

TE Connectivity / ADC Telecommunications Prism HDM 800 MHz/1900 MHz SISO RF Module FCC 24E:2014

Report #: TECO0013.2

Report Prepared By Northwest EMC Inc.

NORTHWEST EMC – (888) 364-2378 – www.nwemc.com

California – Minnesota – Oregon – New York – Washington

CERTIFICATE OF TEST

Last Date of Test: April 16, 2014
TE Connectivity / ADC Telecommunications
Model: Prism HDM 800 MHz/1900 MHz SISO RF Module

Emissions

Test Description	Specification	Test Method	Pass/Fail
Output Power	FCC 24E:2013, FCC 2.1046:2013	ANSI/TIA/EIA-603-C-2004	Pass
Band Edge Compliance	FCC 24E:2013, FCC 2.1051:2013	ANSI/TIA/EIA-603-C-2004	Pass
Out of Band Emissions -Conducted	FCC 24E:2013, FCC 2.1051:2013	ANSI/TIA/EIA-603-C-2004	Pass
Intermodulation	FCC 24E:2013, FCC 2.1051:2013	ANSI/TIA/EIA-603-C-2004	Pass
Frequency Stability	FCC 24E:2013, FCC 2.1055:2013	ANSI/TIA/EIA-603-C-2004	Pass
Occupied Bandwidth	FCC 24E:2013, FCC 2.1049:2013	ANSI/TIA/EIA-603-C-2004	Pass
Field Strength of Spurious Emissions	FCC 24E:2013, FCC 2.1053:2013	ANSI/TIA/EIA-603-C-2004	Pass
Peak to Average Ratio	FCC 24E:2013, FCC 2.1046:2013	ANSI/TIA/EIA-603-C-2004	Pass

Deviations From Test Standards

None

Approved By:

Tim O'Shea, Operations Manager

NVLAP

NVLAP Lab Code: 200881-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

REVISION HISTORY

Revision Number	Description	Date	Page Number
00	None		

Barometric Pressure

The recorded barometric pressure has been normalized to sea level.

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC Guide 65 as a product certifier. This allows Northwest EMC to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

IC - Recognized by Industry Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with IC.

European Union

European Commission – Validated by the European Commission as a Conformity Assessment Body (CAB) under the EMC directive and as a Notified Body under the R&TTE Directive.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

KCC / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Hong Kong

OFTA - Recognized by OFTA as a CAB for the acceptance of test data.

Vietnam

MIC - Recognized by MIC as a CAB for the acceptance of test data.

Russia

GOST – Accredited by Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC to perform EMC and Hygienic testing for Information Technology products to GOST standards.

SCOPE

For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/accreditations/

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

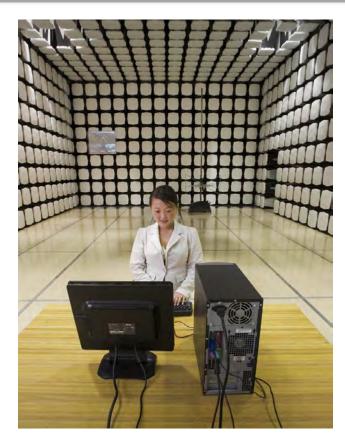
When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) for each test is listed below. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-1 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	- MU
Frequency Accuracy (Hz)	0.12	-0.01
Amplitude Accuracy (dB)	0.49	-0.49
Conducted Power (dB)	0.41	-0.41
Radiated Power via Substitution (dB)	0.69	-0.68
Temperature (degrees C)	0.81	-0.81
Humidity (% RH)	2.89	-2.89
Field Strength (dB)	3.80	-3.80
AC Powerline Conducted Emissions (dB)	2.94	-2.94

FACILITIES



Oregon Labs EV01-12 22975 NW Evergreen Pkwy Hillsboro, OR 97124 (503) 844-4066	California Labs OC01-13 41 Tesla Irvine, CA 92618 (949) 861-8918	New York Labs NY01-04 4939 Jordan Rd. Elbridge, NY 13060 (315) 685-0796	Minnesota Labs MN01-08 9349 W Broadway Ave. Brooklyn Park, MN 55445 (763) 425-2281	Washington Labs NC01-05,SU02,SU07 19201 120 th Ave. NE Bothell, WA 98011 (425) 984-6600	
		VCCI			
A-0108	A-0029		A-0109	A-0110	
	Industry Canada				
2834D-1, 2834D-2	2834B-1, 2834B-2, 2834B-3		2834E-1	2834F-1	
NVLAP					
NVLAP Lab Code: 200630-0	NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200629-0	

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	TE Connectivity / ADC Telecommunications	
Address:	1187 Park Place	
City, State, Zip:	Shakopee, MN 55379	
Test Requested By:	Joshua Wittman	
Model:	Prism HDM 800 MHz/1900 MHz SISO RF Module	
First Date of Test:	April 09, 2014	
Last Date of Test:	April 16, 2014	
Receipt Date of Samples:	: April 09, 2014	
Equipment Design Stage:	Production	
Equipment Condition:	No Damage	

Information Provided by the Party Requesting the Test

Functional Description of the EUT (Equipment Under Test):

Prism HDM 800 MHz/1900 MHz SISO RF Module. The Prism HDM is an industrial signal booster which is used to enhance wireless networks in outdoor locations and large venues.

Testing Objective:	
To demonstrate compliance to ECC Part 24	

CONFIGURATIONS

Configuration TECO0013-1

EUT				
Description	Model/Part Number	Serial Number		
Prism HDM 800 MHz/1900 MHz SISO RF Module	TE Connectivity / ADC Telecommunications	FWP- 441T841MOD	None	

Peripherals in test setup boundary			
Description	Manufacturer	Model/Part Number	Serial Number
RF Signal Generator	Aeroflex	IFR 3413	341006/252
Power Supply	Mean Well	SE-600-48	EB11101765
IO Control Device	TE Connectivity / ADC Telecommunications	SVT-GU-1011	None
30 dB attenuator	Aeroflex	57-30-43	RA434
RF Signal Generator	Aeroflex	IFR 3413	341006/056
30 dB attenuator	Aeroflex	86-30-12 DC -22 GHz	369
Laptop	Lenovo	T500	L3-AFD7K 09/04
Laptop Supply	Lenovo	42T4418	11S42T4418Z1ZGWG19659N

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
AC Power	No	> 3m	No	Prism HDM 800 MHz/1900 MHz SISO RF Module	AC Mains
Fiber	No	> 3m	No	Prism HDM 800 MHz/1900 MHz SISO RF Module	IO Control Device
RF	Yes	0.8m	No	Prism HDM 800 MHz/1900 MHz SISO RF Module	30 dB attenuator
RF	Yes	1.8m	No	IO Control Device	RF Signal Generator
AC Power x2	No	1.8m	No	RF Signal Generator	AC Mains
AC Power	No	1.8m	No	Power Supply	AC Mains
DC Power	No	2.8m	Yes	IO Control Device	Power Supply
AC Power	No	1.8m	No	Laptop Supply	AC Mains
DC Power	No	1.8m	Yes	Laptop	Laptop Supply
Ethernet	No	1.5m	No	Laptop	IO Control Device
RF	Yes	0.8m	No	Prism HDM 800 MHz/1900 MHz SISO RF Module	30 dB attenuator
RF	Yes	0.9m	No	IO Control Device	RF Signal Generator
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

CONFIGURATIONS

Configuration TECO0013-2

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Prism HDM 800 MHz/1900 MHz SISO RF Module	TE Connectivity / ADC Telecommunications	FWP-441T841MOD	None

Peripherals in test setup boundary			
Description	Manufacturer	Model/Part Number	Serial Number
30 dB attenuator	Aeroflex	57-30-43	NL616
30 dB attenuator	Aeroflex	57-30-43	RA434

Remote Equipment Outside of Test Setup Boundary				
Description	Manufacturer	Model/Part Number	Serial Number	
RF Signal Generator	Aeroflex	IFR 3413	341006/252	
Power Supply	Mean Well	SE-600-48	EB11101765	
IO Control Device	TE Connectivity / ADC Telecommunications	SVT-GU-1011	None	
RF Signal Generator	Aeroflex	IFR 3413	341006/056	
Laptop	Lenovo	T500	L3-AFD7K 09/04	
Laptop Supply	Lenovo	42T4418	11S42T4418Z1ZGWG19659N	

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
AC Power	No	> 3m	No	Prism HDM 800 MHz/1900 MHz SISO RF Module	AC Mains
Fiber	No	> 3m	No	Prism HDM 800 MHz/1900 MHz SISO RF Module	IO Control Device
RF	Yes	0.8m	No	Prism HDM 800 MHz/1900 MHz SISO RF Module	30 dB attenuator
RF	Yes	1.8m	No	IO Control Device	RF Signal Generator
AC Power x2	No	1.8m	No	RF Signal Generator	AC Mains
AC Power	No	1.8m	No	Power Supply	AC Mains
DC Power	No	2.8m	Yes	IO Control Device	Power Supply
AC Power	No	1.8m	No	Laptop Supply	AC Mains
DC Power	No	1.8m	Yes	Laptop	Laptop Supply
Ethernet	No	1.5m	No	Laptop	IO Control Device
RF	Yes	0.8m	No	Prism HDM 800 MHz/1900 MHz SISO RF Module	30 dB attenuator
RF	Yes	0.9m	No	IO Control Device	RF Signal Generator
Ground	No	1.3m	No	Prism HDM 800 MHz/1900 MHz SISO RF Module	Ground
PA =	Cable is per	manently attache	d to the dev	vice. Shielding and/or presence of ferrite may	y be unknown.

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
		Occupied	Tested as	No EMI suppression	EUT remained at
1	4/9/2014	Bandwidth	delivered to	devices were added or	Northwest EMC
		Danuwium	Test Station.	modified during this test.	following the test.
		Dook to Average	Tested as	No EMI suppression	EUT remained at
2	4/9/2014	Peak to Average Ratio	delivered to	devices were added or	Northwest EMC
		ratio	Test Station.	modified during this test.	following the test.
			Tested as	No EMI suppression	EUT remained at
3	4/9/2014	Output Power	delivered to	devices were added or	Northwest EMC
-			Test Station.	modified during this test.	following the test.
		Band Edge	Tested as	No EMI suppression	EUT remained at
4	4/10/2014	Compliance	delivered to	devices were added or	Northwest EMC
		Compliance	Test Station.	modified during this test.	following the test.
			Tested as	No EMI suppression	EUT remained at
5	4/11/2014	Intermodulation	delivered to	devices were added or	Northwest EMC
-			Test Station.	modified during this test.	following the test.
		Out of Band	Tested as	No EMI suppression	EUT remained at
6	4/11/2014	Emissions-	delivered to	devices were added or	Northwest EMC
		Conducted	Test Station.	modified during this test.	following the test.
		Frequency	Tested as	No EMI suppression	EUT remained at
7	4/14/2014	Stability	delivered to	devices were added or	Northwest EMC
		Otability	Test Station.	modified during this test.	following the test.
		Field Strength of	Tested as	No EMI suppression	Scheduled testing
8	4/16/2014	Spurious	delivered to	devices were added or	was completed.
		Emissions	Test Station.	modified during this test.	was completed.

DUTY CYCLE

TEST DESCRIPTION

The Duty Cycle (x) were measured for each of the EUT operating modes. The measurements were made using a zero span on the spectrum analyzer to see the pulses in the time domain. The transmit power was set to its default maximum. A direct connection was made between the RF output of the EUT and a spectrum analyzer. Attenuation and a DC block were used

The duty cycle was calculated by dividing the transmission pulse duration (T) by the total period of a single on and total off time.

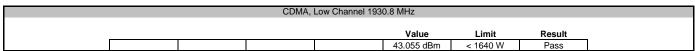
The EUT operates at 100% Duty Cycle.

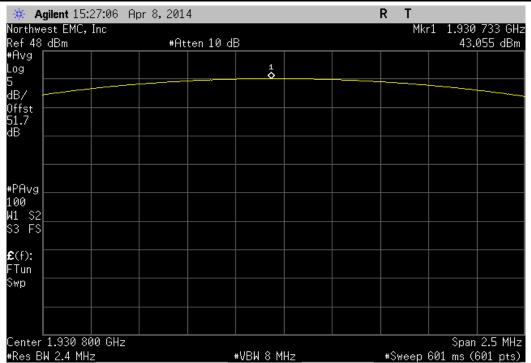
OUTPUT POWER

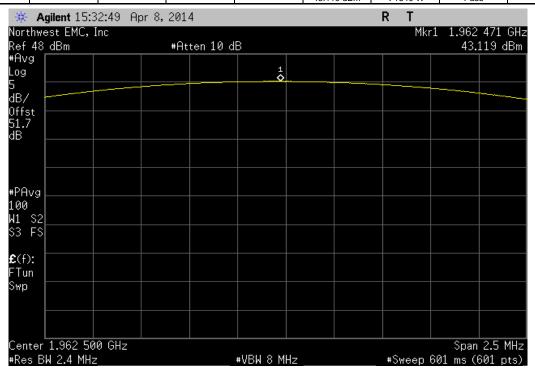
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

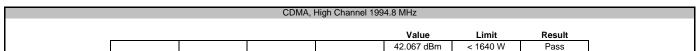
TEST EQUIPMENT

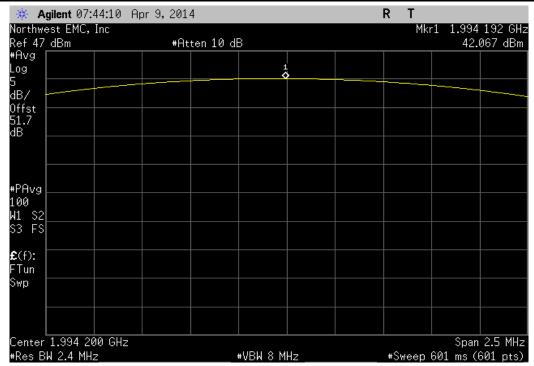
Description	Manufacturer	Model	ID	Last Cal.	Interval
Attenuator - 20db, 'SMA'	SM Electronics	SA26B-20	RFW	4/3/2014	12
40 GHz DC block	Fairview Microwave	SD3379	AMI	9/26/2013	12
Signal Generator MXG	Agilent	N5183A	TIK	6/7/2012	36
Spectrum Analyzer	Agilent	E4440A	AAX	5/15/2012	24


TEST DESCRIPTION

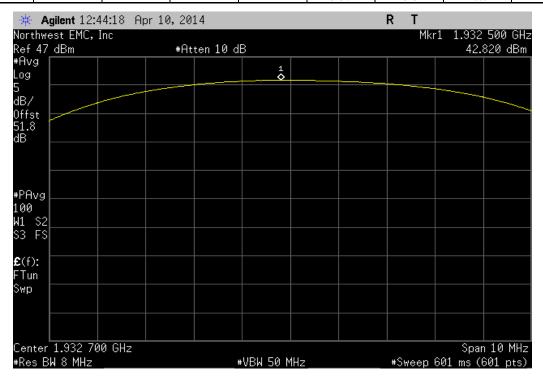

The Average (RMS) output power was measured with the EUT set to the parameters called out in the data sheets. The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. Prior to making the measurements the setup, including cables and attenuators were calibrated and added into the reference level offset.

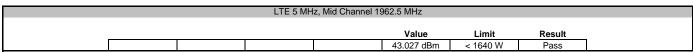

EUT-	Prism HDM 800 MHz/1900 MI	7 SISO DE Modulo					Work Order:	TECO0013	
Serial Number:		2 3130 Ki Module						04/09/14	
	: TE Connectivity / ADC Telec	mmunications					Temperature:		
Attendees							Humidity:		
Project:							Barometric Pres.:		
	: Trevor Buls			Powe	r: 110VAC/60Hz		Job Site:	MN08	
EST SPECIFICAT	TIONS				Test Method				
CC 24E:2014					ANSI/TIA/EIA-603-C-2	2004			
OMMENTS									
ustomer provided	d a high wattage 30 dB attenu	tor that was added into	the referen	ce level offset.					
EVIATIONS FROM	M TEST STANDARD								
	WILESISIANDARD								
lana									
None					0				
None Configuration #	1	Signature	J,	ievo	z Buls				
onfiguration #	1	Signature	J	ievo	z Buls		Value	Limit	Result
onfiguration #	1	Signature	J	wo	z Buls				
Configuration #	1 Low Channel 1930.8 MHz	Signature	J	wo	z Buls		43.055 dBm	< 1640 W	Pass
	Mid Channel 1962.5 MHz	Signature	J	wo	z Buls		43.055 dBm 43.119 dBm	< 1640 W < 1640 W	Pass Pass
Configuration #		Signature	J	wo	z Buls		43.055 dBm	< 1640 W	Pass
onfiguration #	Mid Channel 1962.5 MHz High Channel 1994.8 MHz	Signature	J	wo	z Buls		43.055 dBm 43.119 dBm 42.067 dBm	< 1640 W < 1640 W < 1640 W	Pass Pass Pass
Configuration #	Mid Channel 1962.5 MHz High Channel 1994.8 MHz Low Channel 1932.7 MHz	Signature	J	wo	z Buls		43.055 dBm 43.119 dBm 42.067 dBm 42.820 dBm	< 1640 W < 1640 W < 1640 W	Pass Pass Pass
onfiguration #	Mid Channel 1962.5 MHz High Channel 1994.8 MHz Low Channel 1932.7 MHz Mid Channel 1962.5 MHz	Signature	J	ievo	z Buls		43.055 dBm 43.119 dBm 42.067 dBm 42.820 dBm 43.027 dBm	< 1640 W < 1640 W < 1640 W < 1640 W < 1640 W	Pass Pass Pass Pass Pass
DMA TE 5 MHz	Mid Channel 1962.5 MHz High Channel 1994.8 MHz Low Channel 1932.7 MHz	Signature	J	ievo	z Buls		43.055 dBm 43.119 dBm 42.067 dBm 42.820 dBm	< 1640 W < 1640 W < 1640 W	Pass Pass Pass
DMA TE 5 MHz	Mid Channel 1962.5 MHz High Channel 1994.8 MHz Low Channel 1932.7 MHz Mid Channel 1962.5 MHz	Signature	J	ievo	z Buls		43.055 dBm 43.119 dBm 42.067 dBm 42.820 dBm 43.027 dBm	< 1640 W < 1640 W < 1640 W < 1640 W < 1640 W	Pass Pass Pass Pass Pass
Configuration #	Mid Channel 1962.5 MHz High Channel 1994.8 MHz Low Channel 1932.7 MHz Mid Channel 1962.5 MHz High Channel 1992.4 MHz	Signature	J	revo	z Buls		43.055 dBm 43.119 dBm 42.067 dBm 42.820 dBm 43.027 dBm 42.418 dBm	< 1640 W < 1640 W < 1640 W < 1640 W < 1640 W < 1640 W	Pass Pass Pass Pass Pass Pass

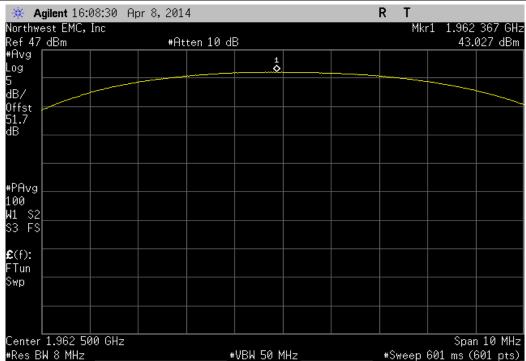




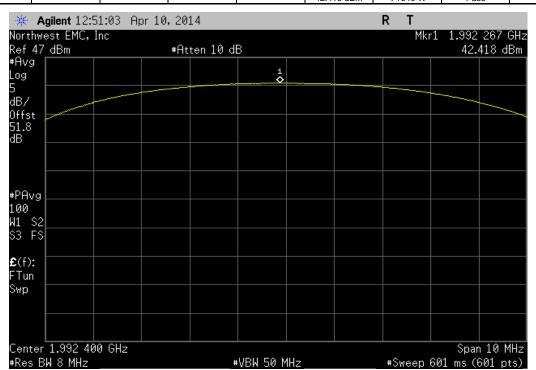
		CDMA,	Mid Channel 1962	2.5 MHz		
				Value	Limit	
				43 119 dBm	< 1640 W	Pass

