

RF TEST REPORT

For

Shenzhen Chuangquan Electronics Co., Ltd.

Product Name: Keyboard Test Model(s): CK620

Report Reference No. : DACE250407028RL002

FCC ID : 2AYFJ-CK620

Applicant's Name : Shenzhen Chuangquan Electronics Co., Ltd.

No. 102, Building 2, Lane 18, Chilingtou Xinyi village Gaofeng

Address : Community, Dalang Street, Longhua District Shenzhen Guangdong,

China

Testing Laboratory: Shenzhen DACE Testing Technology Co., Ltd.

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park,

Address : Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen,

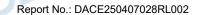
Guangdong, China

Test Specification Standard : 47 CFR Part 15.249

Date of Receipt : April 7, 2025

Date of Test : April 7, 2025 to April 15, 2025

Data of Issue : April 15, 2025


Result : Pass

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 1 of 46

Apply for company information

Applicant's Name	: Shenzhen Chuangquan Electronics Co., Ltd.			
Address	:	No. 102, Building 2, Lane 18, Chilingtou Xinyi village Gaofeng		
		Community, Dalang Street, Longhua District Shenzhen Guangdong,		
		China		
Product Name	i	Keyboard		
Test Model(s)	•	CK620		
Series Model(s)	:	CK621/CK622/CK625/CK626/CK628/CK629/CK650/CK651/CK652/		
		CK655/CK656/K658/CK659/CK680/CK681/CK682/CK685/CK686/CK688		
Test Specification Standard(s)	:	47 CFR Part 15.249		

NOTE1:

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

Compiled by:

Keren Huang

Keren Huang / Test Engineer

April 15, 2025

Supervised by:

Ben Tang

Ben Tang / Project Engineer

April 15, 2025

Approved by:

Machael MJ

1010

Machael Mo / Manager

April 15, 2025

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 2 of 46

DAG

Report No.: DACE250407028RL002

Revision History Of Report

Version	Description	REPORT No.	Issue Date
V1.0	Original	DACE250407028RL002	April 15, 2025
	1	2	

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 3 of 46

DAG

CONTENTS

1 TEST SUMMARY	5
1.1 Test Standards	
1.2 SUMMARY OF TEST RESULT	
2 GENERAL INFORMATION	
2.1 CLIENT INFORMATION	6
2.2 DESCRIPTION OF DEVICE (EUT)	
2.3 DESCRIPTION OF TEST MODES	
2.4 DESCRIPTION OF SUPPORT UNITS	
2.5 EQUIPMENTS USED DURING THE TEST	
2.7 IDENTIFICATION OF TESTING LABORATORY	
2.8 ANNOUNCEMENT	
3 EVALUATION RESULTS (EVALUATION)	11
3.1 ANTENNA REQUIREMENT	11
3.1.1 Conclusion:	
4 RADIO SPECTRUM MATTER TEST RESULTS (RF)	12
4.1 CONDUCTED EMISSION AT AC POWER LINE	
4.1.1 E.U.T. Operation:	
4.1.2 Test Setup Diagram:	12
4.1.3 Test Data:	13
4.2 OCCUPIED BANDWIDTH	15
4.2.1 E.U.T. Operation:	15
4.2.2 Test Setup Diagram:	16
4.2.3 Test Data:	16
4.3 FIELD STRENGTH OF FUNDAMENTAL	
4.3.1 E.U.T. Operation:	18
4.3.2 Test Data:	
4.4 BAND EDGE EMISSIONS (RADIATED)	19
4.4.1 E.U.T. Operation:	19
4.4.2 Test Setup Diagram:	
4.4.3 Test Data:	20
4.5 EMISSIONS IN FREQUENCY BANDS (BELOW 1GHz)	24
4.5.1 E.U.T. Operation:	
4.5.2 Test Data:	25
4.6 EMISSIONS IN FREQUENCY BANDS (ABOVE 1GHZ)	
4.6.1 E.U.T. Operation:	
4.6.2 Test Setup Diagram:	
4.6.3 Test Data:	
5 TEST SETUP PHOTOS	34
6 PHOTOS OF THE EUT	

E-mail: service@dace-lab.com

1 TEST SUMMARY

1.1 Test Standards

The tests were performed according to following standards:

47 CFR Part 15.249: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, 5725-5875 MHZ, and 24.0-24.25 GHz

Report No.: DACE250407028RL002

1.2 Summary of Test Result

Item	Standard	Method	Requirement	Result
Antenna requirement	47 CFR Part 15.249		47 CFR Part 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15.249	ANSI C63.10-2013 section 6.2	47 CFR 15.207(a)	Pass
Occupied Bandwidth	47 CFR Part 15.249	ANSI C63.10-2013, section 6.9.2	47 CFR 15.215(c)	Pass
Field strength of fundamental	47 CFR Part 15.249	ANSI C63.10-2013 section 6.6	47 CFR 15.249(a) 47 CFR 15.249(b)(1)	Pass
Band edge emissions (Radiated)	47 CFR Part 15.249	ANSI C63.10-2013 section 6.6.4	47 CFR 15.249(d)	Pass
Emissions in frequency bands (below 1GHz)	47 CFR Part 15.249	ANSI C63.10-2013 section 6.5	47 CFR 15.249(a) 47 CFR 15.249(d) 47 CFR 15.249(e)	Pass
Emissions in frequency bands (above 1GHz)	47 CFR Part 15.249	ANSI C63.10-2013 section 6.6	47 CFR 15.249(a) 47 CFR 15.249(d) 47 CFR 15.249(e)	Pass

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 5 of 46

GENERAL INFORMATION

2.1 Client Information

Applicant's Name Shenzhen Chuangquan Electronics Co., Ltd.

Address No. 102, Building 2, Lane 18, Chilingtou Xinyi village Gaofeng Community,

Dalang Street, Longhua District Shenzhen Guangdong, China

Manufacturer Shenzhen Chuangquan Electronics Co., Ltd.

Address No. 102, Building 2, Lane 18, Chilingtou Xinyi village Gaofeng Community,

Dalang Street, Longhua District Shenzhen Guangdong, China

Description of Device (EUT)

Product Name:	Keyboard
Model/Type reference:	CK620
Series Model:	CK621/CK622/CK625/CK626/CK628/CK629/CK650/CK651/CK652/CK655/CK6 56/K658/CK659/CK680/CK681/CK682/CK685/CK686/CK688
Model Difference:	The product has many models, only the model name and color is different, and the other parts such as the circuit principle, pcb and electrical structure are the same.
Trade Mark:	N/A
Power Supply:	DC 5V/1A from adapter Battery:DC3.7V 4100mAh
Operation Frequency:	2402-2480MHz
Number of Channels:	16
Modulation Type:	GFSK
Antenna Type:	PCB
Antenna Gain:	2.34 dBi
Hardware Version:	V1.0
Software Version:	V1.0

(Remark: The Antenna Gain is supplied by the customer. DACE is not responsible for This data and the related calculations associated with it)

Operation Frequency each of channel							O-
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402 MHz	5	2422 MHz	9	2440 MHz	13	2463 MHz
2	2407 MHz	6	2426 MHz	10	2453 MHz	14	2466 MHz
3	2414 MHz	7	2436 MHz	11	2445 MHz	15	2473 MHz
4	2419 MHz	8	2439 MHz	12	2459 MHz	16	2480 MHz

Page 6 of 46 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Report No.: DACE250407028RL002

Test sharmel	Frequency (MHz)
Test channel	SRD
Lowest channel	2402MHz
Middle channel	2440MHz
Highest channel	2480MHz
Remark:Only the data of the worst mod	e would be recorded in this report.

