

Perfect Wireless Experience 完美无线体验

FIBOCOM H330S Hardware User Manual

Version : V1.2.2 Date : 2018-12-22

Applicability Type

No.	Туре	Note
1	H330S-Q50-00	
2	H330S-Q30-00	NA
3	H330S-A30-00	NA
4	H330S-A50-00	NA
5	H330S-A30-20	NA
6	H330S-A50-20	Only MiniPCIe
7	H330S-Q50-20	Only MiniPCIe
8	H330S-Q30-20	NA
9	H330S-Q30-10	NA
10	H330-A30-80	NA
11	H330S-A30-90	NA
12	H330S-Q30-90	NA

The difference of H330S series wireless module as listed below:

Turne	GSM/GPRS/EDGE	WCDMA	Audio		HSDPA	HSUPA
туре	Band(MHz) Band(MHz)		Analog	Digital	(Mbps)	(Mbps)
H330S-Q50-00	850/900/1800/1900	850/900/1900/2100			21	5.76
H330S-Q30-00	850/900/1800/1900	850/900/1900/2100			7.2	5.76
H330S-Q30-90	850/900/1800/1900	850/900/1900/2100			7.2	5.76
H330S-A30-00	900/1800	900/2100	support	Support	7.2	5.76
H330S-A50-00	900/1800	900/2100			21	5.76
H330-A30-80	900/1800	900/2100			7.2	5.76
H330S-A30-90	900/1800	900/2100			7.2	5.76
H330S-A30-20	900/1800	300 900/2100			7.2	5.76
H330S-A50-20	900/1800	900/2100	No	No	21	5.76
H330S-Q50-20	850/900/1800/1900	850/900/1900/2100	Support	Support	21	5.76
H330S-Q30-20	850/900/1800/1900	850/900/1900/2100			7.2	5.76

Turne	GSM/GPRS/EDGE	WCDMA	Audio		HSDPA	HSUPA
туре	Band(MHz)	Band(MHz)	Analog	Digital	(Mbps)	(Mbps)
H330S-Q30-10	850/900/1800/1900	850/900/1900/2100	No Support	Support	7.2	5.76

Copyright

Copyright ©2018 Fibocom Wireless Inc . All rights reserved.

Without the prior written permission of the copyright holder, any company or individual is prohibited to excerpt, copy any part of or the entire document, or transmit the document in any form.

Attention

The document is subject to update from time to time owing to the product version upgrade or other reasons. Unless otherwise specified, the document only serves as the user guide. All the statements, information and suggestions contained in the document do not constitute any explicit or implicit guarantee.

Trademark

Fibocom

The trademark is registered and owned by Fibocom Wireless Inc.

Versions

Version	Date	Remarks					
V1.1.1	2015-01-30	Update the range of operating temperature.					
V1.1.2	2015-04-21	Add the description of "Top View" in PCB Layout					
V1 1 3	2015-05-10	Update the description of copyright and attention.					
V1.1.5	2010-00-10	Update the translation of the whole document.					
V1.1.4	2015-07-27	Update the info of H330S and the logo.					
V1.1.5	2015-09-22	Update the 12C and 12S description of H330S-XXX-20					
V1.1.6	2015-11-17	Update the maximum operating voltage to 4.2V					
V1.1.7	2016-06-17	Add the H330S-Q30-20					
V1.1.8	2016-11-29	Modify the description of VSPK					
V1.1.9	2016-12-08	Add the H330-A30-80					
V1.2.0	2016-12-30	Add the H330S-Q30-10, H330S-A30-90					
V1.2.1	2018-04-28	Add the H330S-Q30-90					
		Update 1.2 Reference Standards					
V/1 2 2	2018 12 22	Delete 5.1.3 VIO, add 5.1.2 Logic Level					
V1.2.2	2018-12-22	Add 5.1.3 Power Consumption Max Value, update Typical Value					
		Add 7.2 Transmitting Power and 7.3 Receiver Sensitivity					