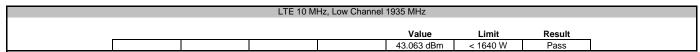


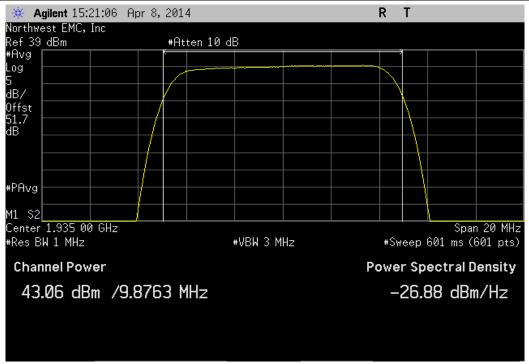




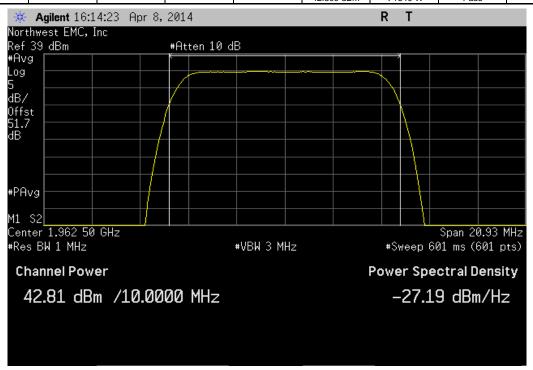
	LTE 5 MH	z, Low Channel 1	932.7 MHz		
			Value	Limit	Result
			42.820 dBm	< 1640 W	Pass

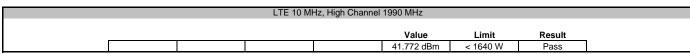


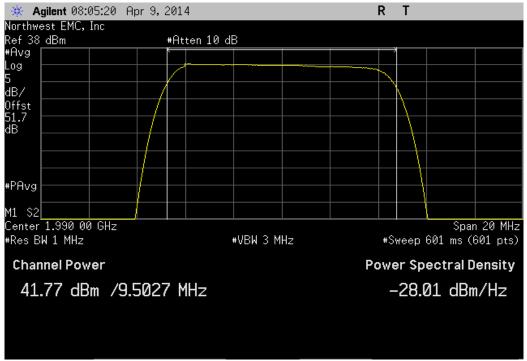




		LTE 5 MH:	z, High Channel 1	992.4 MHz		
Value Limit Result				Value	Limit	
				42 418 dBm	< 1640 W	Pass







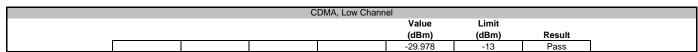
		LTE 10 MF	Hz, Mid Channel 1	962.5 MHz		
				Value	Limit	Result
				42.809 dBm	< 1640 W	Pass

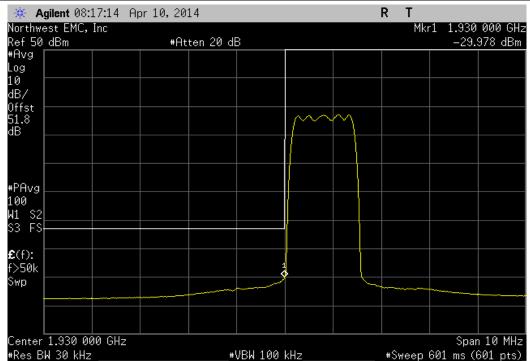
OUTPUT POWER

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

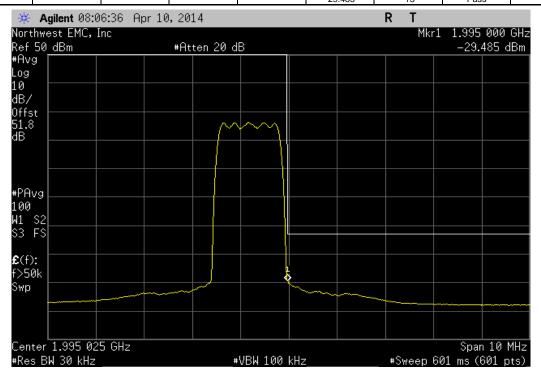
TEST EQUIPMENT

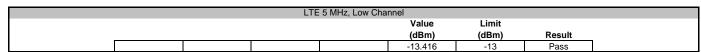
Description	Manufacturer	Model	ID	Last Cal.	Interval
Attenuator - 20db, 'SMA'	SM Electronics	SA26B-20	RFW	4/3/2014	12
40 GHz DC block	Fairview Microwave	SD3379	AMI	9/26/2013	12
Signal Generator MXG	Agilent	N5183A	TIK	6/7/2012	36
Spectrum Analyzer	Agilent	E4440A	AAX	5/15/2012	24

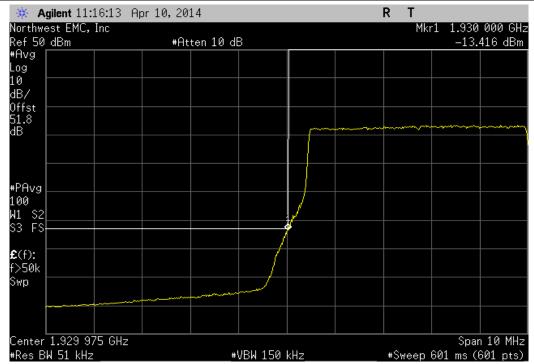

TEST DESCRIPTION

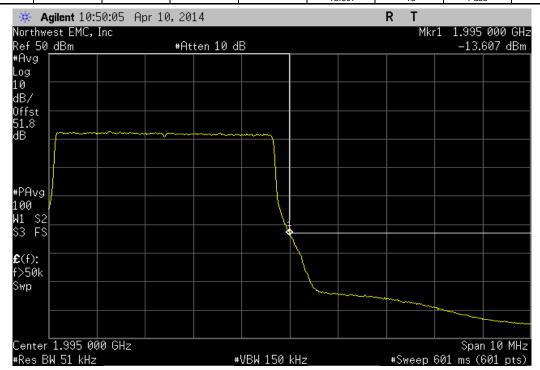

The spurious RF conducted emissions at the edges of the authorized bands were measured with the EUT set to low and high transmit frequencies in the available band. The channels closest to the band edges were selected. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at the data rate(s) listed in the datasheet.

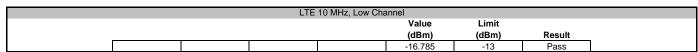
The spectrum was scanned below the lower band edge and above the higher band edge. The resolution bandwidth was set to approximately 1% of the measured emissions bandwidth. An average RMS detector was used to match the method used during Output Power. The screen capture shows the margin between the measured value and the -13 dBm limit at the band edge.

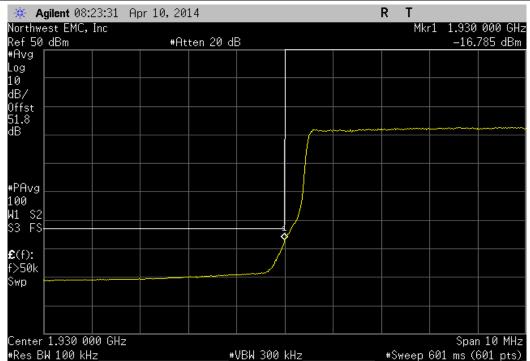



	Prism HDM 800 MHz/1900	MHz SISO RF Module			Work Order:		
Serial Number:						04/10/14	
Customer:	TE Connectivity / ADC Te	elecommunications			Temperature:	26.5°C	
Attendees:	None				Humidity:	21%	
Project:	None				Barometric Pres.:	1011.8	
Tested by:	Trevor Buls		Power:	110VAC/60Hz	Job Site:	MN08	
TEST SPECIFICAT	IONS			Test Method			
FCC 24E:2014				ANSI/TIA/EIA-603-C-2004			
COMMENTS							
Customer provided	d a high wattage 30 dB atte	enuator that was added into the refere	ence level offset.				
	5 5						
DEVIATIONS FROM	// TEST STANDARD						
None							
Configuration #	1	Signature	Trev	or Buls			
					Value	Limit	
					(dBm)	(dBm)	Result
CDMA							
	Low Channel				-29.978	-13	Pass
	High Channel				-29.485	-13	Pass
LTE 5 MHz							
	Low Channel				-13.416	-13	Pass
	High Channel				-13.607	-13	Pass
LTE 10 MHz							
	Low Channel				-16.785	-13	Pass
	High Channel				-18.474	-13	Pass




	С	DMA, High Channel				
			Value	Limit		
			(dBm)	(dBm)	Result	
			-29 485	-13	Pass	1





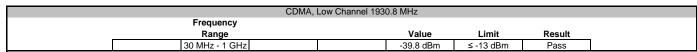

	LTE	5 MHz, High Chan	nel		
			Value	Limit	
			(dBm)	(dBm)	Result
			-13.607	-13	Pass

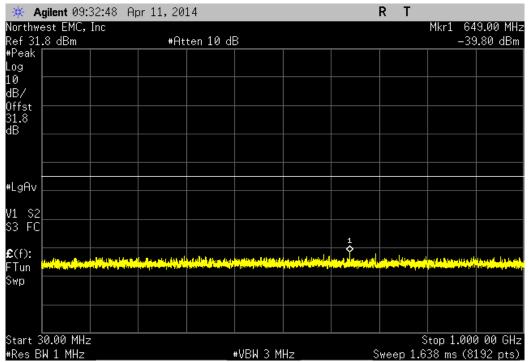
	LTE	10 MHz, High Cha	nnel		
			Value	Limit	
			(dBm)	(dBm)	Result
			-18 474	-13	Pass

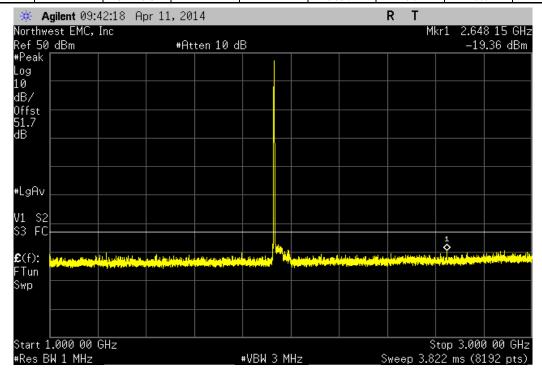
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

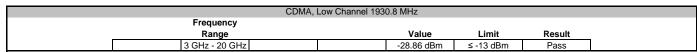
TEST EQUIPMENT

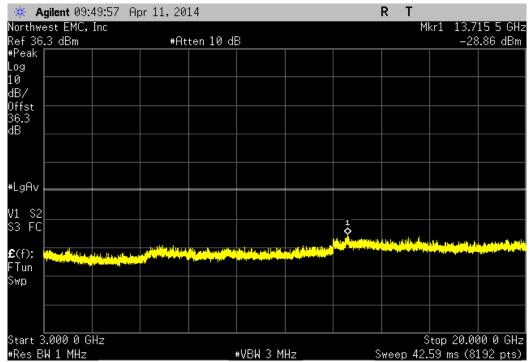
Description	Manufacturer	Model	ID	Last Cal.	Interval
Low Pass Filter 0-1000 MHz	Micro-Tronics	LPM50004	HGV	10/5/2012	24
High Pass Filter 2.8 GHz	Micro-Tronics	HPM50111	HGY	10/5/2012	24
Attenuator - 20db, 'SMA'	SM Electronics	SA26B-20	RFW	4/3/2014	12
40 GHz DC block	Fairview Microwave	SD3379	AMI	9/26/2013	12
Signal Generator MXG	Agilent	N5183A	TIK	6/7/2012	36
Spectrum Analyzer	Agilent	E4440A	AAX	5/15/2012	24


TEST DESCRIPTION

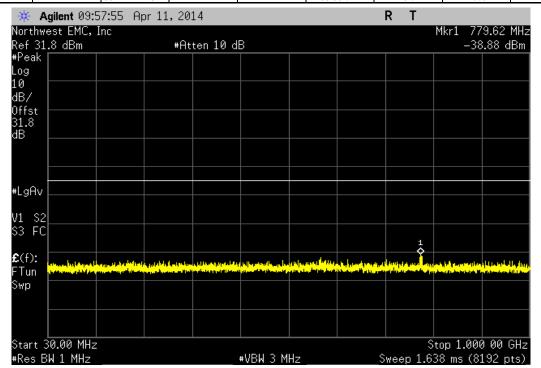

The antenna port spurious emissions were measured at the RF output terminal of the EUT with external attenuation on the RF input of the spectrum analyzer. Analyzer plots utilizing a 1 MHz resolution bandwidth and no video filtering were made for each modulation type from 30 MHz to 9 GHz. The peak conducted power of spurious emissions, up to the 10th harmonic of the transmit frequency, were investigated to ensure they were less than or equal to -13 dBm.