2.3 Description of Test Modes

No	Title	Description
TM1	Lowest channel	Keep the EUT connect to AC power line and works in continuously transmitting mode with GFSK modulation.
TM2	Middle channel	Keep the EUT connect to AC power line and works in continuously transmitting mode with GFSK modulation.
ТМЗ	Highest channel	Keep the EUT connect to AC power line and works in continuously transmitting mode with GFSK modulation.

2.4 Description of Support Units

Title	Title Manufacturer		Serial No.
AC-DC adapter	HUAWEI TECHNOLOGY	HW100400C01	

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 7 of 46

2.5 Equipments Used During The Test

V1.0

Conducted Emission a	at AC power line				
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Power absorbing clamp	SCHWARZ BECK	MESS- ELEKTRONIK	1	2024-05-20	2025-05-19
Electric Network	SCHWARZ BECK	CAT5 8158	CAT5 8158#207	1	1
Cable	SCHWARZ BECK	101	1	2024-05-20	2025-05-19
Pulse Limiter	SCHWARZ BECK	VTSD 9561-F Pulse limiter 10dB Attenuation	561-G071	2024-12-06	2025-12-05
50ΩCoaxial Switch	Anritsu	MP59B	M20531	/	/
Test Receiver	Rohde & Schwarz	ESPI TEST RECEIVER	ID:1164.6607K 03-102109- MH	2024-06-12	2025-06-11
L.I.S.N	R&S	ESH3-Z5	831.5518.52	2023-12-12	2025-12-11
L.I.S.N	SCHWARZ BECK	NSLK 8126	05055	2024-06-14	2025-06-13
Pulse Limiter	CYBERTEK	EM5010A	1	2024-09-27	2025-09-26
EMI test software	EZ -EMC	EZ	V1.1.42	1	/

Occupied Bandwidth		G			
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RF Test Software	Tachoy Information Technology(she nzhen) Co.,Ltd.	RTS-01	V1.0.0		/
Power divider	MIDEWEST	PWD-2533	SMA-79	2023-05-11	2026-05-10
RF Sensor Unit	Tachoy Information Technology(she nzhen) Co.,Ltd.	TR1029-2	000001	1	DAG
Wideband radio communication tester	R&S	CMW500	113410	2024-06-12	2025-06-11
Vector Signal Generator	Keysight	N5181A	MY50143455	2024-12-06	2025-12-05
Signal Generator	Keysight	N5182A	MY48180415	2024-12-06	2025-12-05
Spectrum Analyzer	Keysight	N9020A	MY53420323	2024-12-06	2025-12-05

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 8 of 46

Field strength of fundamental
Band edge emissions (Radiated)

Emissions in frequency bands (below 1GHz)

Emissions in frequency bands (above 1GHz)

Emissions in requercy bands (above 10112)						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
EMI Test software	Farad	EZ -EMC	V1.1.42	1	/	
Positioning Controller	MF	MF-7802	1	1	1	
Amplifier(18-40G)	COM-POWER	AH-1840	10100008-1	2023-05-19	2025-05-18	
Horn antenna	COM-POWER	AH-1840 (18-40G)	10100008	2023-05-19	2025-05-18	
Loop antenna	ZHINAN	ZN30900C	ZN30900C	2024-06-14	2026-06-13	
Cable(LF)#2	Schwarzbeck	1	1	2024-12-19	2025-12-18	
Cable(LF)#1	Schwarzbeck	1	1.6	2024-12-19	2025-12-18	
Cable(HF)#2	Schwarzbeck	AK9515E	96250	2024-05-20	2025-05-19	
Cable(HF)#1	Schwarzbeck	SYV-50-3-1	/	2024-05-20	2025-05-19	
Power amplifier(LF)	Schwarzbeck	BBV9743	9743-151	2024-06-12	2025-06-11	
Power amplifier(HF)	Schwarzbeck	BBV9718	9718-282	2024-06-12	2025-06-11	
Wideband radio communication tester	R&S	CMW500	113410	2024-06-12	2025-06-11	
Spectrum Analyzer	R&S	FSP30	1321.3008K40 -101729-jR	2024-06-12	2025-06-11	
Test Receiver	R&S	ESCI 3	1166.5950K03 -101431-Jq	2024-06-13	2025-06-12	
Horn Antenna	Sunol Sciences	DRH-118	A091114	2023-05-13	2025-05-12	
Broadband Antenna	Sunol Sciences	JB6 Antenna	A090414	2024-09-28	2026-09-27	

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 9 of 46

2.6 Statement Of The Measurement Uncertainty

Test Item	1	Measurement Uncertainty
Conducted Disturbance (0.15~30MHz)	V	±3.41dB
Occupied Bandwidth		±3.63%
Radiated Emission (Above 1GHz)		±5.46dB
Radiated Emission (Below 1GHz)		±5.79dB

Note: (1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2.7 Identification of Testing Laboratory

Company Name: Shenzhen DACE Testing Technology Co., Ltd.				
Address:	102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China			
Phone Number:	+86-13267178997			
Fax Number:	86-755-29113252			

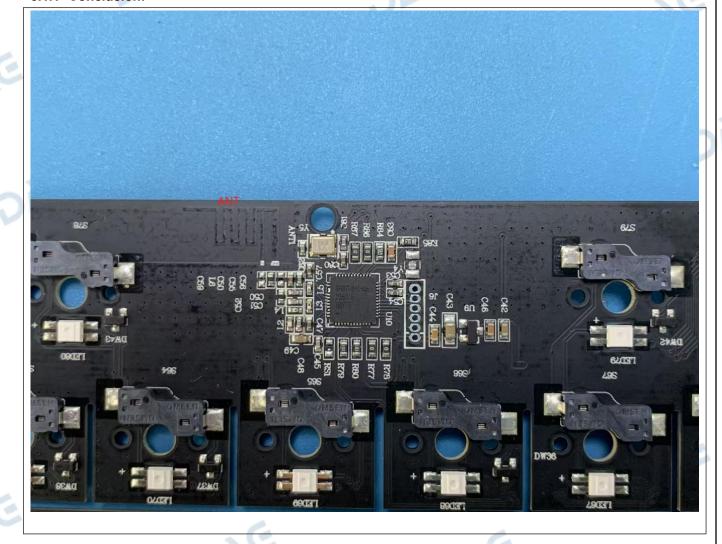
Identification of the Responsible Testing Location

Company Name:	Shenzhen DACE Testing Technology Co., Ltd.
Address:	102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Phone Number:	+86-13267178997
Fax Number:	86-755-29113252
Designation Number:	CN1342
Test Firm Registration Number:	778666
A2LA Certificate Number:	6270.01

2.8 Announcement

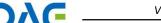
- (1) The test report reference to the report template version v0.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) This document may not be altered or revised in any way unless done so by DACE and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 10 of 46


3 Evaluation Results (Evaluation)

3.1 Antenna requirement

Test Requirement:

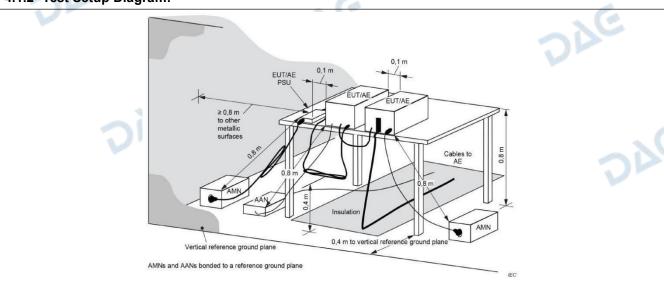

Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.1.1 Conclusion:

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 11 of 46

4 Radio Spectrum Matter Test Results (RF)


4.1 Conducted Emission at AC power line

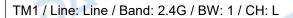
Test Requirement:	Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).							
Test Limit:	Frequency of emission (MHz)	Conducted limit (dBµV)						
		Quasi-peak	Average					
	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5	56	46					
	5-30	60	50					
\	*Decreases with the logarithm of the frequency.							
Test Method:	ANSI C63.10-2013 section 6.2							
Procedure:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices							

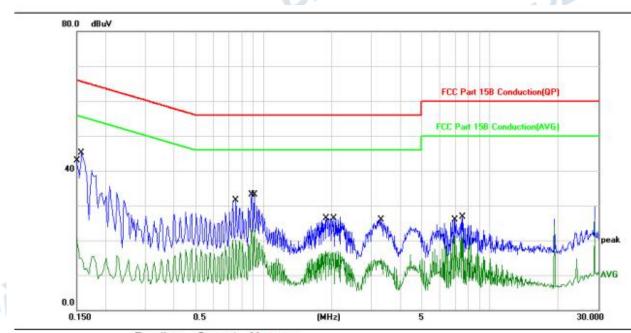
4.1.1 E.U.T. Operation:

Operating Environment:									
Temperature:	Temperature: 22.6 °C		Humidity:	51 %	Atmospheric Pressure:	102 kPa			
Pretest mode:	Pretest mode:								
Final test mode:		TM1,	TM2, TM3						

4.1.2 Test Setup Diagram:

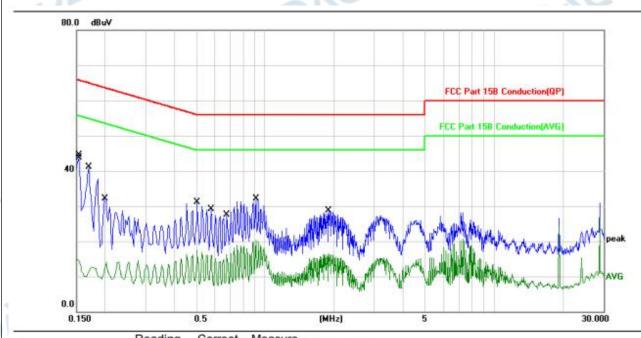
Web: http://www.dace-lab.com


Tel: +86-755-23010613


E-mail: service@dace-lab.com

Page 12 of 46

4.1.3 Test Data:



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1500	10.65	10.10	20.75	55.99	-35.24	AVG	
2	*	0.1580	34.91	10.10	45.01	65.56	-20.55	QP	
3		0.7580	21.36	10.08	31.44	56.00	-24.56	QP	
4		0.7580	10.11	10.08	20.19	46.00	-25.81	AVG	
5		0.8860	13.07	10.08	23.15	46.00	-22.85	AVG	
6		0.9100	23.08	10.08	33.16	56.00	-22.84	QP	
7		1.8700	6.93	10.01	16.94	46.00	-29.06	AVG	
8		2.0460	16.33	10.00	26.33	56.00	-29.67	QP	
9		3.3100	15.81	10.10	25.91	56.00	-30.09	QP	
10		3.3100	4.58	10.10	14.68	46.00	-31.32	AVG	
11		6.9500	11.17	10.23	21.40	50.00	-28.60	AVG	
12		7.5260	16.41	10.25	26.66	60.00	-33.34	QP	

Page 13 of 46 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

TM1 / Line: Neutral / Band: 2.4G / BW: 1 / CH: L

No.	Mk.	Freq.	Reading Level	Correct	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1		0.1500	4.75	10.10	14.85	55.99	-41.14	AVG		
2	*	0.1539	34.47	10.10	44.57	65.78	-21.21	QP		
3		0.1700	31.00	10.10	41.10	64.96	-23.86	QP		
4		0.2020	4.00	10.10	14.10	53.52	-39.42	AVG		
5		0.5060	21.03	10.08	31.11	56.00	-24.89	QP		
6		0.5060	7.45	10.08	17.53	46.00	-28.47	AVG		1
7		0.5820	19.04	10.08	29.12	56.00	-26.88	QP		
8		0.6820	6.22	10.08	16.30	46.00	-29.70	AVG		
9		0.9100	21.96	10.08	32.04	56.00	-23.96	QP		3
10		0.9100	10.26	10.08	20.34	46.00	-25.66	AVG		
11		1.8940	18.60	10.00	28.60	56.00	-27.40	QP		
12		1.8940	6.54	10.00	16.54	46.00	-29.46	AVG		7

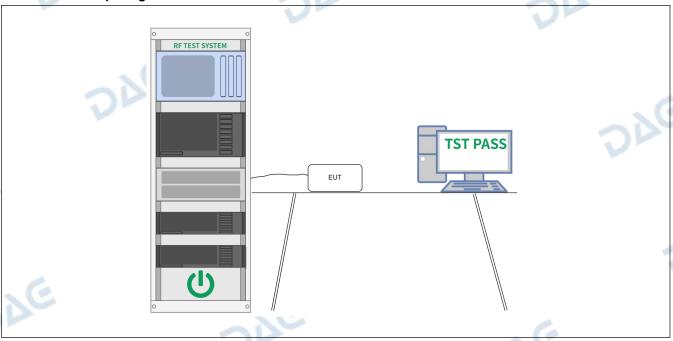
Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 14 of 46

4.2 Occupied Bandwidth

V1.0

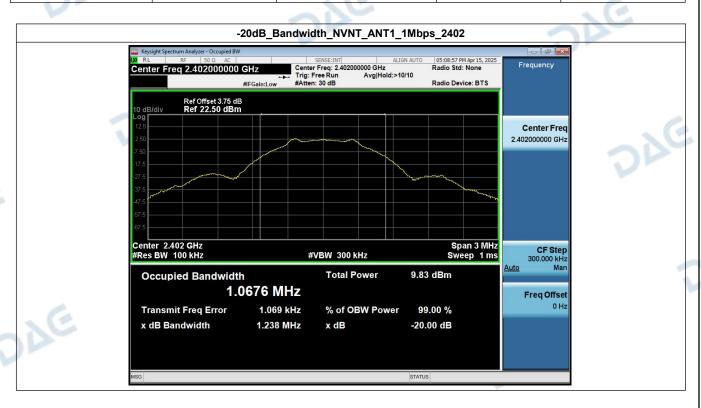
Test Requirement:	47 CFR 15.215(c)
Test Limit:	Refer to 47 CFR 15.215(c), intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.
Test Method:	ANSI C63.10-2013, section 6.9.2
Procedure:	a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW, unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the
NE	reference level. Specific guidance is given in 4.1.5.2. d) Steps a) through c) might require iteration to adjust within the specified tolerances. e) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below the target "-xx dB down" requirement; that is, if the requirement calls for measuring the -20 dB OBW, the instrument noise floor at the selected RBW shall be at least 30 dB below the reference value.
DAG	f) Set detection mode to peak and trace mode to max hold. g) Determine the reference value: Set the EUT to transmit an unmodulated carrier or modulated signal, as applicable. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value). h) Determine the "-xx dB down amplitude" using [(reference value) - xx]. Alternatively, this calculation may be made by using the marker-delta function of the instrument.
DIE	i) If the reference value is determined by an unmodulated carrier, then turn the EUT modulation ON, and either clear the existing trace or start a new trace on the spectrum analyzer and allow the new trace to stabilize. Otherwise, the trace from step g) shall be used for step j). j) Place two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "-xx dB down amplitude" determined in step h). If a marker is below this "-xx dB down amplitude" value, then it shall be as close as possible to this value. The occupied bandwidth is the frequency difference between the two markers. Alternatively, set a marker at the lowest frequency of the envelope of the spectral display, such that the marker is at or slightly below the "-xx dB down amplitude" determined in step h). Reset the marker-delta function and move the marker to the other side of the emission until the delta marker amplitude is at the same level as the reference marker amplitude. The marker-delta frequency reading at this point is the specified emission bandwidth. k) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

