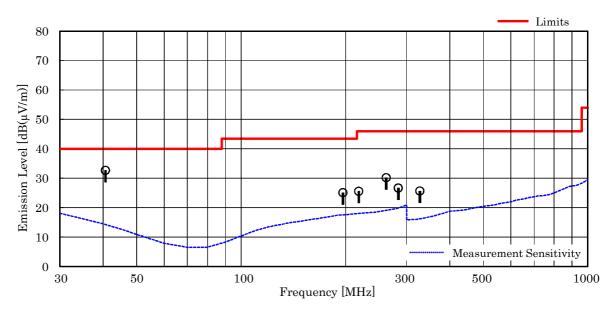
Antenna pole : Horizontal

Frequency [MHz]	Antenna Factor [dB(1/m)]	Corr. Factor [dB]	Meter Readings [dB(µV)]	Limits [dB(µV/m)]	Results [dB(µV/m)]	Margin [dB]	Remarks
69.70	6.6	-27.1	42.3	40.0	21.8	+18.2	_
196.56	16.5	-25.9	44.4	43.5	35.0	+ 8.5	-
218.40	16.8	-25.7	45.4	46.0	36.5	+ 9.5	-
262.08	17.6	-25.4	49.5	46.0	41.7	+ 4.3	-
283.92	18.2	-25.3	44.0	46.0	36.9	+ 9.1	_
305.76	14.1	-25.2	44.5	46.0	33.4	+12.6	_
327.60	14.2	-25.0	45.5	46.0	34.7	+11.3	_

NOTES

- 1. Test Distance : 3 m
- 2. The spectrum was checked from 30 MHz to 1000 MHz.
- 3. The correction factor is composed of cable loss, pad attenuation and/or amplifier gain.
- 4. The symbol of "<" means "or less".
- 5. The symbol of ">" means "more than".
- 6. Calculated result at 262.08 MHz, as the worst point shown on underline:
 - Antenna Factor + Correction Factor + Meter Reading = 17.6 + (-25.4) + 49.5 = 41.7 dB(µV/m) Antenna Height : 123 cm, Turntable Angle : 93 °
- 7. Test receiver setting(s) : CISPR QP 120 kHz [QP : Quasi-Peak]

JAPAN QUALITY ASSURANCE ORGANIZATION



Page 77 of 92

Test Date: July 29, 2016 Temp.: 26 °C, Humi: 70 %

Antenna pole : Vertical

Frequency [MHz]	Antenna Factor [dB(1/m)]	Corr. Factor [dB]	Meter Readings [dB(µV)]	Limits [dB(µV/m)]	Results [dB(µV/m)]	Margin [dB]	Remarks
40.61	14.8	-27.5	45.4	40.0	32.7	+ 7.3	_
196.56	16.5	-25.9	34.5	43.5	25.1	+18.4	-
218.40	16.8	-25.7	34.5	46.0	25.6	+20.4	-
262.08	17.6	-25.4	38.0	46.0	30.2	+15.8	-
283.92	18.2	-25.3	33.8	46.0	26.7	+19.3	-
327.60	14.2	-25.0	36.5	46.0	25.7	+20.3	-

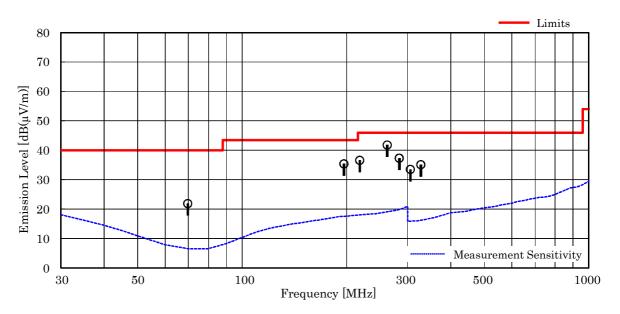
NOTES

1. Test Distance : 3 m

2. The spectrum was checked from 30 MHz to 1000 MHz.

3. The correction factor is composed of cable loss, pad attenuation and/or amplifier gain.

- 4. The symbol of "<" means "or less".
 5. The symbol of ">" means "more than".
- 6. Calculated result at 40.61 MHz, as the worst point shown on underline:
- Antenna Factor + Correction Factor + Meter Reading = $14.8 + (-27.5) + 45.4 = 32.7 \text{ dB}(\mu\text{V/m})$ Antenna Height : 100 cm, Turntable Angle : 176 °
- 7. Test receiver setting(s) : CISPR QP 120 kHz [QP : Quasi-Peak]