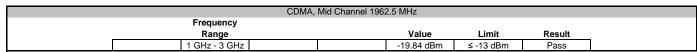

CHT.	Prism HDM 800 MHz/1900 MHz SISO RF	Modulo	Work Order:	TEC00012	
Serial Number:		Wodule		04/11/14	
		Name .			
	TE Connectivity / ADC Telecommunicati	lions	Temperature:		
Attendees:			Humidity:		
Project:		- [Barometric Pres.:		
	Trevor Buls	Power: 110VAC/60Hz	Job Site:	MN08	
EST SPECIFICATI	ONS	Test Method			
CC 24E:2014		ANSI/TIA/EIA-603-C-2004			
OMMENTS					
ustomer provided	l a high wattage 30 dB attenuator that wa	as added into the reference level offset.			
EVIATIONS FROM	// TEST STANDARD				
one					
onfiguration #	1	Signature Trevor Buls			
	1 :	Signature Signature			
		Frequency			
		Range	Value	Limit	Result
DMA					
	Low Channel 1930.8 MHz	30 MHz - 1 GHz	-39.8 dBm	≤ -13 dBm	Pass
	Low Channel 1930.8 MHz	1 GHz - 3 GHz	-19.36 dBm	≤ -13 dBm	Pass
	Low Channel 1930.8 MHz	3 GHz - 20 GHz	-28.86 dBm	≤ -13 dBm	Pass
	Mid Channel 1962.5 MHz	30 MHz - 1 GHz	-38.88 dBm	≤ -13 dBm	Pass
	Mid Channel 1962.5 MHz	1 GHz - 3 GHz	-19.84 dBm	≤ -13 dBm	Pass
	Mid Channel 1962.5 MHz	3 GHz - 20 GHz	-29.15 dBm	≤ -13 dBm	Pass
	High Channel 1994.2 MHz	30 MHz - 1 GHz	-40.61 dBm	≤ -13 dBm	Pass
	High Channel 1994.2 MHz	1 GHz - 3 GHz	-21.01 dBm	≤ -13 dBm	Pass
	High Channel 1994.2 MHz	3 GHz - 20 GHz	-29.34 dBm	≤ -13 dBm	Pass
ΓE 5 MHz	Tilgit Chariter 1994.2 Wil IZ	3 0112 - 20 0112	-29.54 dbiii	3 - 13 dbill	1 033
I L J WII IZ	Mid Channel 1962 5 MHz	30 MHz - 1 GHz	-40.39 dBm	< -13 dBm	Page
I L J WII IZ	Mid Channel 1962.5 MHz	30 MHz - 1 GHz	-40.39 dBm	≤ -13 dBm	Pass
IL 3 WII IZ	Mid Channel 1962.5 MHz	1 GHz - 3 GHz	-18.53 dBm	≤ -13 dBm	Pass
TE 3 WII IZ	Mid Channel 1962.5 MHz Mid Channel 1962.5 MHz	1 GHz - 3 GHz 3 GHz - 20 GHz	-18.53 dBm -28.83 dBm	≤ -13 dBm ≤ -13 dBm	Pass Pass
TE 3 WHZ	Mid Channel 1962.5 MHz Mid Channel 1962.5 MHz Low Channel 1932.7 MHz	1 GHz - 3 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz	-18.53 dBm -28.83 dBm -40.14 dBm	≤ -13 dBm ≤ -13 dBm ≤ -13 dBm	Pass Pass Pass
I L 3 IVII IZ	Mid Channel 1962.5 MHz Mid Channel 1962.5 MHz Low Channel 1932.7 MHz Low Channel 1932.7 MHz	1 GHz - 3 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz 1 GHz - 3 GHz	-18.53 dBm -28.83 dBm -40.14 dBm -18.76 dBm	≤ -13 dBm ≤ -13 dBm ≤ -13 dBm ≤ -13 dBm	Pass Pass Pass Pass
1	Mid Channel 1962.5 MHz Mid Channel 1962.5 MHz Low Channel 1932.7 MHz Low Channel 1932.7 MHz Low Channel 1932.7 MHz	1 GHz - 3 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz 1 GHz - 3 GHz 3 GHz - 20 GHz	-18.53 dBm -28.83 dBm -40.14 dBm -18.76 dBm -29.14 dBm	≤ -13 dBm ≤ -13 dBm ≤ -13 dBm ≤ -13 dBm ≤ -13 dBm	Pass Pass Pass Pass Pass
1	Mid Channel 1962.5 MHz Mid Channel 1962.5 MHz Low Channel 1932.7 MHz Low Channel 1932.7 MHz Low Channel 1932.7 MHz High Channel 1992.4 MHz	1 GHz - 3 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz 1 GHz - 3 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz	-18.53 dBm -28.83 dBm -40.14 dBm -18.76 dBm -29.14 dBm -40.33 dBm	≤ -13 dBm ≤ -13 dBm ≤ -13 dBm ≤ -13 dBm ≤ -13 dBm ≤ -13 dBm	Pass Pass Pass Pass Pass Pass
L J WII IZ	Mid Channel 1962.5 MHz Mid Channel 1962.5 MHz Low Channel 1932.7 MHz Low Channel 1932.7 MHz Low Channel 1932.7 MHz High Channel 1992.4 MHz High Channel 1992.4 MHz	1 GHz - 3 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz 1 GHz - 3 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz 1 GHz - 3 GHz	-18.53 dBm -28.83 dBm -40.14 dBm -18.76 dBm -29.14 dBm -40.33 dBm -20.35 dBm	≤ -13 dBm ≤ -13 dBm ≤ -13 dBm ≤ -13 dBm ≤ -13 dBm ≤ -13 dBm ≤ -13 dBm	Pass Pass Pass Pass Pass Pass Pass
	Mid Channel 1962.5 MHz Mid Channel 1962.5 MHz Low Channel 1932.7 MHz Low Channel 1932.7 MHz Low Channel 1932.7 MHz High Channel 1992.4 MHz	1 GHz - 3 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz 1 GHz - 3 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz	-18.53 dBm -28.83 dBm -40.14 dBm -18.76 dBm -29.14 dBm -40.33 dBm	≤ -13 dBm ≤ -13 dBm ≤ -13 dBm ≤ -13 dBm ≤ -13 dBm ≤ -13 dBm	Pass Pass Pass Pass Pass Pass
	Mid Channel 1962.5 MHz Mid Channel 1962.5 MHz Low Channel 1932.7 MHz Low Channel 1932.7 MHz Low Channel 1932.7 MHz High Channel 1992.4 MHz High Channel 1992.4 MHz High Channel 1992.4 MHz	1 GHz - 3 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz 1 GHz - 3 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz 1 GHz - 3 GHz 3 GHz - 20 GHz	-18.53 dBm -28.83 dBm -40.14 dBm -18.76 dBm -29.14 dBm -40.33 dBm -20.35 dBm -28.63 dBm	 -13 dBm 	Pass Pass Pass Pass Pass Pass Pass
	Mid Channel 1962.5 MHz Mid Channel 1962.5 MHz Low Channel 1932.7 MHz Low Channel 1932.7 MHz Low Channel 1932.7 MHz High Channel 1992.4 MHz High Channel 1992.4 MHz High Channel 1992.4 MHz Mid Channel 1962.5 MHz	1 GHz - 3 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz 1 GHz - 3 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz 1 GHz - 3 GHz 3 GHz - 20 GHz 30 MHz - 1 GHZ	-18.53 dBm -28.83 dBm -40.14 dBm -18.76 dBm -29.14 dBm -40.33 dBm -20.35 dBm -28.63 dBm	≤ -13 dBm ≤ -13 dBm	Pass Pass Pass Pass Pass Pass Pass Pass
	Mid Channel 1962.5 MHz Mid Channel 1962.5 MHz Low Channel 1932.7 MHz Low Channel 1932.7 MHz Low Channel 1932.7 MHz High Channel 1992.4 MHz High Channel 1992.4 MHz High Channel 1992.4 MHz Mid Channel 1962.5 MHz Mid Channel 1962.5 MHz Mid Channel 1962.5 MHz	1 GHz - 3 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz 1 GHz - 3 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz 1 GHz - 3 GHz 3 GHz - 20 GHz 3 GHz - 3 GHz 1 GHz - 3 GHz	-18.53 dBm -28.83 dBm -40.14 dBm -18.76 dBm -29.14 dBm -40.33 dBm -20.35 dBm -28.63 dBm -39.74 dBm -19.76 dBm	≤ -13 dBm ≤ -13 dBm	Pass Pass Pass Pass Pass Pass Pass Pass
	Mid Channel 1962.5 MHz Mid Channel 1962.5 MHz Low Channel 1932.7 MHz Low Channel 1932.7 MHz Low Channel 1932.7 MHz High Channel 1992.4 MHz High Channel 1992.4 MHz High Channel 1992.4 MHz Mid Channel 1962.5 MHz	1 GHz - 3 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz 1 GHz - 3 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz 1 GHz - 3 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz 1 GHz - 3 GHz 30 HHz - 1 GHz 1 GHz - 20 GHz	-18.53 dBm -28.83 dBm -40.14 dBm -18.76 dBm -29.14 dBm -40.33 dBm -20.35 dBm -28.63 dBm -39.74 dBm -19.76 dBm -29.45 dBm	≤ -13 dBm ≤ -13 dBm	Pass Pass Pass Pass Pass Pass Pass Pass
	Mid Channel 1962.5 MHz Mid Channel 1962.5 MHz Low Channel 1932.7 MHz Low Channel 1932.7 MHz Low Channel 1932.7 MHz High Channel 1992.4 MHz High Channel 1992.4 MHz High Channel 1992.4 MHz Mid Channel 1962.5 MHz Mid Channel 1962.5 MHz Mid Channel 1962.5 MHz Mid Channel 1962.5 MHz Low Channel 1963.5 MHz Low Channel 1963.5 MHz	1 GHz - 3 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz 1 GHz - 3 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz 1 GHz - 3 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz 1 GHz - 3 GHz 3 GHz - 20 GHz	-18.53 dBm -28.83 dBm -40.14 dBm -18.76 dBm -29.14 dBm -40.33 dBm -20.35 dBm -28.63 dBm -39.74 dBm -19.76 dBm -29.45 dBm -39.88 dBm	≤ -13 dBm ≤ -13 dBm	Pass Pass Pass Pass Pass Pass Pass Pass
	Mid Channel 1962.5 MHz Mid Channel 1962.5 MHz Low Channel 1932.7 MHz Low Channel 1932.7 MHz Low Channel 1932.7 MHz High Channel 1992.4 MHz High Channel 1992.4 MHz High Channel 1992.4 MHz High Channel 1992.5 MHz Mid Channel 1962.5 MHz Mid Channel 1962.5 MHz Mid Channel 1962.5 MHz Low Channel 1935 MHz Low Channel 1935 MHz Low Channel 1935 MHz	1 GHz - 3 GHz 3 GHz - 20 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz 1 GHz - 3 GHz 3 GHz - 20 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz 1 GHz - 3 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz 4 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz 1 GHz - 3 GHz 3 GHz - 20 GHz 3 GHz - 20 GHz	-18.53 dBm -28.83 dBm -40.14 dBm -18.76 dBm -29.14 dBm -20.35 dBm -20.35 dBm -39.74 dBm -19.76 dBm -29.45 dBm -39.88 dBm -19.51 dBm	≤ -13 dBm ≤ -13 dBm	Pass Pass Pass Pass Pass Pass Pass Pass
	Mid Channel 1962.5 MHz Mid Channel 1962.5 MHz Low Channel 1932.7 MHz Low Channel 1932.7 MHz Low Channel 1932.7 MHz High Channel 1992.4 MHz High Channel 1992.4 MHz High Channel 1992.4 MHz High Channel 1992.5 MHz Mid Channel 1962.5 MHz Mid Channel 1962.5 MHz Mid Channel 1962.5 MHz Low Channel 1935 MHz Low Channel 1935 MHz Low Channel 1935 MHz	1 GHz - 3 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz 1 GHz - 3 GHz 1 GHz - 3 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz 1 GHz - 3 GHz 3 GHz - 3 GHz 3 GHz - 3 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz 1 GHz - 3 GHz 3 GHz - 20 GHz 1 GHz - 3 GHz 1 GHz - 3 GHz 1 GHz - 3 GHz 3 GHz - 20 GHz 3 GHz - 20 GHz 3 GHz - 20 GHz 1 GHz - 3 GHz 3 GHz - 20 GHz	-18.53 dBm -28.83 dBm -40.14 dBm -18.76 dBm -29.14 dBm -20.35 dBm -28.63 dBm -19.76 dBm -29.45 dBm -39.88 dBm -19.51 dBm -29.24 dBm	≤ -13 dBm ≤ -13 dBm	Pass Pass Pass Pass Pass Pass Pass Pass
	Mid Channel 1962.5 MHz Mid Channel 1962.5 MHz Low Channel 1932.7 MHz Low Channel 1932.7 MHz Low Channel 1932.7 MHz High Channel 1992.4 MHz High Channel 1992.4 MHz High Channel 1992.4 MHz Mid Channel 1962.5 MHz Mid Channel 1962.5 MHz Mid Channel 1962.5 MHz Low Channel 1962.5 MHz Low Channel 1963.5 MHz Low Channel 1935 MHz Low Channel 1935 MHz Low Channel 1935 MHz High Channel 1936 MHz High Channel 1990 MHz	1 GHz - 3 GHz 3 GHz - 20 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz 1 GHz - 3 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz 1 GHz - 3 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz 1 GHz - 3 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz 1 GHz - 3 GHz 3 GHz - 3 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz 4 GHz - 3 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz	-18.53 dBm -28.83 dBm -40.14 dBm -18.76 dBm -29.14 dBm -40.33 dBm -20.35 dBm -28.63 dBm -19.76 dBm -19.76 dBm -39.88 dBm -19.51 dBm -29.45 dBm -29.24 dBm -40.24 dBm	≤ -13 dBm ≤ -13 dBm	Pass Pass Pass Pass Pass Pass Pass Pass
TE 10 MHz	Mid Channel 1962.5 MHz Mid Channel 1962.5 MHz Low Channel 1932.7 MHz Low Channel 1932.7 MHz Low Channel 1932.7 MHz High Channel 1992.4 MHz High Channel 1992.4 MHz High Channel 1992.4 MHz High Channel 1992.5 MHz Mid Channel 1962.5 MHz Mid Channel 1962.5 MHz Mid Channel 1962.5 MHz Low Channel 1935 MHz Low Channel 1935 MHz Low Channel 1935 MHz	1 GHz - 3 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz 1 GHz - 3 GHz 1 GHz - 3 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz 1 GHz - 3 GHz 3 GHz - 3 GHz 3 GHz - 3 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz 1 GHz - 3 GHz 3 GHz - 20 GHz 1 GHz - 3 GHz 1 GHz - 3 GHz 1 GHz - 3 GHz 3 GHz - 20 GHz 3 GHz - 20 GHz 3 GHz - 20 GHz 1 GHz - 3 GHz 3 GHz - 20 GHz	-18.53 dBm -28.83 dBm -40.14 dBm -18.76 dBm -29.14 dBm -20.35 dBm -28.63 dBm -19.76 dBm -29.45 dBm -39.88 dBm -19.51 dBm -29.24 dBm	≤ -13 dBm ≤ -13 dBm	Pass Pass Pass Pass Pass Pass Pass Pass

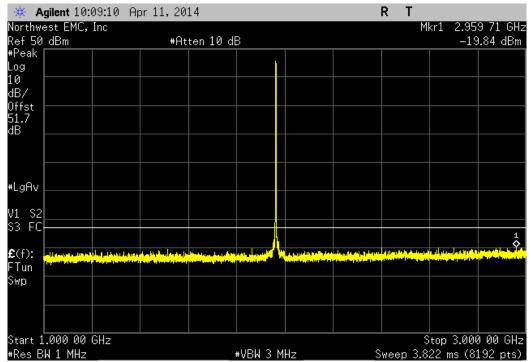




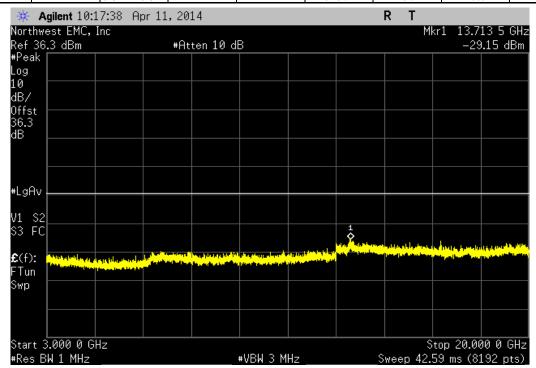
CDMA, L	ow Channel 1930.8 MHz		
Frequency			
Range	Value	Limit	Result
1 GHz - 3 GHz	-19.36 dBm	≤ -13 dBm	Pass

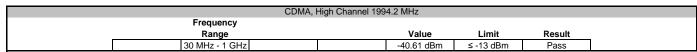


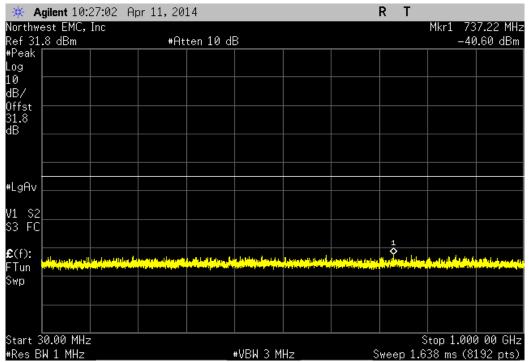




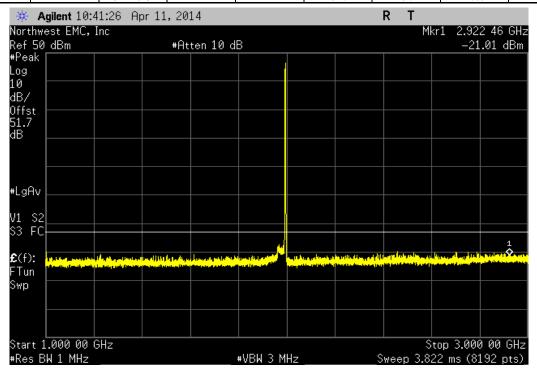
CDMA, Mi	d Channel 1962.5 MHz		
Frequency			
Range	Value	Limit	Result
30 MHz - 1 GHz	-38.88 dBm	≤ -13 dBm	Pass

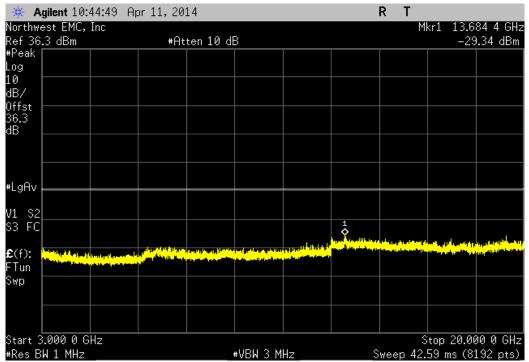


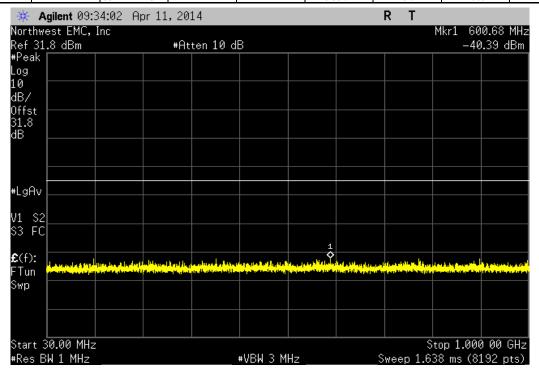


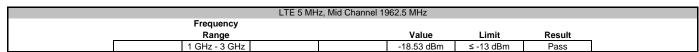


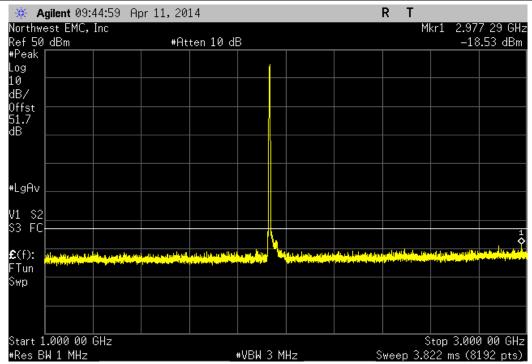
CDMA, Mid	Channel 1962.5 MHz		
Frequency			
Range	Value	Limit	Result
3 GHz - 20 GHz	-29.15 dBm	≤ -13 dBm	Pass



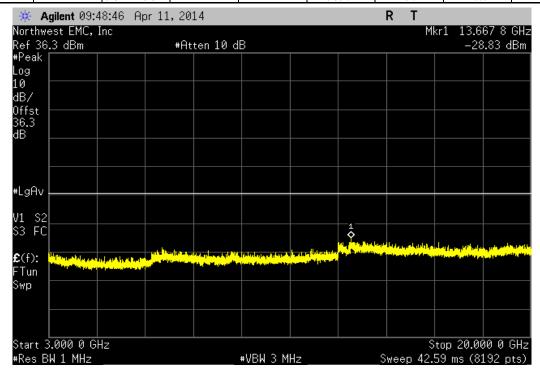


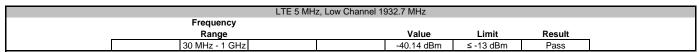

CDMA, High C	hannel 1994.2 MHz		
Frequency			
Range	Value	Limit	Result
1 GHz - 3 GHz	-21.01 dBm	≤ -13 dBm	Pass

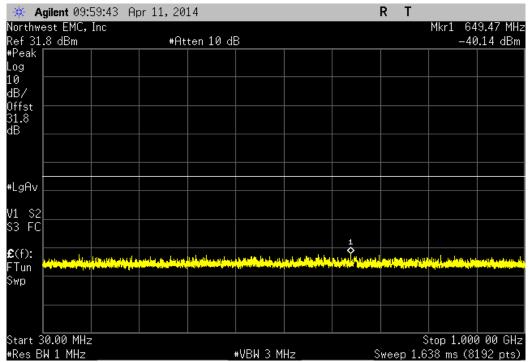




LTE 5 MHz, Mid	Channel 1962.5 MHz		
Frequency			
Range	Value	Limit	Result
30 MHz - 1 GHz	-40.39 dBm	≤ -13 dBm	Pass

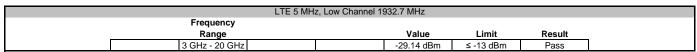


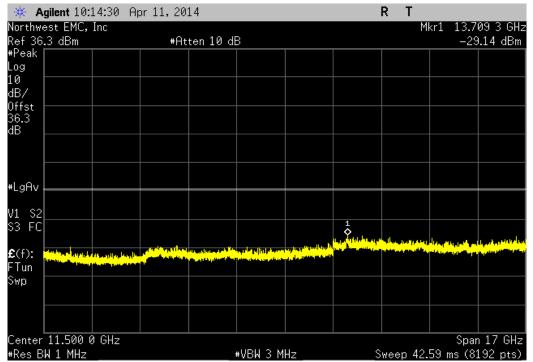




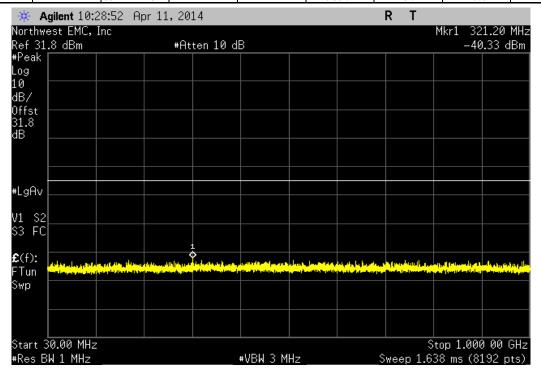
LTE 5 MHz, N	lid Channel 1962.5 MHz		
Frequency			
Range	Value	Limit	Result
3 GHz - 20 GHz	-28.83 dBm	≤ -13 dBm	Pass

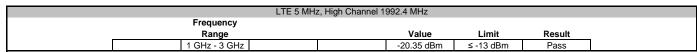


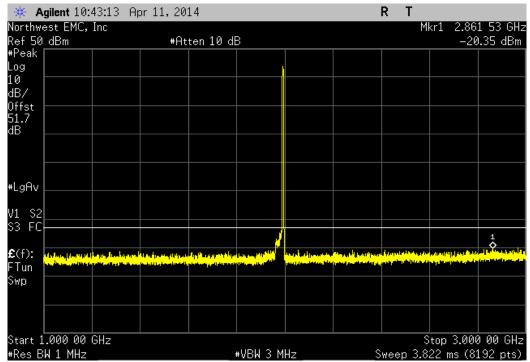




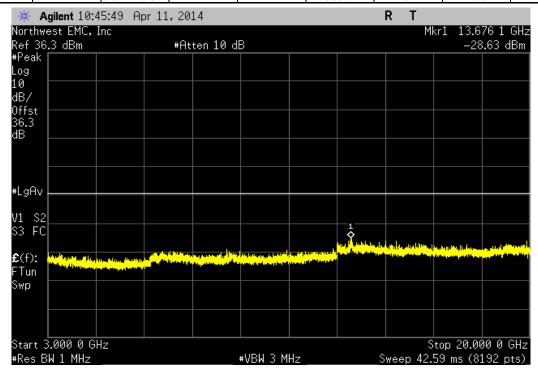
LTE	5 MHz, Low Channel 1932.7 MHz		
Frequency			
Range	Value	Limit	Result
1 GHz - 3 GHz	-18.76 dBm	≤ -13 dBm	Pass