4.2.1 E.U.T. Operation:

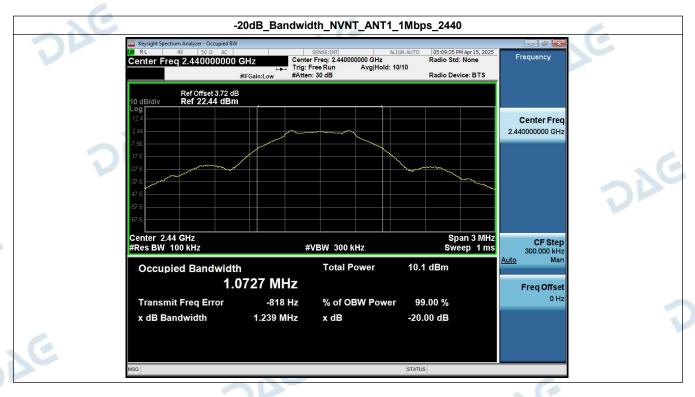

Operating Environment:										
Temperature:	22.6 °C		Humidity:	51 %	Atmospheric Pressure:	102 kPa				
Pretest mode:		TM1,	TM2, TM3							

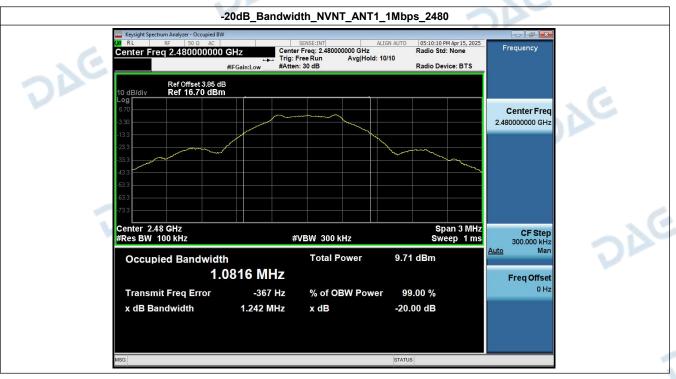
102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 15 of 46


Final test mode: TM1, TM2, TM3

4.2.2 Test Setup Diagram:


4.2.3 Test Data:


Condition	Antenna	Frequency (MHz)	-20dB BW(kHz)	Result
NVNT	ANT1	2402.00	1237.61	Pass
NVNT	ANT1	2440.00	1238.66	Pass
NVNT	ANT1	2480.00	1242.33	Pass

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 16 of 46

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 17 of 46

4.3 Field strength of fundamental

Test Requirement:	Except as provided in paragraph (b)of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:							
	Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)					
	902-928 MHz	50	500					
	2400-2483.5 MHz	50	500					
	5725-5875 MHz	50	500					
	24.0-24.25 GHz	250	2500					
	The field strength of emissions in this band shall not exceed 2500 millivolts/me							
Test Method:	ANSI C63.10-2013 section 6.6							
Procedure:	ANSI C63.10-2013 section 6.6							

4.3.1 E.U.T. Operation:

Operating Environment:									
Temperature:	22.6 °C		Humidity:	51 %	Atmospheric Pressure:	102 kPa			
Pretest mode:	Pretest mode: TM1		TM2, TM3			C			
Final test mode: TM1,		TM2, TM3							

4.3.2 Test Data:

Frequency	Emission Level	Limits	Margin	Detector	Polarization
(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(PK/AV)	(H/V)
2402	100.38	114	-13.62	PK	Н
2402	91.57	94	-2.43	AV	Н
2402	86.53	114	-27.47	PK	V
2402	80.35	94	-13.65	AV	V

	Frequency	Emission Level	Limits	Margin	Detector	Polarization
	(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(PK/AV)	(H/V)
	2440	98.64	114	-15.36	PK	Н
-	2440	89.64	94	-4.36	AV	Н
	2440	88.64	114	-25.36	PK	V
	2440	80.64	94	-13.36	AV	V

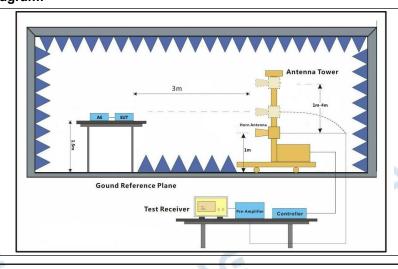
Frequency	Emission Level	Limits	Margin	Detector	Polarization
2480	(dBuV/m)	(dBuV/m)	(dBuV/m)	(PK/AV)	(H/V)
2480	98.94	114	-15.06	PK	H
2480	89.34	94	-4.66	AV	Н
2480	89.64	114	-24.36	PK	V
2480	79.64	94	-14.36	AV	V

Note: Margin = Emission Level – Limit; For fundamental frequency, RBW>20dB BW, VBW>=3XRBW