Page 78 of 92

Mode of EUT : Bluetooth Low Energy

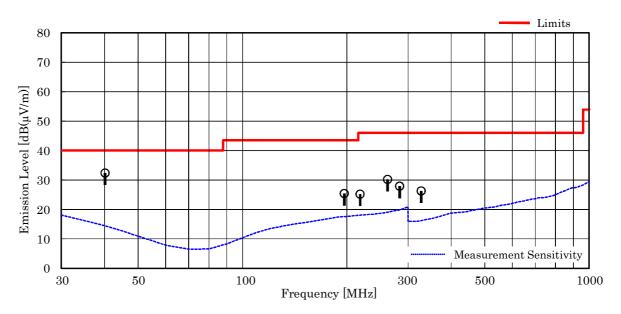
Test Date: July 29, 2016 Temp.: 26 °C, Humi: 70 %

Antenna pole : Horizontal

Frequency [MHz]	Antenna Factor [dB(1/m)]	Corr. Factor [dB]	Meter Readings [dB(µV)]	Limits [dB(µV/m)]	Results [dB(µV/m)]	Margin [dB]	Remarks
69.69	6.6	-27.1	42.4	40.0	21.9	+18.1	_
196.56	16.5	-25.9	44.8	43.5	35.4	+ 8.1	-
218.40	16.8	-25.7	45.5	46.0	36.6	+ 9.4	-
262.08	17.6	-25.4	49.6	46.0	41.8	+ 4.2	-
283.92	18.2	-25.3	44.4	46.0	37.3	+ 8.7	-
305.76	14.1	-25.2	44.6	46.0	33.5	+12.5	-
327.60	14.2	-25.0	45.9	46.0	35.1	+10.9	-

NOTES

- 1. Test Distance : 3 m
- 2. The spectrum was checked from 30 MHz to 1000 MHz.
- 3. The correction factor is composed of cable loss, pad attenuation and/or amplifier gain.
- 4. The symbol of "<" means "or less".5. The symbol of ">" means "more than".
- 6. Calculated result at 262.08 MHz, as the worst point shown on underline: Antenna Factor + Correction Factor + Meter Reading = $17.6 + (-25.4) + 49.6 = 41.8 \text{ dB}(\mu\text{V/m})$ Antenna Height: 124 cm, Turntable Angle: 93 °
- 7. Test receiver setting(s) : CISPR QP 120 kHz [QP : Quasi-Peak]



Page 79 of 92

<u>Test Date: July 29, 2016</u> <u>Temp.: 26 °C, Humi: 70 %</u>

Antenna pole : Vertical

Frequency [MHz]	Antenna Factor [dB(1/m)]	Corr. Factor [dB]	Meter Readings [dB(µV)]	Limits [dB(µV/m)]	Results [dB(µV/m)]	Margin [dB]	Remarks
40.13	15.0	-27.5	44.9	40.0	32.4	+ 7.6	-
196.56	16.5	-25.9	34.8	43.5	25.4	+18.1	-
218.40	16.8	-25.7	34.1	46.0	25.2	+20.8	-
262.08	17.6	-25.4	38.0	46.0	30.2	+15.8	-
283.92	18.2	-25.3	35.0	46.0	27.9	+18.1	_
327.60	14.2	-25.0	37.1	46.0	26.3	+19.7	-

NOTES

- 1. Test Distance : 3 m
- 2. The spectrum was checked from 30 MHz to 1000 MHz.
- 3. The correction factor is composed of cable loss, pad attenuation and/or amplifier gain.
- 4. The symbol of "<" means "or less".
- 5. The symbol of ">" means "more than".
- 6. Calculated result at 40.13 MHz, as the worst point shown on underline: Antenna Factor + Correction Factor + Meter Reading = $15.0 + (-27.5) + 44.9 = 32.4 \text{ dB}(\mu\text{V/m})$
 - Antenna Height : 100 cm, Turntable Angle : 178 °
- 7. Test receiver setting(s) : CISPR QP 120 kHz [QP : Quasi-Peak]