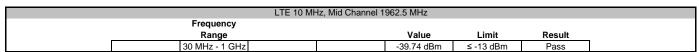


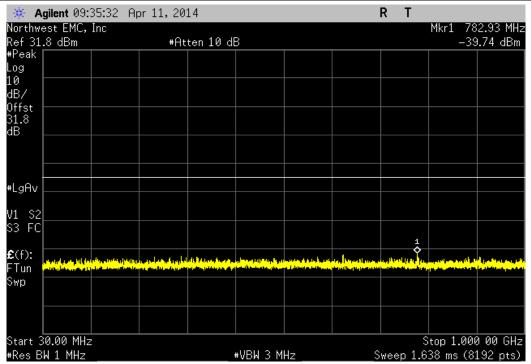




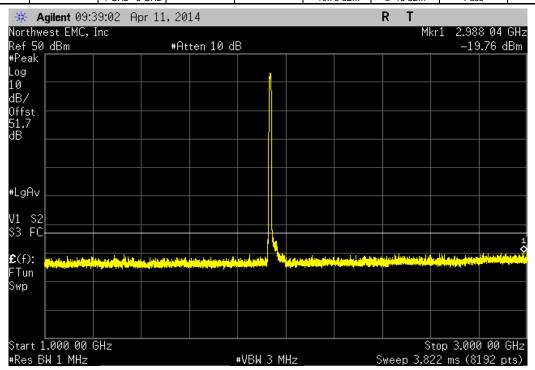
LTE 5 MHz, Hig	h Channel 1992.4 MHz		
Frequency			
Range	Value	Limit	Result
30 MHz - 1 GHz	-40.33 dBm	≤ -13 dBm	Pass

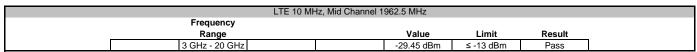


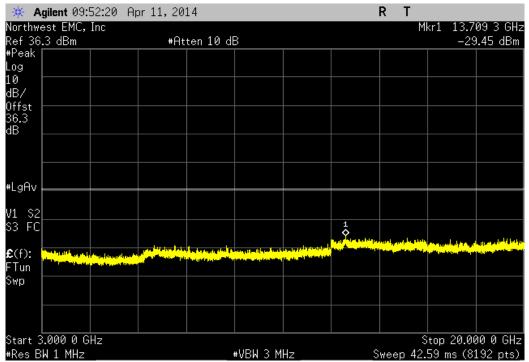




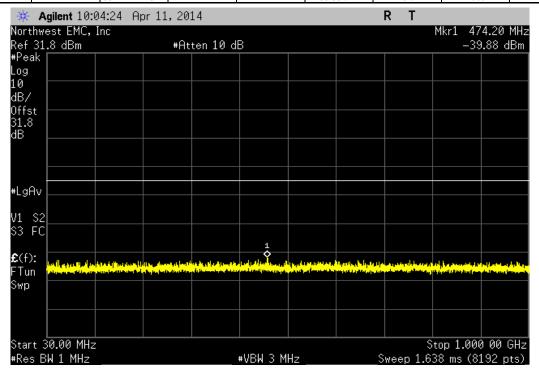
LTE 5 MHz, High	Channel 1992.4 MHz		
Frequency			
Range	Value	Limit	Result
3 GHz - 20 GHz	-28.63 dBm	≤ -13 dBm	Pass

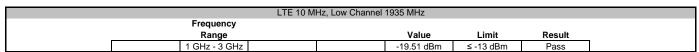


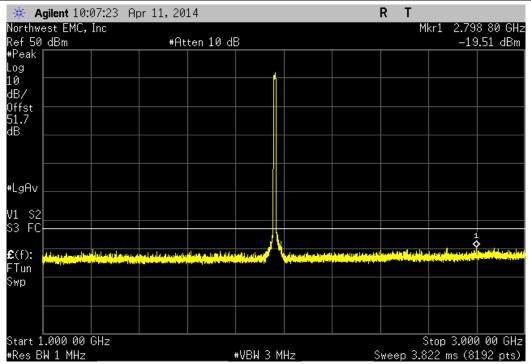




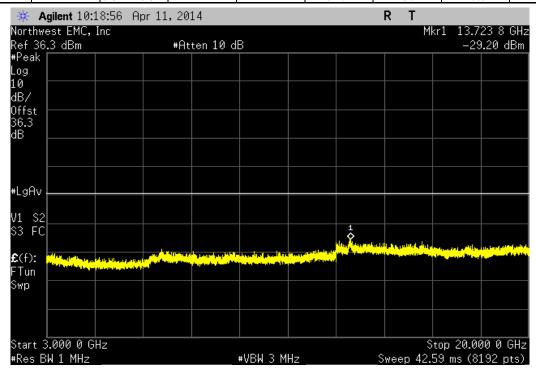
LTE 10 MHz, Mid Channel 1962.5 MHz							
Frequency							
Range		Value	Limit	Result			
1 GHz - 3 GHz		-19.76 dBm	≤ -13 dBm	Pass			



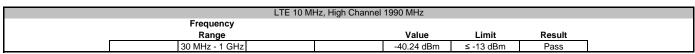


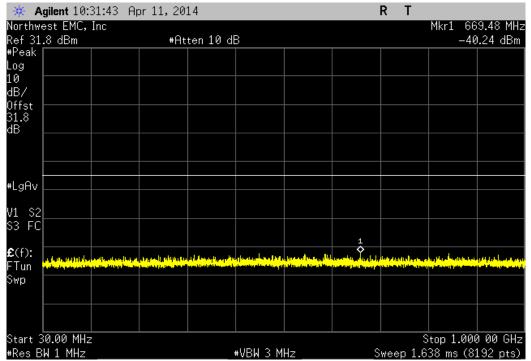


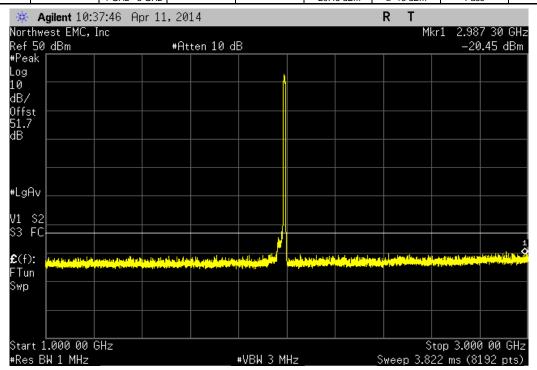
LTE 10 MHz, Low Channel 1935 MHz						
Frequency						
Range	Value	Limit	Result			
30 MHz - 1 GHz	-39.88 dBm	≤ -13 dBm	Pass			



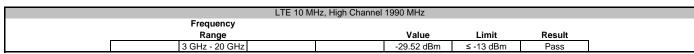
OUT OF BAND EMISSIONS -CONDUCTED

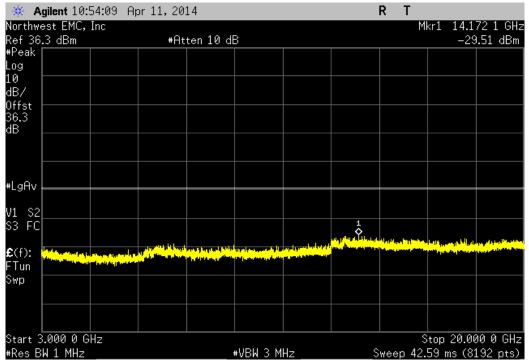



LTE 10 MHz, Lo	w Channel 1935 MHz		
Frequency			
Range	Value	Limit	Result
3 GHz - 20 GHz	-29.2 dBm	≤ -13 dBm	Pass



OUT OF BAND EMISSIONS -CONDUCTED




LTE 17	0 MHz, High Channel 1990 MHz		
Frequency			
Range	Value	Limit	Result
1 GHz - 3 GHz	-20.45 dBm	≤ -13 dBm	Pass

OUT OF BAND EMISSIONS -CONDUCTED

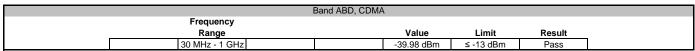
INTERMODULATION

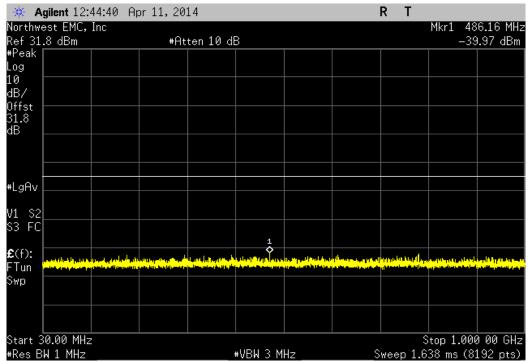
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

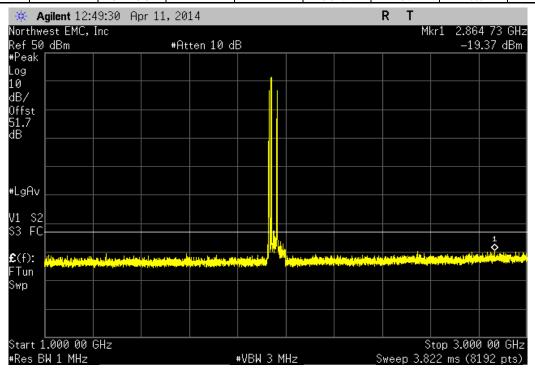
TEST EQUIPMENT

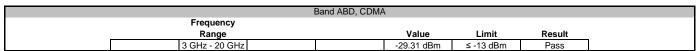
Description	Manufacturer	Model	ID	Last Cal.	Interval
Power Divider/Combiner	Fairview Microwave Inc (SM electronics)	MP8451-2	IAD	NCR	0
Power Divider/Combiner	Fairview Microwave Inc (SM electronics)	MP8451-2	IAC	NCR	0
Attenuator - 20db, 'SMA'	SM Electronics	SA26B-20	RFW	4/3/2014	12
40 GHz DC block	Fairview Microwave	SD3379	AMI	9/26/2013	12
Signal Generator MXG	Agilent	N5183A	TIK	6/7/2012	36
Spectrum Analyzer	Agilent	E4440A	AAX	5/15/2012	24

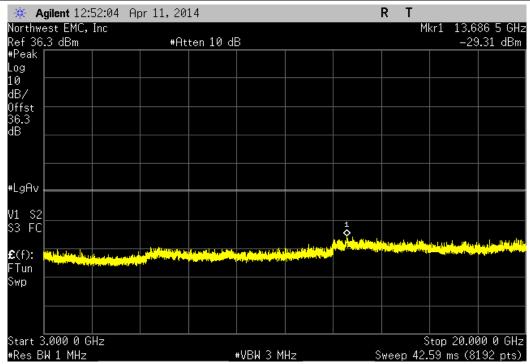
TEST DESCRIPTION


The EUT was configured with an input of a CW pulse at the bottom of the band, a CW pulse at the bottom of the band, and a modulated pulse near the edge of the band.

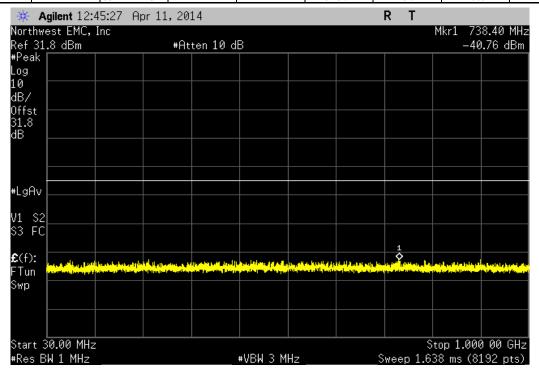

The antenna port spurious emissions were measured at the RF output terminal of the EUT with external attenuation on the RF input of the spectrum analyzer. Analyzer plots utilizing a 1MHz resolution bandwidth and no video filtering were made for each modulation type from 30 MHz to 20 GHz. The peak conducted power of spurious emissions, up to the 10th harmonic of the transmit frequency, were investigated to ensure they were less than or equal to –13 dBm.

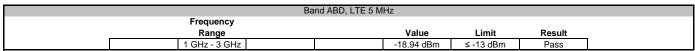

EUT.						
	Prism HDM 800 MHz/1900 MHz SIS	O RF Module		Work Order:		
Serial Number:					04/11/14	
	TE Connectivity / ADC Telecommu	unications		Temperature:		
Attendees:				Humidity:		
Project:				Barometric Pres.:		
	Trevor Buls		Power: 110VAC/60Hz	Job Site:	MN08	
TEST SPECIFICATION	ONS		Test Method			
FCC 24E:2014			ANSI/TIA/EIA-603-C-2004			
COMMENTS						
Customer provided	l a high wattage 30 dB attenuator th	hat was added into the reference	ce level offset.			
DEVIATIONS FROM	TEST STANDARD					
None						
			0 0			
Configuration #	1		evor Buls			
		Signature				
			Frequency			
			Range	Value	Limit	Result
Band ABD						
	CDMA		30 MHz - 1 GHz	-39.98 dBm	≤ -13 dBm	Pass
	CDMA		1 GHz - 3 GHz	-19.37 dBm	≤ -13 dBm	Pass
	CDMA		3 GHz - 20 GHz			Pass
				-29.31 dBm	≤ -13 dBm	
	LTE 5 MHz		30 MHz - 1 GHz	-40.76 dBm	≤ -13 dBm	Pass
	LTE 5 MHz		30 MHz - 1 GHz 1 GHz - 3 GHz	-40.76 dBm -18.94 dBm	≤ -13 dBm ≤ -13 dBm	Pass Pass
	LTE 5 MHz LTE 5 MHz		30 MHz - 1 GHz 1 GHz - 3 GHz 3 GHz - 20 GHz	-40.76 dBm -18.94 dBm -29.58 dBm	≤ -13 dBm ≤ -13 dBm ≤ -13 dBm	Pass Pass Pass
	LTE 5 MHz LTE 5 MHz LTE 10 MHz		30 MHz - 1 GHz 1 GHz - 3 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz	-40.76 dBm -18.94 dBm -29.58 dBm -40.54 dBm	≤ -13 dBm ≤ -13 dBm ≤ -13 dBm ≤ -13 dBm	Pass Pass Pass Pass
	LTE 5 MHz LTE 5 MHz LTE 10 MHz LTE 10 MHz		30 MHz - 1 GHz 1 GHz - 3 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz 1 GHz - 3 GHz	-40.76 dBm -18.94 dBm -29.58 dBm -40.54 dBm -19.82 dBm	≤ -13 dBm ≤ -13 dBm ≤ -13 dBm ≤ -13 dBm ≤ -13 dBm	Pass Pass Pass Pass Pass
	LTE 5 MHz LTE 5 MHz LTE 10 MHz		30 MHz - 1 GHz 1 GHz - 3 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz	-40.76 dBm -18.94 dBm -29.58 dBm -40.54 dBm	≤ -13 dBm ≤ -13 dBm ≤ -13 dBm ≤ -13 dBm	Pass Pass Pass Pass
Band CEFG	LTE 5 MHz LTE 5 MHz LTE 10 MHz LTE 10 MHz LTE 10 MHz		30 MHz - 1 GHz 1 GHz - 3 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz 1 GHz - 3 GHz 3 GHz - 20 GHz	-40.76 dBm -18.94 dBm -29.58 dBm -40.54 dBm -19.82 dBm -29.52 dBm	≤ -13 dBm ≤ -13 dBm ≤ -13 dBm ≤ -13 dBm ≤ -13 dBm ≤ -13 dBm	Pass Pass Pass Pass Pass Pass
Band CEFG	LTE 5 MHz LTE 5 MHz LTE 10 MHz LTE 10 MHz LTE 10 MHz CDMA		30 MHz - 1 GHz 1 GHz - 3 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz 1 GHz - 3 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz	-40.76 dBm -18.94 dBm -29.58 dBm -40.54 dBm -19.82 dBm -29.52 dBm	≤ -13 dBm ≤ -13 dBm ≤ -13 dBm ≤ -13 dBm ≤ -13 dBm ≤ -13 dBm	Pass Pass Pass Pass Pass Pass Pass Pass
Band CEFG	LTE 5 MHz LTE 5 MHz LTE 10 MHz LTE 10 MHz LTE 10 MHz CDMA		30 MHz - 1 GHz 1 GHz - 3 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz 1 GHz - 3 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz 1 GHz - 3 GHz	-40.76 dBm -18.94 dBm -29.58 dBm -40.54 dBm -19.82 dBm -29.52 dBm -39.8 dBm -19.64 dBm	≤ -13 dBm ≤ -13 dBm ≤ -13 dBm ≤ -13 dBm ≤ -13 dBm ≤ -13 dBm ≤ -13 dBm	Pass Pass Pass Pass Pass Pass Pass Pass
Band CEFG	LTE 5 MHz LTE 5 MHz LTE 10 MHz LTE 10 MHz LTE 10 MHz CDMA CDMA CDMA		30 MHz - 1 GHz 1 GHz - 3 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz 1 GHz - 3 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz 1 GHz - 3 GHz 3 GHz - 20 GHz	-40.76 dBm -18.94 dBm -29.58 dBm -40.54 dBm -19.82 dBm -29.52 dBm -39.8 dBm -19.64 dBm -29.44 dBm	≤ -13 dBm ≤ -13 dBm	Pass Pass Pass Pass Pass Pass Pass Pass
Band CEFG	LTE 5 MHz LTE 5 MHz LTE 10 MHz LTE 10 MHz LTE 10 MHz CDMA CDMA CDMA LTE 5 MHz		30 MHz - 1 GHz 1 GHz - 3 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz 1 GHz - 3 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz 1 GHz - 3 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz	-40.76 dBm -18.94 dBm -29.58 dBm -40.54 dBm -19.82 dBm -29.52 dBm -39.8 dBm -19.64 dBm -29.44 dBm -40.48 dBm	\$ -13 dBm \$ -13 dBm	Pass Pass Pass Pass Pass Pass Pass Pass
Band CEFG	LTE 5 MHz LTE 5 MHz LTE 10 MHz LTE 10 MHz LTE 10 MHz LTE 10 MHz CDMA CDMA CDMA CDMA LTE 5 MHz LTE 5 MHz LTE 5 MHz LTE 5 MHz		30 MHz - 1 GHz 1 GHz - 3 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz 1 GHz - 3 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz 1 GHz - 3 GHz 30 MHz - 1 GHz 30 MHz - 1 GHz	-40.76 dBm -18.94 dBm -29.58 dBm -40.54 dBm -19.82 dBm -29.52 dBm -39.8 dBm -19.64 dBm -29.44 dBm -40.48 dBm -19.51 dBm	\$ -13 dBm \$ -13 dBm	Pass Pass Pass Pass Pass Pass Pass Pass
Band CEFG	LTE 5 MHz LTE 5 MHz LTE 10 MHz LTE 10 MHz LTE 10 MHz CDMA CDMA CDMA LTE 5 MHz		30 MHz - 1 GHz 1 GHz - 3 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz 1 GHz - 3 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz 1 GHz - 3 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz	-40.76 dBm -18.94 dBm -29.58 dBm -40.54 dBm -19.82 dBm -29.52 dBm -39.8 dBm -19.64 dBm -29.44 dBm -40.48 dBm	\$ -13 dBm \$ -13 dBm	Pass Pass Pass Pass Pass Pass Pass Pass
Band CEFG	LTE 5 MHz LTE 5 MHz LTE 10 MHz LTE 10 MHz LTE 10 MHz LTE 10 MHz CDMA CDMA CDMA CDMA LTE 5 MHz LTE 5 MHz LTE 5 MHz LTE 5 MHz		30 MHz - 1 GHz 1 GHz - 3 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz 1 GHz - 3 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz 1 GHz - 3 GHz 30 MHz - 1 GHz 30 MHz - 1 GHz	-40.76 dBm -18.94 dBm -29.58 dBm -40.54 dBm -19.82 dBm -29.52 dBm -39.8 dBm -19.64 dBm -29.44 dBm -40.48 dBm -19.51 dBm	\$ -13 dBm \$ -13 dBm	Pass Pass Pass Pass Pass Pass Pass Pass
Band CEFG	LTE 5 MHz LTE 5 MHz LTE 10 MHz LTE 10 MHz LTE 10 MHz CDMA CDMA CDMA CDMA LTE 5 MHz		30 MHz - 1 GHz 1 GHz - 3 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz 1 GHz - 3 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz 1 GHz - 3 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz 3 GHz - 20 GHz 30 MHz - 1 GHz	-40.76 dBm -18.94 dBm -29.58 dBm -40.54 dBm -19.82 dBm -29.52 dBm -39.8 dBm -19.64 dBm -29.44 dBm -40.48 dBm -19.51 dBm -29.18 dBm	\$ -13 dBm \$ -13	Pass Pass Pass Pass Pass Pass Pass Pass