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 18 of 46

4.4 Band edge emissions (Radiated)

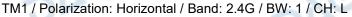

V1.0

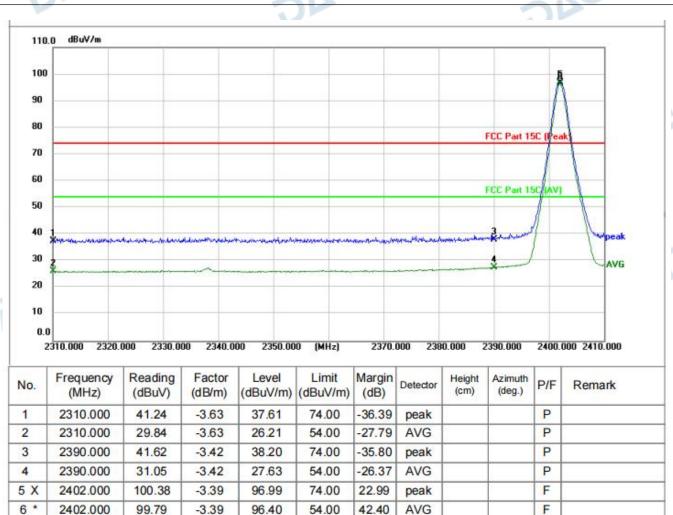
Test Requirement:	shall be attenuated by at lea	of the specified frequency bands, ast 50 dB below the level of the fur mits in § 15.209, whichever is the	ndamental or to the			
Test Limit:	shall be attenuated by at lea	of the specified frequency bands, st 50 dB below the level of the fur mits in § 15.209, whichever is the	ndamental or to the			
DIA	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)			
	0.009-0.490	2400/F(kHz)	300			
	0.490-1.705	24000/F(kHz)	30			
	1.705-30.0	30	30			
	30-88	100 **	3			
\	88-216	150 **	3			
	216-960	200 **	3			
	Above 960	500	3			
DIE	radiators operating under thi 54-72 MHz, 76-88 MHz, 174 these frequency bands is per and 15.241. In the emission table above, The emission limits shown in employing a CISPR quasi-per 110–490 kHz and above 100	agraph (g), fundamental emission is section shall not be located in the 216 MHz or 470-806 MHz. Howevermitted under other sections of the the tighter limit applies at the barent the above table are based on meak detector except for the freque 00 MHz. Radiated emission limits is employing an average detector.	ne frequency bands ever, operation within is part, e.g., §§ 15.231 and edges. easurements ncy bands 9–90 kHz,			
Test Method:	ANSI C63.10-2013 section 6	6.6.4	276			
Procedure:	ANSI C63.10-2013 section 6	5.6.4	V			
	•					

4.4.1 E.U.T. Operation:

Operating Environment	onment:	6			<i>P</i> .		
Temperature:	22.6 °C		Humidity:	51 %	Atmospheric Press	ure: 102 kPa	
Pretest mode:	7	TM1,	TM2, TM3		OF		> (
Final test mode:		TM1,	TM2, TM3				OF