Fibocom Contents

1	Foreword	. 12
	1.1 Introduction	. 12
	1.2 Reference Standards	. 12
2	Product Overview	. 14
	2.1 Description	. 14
	2.2 Specifications	. 14
	2.3 Appearance	. 16
3	Structure	. 17
	3.1 Dimension Diagram of Structure	. 17
	3.2 PCB Layout Design	. 17
4	Hardware Introduction	. 18
	4.1 Hardware Block Diagram	. 18
	4.2 Pin Definition	. 19
	4.2.1 Pin Map	. 19
	4.2.2 Description of Pins	. 19
5	Hardware Interface	. 26
	5.1 Power Interface	. 26
	5.1.1 Power Supply	. 26
	5.1.2 Logic level	. 26
	5.1.3 Power Consumption	. 27
	5.1.4 VRTC	. 29
	5.2 Power on/off and Reset Signal	. 30
	5.2.1 Pin Definition of Power on/off Control Signal	. 30
	5.2.2 Power on Signal	. 30
	5.2.3 Power off Signal	. 31
	5.2.4 Reset Signal	. 32
	5.3 Status Indicating Signal	. 33
	5.3.1 LPG Signal	. 33
	5.3.2 SMI Signal	. 34
	5.3.3 WAKE_UP Signal	. 34
	5.3.4 Other Work Indications	. 34
	5.4 USB Interface	. 35

	5.4.1 USB Interface Definition	35
	5.4.2 USB Interface Application	35
	5.5 UART Interface	36
	5.5.1 UART Interface Description	36
	5.5.2 UART Interface Application	37
	5.5.3 Ring Indication	38
	5.6 USIM Interface	38
	5.6.1 USIM Pins	38
	5.6.2 USIM Design	39
	5.6.3 Points for Attention in USIM Design	39
	5.6.4 USIM Hot-Plugging	40
	5.6.4.1 Hardware Connection	40
	5.6.4.2 Software Settings	40
	5.7 Analog Audio Interface	41
	5.7.1 Definition of Audio Interface Signals	41
	5.7.2 Description of Audio Interface Application	41
	5.7.2.1 Audio Channel 1	42
	5.7.2.2 Audio Channel 2	42
	5.8 Digital Audio	43
	5.8.1 I2S	43
	5.8.2 I2C	43
	5.8.3 PCM Port Description	44
	5.9 ADC Interface	44
	5.10 Other Interfaces	44
6	Electrical and Environmental Features	45
	6.1 Electrical Features	45
	6.2 Environmental Features	45
7	RF Interface	45
	7.1 Operating Frequency Band	45
	7.1.1 Frequency Range of Main Antenna	45
	7.2 Transmitting Power	46
	7.3 Receiver Sensitivity	46
	7.4 RF PCB Design	47
	7.4.1 Wiring Principle	47

47
47
47
47
48
48
48

Federal Communication Commission Interference Statement

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

FCC Caution:

- Any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate this equipment.
- This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.

Radiation Exposure Statement:

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with <u>minimum distance 20cm</u> between the radiator & your body.

This device is intended only for OEM integrators under the following conditions:

- 1) The antenna must be installed such that 20 cm is maintained between the antenna and users, and the maximum antenna gain allowed for use with this device is -1 dBi.
- 2) The transmitter module may not be co-located with any other transmitter or antenna.

As long as 2 conditions above are met, further <u>transmitter</u> test will not be required. However, the OEM integrator is still responsible for testing their end-product for any additional compliance requirements required with this module installed

IMPORTANT NOTE: In the event that these conditions <u>can not be met</u> (for example certain laptop configurations or co-location with another transmitter), then the FCC authorization is no longer considered valid and the FCC ID <u>can not</u> be used on the final product. In these circumstances, the OEM integrator will be responsible for re-evaluating the end product (including the transmitter) and obtaining a separate FCC authorization.

End Product Labeling

This transmitter module is authorized only for use in device where the antenna may be installed such that 20 cm may be maintained between the antenna and users. The final end product must be labeled in a visible area with the following: "**Contains FCC ID: ZMOH330S**". The grantee's FCC ID can be used only when all FCC compliance requirements are met.

Manual Information To the End User

The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module in the user's manual of the end product which integrates this module. The end user manual shall include all required regulatory information/warning as show in this manual.