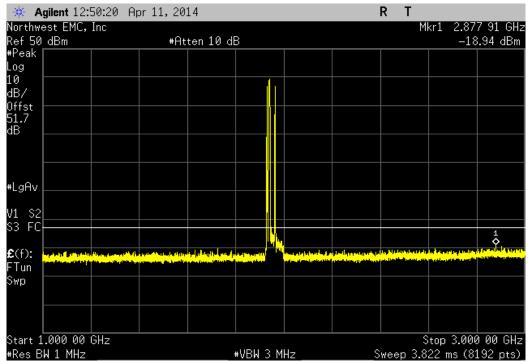




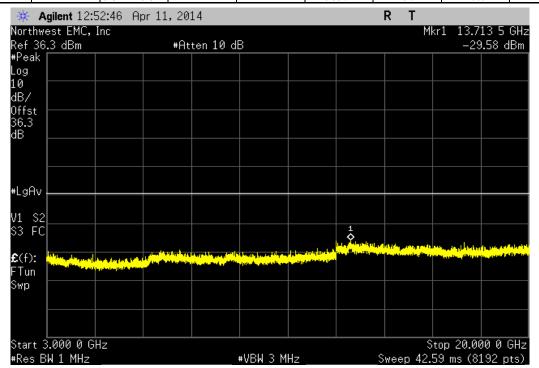
Ва	ind ABD, CDMA		
Frequency			
Range	Value	Limit	Result
1 GHz - 3 GHz	-19.37 dBm	≤ -13 dBm	Pass

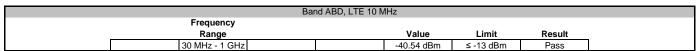


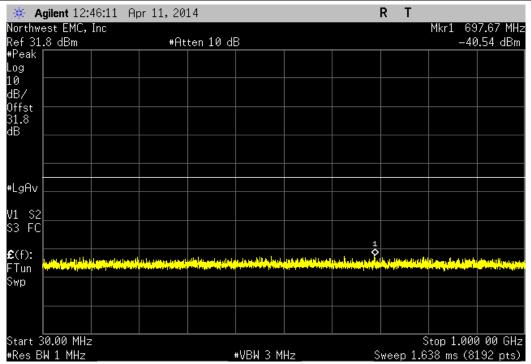




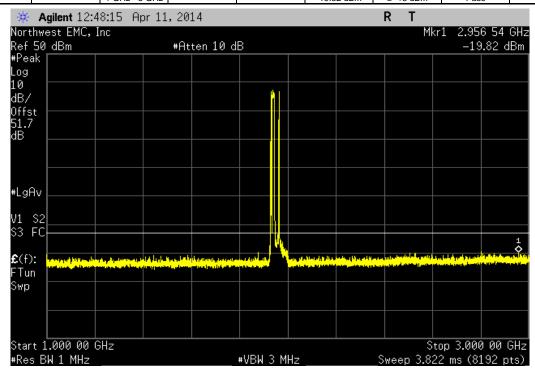
Band	ABD, LTE 5 MHz		
Frequency			
Range	Value	Limit	Result
30 MHz - 1 GHz	-40.76 dBm	≤ -13 dBm	Pass

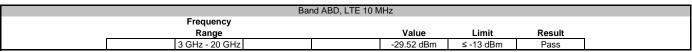


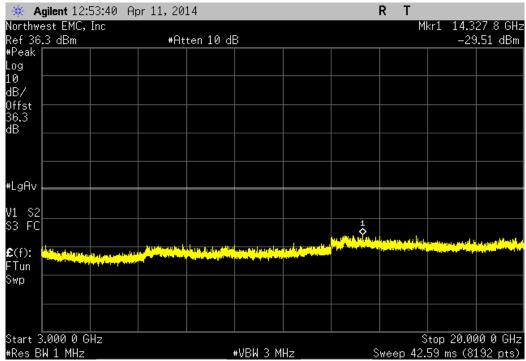




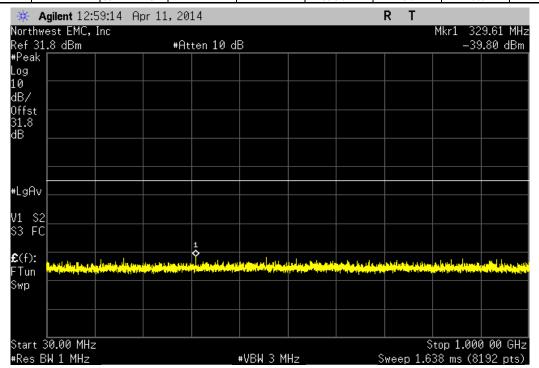
Band	ABD, LTE 5 MHz		
Frequency			
Range	Value	Limit	Result
3 GHz - 20 GHz	-29.58 dBm	≤ -13 dBm	Pass

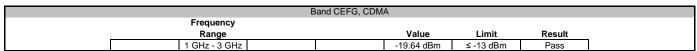


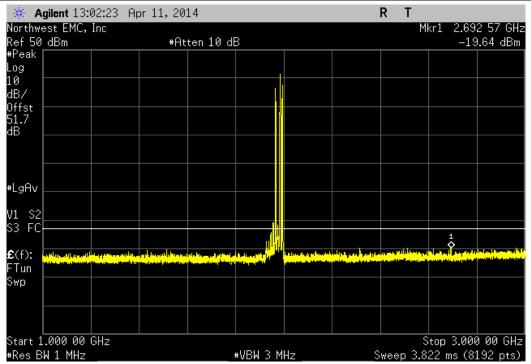




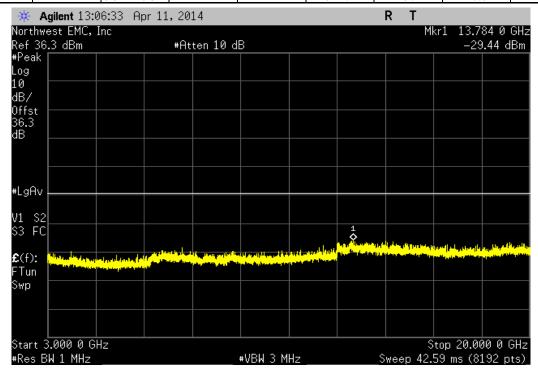
E	Band ABD, LTE 10 MHz		
Frequency			
Range	Value	Limit	Result
1 GHz - 3 GHz	-19.82 dBm	≤ -13 dBm	Pass

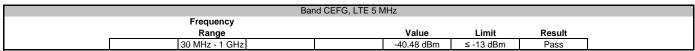


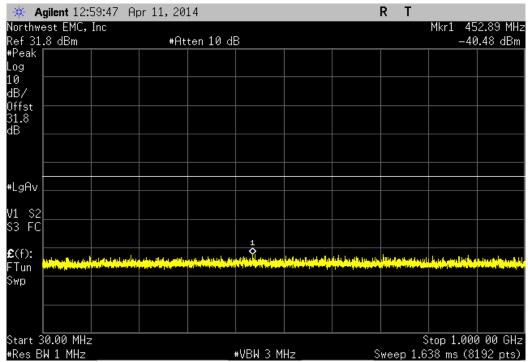




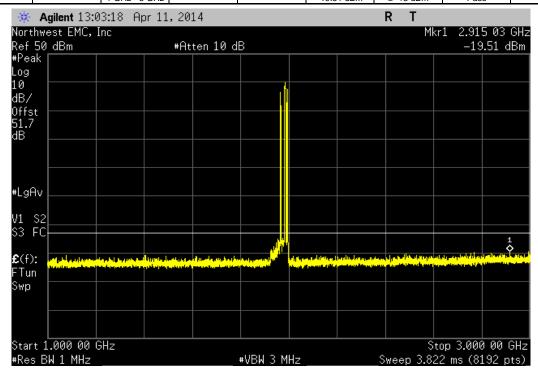
Band CE	FG, CDMA		
Frequency			
Range	Value	Limit	Result
30 MHz - 1 GHz	-39.8 dBm	≤ -13 dBm	Pass

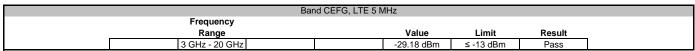


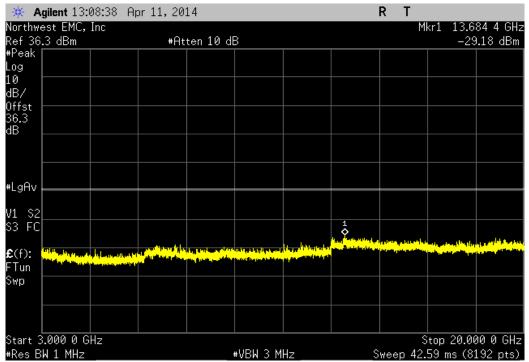




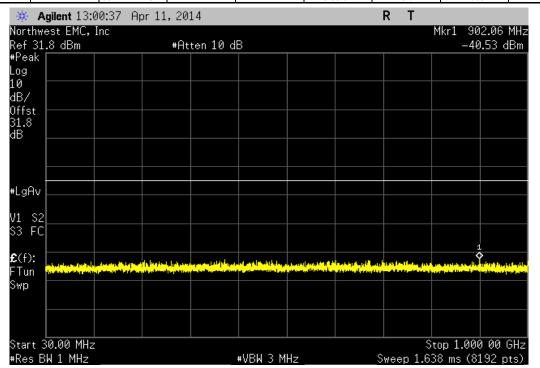
Band (CEFG, CDMA		
Frequency			
Range	Value	Limit	Result
3 GHz - 20 GHz	-29.44 dBm	≤ -13 dBm	Pass

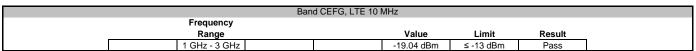


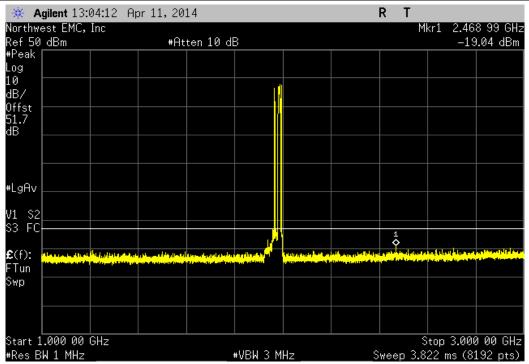




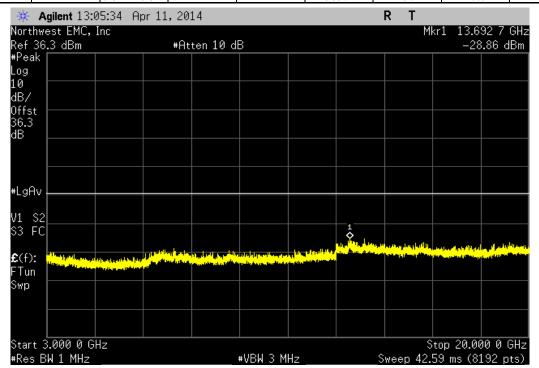
Ban	d CEFG, LTE 5 MHz		
Frequency			
Range	Value	Limit	Result
1 GHz - 3 GHz	-19.51 dBm	≤ -13 dBm	Pass







Band Ci	FG, LTE 10 MHz		
Frequency			
Range	Value	Limit	Result
30 MHz - 1 GHz	-40.53 dBm	≤ -13 dBm	Pass

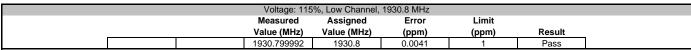


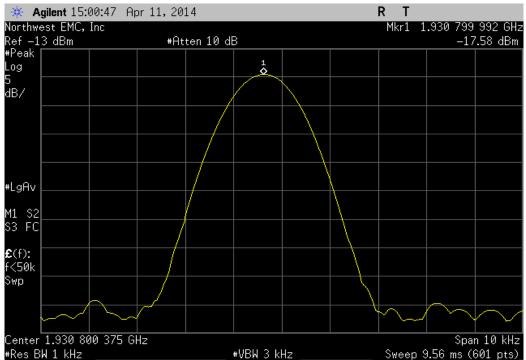
Band Cl	EFG, LTE 10 MHz		
Frequency			
Range	Value	Limit	Result
3 GHz - 20 GHz	-28.86 dBm	≤ -13 dBm	Pass

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

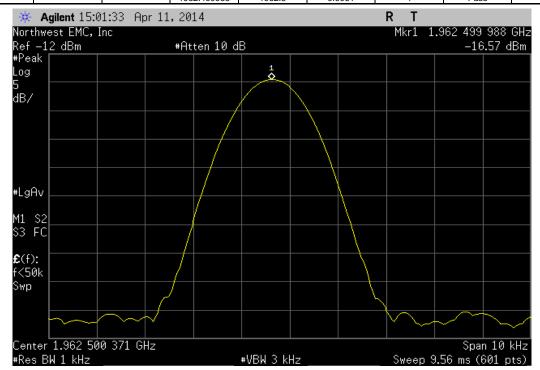
TEST EQUIPMENT

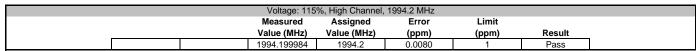
Description	Manufacturer	Model	ID	Last Cal.	Interval
Multimeter	Fluke	117	MNN	1/20/2014	36
Variable Transformer	Powerstat	246	XFR	NCR	0
Humidity Temperature Meter	Omega Engineering, Inc.	HH31	DUB	10/25/2011	36
Temp./Humidity Chamber	Cincinnati Sub Zero (CSZ)	ZPH-32-3.5-SCT/AC	TBF	NCR	0
Attenuator - 20db, 'SMA'	SM Electronics	SA26B-20	RFW	4/3/2014	12
40 GHz DC block	Fairview Microwave	SD3379	AMI	9/26/2013	12
Signal Generator MXG	Agilent	N5183A	TIK	6/7/2012	36
Spectrum Analyzer	Agilent	E4440A	AAX	5/15/2012	24

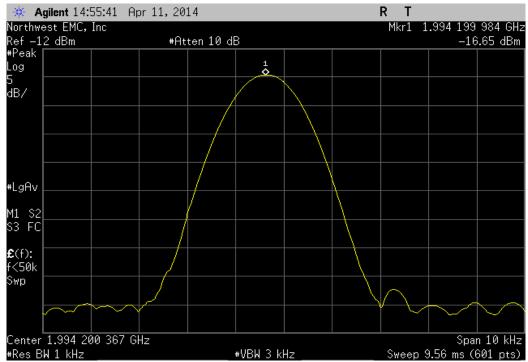

TEST DESCRIPTION

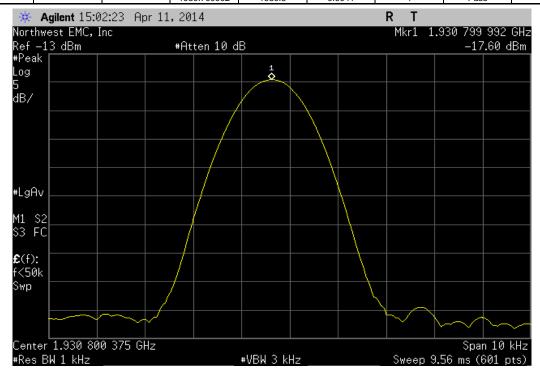

A direct connect measurement was made between the EUT's antenna cable and a spectrum analyzer. The spectrum analyzer is equipped with a precision frequency reference that exceeds the stability requirement of the EUT. Testing was done with an absence of modulation in a CW mode of operation.

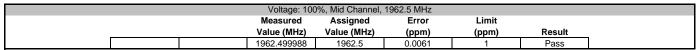
The primary supply voltage was varied from 85 % to 115% of the nominal voltage Using a temperature chamber, the transmit frequency was recorded at the extremes of the specified temperature range (-30 ° to +50 ° C) and at 10 °C intervals.

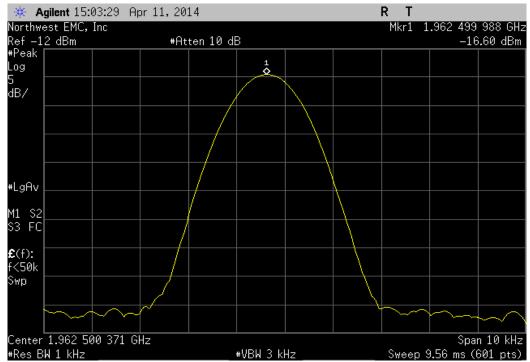



	Frism HDM 800 MHz/1900 MHz S	ISO RF Module				Work Order:		
Serial Number			·				04/14/14	
Custome		nunications				Temperature:		
Attendees						Humidity:		
	t: None		P	- 440/40/0011-		Barometric Pres.:		
TEST SPECIFICA	y: Trevor Buls		Powe	r: 110VAC/60Hz Test Method		Job Site:	MN08	
FCC 24E:2014	TIONS			ANSI/TIA/EIA-603-C-2004				
FCC 24E:2014				ANSI/11A/EIA-003-C-2004				
COMMENTS								
	ed a high wattage 30 dB attenuator	Voltage range var	ied from 126 5 to 93 5 VAC					
Customer provide	ed a mgn wattage 30 db attendator	. Voltage range van	led 110111 120.3 to 33.3 VAC					
DEVIATIONS FRO	OM TEST STANDARD							
None								
Configuration #	1	Cimpatura	Trevo	z Buls				
		Signature	0,000	Measured	Assigned	Error	Limit	
				Value (MHz)	Value (MHz)	(ppm)	(ppm)	Result
Voltage: 115%								
	Low Channel, 1930.8 MHz			1930.799992	1930.8	0.0041	1	Pass
	Mid Channel, 1962.5 MHz			1962.499988	1962.5	0.0061	1	Pass
V-II 4000'	High Channel, 1994.2 MHz			1994.199984	1994.2	0.0080	1	Pass
Voltage: 100%	Law Channel 1020 0 MH-			4020 700000	1930.8	0.0044	1	Door
	Low Channel, 1930.8 MHz Mid Channel, 1962.5 MHz			1930.799992 1962.499988	1930.8 1962.5	0.0041 0.0061	1 1	Pass Pass
	High Channel, 1994.2 MHz			1994.199984	1994.2	0.0080	1	Pass
Voltage: 85%	riigir Criariner, 1994.2 Wiriz			1994.199904	1334.2	0.0000	'	1 833
vollage. 0070	Low Channel, 1930.8 MHz			1930.799992	1930.8	0.0041	1	Pass
	Mid Channel, 1962.5 MHz			1962.499988	1962.5	0.0061	1	Pass
	High Channel, 1994.2 MHz			1994.2	1994.2	0.0000	1	Pass
Temperature: +50°	•							
	Low Channel, 1930.8 MHz			1930.799992	1930.8	0.0041	1	Pass
	Mid Channel, 1962.5 MHz			1962.499988	1962.5	0.0061	1	Pass
	High Channel, 1994.2 MHz			1994.199984	1994.2	0.0080	1	Pass
Temperature: +40°				4000 700000	4000		•	
	Low Channel, 1930.8 MHz			1930.799992	1930.8 1962.5	0.0041 0.0066	1 1	Pass
	Mid Channel, 1962.5 MHz High Channel, 1994.2 MHz			1962.499987 1994.199984	1962.5	0.0080	1	Pass Pass
Temperature: +30°	riigii Chariner, 1994.2 Wii iz			1994.199904	1334.2	0.0000	'	1 033
remperature. 100	Low Channel, 1930.8 MHz			1930.799988	1930.8	0.0062	1	Pass
	Mid Channel, 1962.5 MHz			1962.499988	1962.5	0.0061	1	Pass
	High Channel, 1994.2 MHz			1994.199984	1994.2	0.0080	1	Pass
Temperature: +20°								
	Low Channel, 1930.8 MHz			1930.799988	1930.8	0.0062	1	Pass
	Mid Channel, 1962.5 MHz			1962.500003	1962.5	0.0015	1	Pass
T	High Channel, 1994.2 MHz			1994.199985	1994.2	0.0075	1	Pass
Temperature: +10°	Low Channel, 1930.8 MHz			1930.799989	1930.8	0.0057	1	Pass
	Mid Channel, 1962.5 MHz			1962.499988	1962.5	0.0057	1	Pass
	High Channel, 1994.2 MHz			1994.199984	1994.2	0.0080	1	Pass
Temperature: 0°	riigir Onariici, 1354.2 Wii iz			1334.133304	1004.2	0.0000	<u>'</u>	1 000
	Low Channel, 1930.8 MHz			1930.799992	1930.8	0.0041	1	Pass
	Mid Channel, 1962.5 MHz			1962.499988	1962.5	0.0061	1	Pass
	High Channel, 1994.2 MHz			1994.2	1994.2	0.0000	1	Pass
Temperature: -10°								
	Low Channel, 1930.8 MHz			1930.799992	1930.8	0.0041	1	Pass
	Mid Channel, 1962.5 MHz			1962.499986	1962.5	0.0071	1	Pass
T 222	High Channel, 1994.2 MHz			1994.199984	1994.2	0.0080	1	Pass
Temperature: -20°	Low Channel 1020 9 MH-			1020 700002	1020.0	0.0041	1	Poss
	Low Channel, 1930.8 MHz Mid Channel, 1962.5 MHz			1930.799992 1962.499988	1930.8 1962.5	0.0041 0.0061	1	Pass Pass
	High Channel, 1994.2 MHz			1994.199984	1962.5	0.0061	1	Pass
Temperature: -30°	g.1 Ondiniol, 1994.2 WHZ			1004.10004	1004.2	0.0000	,	1 000
. zporataro. 00	Low Channel, 1930,8 MHz			1930.799992	1930.8	0.0041	1	Pass
	Mid Channel, 1962.5 MHz			1962.499988	1962.5	0.0061	1	Pass
	High Channel, 1994.2 MHz			1994.199984	1994.2	0.0080	1	Pass