4.4.2 Test Setup Diagram:




102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 19 of 46

4.4.3 Test Data:

2402.100

6 X

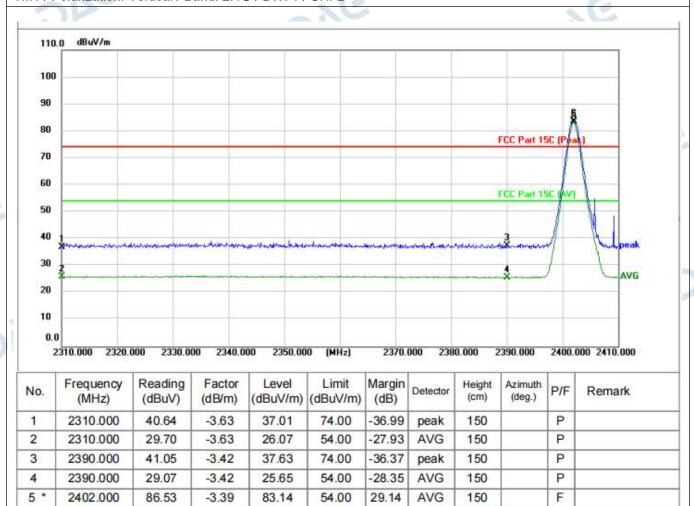
-3.39

87.06

83.67

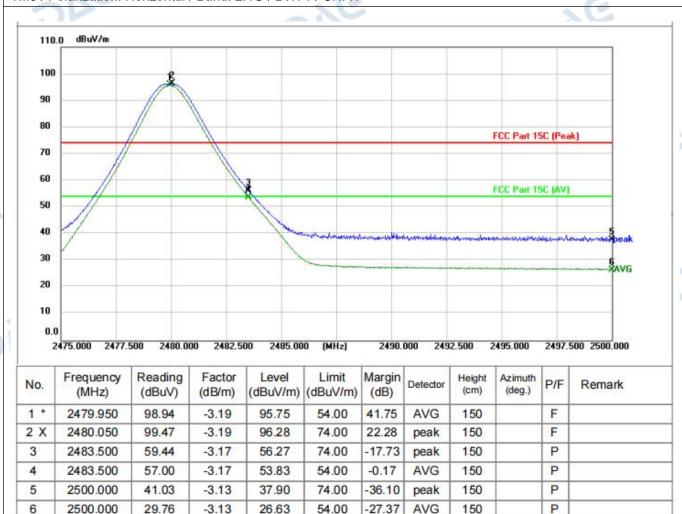
74.00

9.67

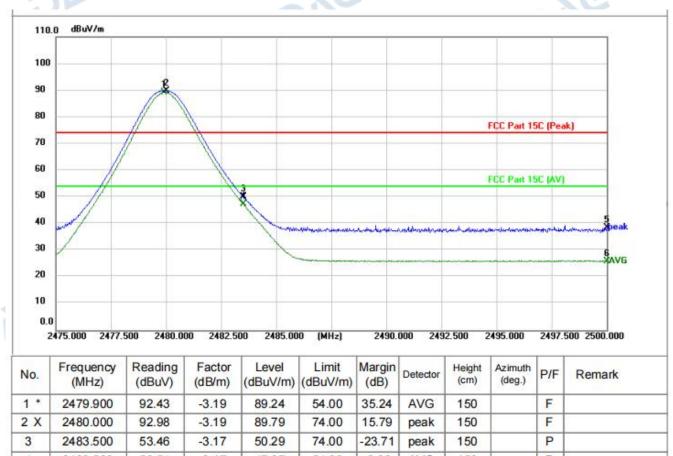

peak

150

Report No.: DACE250407028RL002


F

TM1 / Polarization: Vertical / Band: 2.4G / BW: 1 / CH: L



TM3 / Polarization: Horizontal / Band: 2.4G / BW: 1 / CH: H

TM3 / Polarization: Vertical / Band: 2.4G / BW: 1 / CH: H

Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)		Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
2479.900	92.43	-3.19	89.24	54.00	35.24	AVG	150		F	
2480.000	92.98	-3.19	89.79	74.00	15.79	peak	150		F	
2483.500	53.46	-3.17	50.29	74.00	-23.71	peak	150		Р	
2483.500	50.54	-3.17	47.37	54.00	-6.63	AVG	150		Р	
2500.000	41.75	-3.13	38.62	74.00	-35.38	peak	150		Р	
2500.000	29.19	-3.13	26.06	54.00	-27.94	AVG	150	†	Р	
	(MHz) 2479.900 2480.000 2483.500 2483.500 2500.000	(MHz) (dBuV) 2479.900 92.43 2480.000 92.98 2483.500 53.46 2483.500 50.54 2500.000 41.75	(MHz) (dBuV) (dB/m) 2479.900 92.43 -3.19 2480.000 92.98 -3.19 2483.500 53.46 -3.17 2483.500 50.54 -3.17 2500.000 41.75 -3.13	(MHz) (dBuV) (dB/m) (dBuV/m) 2479.900 92.43 -3.19 89.24 2480.000 92.98 -3.19 89.79 2483.500 53.46 -3.17 50.29 2483.500 50.54 -3.17 47.37 2500.000 41.75 -3.13 38.62	(MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) 2479.900 92.43 -3.19 89.24 54.00 2480.000 92.98 -3.19 89.79 74.00 2483.500 53.46 -3.17 50.29 74.00 2483.500 50.54 -3.17 47.37 54.00 2500.000 41.75 -3.13 38.62 74.00	(MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 2479.900 92.43 -3.19 89.24 54.00 35.24 2480.000 92.98 -3.19 89.79 74.00 15.79 2483.500 53.46 -3.17 50.29 74.00 -23.71 2483.500 50.54 -3.17 47.37 54.00 -6.63 2500.000 41.75 -3.13 38.62 74.00 -35.38	(MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) Detector 2479.900 92.43 -3.19 89.24 54.00 35.24 AVG 2480.000 92.98 -3.19 89.79 74.00 15.79 peak 2483.500 53.46 -3.17 50.29 74.00 -23.71 peak 2483.500 50.54 -3.17 47.37 54.00 -6.63 AVG 2500.000 41.75 -3.13 38.62 74.00 -35.38 peak	(MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) Detector (cm) 2479.900 92.43 -3.19 89.24 54.00 35.24 AVG 150 2480.000 92.98 -3.19 89.79 74.00 15.79 peak 150 2483.500 53.46 -3.17 50.29 74.00 -23.71 peak 150 2483.500 50.54 -3.17 47.37 54.00 -6.63 AVG 150 2500.000 41.75 -3.13 38.62 74.00 -35.38 peak 150	(MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) Detector (cm) (deg.) 2479.900 92.43 -3.19 89.24 54.00 35.24 AVG 150 2480.000 92.98 -3.19 89.79 74.00 15.79 peak 150 2483.500 53.46 -3.17 50.29 74.00 -23.71 peak 150 2483.500 50.54 -3.17 47.37 54.00 -6.63 AVG 150 2500.000 41.75 -3.13 38.62 74.00 -35.38 peak 150	(MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) Detector (cm) (deg.) P/F 2479.900 92.43 -3.19 89.24 54.00 35.24 AVG 150 F 2480.000 92.98 -3.19 89.79 74.00 15.79 peak 150 F 2483.500 53.46 -3.17 50.29 74.00 -23.71 peak 150 P 2483.500 50.54 -3.17 47.37 54.00 -6.63 AVG 150 P 2500.000 41.75 -3.13 38.62 74.00 -35.38 peak 150 P

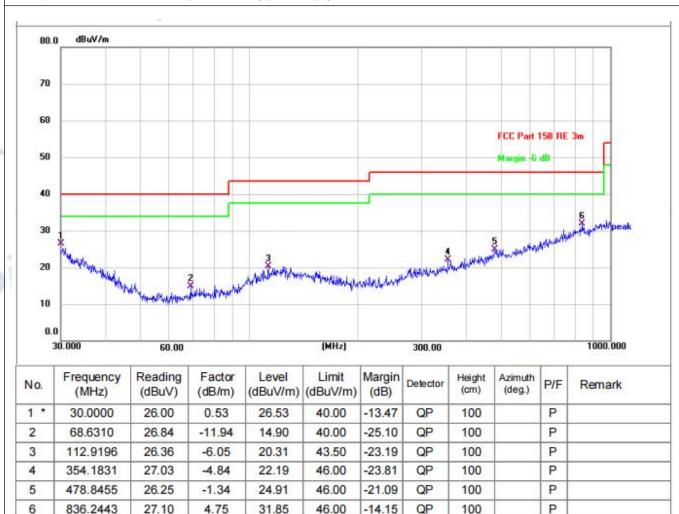
Page 23 of 46 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

Test Requirement:	47 CFR 15.249(a) 47 CFR 15.249(d) 47 CFR 15.249(e)			DAG	
Test Limit:	Except as provided in paragrater from intentional radiators operathe following:				
	Fundamental frequency	Field strength of fundamental (millivolts/meter)	harmon	rength of ics olts/meter)	
	902-928 MHz	50	500	V	
	2400-2483.5 MHz	50	500		
	5725-5875 MHz	50	500		
	24.0-24.25 GHz	250	2500		
	Emissions radiated outside of shall be attenuated by at lea general radiated emission lin	st 50 dB below the level of	of the fun	damental or to the	
	Frequency (MHz)	Field strength (microvolts/meter)		Measurement distance (meters)	
	0.009-0.490	2400/F(kHz)		300	
	0.490-1.705	,			
	1.705-30.0	30		30	
	30-88	100 **		3	
200	88-216	3			
	216-960	200 **		3	
	Above 960	500		3	
	** Except as provided in para radiators operating under thi 54-72 MHz, 76-88 MHz, 174 these frequency bands is pe and 15.241. In the emission table above, The emission limits shown in	s section shall not be locally and the section shall not be locally arrithed under other section the tighter limit applies and the above table are based.	ated in th dz. Howe ons of this t the ban	e frequency bands ver, operation within s part, e.g., §§ 15.2 d edges.	
	110–490 kHz and above 100 are based on measurements As shown in § 15.35(b), for f paragraphs (a)and (b)of this peak field strength of any en average limits specified above modulation. For point-to-poir peak field strength shall not a second control of the strength of the strength shall not be seen to be seen the strength of the stre	s employing an average of frequencies above 1000 N section are based on avenission shall not exceed to the by more than 20 dB urns operation under paragr	on limits i letector. MHz, the erage limi he maxin nder any aph (b)of	n these three bands field strength limits its. However, the num permitted condition of this section, the	
Test Method:	110–490 kHz and above 100 are based on measurements As shown in § 15.35(b), for f paragraphs (a)and (b)of this peak field strength of any en average limits specified above modulation. For point-to-point peak field strength shall not antenna azimuth.	00 MHz. Radiated emissions employing an average of requencies above 1000 M section are based on average of the section are based on average of the section shall not exceed the by more than 20 dB urant operation under paragrexceed 2500 millivolts/metases	on limits i letector. MHz, the erage limi he maxin nder any aph (b)of	n these three bands field strength limits its. However, the num permitted condition of this section, the	
Test Method: Procedure:	110–490 kHz and above 100 are based on measurements As shown in § 15.35(b), for f paragraphs (a)and (b)of this peak field strength of any en average limits specified above modulation. For point-to-poir peak field strength shall not a second control of the strength of the strength shall not be seen to be seen the strength of the stre	00 MHz. Radiated emissions employing an average of requencies above 1000 M section are based on average of the section are based on average of the section shall not exceed the by more than 20 dB urant operation under paragrexceed 2500 millivolts/methods.	on limits i letector. MHz, the erage limi he maxin nder any aph (b)of	n these three bands field strength limits its. However, the num permitted condition of this section, the	

Operating Environment	Operating Environment:								
Temperature:	22.6 °C		Humidity:	51 %	Atmospheric Pressure:	102 kPa			
Pretest mode:	6	TM1,	TM2, TM3		_				

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 24 of 46



Final test mode: TM1, TM2, TM3

4.5.2 Test Data:

TM1 / Polarization: Horizontal / Band: 2.4G / BW: 1 / CH: L

DAG

3

4

5

6 *

204.9551

431.0316

607.7867

955.4381

28.02

27,49

28.18

26.83

-8.78

-2.40

0.49

6.56

19.24

25.09

28.67

33.39

TM1 / Polarization: Vertical / Band: 2.4G / BW: 1 / CH: L dBuV/m 80.0 70 60 FCC Part 158 RE 3m 50 40 30 20 10 0.0 1000.000 30.000 60.00 (MHz) 300.00 Frequency Reading Factor Level Limit Margin Height Azimuth Detector No. P/F Remark (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) (cm) (deg.) 30.1054 25.78 26.24 0.46 40.00 -13.76QP 100 P 1 26.75 -22.35 P 2 119.8556 -5.6021.15 43.50 QP 100