7.9.4.4 Other Spurious Emission (Above 1000MHz)

Mode of EUT : IEEE802.11b

Page 80 of 92

<u>Test Date: July 27, 2016</u> <u>Temp.: 25 °C, Humi: 70 %</u>

Frequency	Antenna	Corr.		Meter Rea	dings [dB(µ	V)]	Liı	mits	Re	sults	Margin	Remarks
	Factor	Factor	Hor	izontal	Ve	rtical	[dB()	uV/m)]	[dB(µV/m)]	[dB]	
[MHz]	[dB(1/m)]	[dB]	РК	AVE	РК	AVE	РК	AVE	РК	AVE		
Test condition	: Tx Low Ch											
4824.0	27.0	-15.8	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 49.2	< 39.2	> +14.8	
12060.0	33.4	-25.5	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 45.9	< 35.9	> +18.1	
14472.0	37.0	-26.2	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 48.8	< 38.8	> +15.2	
19296.0	40.5	-42.9	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 47.6	< 37.6	> +16.4	
Test condition	: TX Middle	Ch										
4874.0	27.0	-15.8	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 49.2	< 39.2	> +14.8	
7311.0	29.9	-16.1	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 51.8	< 41.8	> +12.2	
12185.0	33.3	-25.7	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 45.6	< 35.6	> +18.4	
19496.0	40.5	-42.9	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 47.6	< 37.6	> +16.4	
Test condition	: TX High Cl	h										
4924.0	27.0	-15.7	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 49.3	< 39.3	> +14.7	

rest condition .	in mgn e											
4924.0	27.0	-15.7	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 49.3	< 39.3	> +14.7	
7386.0	29.8	-16.2	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 51.6	< 41.6	> +12.4	
12310.0	33.3	-26.0	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 45.3	< 35.3	> +18.7	
19696.0	40.5	-42.9	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 47.6	< 37.6	> +16.4	
22158.0	40.6	-43.3	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 47.3	< 37.3	> +16.7	

Calculated result at 7311.0 MHz, as the worst point shown on underline:

 $\begin{array}{rcl} Antenna \ Factor &=& 29.9 \ dB(1/m) \\ Corr. \ Factor &=& -16.1 \ dB \\ + \) \ \underline{Meter \ Reading} &=& <28.0 \ dB(\mu V) \\ \hline Result &=& <41.8 \ dB(\mu V/m) \\ \end{array}$ $\begin{array}{rcl} Minimum \ Margin: \ 54.0 \ \cdot \ <41.8 \ =>12.2 \ (dB) \end{array}$

NOTES

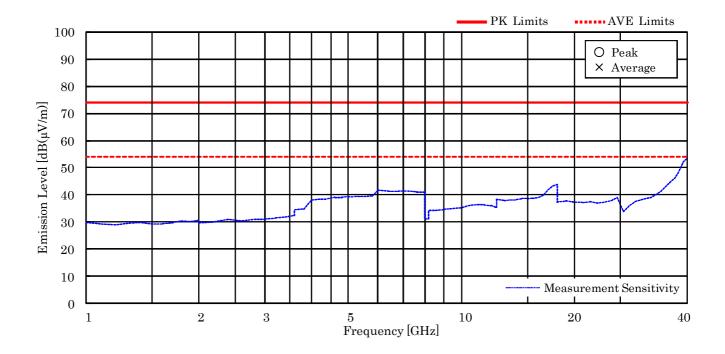
1. Test Distance : 3 m

2. The spectrum was checked from 1 GHz to 25 GHz (10th harmonic of the highest fundamental frequency).

3. The correction factor is shown as follows:

Corr. Factor [dB] = Cable Loss + 20dB Pad Att. - Pre-Amp. Gain [dB] (1.0 - 7.6GHz) Corr. Factor [dB] = Cable Loss + 10dB Pad Att. - Pre-Amp. Gain [dB] (7.6 - 18.0GHz)

Corr. Factor [dB] = Cable Loss - Pre-Amp. Gain [dB] (over 18 GHz)


- 4. The symbol of "<" means "or less".
- 5. The symbol of ">" means "more than".