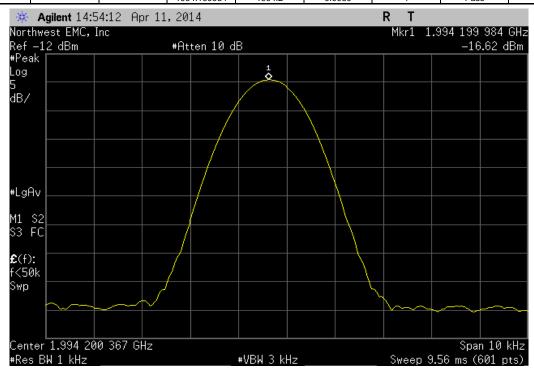


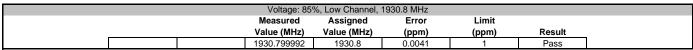

Voltage: 115%, Mid Channel, 1962.5 MHz Measured Assigned Error Limit Value (MHz) Value (MHz) (ppm) (ppm) Result
Measured Assigned Error Limit
l
Value (MHz) Value (MHz) (ppm) (ppm) Result
1962 499988 1962 5 0 0061 1 Pass

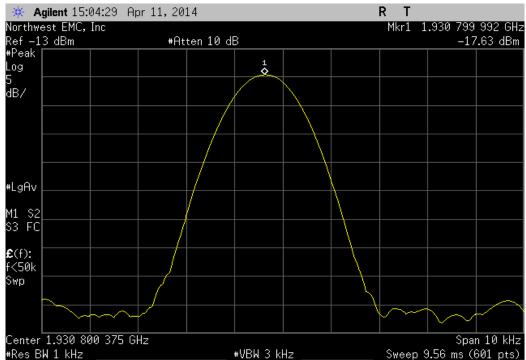




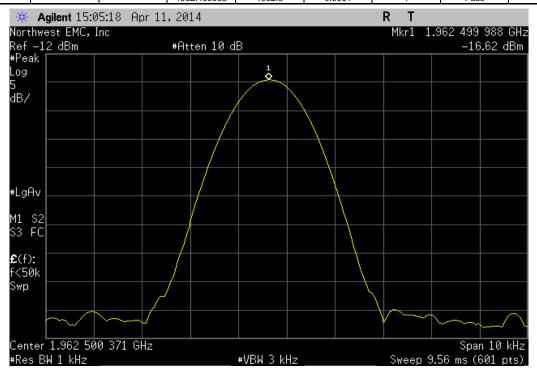
	Voltage: 100	%, Low Channel,	1930.8 MHz		
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Result
	1930 799992	1930.8	0.0041	1	Pass

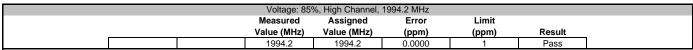


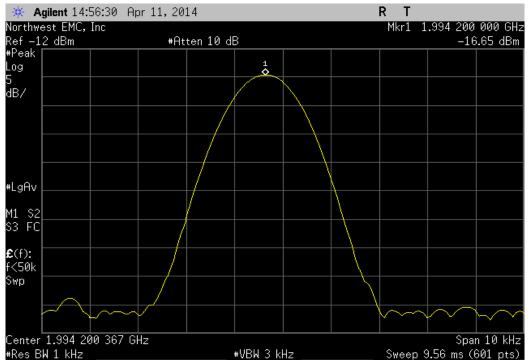




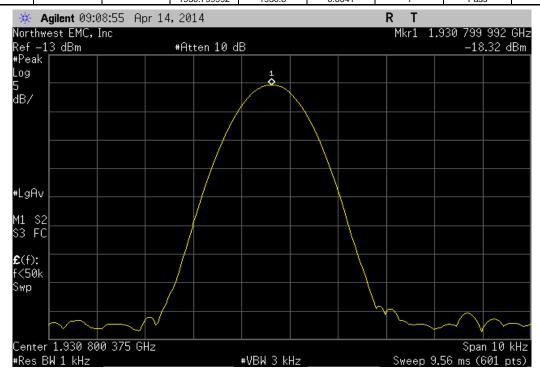
	Voltage: 100	%, High Channel,	1994.2 MHz		
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Result
	1994.199984	1994 2	0.0080	1	Pass

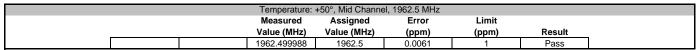


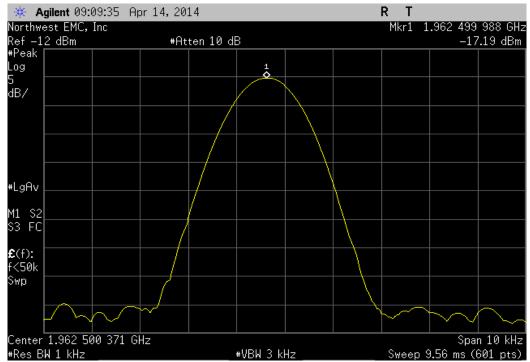




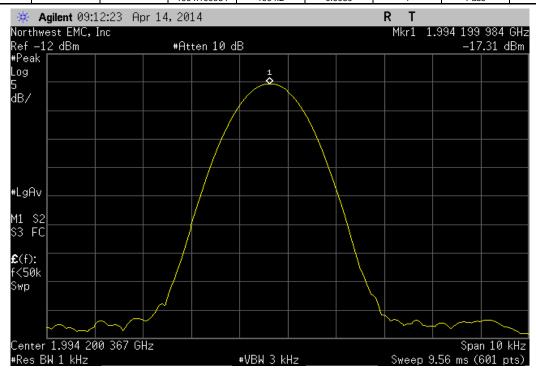
	Voltage: 85%, Mid Channel, 1962.5 MHz							
				70, 11110 0110111101,	.002.02			
ı			Measured	Assigned	Error	Limit		
ı			Measureu	Assigned	LIIOI	LIIIII		
ı			\/_l /B/III_\	\/-l /MII-\	/mmm)	(mm)	Danult	
i			Value (MHz)	Value (MHz)	(ppm)	(ppm)	Result	
ı			1000 100000	4000 F		4	D	
1			1962 499988	1962.5	0.0061	1	l Pass	

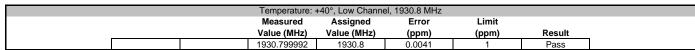


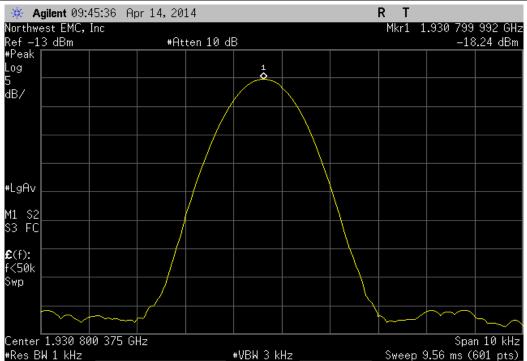


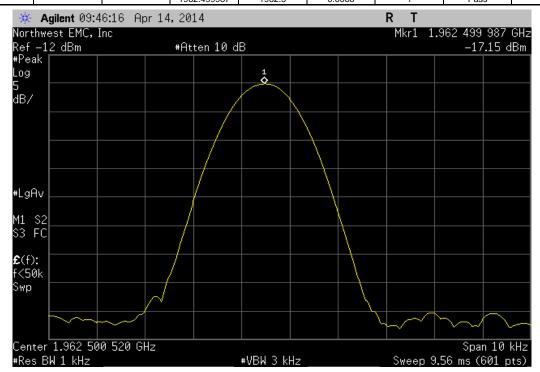


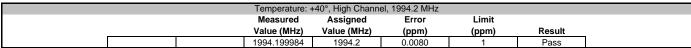
	Temperature:	+50°, Low Channe	el, 1930.8 MHz		
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Result
	1930 799992	1930.8	0.0041	1	Pass

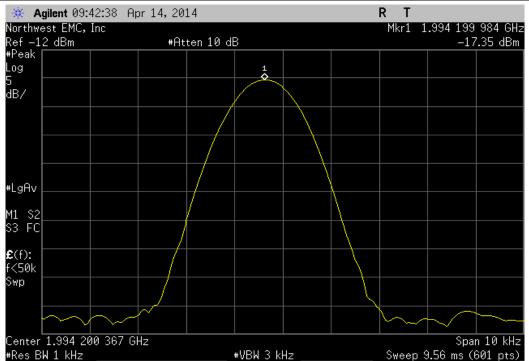


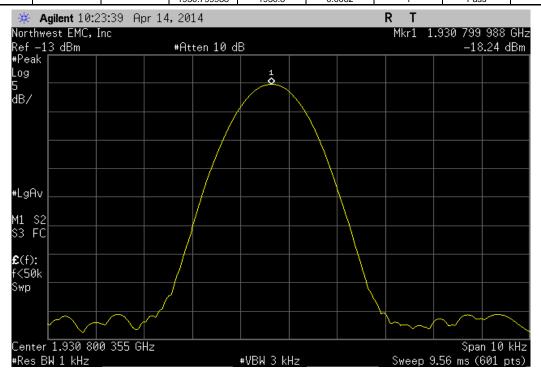


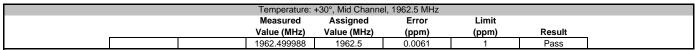


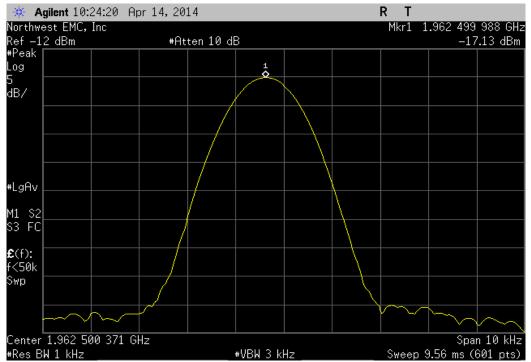

	Temperature: +	+50°, High Channe	el, 1994.2 MHz		
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Result
	1994.199984	1994 2	0.0080	1	Pass



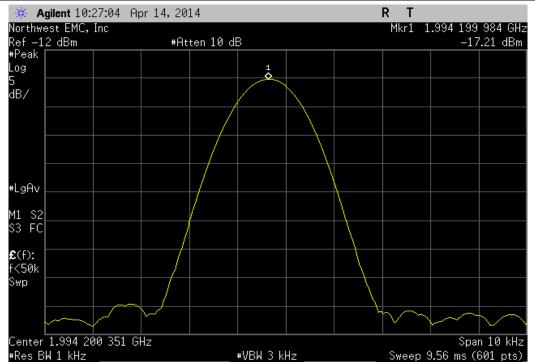


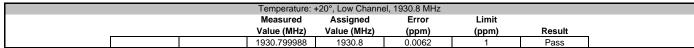

	Temperature:	+40°, Mid Channe	el, 1962.5 MHz		
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Result
	1962 499987	1962 5	0.0066	1	Pass

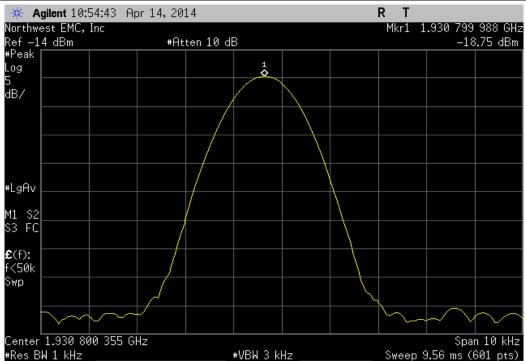


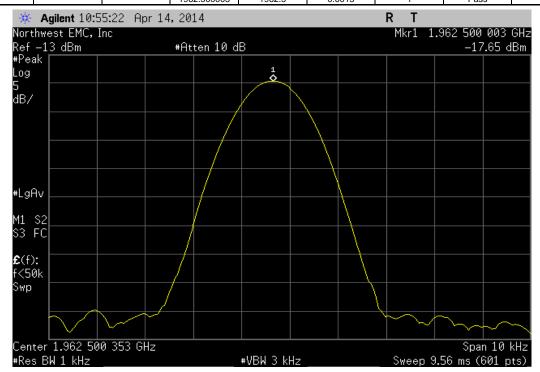


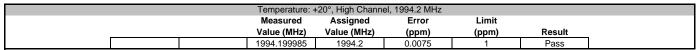
	Temperature:	+30°, Low Channe	el, 1930.8 MHz		
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Result
	1930 799988	1930.8	0.0062	1	Pass

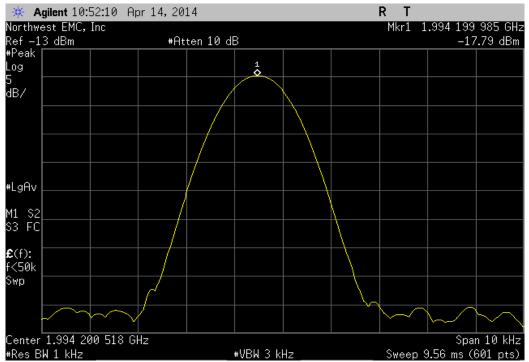




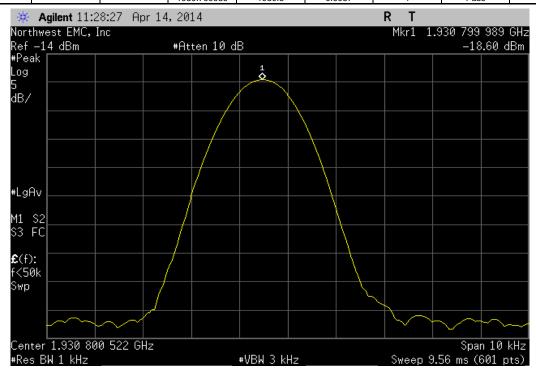


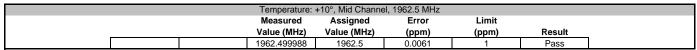

	Temperature: +	⊦30°, High Chann	el, 1994.2 MHz		
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Result
	1994.199984	1994.2	0.0080	1	Pass

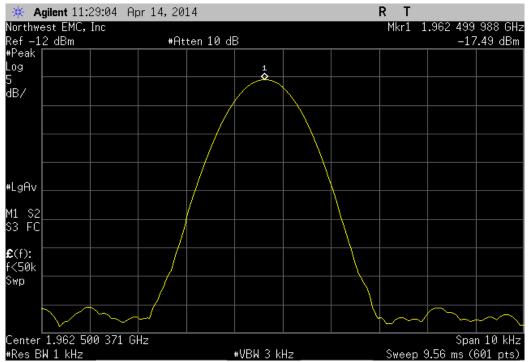




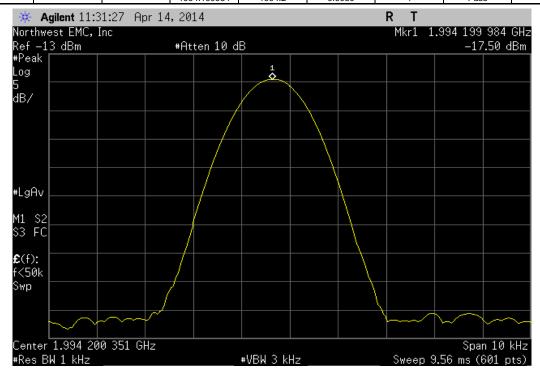
	Temperature:	+20°, Mid Channe	el, 1962.5 MHz		
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Result
	1962 500003	1962 5	0.0015	1	Pass

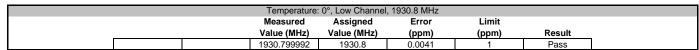


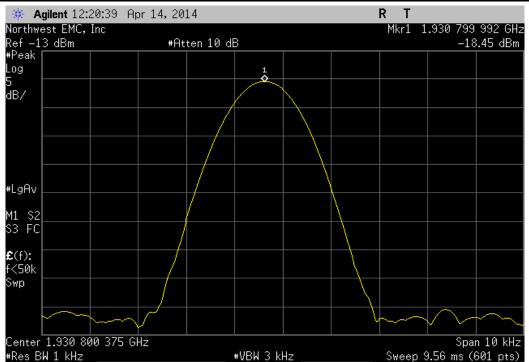


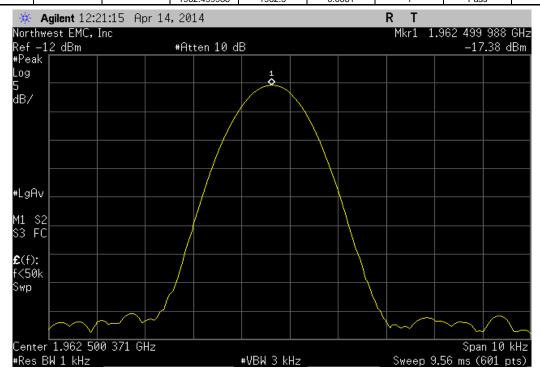


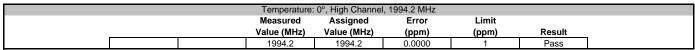
	Temperature: -	+10°, Low Channe	el, 1930.8 MHz		
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Result
	1930 799989	1930 8	0.0057	1	Pass