43.50

46.00

46.00

46.00

-24.26

-20.91

-17.33

-12.61

QP

QP

QP

QP

100

100

100

100

P

P

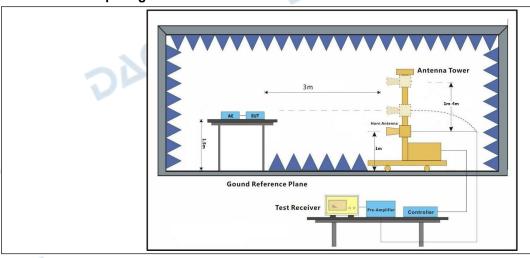
P

P

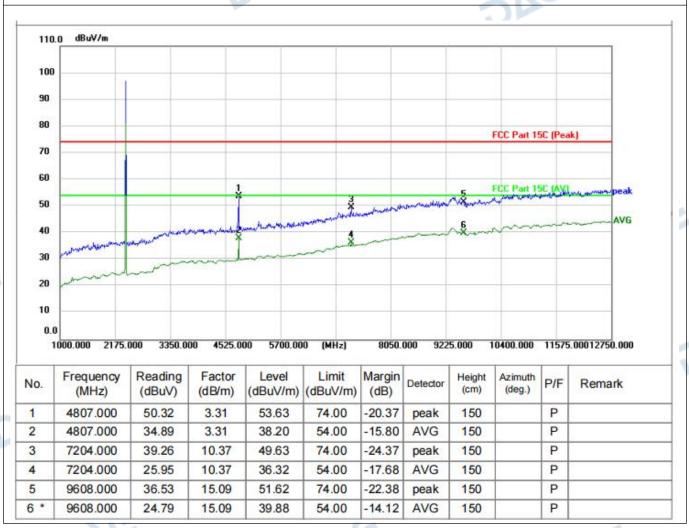
Test Requirement:	47 CFR 15.249(a) 47 CFR 15.249(d) 47 CFR 15.249(e)			DIG				
Test Limit:	Except as provided in paragetrom intentional radiators of the following:							
	Fundamental frequency	fundamental harmonics (millivolts/meter) (microvolts/						
	902-928 MHz	50	500	U				
	2400-2483.5 MHz	50	500					
	5725-5875 MHz	50	500					
	24.0-24.25 GHz	250	2500					
	general radiated emission li Frequency (MHz)	Field strength (microvolts/meter)	ever is the l	Measurement distance				
	0.009-0.490	2400/F(kHz)	00	(meters)				
	0.490-1.705	2400/F(kHz)	Jr.	30				
	1.705-30.0	30		30				
	30-88	100 **		3				
	88-216	150 **		3				
	216-960	200 **		3				
	Above 960	500		3				
	** Except as provided in paradiators operating under the 54-72 MHz, 76-88 MHz, 17 these frequency bands is paradiators operation the emission table above. The emission limits shown employing a CISPR quasi-paragraph (a) and above 10 are based on measurement As shown in § 15.35(b), for paragraphs (a) and (b) of this peak field strength of any eaverage limits specified abomodulation. For point-to-popeak field strength shall not	his section shall not be locally a section shall not be locally as the tighter limit applies in the above table are based detector except for 00 MHz. Radiated emiss as employing an average frequencies above 1000 is section are based on a mission shall not exceed the properties of the properties of the properties and the properties above by more than 20 dB int operation under parage.	at the ban at the ban ased on me the frequer sion limits it detector. MHz, the verage lim the maxin under any graph (b)of	ne frequency bands over, operation within a part, e.g., §§ 15.23 d edges. The easurements of the easurements of the easurement of the easurement of the easurement of the easurement of this section, the				
XC	antenna azimuth.			-				
Test Method:	ANSI C63.10-2013 section		_ >	C				
Procedure:	ANSI C63.10-2013 section	6.6						

4.6.1 E.U.T. Operation:

Operating Envir	onment:				
Temperature:	22.6 °C	Humidity:	51 %	Atmospheric Pressure:	102 kPa


102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 27 of 46


Pretest mode:	TM1, TM2, TM3	6
Final test mode:	TM1, TM2, TM3	- 16

4.6.2 Test Setup Diagram:

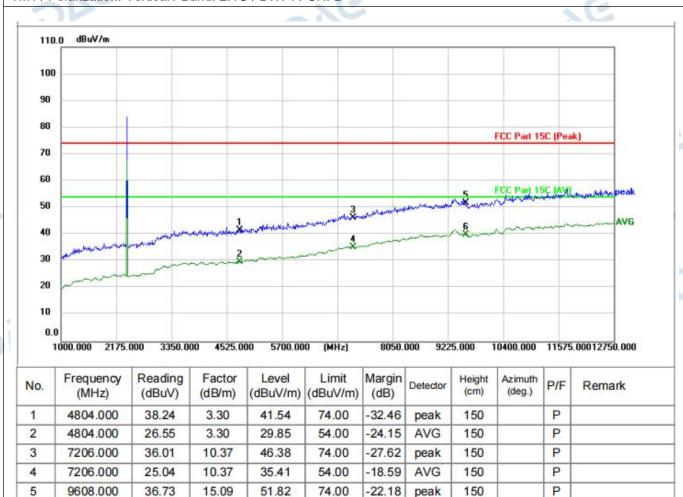
4.6.3 Test Data:

TM1 / Polarization: Horizontal / Band: 2.4G / BW: 1 / CH: L

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 28 of 46

6 *

9608.000


24.83

15.09

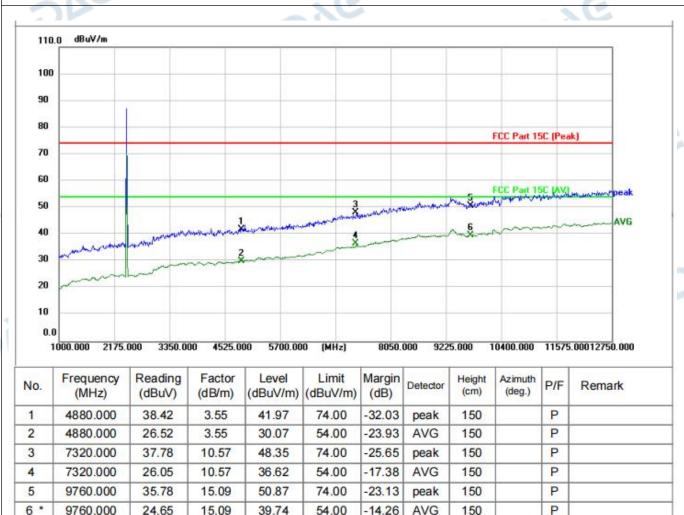
39.92

Report No.: DACE250407028RL002

TM1 / Polarization: Vertical / Band: 2.4G / BW: 1 / CH: L

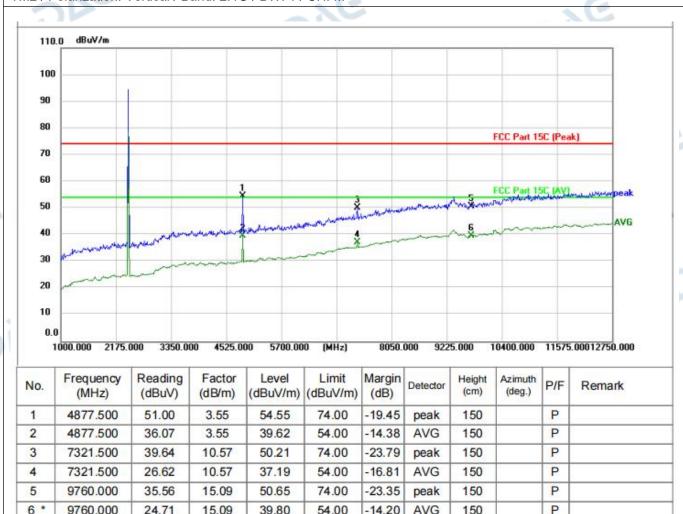
54.00

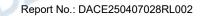
-14.08

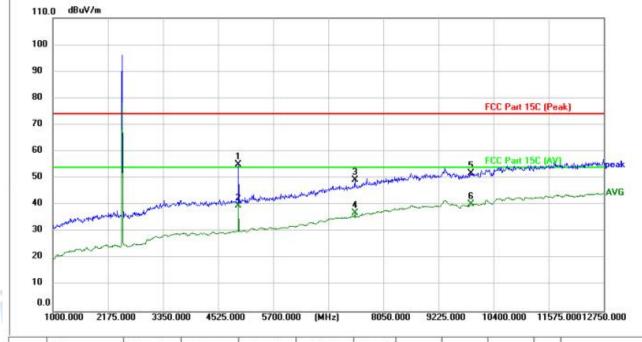

AVG

150

P




TM2 / Polarization: Horizontal / Band: 2.4G / BW: 1 / CH: M


TM2 / Polarization: Vertical / Band: 2.4G / BW: 1 / CH: M

TM3 / Polarization: Horizontal / Band: 2.4G / BW: 1 / CH: H

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4959.750	51.20	3.83	55.03	74.00	-18.97	peak	150		Р	
2	4959.750	35.94	3.83	39.77	54.00	-14.23	AVG	150		Р	
3	7439.000	38.66	10.78	49.44	74.00	-24.56	peak	150		Р	
4	7439.000	26.25	10.78	37.03	54.00	-16.97	AVG	150		Р	
5	9920.000	36.70	15.08	51.78	74.00	-22.22	peak	150		Р	
6 *	9920.000	25.17	15.08	40.25	54.00	-13.75	AVG	150		Р	

5

6

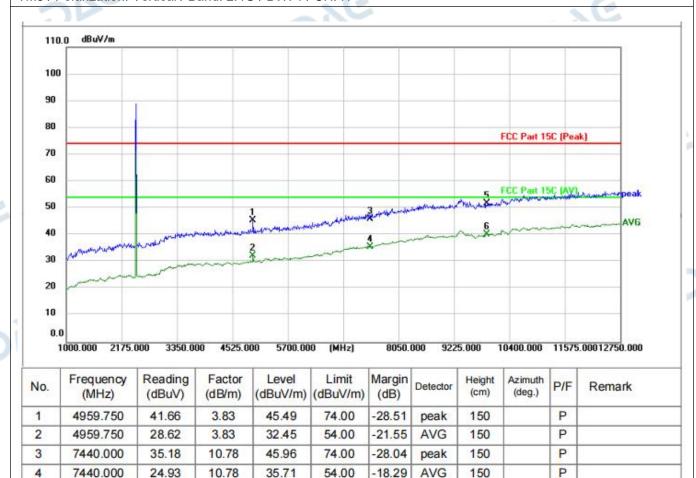
9920.000

9920.000

36.76

25.19

15.08


15.08

51.84

40.27

Report No.: DACE250407028RL002

TM3 / Polarization: Vertical / Band: 2.4G / BW: 1 / CH: H

74.00

54.00

-22.16

-13.73

peak

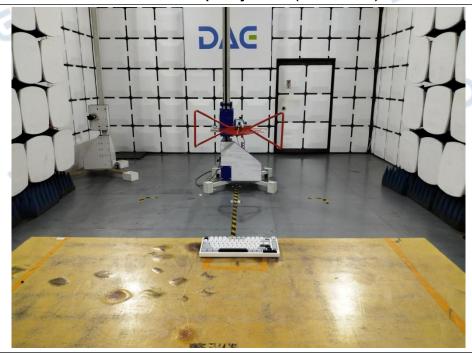
AVG

150

150

P

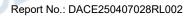
P



5 TEST SETUP PHOTOS

Conducted Emission at AC power line

Emissions in frequency bands (below 1GHz)

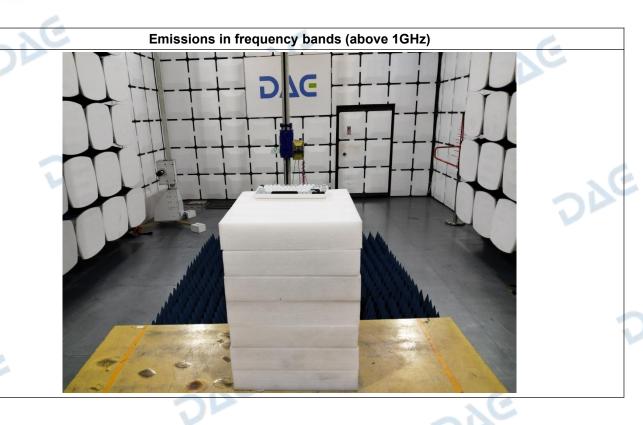

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 34 of 46



DAG

DAG

DAG

DAG

PHOTOS OF THE EUT

V1.0

Page 36 of 46 Tel: +86-755-23010613 Web: http://www.dace-lab.com E-mail: service@dace-lab.com

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 37 of 46

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

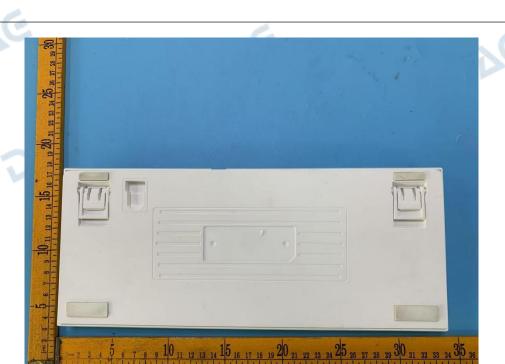
Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 38 of 46

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China


Web: http://www.dace-lab.com

Tel: +86-755-23010613

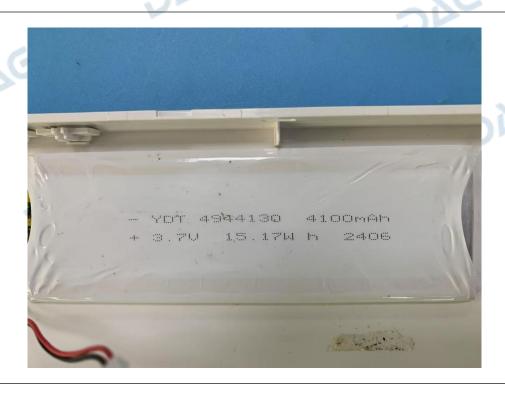
E-mail: service@dace-lab.com

Page 39 of 46

Report No.: DACE250407028RL002

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com


Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 40 of 46

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 41 of 46

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 42 of 46

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 43 of 46

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 44 of 46

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 45 of 46

****************** End of Report ***************

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com
Tel: +86-755-23010613
E-mail: service@dace-lab.com
Page 46 of 46