6. PK : Peak / AVE : Average

Page 81 of 92

Mode of EUT : IEEE802.11b TX Low/Middle/High ch (Horizontal/Vertical)

Mode of EUT : IEEE802.11g

Page 82 of 92

<u>Test Date: July 27, 2016</u> <u>Temp.: 25 °C</u>, Humi: 70 %

Frequency	Antenna	Corr.	Meter Readin		dings [dB(µ'	V)]	Lir	nits	Re	sults	Margin	Remarks
	Factor	Factor	Hor	izontal	Ve	rtical	[dB(µ	(V/m)]	[dB(μV/m)]	[dB]	
[MHz]	[dB(1/m)]	[dB]	РК	AVE	РК	AVE	РК	AVE	РК	AVE		
Test condition	: Tx Low Ch											
4824.0	27.0	-15.8	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 49.2	< 39.2	> +14.8	
12060.0	33.4	-25.5	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 45.9	< 35.9	> +18.1	
14472.0	37.0	-26.2	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 48.8	< 38.8	> +15.2	
19296.0	40.5	-42.9	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 47.6	< 37.6	> +16.4	
Test condition	: TX Middle	Ch										
4874.0	27.0	-15.8	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 49.2	< 39.2	> +14.8	
7311.0	29.9	-16.1	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 51.8	< 41.8	> +12.2	
12185.0	33.3	-25.7	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 45.6	< 35.6	> +18.4	
19496.0	40.5	-42.9	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 47.6	< 37.6	> +16.4	
Test condition	: TX High C	h										
4924.0	27.0	-15.7	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 49.3	< 39.3	> +14.7	
7386.0	29.8	-16.2	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 51.6	< 41.6	> +12.4	
12310.0	33.3	-26.0	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 45.3	< 35.3	> +18.7	
19696.0	40.5	-42.9	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 47.6	< 37.6	> +16.4	
22158.0	40.6	-43.3	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 47.3	< 37.3	> +16.7	

Calculated result at 7311.0 MHz, a	as the	worst p	ooint shown on underline:
Antenna Factor	=	29.9	dB(1/m)
Corr. Factor	=	-16.1	dB
+) Meter Reading	=	<28.0	dB(µV)
Result	=	<41.8	$dB(\mu V/m)$
Minimum Margin: 54.0 - <41.8 = >	12.2 (6	lB)	

NOTES

1. Test Distance : 3 m

2. The spectrum was checked from $1~{\rm GHz}$ to $25~{\rm GHz}$ (10th harmonic of the highest fundamental frequency).

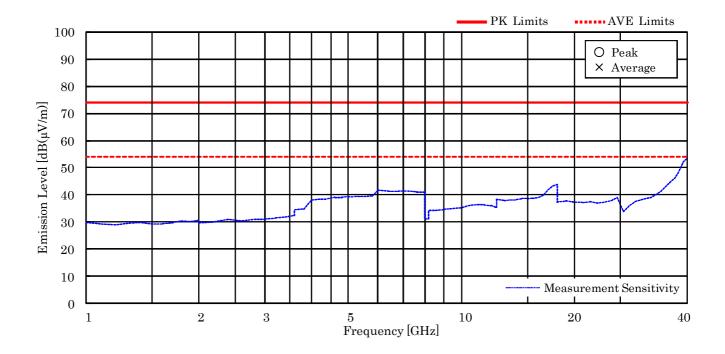
3. The correction factor is shown as follows:

Corr. Factor [dB] = Cable Loss + 20dB Pad Att. - Pre-Amp. Gain [dB] (1.0 - 7.6GHz)

Corr. Factor [dB] = Cable Loss + 10dB Pad Att. - Pre-Amp. Gain [dB] (7.6 - 18.0GHz)

Corr. Factor [dB] = Cable Loss - Pre-Amp. Gain [dB] (over 18 GHz)