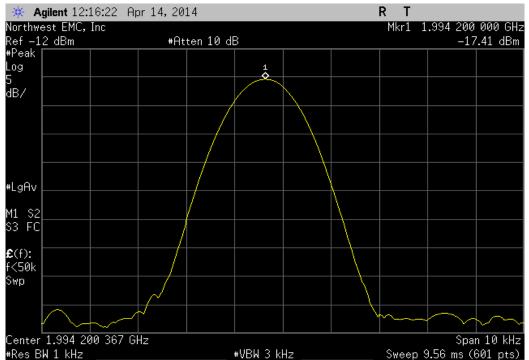


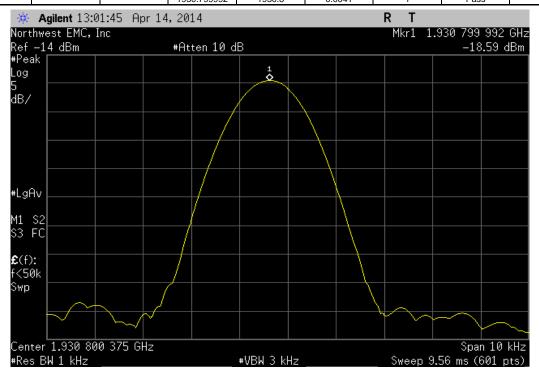


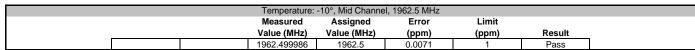


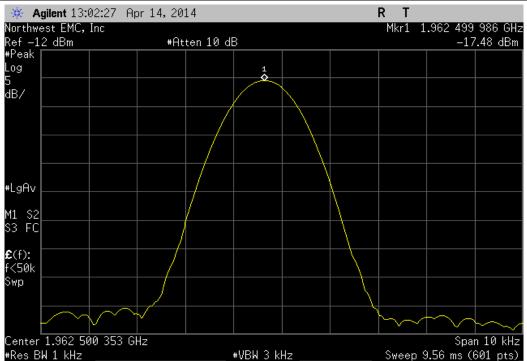

	Temperature: +	+10°, High Chann	el, 1994.2 MHz		
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Result
	1994 199984	1994 2	0.0080	1	Pass

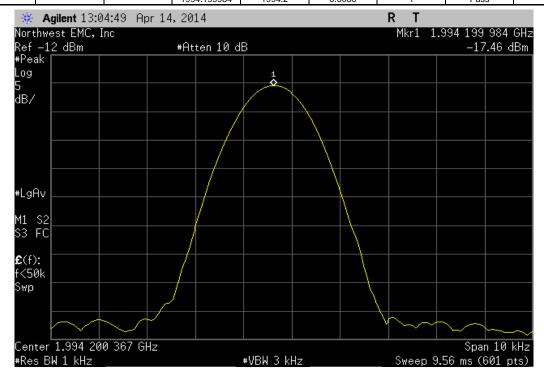


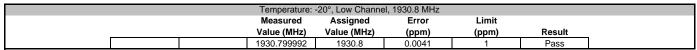


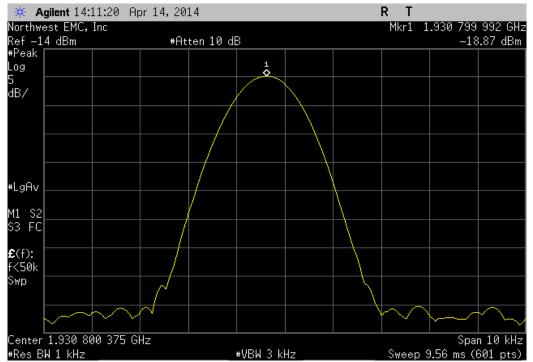

	Temperature	: 0°, Mid Channel	, 1962.5 MHz		
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Result
	1962 499988	1962 5	0.0061	1	Pass



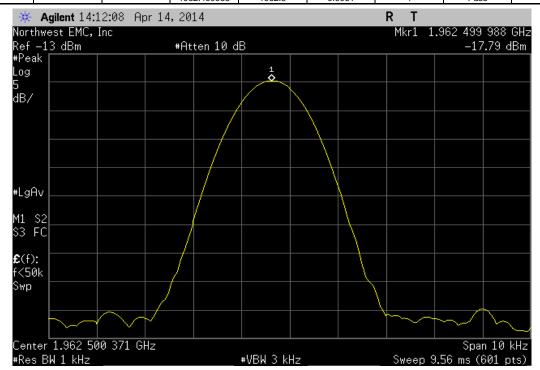


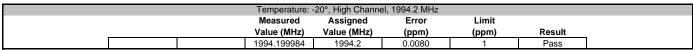

		Temperature:	-10°, Low Channe	el, 1930.8 MHz		
		Measured	Assigned	Error	Limit	
	•	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Result
	1	1930 799992	1930.8	0.0041	1	Pass

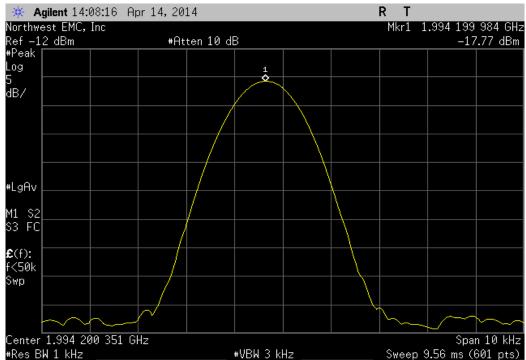


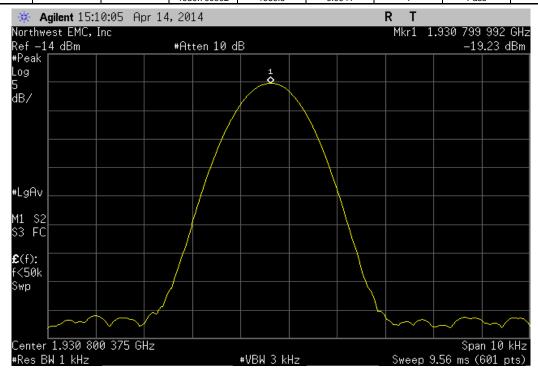


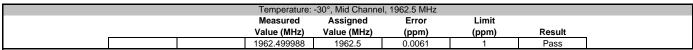
	Temperature:	-10°, High Channe	el, 1994.2 MHz		
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Result
	1994 199984	1994 2	0.0080	1	Pass

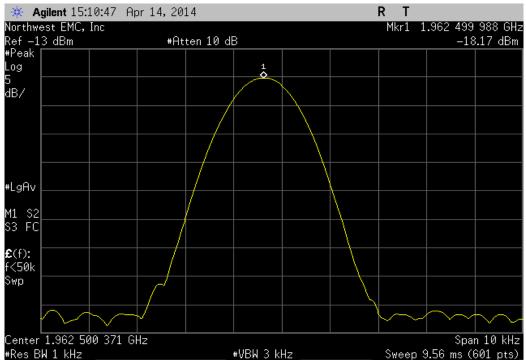




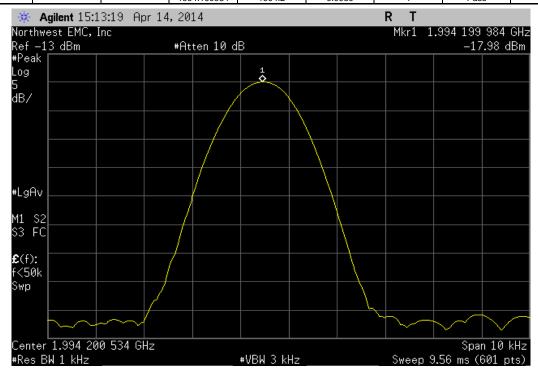



	Temperature:	-20°, Mid Channe	l, 1962.5 MHz		
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Result
	1962 499988	1962.5	0.0061	1	Pass





	Temperature:	-30°, Low Channe	el, 1930.8 MHz		
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Result
	1930.799992	1930.8	0.0041	1	Pass



	Temperature:	-30°, High Channe	el, 1994.2 MHz		
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Result
	1994.199984	1994 2	0.0080	1	Pass

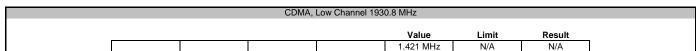
OCCUPIED BANDWIDTH (26 dB)

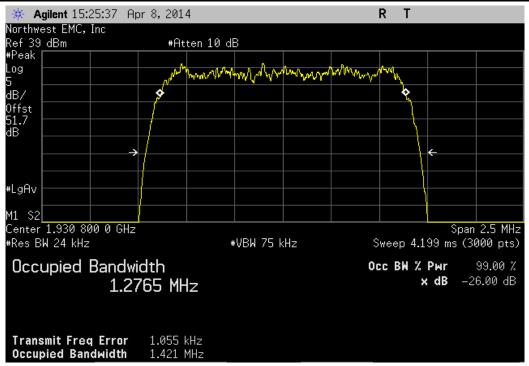
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

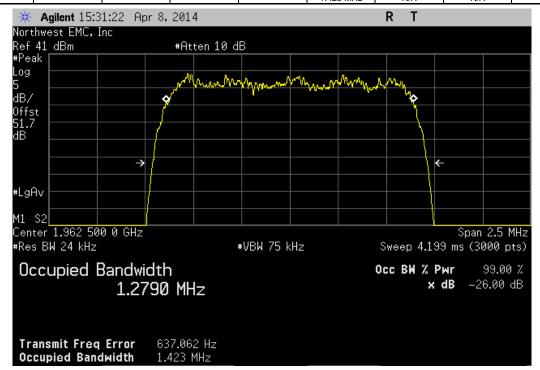
Description	Manufacturer	Model	ID	Last Cal.	Interval
Attenuator - 20db, 'SMA'	SM Electronics	SA26B-20	RFW	4/3/2014	12
40 GHz DC block	Fairview Microwave	SD3379	AMI	9/26/2013	12
Signal Generator MXG	Agilent	N5183A	TIK	6/7/2012	36
Spectrum Analyzer	Agilent	E4440A	AAX	5/15/2012	24

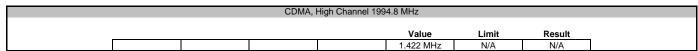
TEST DESCRIPTION

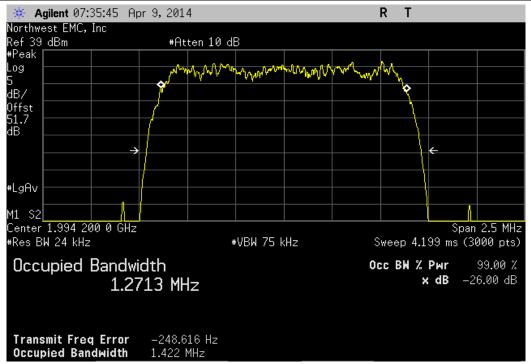

The 26 dB occupied bandwidth was measured utilizing the analyzer's peak detector based on the peak output power level measured. A plot was taken to show the occupied bandwidth is contained within the allowable transmit band.

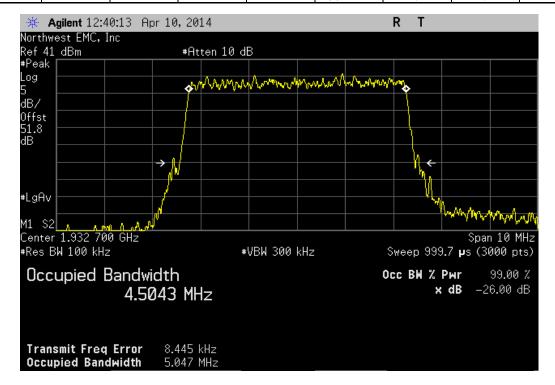

A direct connection was made between the EUT and a spectrum analyzer. The resolution bandwidth was approximately equal to 1% of the 26 dB bandwidth and the video bandwidth was greater than or equal to the resolution bandwidth.

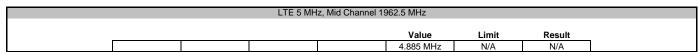
The occupied bandwidth was measured with the EUT configured in the modes called out in the data sheets.



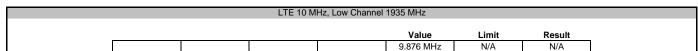

O - ml - I Misson Is a	T: Prism HDM 800 MHz/1900 MHz SI	SO RF Module			Work Order: 1		
Seriai Numbe	er: None				Date: 0	04/09/14	
Custome	er: TE Connectivity / ADC Telecomm	unications			Temperature: 2	24.2°C	
Attendee	s: None				Humidity: 2	21%	
Projec	t: None				Barometric Pres.: 1	1013.5	
Tested b	y: Trevor Buls		Power: 110VAC/60Hz		Job Site: N	MN08	
EST SPECIFICA	TIONS		Test Method				
CC 24E:2014			ANSI/TIA/EIA-	603-C-2004			
COMMENTS							
ustomer provid	ed a high wattage 30 dB attenuator t	that was added into t	ne reference level offset.				
-							
	OM TEST STANDARD						
lone							
			Trevor Bul				
Configuration #	1		1200 mg 13 W	2			
		Signature	250000 6				
					Value	Limit	Result
DIMA	L Ob 4000 0 MILI-				4 404 1411-	A1/A	NI/A
JUMA	Low Channel 1930.8 MHz				1.421 MHz	N/A	N/A
DIMA	Mid Channel 1962.5 MHz				1.423 MHz	N/A	N/A
	Mid Channel 1962.5 MHz High Channel 1994.8 MHz				1.423 MHz 1.422 MHz	N/A N/A	N/A N/A
	Mid Channel 1962.5 MHz High Channel 1994.8 MHz Low Channel 1932.7 MHz				1.423 MHz 1.422 MHz 5.047 MHz	N/A N/A	N/A N/A
CDMA .TE 5 MHz	Mid Channel 1962.5 MHz High Channel 1994.8 MHz Low Channel 1932.7 MHz Mid Channel 1962.5 MHz				1.423 MHz 1.422 MHz 5.047 MHz 4.885 MHz	N/A N/A N/A N/A	N/A N/A N/A N/A
TE 5 MHz	Mid Channel 1962.5 MHz High Channel 1994.8 MHz Low Channel 1932.7 MHz				1.423 MHz 1.422 MHz 5.047 MHz	N/A N/A	N/A N/A
	Mid Channel 1962.5 MHz High Channel 1994.8 MHz Low Channel 1932.7 MHz Mid Channel 1962.5 MHz High Channel 1992.4 MHz				1.423 MHz 1.422 MHz 5.047 MHz 4.885 MHz 5.150 MHz	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A
TE 5 MHz	Mid Channel 1962.5 MHz High Channel 1994.8 MHz Low Channel 1932.7 MHz Mid Channel 1962.5 MHz High Channel 1992.4 MHz Low Channel 1935 MHz				1.423 MHz 1.422 MHz 5.047 MHz 4.885 MHz 5.150 MHz 9.876 MHz	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A
TE 5 MHz	Mid Channel 1962.5 MHz High Channel 1994.8 MHz Low Channel 1932.7 MHz Mid Channel 1962.5 MHz High Channel 1992.4 MHz Low Channel 1935 MHz Mid Channel 1935 MHz Mid Channel 1962.5 MHz				1.423 MHz 1.422 MHz 5.047 MHz 4.885 MHz 5.150 MHz 9.876 MHz 9.557 MHz	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A
TE 5 MHz TE 10 MHz	Mid Channel 1962.5 MHz High Channel 1994.8 MHz Low Channel 1932.7 MHz Mid Channel 1962.5 MHz High Channel 1992.4 MHz Low Channel 1935 MHz				1.423 MHz 1.422 MHz 5.047 MHz 4.885 MHz 5.150 MHz 9.876 MHz	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A
TE 5 MHz TE 10 MHz	Mid Channel 1962.5 MHz High Channel 1994.8 MHz Low Channel 1932.7 MHz Mid Channel 1962.5 MHz High Channel 1992.4 MHz Low Channel 1935 MHz Mid Channel 1962.5 MHz High Channel 1990 MHz				1.423 MHz 1.422 MHz 5.047 MHz 4.885 MHz 5.150 MHz 9.876 MHz 9.557 MHz 9.503 MHz	N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A
TE 5 MHz TE 10 MHz	Mid Channel 1962.5 MHz High Channel 1994.8 MHz Low Channel 1932.7 MHz Mid Channel 1962.5 MHz High Channel 1992.4 MHz Low Channel 1935 MHz Mid Channel 1935 MHz Mid Channel 1962.5 MHz				1.423 MHz 1.422 MHz 5.047 MHz 4.885 MHz 5.150 MHz 9.876 MHz 9.557 MHz	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A
TE 5 MHz	Mid Channel 1962.5 MHz High Channel 1994.8 MHz Low Channel 1932.7 MHz Mid Channel 1962.5 MHz High Channel 1992.4 MHz Low Channel 1935 MHz Mid Channel 1962.5 MHz High Channel 1990 MHz				1.423 MHz 1.422 MHz 5.047 MHz 4.885 MHz 5.150 MHz 9.876 MHz 9.567 MHz 9.503 MHz	N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A
TE 5 MHz TE 10 MHz Apput CDMA	Mid Channel 1962.5 MHz High Channel 1994.8 MHz Low Channel 1992.7 MHz Mid Channel 1962.5 MHz High Channel 1962.4 MHz Low Channel 1962.4 MHz Mid Channel 1962.5 MHz High Channel 1990 MHz Mid Channel 1962.5 MHz Mid Channel 1962.5 MHz Mid Channel 1962.5 MHz				1.423 MHz 1.422 MHz 5.047 MHz 4.885 MHz 5.150 MHz 9.876 MHz 9.557 MHz 9.503 MHz	N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A
TE 5 MHz TE 10 MHz	Mid Channel 1962.5 MHz High Channel 1994.8 MHz Low Channel 1992.7 MHz Mid Channel 1962.5 MHz High Channel 1962.4 MHz Low Channel 1962.4 MHz Mid Channel 1962.5 MHz High Channel 1990 MHz Mid Channel 1962.5 MHz Mid Channel 1962.5 MHz Mid Channel 1962.5 MHz				1.423 MHz 1.422 MHz 5.047 MHz 4.885 MHz 5.150 MHz 9.876 MHz 9.567 MHz 9.503 MHz	N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A