Innovation, Science and Economic Development Statement

• This device complies with ISED Innovation, Science and Economic Development license-exempt RSS standard(s). Operation is subject to the following two conditions:

- 1) this device may not cause interference, and
- 2) this device must accept any interference, including interference that may cause undesired operation of the device.
- Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes:
 - 1) l'appareil ne doit pas produire de brouillage, et
 - 2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.
- This Class B digital apparatus complies with Canadian ICES-003.
- Cet appareil numérique de la classe B est conforme à la norme NMB-003 du Canada.
- This device and its antenna(s) must not be co-located or operating in conjunction with any other antenna or transmitter, except tested built-in radios.
- Cet appareil et son antenne ne doivent pas être situés ou fonctionner en conjonction avec une autre antenne ou un autre émetteur, exception faites des radios intégrées qui ont été testées.
- O The County Code Selection feature is disabled for products marketed in the US/ Canada.
- La fonction de sélection de l'indicatif du pays est désactivée pour les produits commercialisés aux États-Unis et au Canada.

Radiation Exposure Statement:

This equipment complies with IC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20cm between the radiator & your body.

End Product Labeling:

This transmitter module is authorized only for use in device where the antenna may be installed such that 20 cm may be maintained between the antenna and users. The final end product must be labeled in a visible area with the following: "Contains IC: 21374-H330S". The grantee's IC can be used only when all ISED compliance requirements are met.

Antenna Requirements :

This transmitter module(IC:21374-H330S) requires antennas of specifications of Chapter 7.5 Antenna Design of this document.Generally,50 ohm impedance is required and S11 is recommended less than -10 dB,the recommended antenna gain should be no bigger than 2.5 dBi.Antenna types that do not meet these requirement are strictly prohibited for use with this device.

1 Foreword

1.1 Introduction

The document describes the electrical characteristics, RF performance, dimensions and application environment, etc. of H330S series wireless modules. With the assistance of the document and other instructions, developers can quickly understand the performance of H330S series wireless modules and develop products.

1.2 Reference Standards

The design of the product complies with the following standards:

- 3GPP TS 27.007 -v6.9.0: AT command set for User Equipment (UE)
- 3GPP TS 27.005 -v6.0.1: Use of Data Terminal Equipment -Data Circuit terminating Equipment (DTE-DCE) interface for Short Message Service (SMS) and Cell Broadcast Service (CBS)
- 3GPP TS 23.040 -v6.9.0: Technical realization of Short Message Service (SMS)
- 3GPP TS 24.011 -v6.1.0: Point- to Point (PP) Short Message Service (SMS) support on mobile radio interface
- 3GPP TS 27.010 -v6.0.0: Terminal Equipment to User Equipment (TE-UE) multiplexer protocol
- 3GPP TS 27.060 -v6.0.0: Packet domain; Mobile Station (MS) supporting Packet Switched services
- 3GPP TS 25.304-v6.10.0: User Equipment (UE) procedures in idle mode and procedures for cell
 reselection in connected mode
- 3GPP TS 34.121-1 V7.5.0: Technical Specification; Radio transmission and reception (FDD); Part 1: Conformance specification
- 3GPP TS 25.308 -v6.4.0: High Speed Downlink Packet Access (HSDPA); Overall description; Stage 2
- 3GPP TS 25.309 -v6.6.0: FDD enhanced uplink; Overall description; Stage 2
- 3GPP TS 23.038 -v6.1.0: Alphabets and language specific information
- 3GPP TS 21.111 -v6.3.0: USIM and IC card requirements
- 3GPP TS 31.111 -v6.11.0 "USIM Application Toolkit (USAT)"
- 3GPP TS 45.002 -v6.12.0: Multiplexing and multiple access on the radio path
- 3GPP TS 51.014 -v4.5.0: Specification of the SIM Application Toolkit for the Subscriber Identity
 Module Mobile Equipment (SIM-ME) interface

- 3GPP TS 51.010 -1 -v6.7.0: Mobile Station (MS) conformance specification; Part 1: Conformance specification
- 3GPP TS 22.004 -v6.0.0: General on supplementary services
- 3GPP TS 23.090 -v6.1.0: Unstructured Supplementary Service Data (USSD); Stage 2
- 3GPP TS 24.008 v6.19, Mobile radio interface Layer 3 specification;

2 **Product Overview**

2.1 Description

H330S series modules are 3G wireless modules with high integration density, supporting GSM/GPRS/ EDGE and UMTS/HSDPA/HSUPA/HSPA+.