4. The symbol of "<" means "or less".


5. The symbol of ">" means "more than".

6. PK : Peak / AVE : Average

Page 83 of 92

Mode of EUT : IEEE802.11g TX Low/Middle/High ch (Horizontal/Vertical)

Page $84 \ {\rm of} \ 92$

Mode of EUT : IEEE802.11n

Test Date: July 27, 2016
Temp.: 25 °C, Humi: 70 %

Frequency	Antenna	Corr.		Meter Rea	dings [dB(µ	V)]	Lir	nits	Re	sults	Margin	Remarks
	Factor	Factor	Hor	izontal	Ve	rtical	[dB(µ	ιV/m)]	[d B(µV/m)]	[dB]	
[MHz]	[dB(1/m)]	[dB]	РК	AVE	РК	AVE	РК	AVE	РК	AVE		
Test condition	: Tx Low Ch											
4824.0	27.0	-15.8	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 49.2	< 39.2	> +14.8	
12060.0	33.4	-25.5	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 45.9	< 35.9	> +18.1	
14472.0	37.0	-26.2	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 48.8	< 38.8	> +15.2	
19296.0	40.5	-42.9	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 47.6	< 37.6	> +16.4	
Test condition	: TX Middle	Ch										
4874.0	27.0	-15.8	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 49.2	< 39.2	> +14.8	
7311.0	29.9	-16.1	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 51.8	< 41.8	> +12.2	
12185.0	33.3	-25.7	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 45.6	< 35.6	> +18.4	
19496.0	40.5	-42.9	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 47.6	< 37.6	> +16.4	
Test condition	: TX High Cl	h										
4924.0	27.0	-15.7	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 49.3	< 39.3	> +14.7	

	0											
4924.0	27.0	-15.7	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 49.3	< 39.3	> +14.7	
7386.0	29.8	-16.2	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 51.6	< 41.6	> +12.4	
12310.0	33.3	-26.0	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 45.3	< 35.3	> +18.7	
19696.0	40.5	-42.9	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 47.6	< 37.6	> +16.4	
22158.0	40.6	-43.3	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 47.3	< 37.3	> +16.7	

Calculated result at 7311.0 MHz, a	s the	worst p	ooint shown on underline:					
Antenna Factor	=	29.9	dB(1/m)					
Corr. Factor	=	-16.1	dB					
+) Meter Reading	=	<28.0	dB(µV)					
Result	=	<41.8	$dB(\mu V/m)$					
Minimum Margin: 54.0 - <41.8 = >12.2 (dB)								

NOTES

1. Test Distance : 3 m

2. The spectrum was checked from $1~{\rm GHz}$ to $25~{\rm GHz}$ (10th harmonic of the highest fundamental frequency).

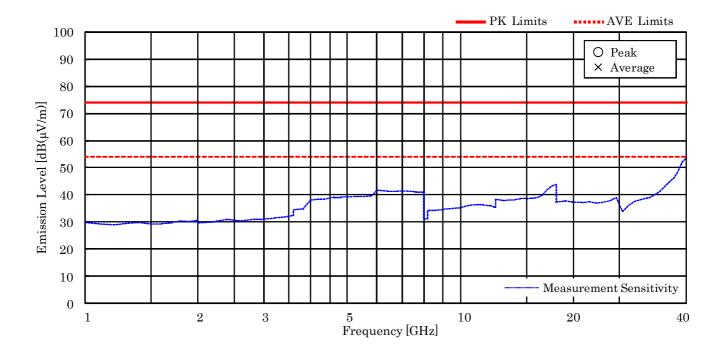
3. The correction factor is shown as follows:

Corr. Factor [dB] = Cable Loss + 20dB Pad Att. - Pre-Amp. Gain [dB] (1.0 - 7.6GHz)

Corr. Factor [dB] = Cable Loss + 10dB Pad Att. - Pre-Amp. Gain [dB] (7.6 - 18.0GHz)

Corr. Factor [dB] = Cable Loss - Pre-Amp. Gain [dB] (over 18 GHz)

4. The symbol of "<" means "or less".


5. The symbol of ">" means "more than".

6. PK : Peak / AVE : Average

Page 85 of 92

Mode of EUT : IEEE802.11n TX Low/Middle/High ch (Horizontal/Vertical)