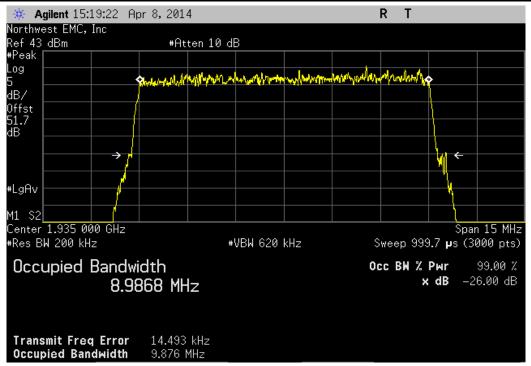


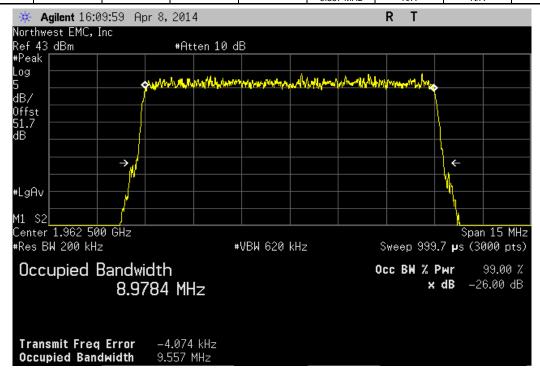

	CDMA,	Mid Channel 196	2.5 MHz		
			Value	Limit	Result
			1.423 MHz	N/A	N/A

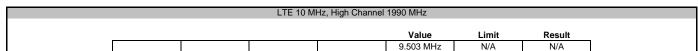


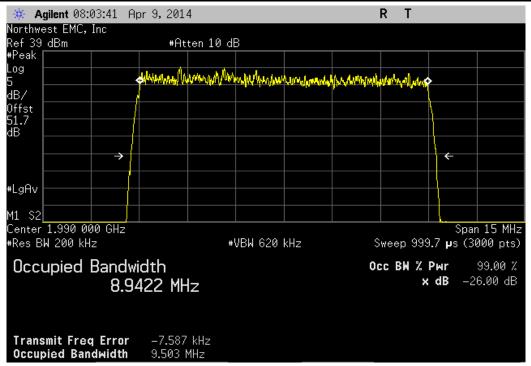

	LTE 5 MH:	z, Low Channel 1	932.7 MHz		
			Value	Limit	Result
			5.047 MHz	N/A	N/A

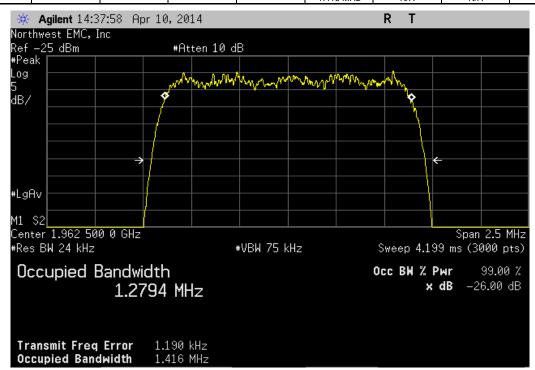


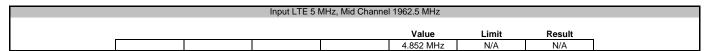


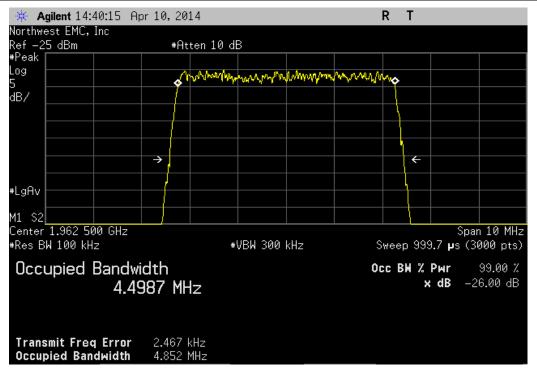

	LTE 5 MH:	z, High Channel 1	992.4 MHz		
			Value	Limit	Result
			5.150 MHz	N/A	N/A

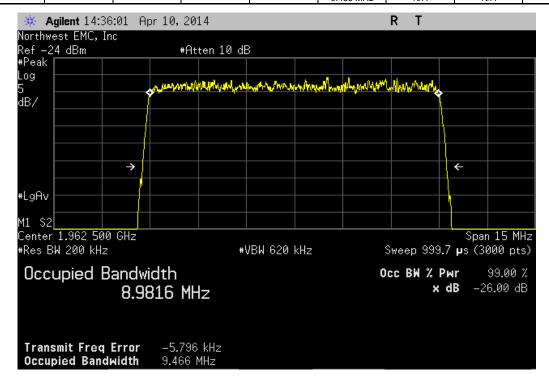





		LTE 10 MF	lz, Mid Channel 1	962.5 MHz		
				Value	Limit	Result
				9.557 MHz	N/A	N/A






		Input CDM	IA, Mid Channel 1	962.5 MHz		
				Value	Limit	Result
				1.416 MHz	N/A	N/A

	Input LTE 10	MHz, Mid Channe	el 1962.5 MHz		
			Value	Limit	Result
			9.466 MHz	N/A	N/A

FIELD STRENGTH OF SPURIOUS EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting Low Mid High CDMA: 1930.8, 1962.5, 1994.2 MHz; LTE 5 MHz: 1932.7, 1962.5, 1992.4 MHz; LTE 10 MHz: 1935, 1962.5, 1990 MHz (see comments)

POWER SETTINGS INVESTIGATED

110VAC/60Hz

CONFIGURATIONS INVESTIGATED

TECO0013 - 2

FREQUENCY RANGE INVESTIGATED

Start Frequency 30 MHz Stop Frequency 20 GHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Antenna, Horn	ETS	3115	AJA	5/13/2011	36 mo
Antenna, Dipole	EMCO	3121C-DB4	ADI	12/21/2012	36 mo
Signal Generator MXG	Agilent	N5183A	TIK	6/7/2012	36 mo
Power Sensor	Agilent	N8481A	SQN	8/27/2012	24 mo
Power Meter	Agilent	N1913A	SQL	8/27/2012	24 mo
Low Pass Filter	Micro-Tronics	LPM50004	HGK	5/31/2012	24 mo
Pre-Amplifier	Miteq	JSD4-18002600-26-8P	APU	9/26/2013	12 mo
MN05 Cables	N/A	8-26GHz Standard Gain Horn Cable	MNP	9/26/2013	12 mo
Antenna, Horn	ETS	3160-09	AHG	NCR	0 mo
Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AVW	3/14/2014	12 mo
Antenna, Horn	ETS Lindgren	3160-08	AIQ	NCR	0 mo
MN05 Cables	ESM Cable Corp.	Standard Gain Horn Cables	MNJ	3/14/2014	12 mo
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVV	3/14/2014	12 mo
Antenna, Horn	ETS	3160-07	AXP	NCR	0 mo
Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	AVX	3/14/2014	12 mo
MN05 Cables	ESM Cable Corp.	Double Ridge Guide Horn Cables	MNI	3/14/2014	12 mo
Antenna, Horn (DRG)	ETS Lindgren	3115	AIP	6/29/2011	36 mo
Pre-Amplifier	Miteq	AM-1616-1000	PAD	3/14/2014	12 mo
MN05 Cables	ESM Cable Corp.	Bilog Cables	MNH	3/14/2014	12 mo
Antenna, Bilog	Teseq	CBL 6141B	AYD	12/17/2013	12 mo
Spectrum Analyzer	Agilent	N9010A	AFI	1/27/2013	24 mo

MEASUREMENT BANDWIDTHS

Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

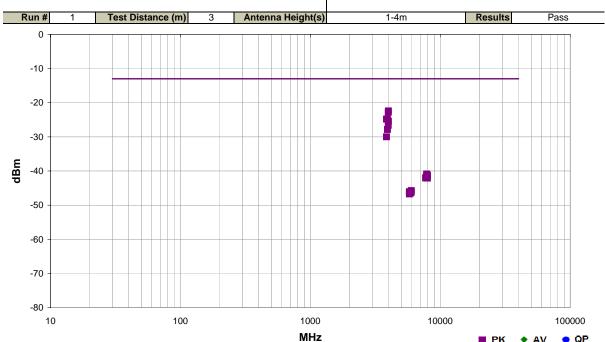
TEST DESCRIPTION

The highest gain antenna to be used with the EUT was tested for final measurements. The EUT was configured for the lowest, a middle, and the highest transmit frequency in each operational band. For each configuration, the spectrum was scanned throughout the specified range. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization (per ANSI C63.10:2009). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

For licensed transmitters, the FCC references TIA/EIA-603 as the measurement procedure standard. TIA/EIA-603 Section 2.2.12 describes a method for measuring radiated spurious emissions that utilizes an antenna substitution method:

At an approved test site, the transmitter is place on a remotely controlled turntable, and the measurement antenna is placed 3 meters from the transmitter. The turntable azimuth is varied to maximize the level of spurious emissions. The height of the measurement antenna is also varied from 1 to 4 meters. The amplitude and frequency of the highest emissions are noted. The transmitter is then replaced with a ½ wave dipole that is successively tuned to each of the highest spurious emissions for emissions below 1 GHz, and a horn antenna for emissions above 1 GHz. A signal generator is connected to the dipole (horn antenna for frequencies above 1 GHz), and its output is adjusted to match the level previously noted for each frequency. The output of the signal generator is recorded, and by factoring in the cable loss to the antenna and its gain; the power (dBm) into an ideal ½ wave dipole antenna is determined for each radiated spurious emission.

For the purposes of preliminary measurements, the field strength of the spurious emissions can be measured and compared with a 3 meter limit. The 3 meter limit was calculated to be 82.5 dBuV/m at 3 meters. The final measurements must be made utilizing the substitution method described above


FIELD STRENGTH OF SPURIOUS EMISSIONS

Work Order:	TECO0013	Date:	04/16/14	20
Project:	None	Temperature:	22.7 °C	Trevor Buls
Job Site:	MN05	Humidity:	15.5% RH	some contract
Serial Number:	None	Barometric Pres.:	1017.6 mbar	Tested by: Trevor Buls
EUT:	Prism HDM 800 MHz/	1900 MHz SISO RF Mo	odule	
Configuration:	2			
Customer:	TE Connectivity / ADC	C Telecommunications		
Attendees:	None			
EUT Power:	110VAC/60Hz			
Operating Mode:	Transmitting Low Mid 1935, 1962.5, 1990 M		962.5, 1994.2 MHz; L	TE 5 MHz: 1932.7, 1962.5, 1992.4 MHz; LTE 10 MHz:
Deviations:	None			
	•	high wattage 30 dB atte vice is always a floorsta		to terminate the antenna output. Tested in normal

Test Specifications

FCC 24E:2014

Test Method ANSI/TIA/EIA-603-C:2004

					141112				■ PK ▼ AV • QF
Freq (MHz)	Antenna Height (meters)	Azimuth (degrees)	Polarity/ Transducer Type	Detector	EIRP (Watts)	EIRP (dBm)	Spec. Limit (dBm)	Compared to Spec. (dB)	Comments
3988.167	1.0	307.0	Vert	PK	5.72E-06	-22.4	-13.0	-9.4	High Ch, CDMA
3984.300	1.0	18.0	Vert	PK	5.17E-06	-22.9	-13.0	-9.9	High Ch, LTE 5MHz
3861.783	1.0	327.0	Vert	PK	3.28E-06	-24.8	-13.0	-11.8	Low Ch, CDMA
3924.650	1.5	64.0	Vert	PK	3.26E-06	-24.9	-13.0	-11.9	Mid Ch, CDMA
3988.533	1.0	16.0	Horz	PK	2.87E-06	-25.4	-13.0	-12.4	High Ch, CDMA
3983.333	1.0	306.0	Vert	PK	2.15E-06	-26.7	-13.0	-13.7	High Ch, LTE 10MHz
3925.142	1.0	319.0	Horz	PK	1.63E-06	-27.9	-13.0	-14.9	Mid Ch, CDMA
3862.017	1.0	297.0	Horz	PK	9.92E-07	-30.0	-13.0	-17.0	Low Ch, CDMA
7848.025	1.0	169.0	Horz	PK	8.16E-08	-40.9	-13.0	-27.9	Mid Ch, CDMA
7978.142	1.0	235.0	Vert	PK	7.57E-08	-41.2	-13.0	-28.2	High Ch, CDMA
7852.025	3.4	183.0	Vert	PK	7.29E-08	-41.4	-13.0	-28.4	Mid Ch, CDMA
7724.217	1.0	208.0	Horz	PK	6.26E-08	-42.0	-13.0	-29.0	Low Ch, CDMA
7723.158	1.0	63.0	Vert	PK	6.25E-08	-42.0	-13.0	-29.0	Low Ch, CDMA
7976.342	1.0	86.0	Horz	PK	6.16E-08	-42.1	-13.0	-29.1	High Ch, CDMA
5983.833	1.0	298.0	Vert	PK	2.67E-08	-45.7	-13.0	-32.7	High Ch, CDMA
5790.992	1.7	193.0	Vert	PK	2.47E-08	-46.1	-13.0	-33.1	Low Ch, CDMA
5984.158	1.0	139.0	Horz	PK	2.38E-08	-46.2	-13.0	-33.2	High Ch, CDMA
5886.142	1.0	146.0	Vert	PK	2.35E-08	-46.3	-13.0	-33.3	Mid Ch, CDMA
5885.775	1.0	238.0	Horz	PK	2.24E-08	-46.5	-13.0	-33.5	Mid Ch, CDMA
5792.300	1.0	180.0	Horz	PK	2.11E-08	-46.8	-13.0	-33.8	Low Ch, CDMA

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Attenuator - 20db, 'SMA'	SM Electronics	SA26B-20	RFW	4/3/2014	12
40 GHz DC block	Fairview Microwave	SD3379	AMI	9/26/2013	12
Signal Generator MXG	Agilent	N5183A	TIK	6/7/2012	36
Spectrum Analyzer	Agilent	E4440A	AAX	5/15/2012	24

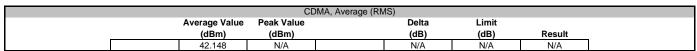
TEST DESCRIPTION

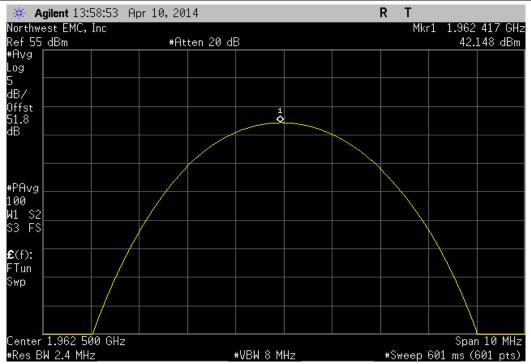
Because the conducted Output Power was measured using a RMS Average detector, the Peak to Average Ratio was measured to show that the maximum peak-max-hold spectrum to the maximum of the average spectrum does not exceed 13 dBm.

A direct connection was made between the RF output of the EUT and a spectrum analyzer. Attenuation and a DC block were used. The reference level offset on the spectrum analyzer was adjusted to compensate for cable loss and the external attenuation used between the RF output and the spectrum analyzer input.

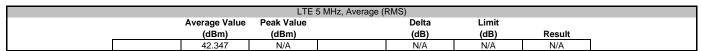
The spectrum analyzer settings were as follows:

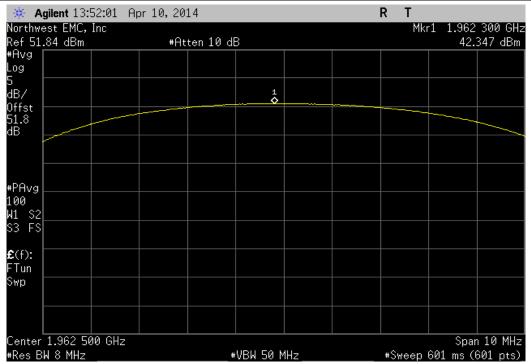
Span set to encompass the entire emission bandwidth, centered on the transmit channel.

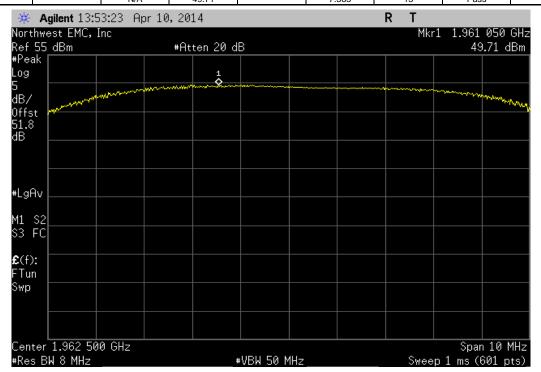

The largest difference between the following two screen captures was calculated:

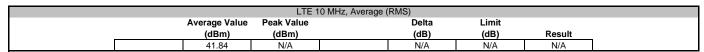

>1st Screen Capture: The same procedure and settings as was used for conducted Output Power.

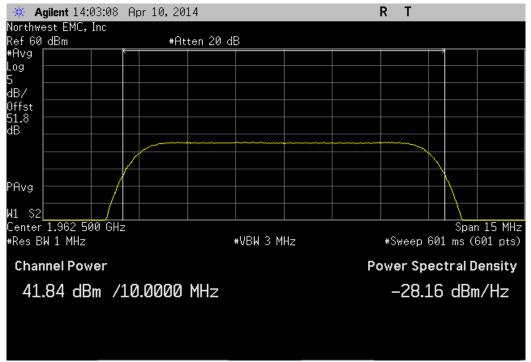
>2nd Screen Capture: Same as Screen capture 1 except using a peak detector and trace max-hold.


FUT								
	T: Prism HDM 800 MHz/1900	MHZ SISO RF Module					er: TECO0013	
Serial Number							te: 04/09/14	
	r: TE Connectivity / ADC Tel	ecommunications				Temperatu		
Attendees							ty: 21%	
	t: None					Barometric Pre		
	y: Trevor Buls		Power	110VAC/60Hz		Job S	te: MN08	
EST SPECIFICAT	TIONS			Test Method				
CC 24E:2014				ANSI/TIA/EIA-603-C	C-2004			
OMMENTS	_		_			_		
ustomer provide	ed a high wattage 30 dB atte	nuator that was added int	to the reference level offset.					
	OM TEST STANDARD							
DEVIATIONS FRO	DM TEST STANDARD							
lone	OM TEST STANDARD	Signature	Trevor	Bul	2			
lone	DM TEST STANDARD	Signature	Trevor	B ul	Peak Value	Delta	Limit	
lone	DM TEST STANDARD	Signature	Trevor			Delta (dB)	Limit (dB)	Result
	OM TEST STANDARD	Signature	Trevor	Average Value	Peak Value			Result
Configuration #	1	Signature	Trevor	Average Value	Peak Value			Result N/A
Configuration #	1 Average (RMS)	Signature	Trevor	Average Value (dBm)	Peak Value (dBm)	(dB)	(dB)	
onfiguration #	1 Average (RMS)	Signature	Trevor	Average Value (dBm) 42.148	Peak Value (dBm)	(dB)	(dB)	N/A
onfiguration #	Average (RMS)	Signature	Trevor	Average Value (dBm) 42.148	Peak Value (dBm)	(dB)	(dB)	N/A
one onfiguration#	1 Average (RMS)	Signature	Trevo	Average Value (dBm) 42.148 N/A	Peak Value (dBm) N/A 48.1	(dB) N/A 5.952 N/A	(dB) N/A 13	N/A Pass N/A
one configuration # DMA TE 5 MHz	Average (RMS) Peak Average (RMS)	Signature	Trevor	Average Value (dBm) 42.148 N/A 42.347	Peak Value (dBm) N/A 48.1	(dB) N/A 5.952	(dB) N/A 13 N/A	N/A Pass
ione Configuration #	Average (RMS) Peak Average (RMS)	Signature	Trevor	Average Value (dBm) 42.148 N/A 42.347	Peak Value (dBm) N/A 48.1	(dB) N/A 5.952 N/A	(dB) N/A 13 N/A	N/A Pass N/A




		CDMA, Peak			
Average Value	Peak Value		Delta	Limit	
(dBm)	(dBm)		(dB)	(dB)	Result
N/A	48 1		5 952	13	Pass






		LTE 5 MHz, Peak			
Average Value	Peak Value		Delta	Limit	
(dBm)	(dBm)		(dB)	(dB)	Result
N/A	49 71		7 363	13	Pass

		LTE 10 MHz, Peak	(
Average Value	Peak Value		Delta	Limit	
(dBm)	(dBm)		(dB)	(dB)	Result
N/A	45.22		3.38	13	Pass