2.2 Specifications

Specifications								
Operating	UMTS (WCDMA/FDD): 850/900/1900/2100 MHz or 900/2100MHz							
Frequency GSM/GPRS/EDGE: 850/900/1800/1900 MHz or 900/1800MHz								
	UMTS/HSDPA/HSUPA 3GPP release 7							
	HSUPA 5.76Mbps (Cat 6)							
	HSDPA 21Mbps (Cat 14) or 7.2Mbps (Cat 8)							
Data Rate	GSM 3GPP release 7							
	EDGE (E-GPRS) multi-slot class 33 (296kbps DL, 236.8kbps UL)							
	GPRS multi-slot class 33 (107kbps DL, 85.6kbps UL)							
Operating Voltage	Voltage: 3.3V ~ 4.2V Typical: 3.8V							
	Dimension: 33.8 x 27.8 x 2.45mm							
Physical	Interface: LGA							
Characteristics	Weight: About 5.5 g							
	Normal operating Temperature: -30°C ~ +75°C							
Environment	Restricted operating temperature ¹ : -40°C \sim +85°C							
	Storage Temperature: -40°C ~ +85°C							
Interfaces								
Rf Interface	Main Antenna							
	1 x USB 2.0, 2 x UART, MUX Over UART1, Multiple Profiles over USB							
	SPI Support (Not supported yet), I2C Support2, I2S Support2							
	HSIC, GPIO, A/D, RTC							

Data Features						
Protocol Stack	Embedded TCP/IP and UDP/IP protocol stack					
FDOF	Multi-slot class 33(5 Down; 4 Up; 6 Total)					
EDGE	Coding Scheme MCS1~9					
CDDS	Multi-slot class 33(5 Down; 4 Up; 6 Total)					
GFRS	Coding Scheme CS1~4					
CSD	UMTS(14.4kbps), GSM(9.6kbps)					
USSD	Support					
SMS	MO / MT Text and PDU modes					
51415	Cell broadcast					
	Analog Audio and Digital Audio [®]					
Audio	Voice coders: EFR/HR/FR/AMR					
Audio Frequency Control	Gain Control, Echo Cancellation, Noise Suppression, Sidetone					
	IRA					
Character Set	GSM					
Character Set	UCS2					
	HEX					
	FIBOCOM proprietary AT commands					
AT Commands	GSM 07.05					
	GSM 07.07					
	Firmware Loader Tool over USB/UART					
Accessories	User Manual					
	Developer Kit					

Note:

(1) : For the temperature is out of the normal temperature range: -30°C \sim +75, some indexes may slightly deviate from the related 3GPP codes.

2: H330S-XXX-20 serials module does not support Audio.

H330S-XXX-10 serials module support Digital Audio, and does not support Analog Audio.

Fibocon 2.3 Appearance

The product appearance of H330S series wireless module is shown as below:

Top view:

3 Structure

3.1 Dimension Diagram of Structure

3.2 PCB Layout Design

4 Hardware Introduction

4.1 Hardware Block Diagram

Figure 4-1 Block Diagram

4.2 Pin Definition

4.2.1 Pin Map

TOP (View) Figure 4-2 Pin Diagram

4.2.2 Description of Pins

The logic signal lever of H330S series is 1.8V. Pins of H330S series are described in the table below:

Pin #	Pin Name	I/O	Reset Value	ldle Value	Description		
Power Supply							
59	VBAT	Ι					
60	VBAT	Ι			Main power supply, voltage range: 3.3V ~		
61	VBAT	Ι			4.2V.		
62	VBAT	Η					
64	VPA	0			Test pin for power supply of RF power amplifier .Idle state in actual use.		
1		0			Test pin for transceiver power supply .		
I	VIKA	0			Idle state in actual use		
46	VIO	0			1.8V voltage output inside the modules.		
47	VRTC	I/O			Backup battery input/output.		
Power	ON/OFF Signal						
48	POWER_OFF	-	PU	PU	Power off control signal, internal 4.7K pull-up resistor		
49	POWER_ON) _	PU	PU	Power on control signal, internal 200K pull-up resistor		
Reset	Signal						
77	RESET_ALL_N	-	PU	PU	External reset signal input, internal 200K pull-up resistor		
USIM II	nterface		-		-		
4					Insert USIM card to test; active low;		
4		1	FU	FU	Internal 390K pull-up resistor.		
5	USIM_VCC	0			USIM card power supply: 1.8V or 3.0V		
6	USIM_RST	0	PP	PP	USIM card reset signal.		
7	USIM_CLK	0	PP	PP	USIM card clock signal.		
8	USIM_DATA	I/O	PU	PU	USIM card data signal, internal 4.7K pull-up resistor.		
High S	High Speed SIM Interface						