Page 86 of 92

Mode of EUT : Bluetooth Low Energy

Test Date: July 27, 201	16
Temp.: 25 °C, Humi: 70	%

Frequency	Antenna	Corr.	Meter Readings [dB(µV)]		Limits		Results		Margin	Remarks		
	Factor	Factor	Hor	izontal	Ve	rtical	[dB(µ	ı V/m)]	[dB (μV/m)]	[dB]	
[MHz]	[dB(1/m)]	[dB]	РК	AVE	РК	AVE	РК	AVE	РК	AVE		
Test condition : Tx Low Ch												
4804.0	27.1	-15.9	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 49.2	< 39.2	> +14.8	
12010.0	33.5	-25.4	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 46.1	< 36.1	> +17.9	
19216.0	40.5	-43.0	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 47.5	< 37.5	> +16.5	
Test condition : TX Middle Ch												
4880.0	27.0	-15.8	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 49.2	< 39.2	> +14.8	
7320.0	29.9	-16.2	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 51.7	< 41.7	> +12.3	
12200.0	33.3	-25.7	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 45.6	< 35.6	> +18.4	
19520.0	40.4	-42.9	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 47.5	< 37.5	> +16.5	
Test condition : TX High Ch												
4960.0	27.0	-15.7	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 49.3	< 39.3	> +14.7	
7440.0	29.8	-16.3	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 51.5	< 41.5	> +12.5	
12400.0	33.3	-26.2	< 38.0	< 28.0	< 38.0	< 28.0	74.0	54.0	< 45.1	< 35.1	> +18.9	
19840.0	40.4	-42.9	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 47.5	< 37.5	> +16.5	
22320.0	40.6	-43.4	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 47.2	< 37.2	> +16.8	

Calculated result at 7320.0 MHz, as the worst point shown on underline:

 $\begin{array}{rcl} \mbox{Antenna Factor} & = & 29.9 \ \mbox{dB(1/m)} \\ \mbox{Corr. Factor} & = & -16.2 \ \mbox{dB} \\ \mbox{+}) \ \mbox{Meter Reading} & = & <28.0 \ \mbox{dB(}\mu\mbox{V}) \\ \hline \mbox{Result} & = & <41.7 \ \mbox{dB(}\mu\mbox{V/m}) \end{array}$

Minimum Margin: 54.0 - <41.7 = >12.3 (dB)

NOTES

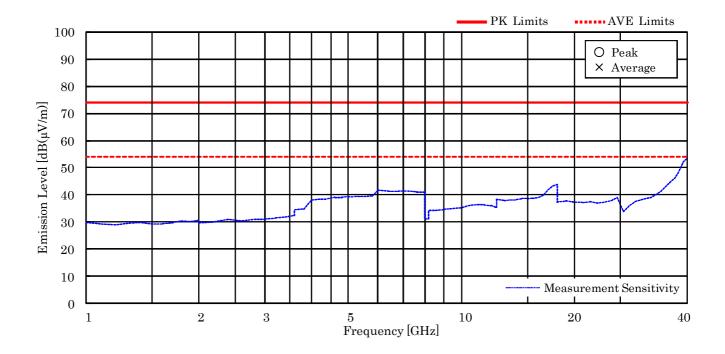
1. Test Distance : 3 m

2. The spectrum was checked from 1 GHz to 25 GHz (10th harmonic of the highest fundamental frequency).

3. The correction factor is shown as follows:

Corr. Factor [dB] = Cable Loss + 20dB Pad Att. - Pre-Amp. Gain [dB] (1.0 - 7.6GHz)

Corr. Factor [dB] = Cable Loss + 10dB Pad Att. - Pre-Amp. Gain [dB] (7.6 - 18.0GHz)


Corr. Factor $[\mathrm{dB}]$ = Cable Loss - Pre-Amp. Gain [dB] (over 18 GHz)

- 4. The symbol of "<" means "or less".
- 5. The symbol of ">" means "more than".
- 6. PK : Peak / AVE : Average

Page 87 of 92

Mode of EUT : Bluetooth Low Energy TX Low/Middle/High ch (Horizontal/Vertical)