Pin #	Pin Name	I/O	Reset Value	ldle Value	Description
٩					High speed SIM card USB signal +
9					(Temporarily not supported)
10	USIM D-				High speed SIM card USB signal -
					(Temporarily not supported)
Audio I	nterface				1
13	AUXO+	0			Speaker output signal +
14	AUXO-	0			Speaker output signal -
15	EAR-	0			Earphone signal output -
16	EAR+	0			Earphone signal output +
17	MIC+	Ι			Main MIC input signal +
18	MIC-	Ι			Main MIC input signal -
19	AUXI-				Auxiliary MIC input signal -
20	AUXI+	1			Auxiliary MIC input signal +
21	AGND	GND			Analog GND
					Power supply input for the internal power
22	VSPK	Ι			amplifier of audio codec chip,
					Advise to connect VBAT.
l²S					
11	I2S2_CLK1	0	PD	PD	I2S2 serial clock SCLK1
24	I2S2_CLK0	0	T	Т	I2S2 serial clock SCLK0 (Default: CLK0)
25	I2S2_WA0	0	Т	Т	I2S2 field selection signal
26	I2S2_TX	0	Т	Т	I2S2 serial data output
27	I2S2_RX	I	Т	Т	I2S2 serial data input $^{^{(3)}}$
USB					
31	USB_DP	I/O			USB data signal+
32	USB_DM	I/O			USB data signal-
33	USB_ID				USB ID signal
34	VUSB	Ι			USB Power Input

Pin #	Pin Name	I/O	Reset Value	ldle Value	Description			
92	USB_TEST				USB TEST signal			
I ² C	I ² C							
28	I2C_SDA	I/O	PU	PU	I2C data signal line, Internal 1K pull-up resistor [®]			
29	I2C_SCL	0	PU	PU	I2C clock signal line, Internal 1K pull-up resistor.			
UART1	-			-	-			
35	UART1_RI	0	L	L	UART1 Ring Indicator			
36	UART1_DSR	Ι	Т	т	UART1 DTE Ready			
37	UART1_DTR	0	Н	Н	UART1 DCE Ready			
38	UART1_DCD	0	L		UART1 Carrier Detect			
39	UART1_CTS		PU	PU	UART1 Clear To Send			
40	UART1_RTS	0	4	L	UART1 Request To Send			
41	UART1_TXD	0	PP	PP	UART1 Transmitted Data			
42	UART1_RXD	\mathbf{r}	PU	PU	UART1 Received Data			
UART2								
45	UART2_TXD	0	PP	PP	UART2 Transmitted Data			
44	UART2_RXD	Ι	PU	PU	UART2 Received Data			
ADC								
50	ADC2	1			ADC2, input voltage range:0~1.2V			
51	ADC1				ADC1, input voltage range:0~1.2V			
EINT								
56	WAKE_UP	Ι	PU	PU	Interrupt of external wake-up, active low.			
57	EINT2	Ι	PU	PU	External interrupt, active low.			
USB H	SIC							
90					HSIC USB data signal line			
30					(not supported)			
91	HSIC_USB_STRB				HSIC USB pulse signal line			

Pin #	Pin Name	I/O	Reset Value	ldle Value	Description
					(not supported)
Antenn	a				
67	ANT_MAIN	I			Main antenna interface,impedance requirement: 50 ohm.
71	ANT_DIV	I			Only supported by some models
Others					
3	DSP_AUDIO_IN1	0	Н	Н	GPIO . Used for HSIC IPC in special software versions
54	CLKOUT0	0	PP	PP	Digital audio clock output
89	SMI	0	L		Sleep Mode Indicator
86	LPG	0			Status indicator
NC					
23	NC				
55	NC				
52	NC				
53	NC				
73	NC				
74	NC		2		
75	NC				
76	NC				
78	NC				
79	NC				
80	NC				
81	NC				
82	NC				
83	NC				
84	NC				
85	NC				

Pin #	Pin Name	I/O	Reset	Idle	Description
			Value	Value	
87	NC				
88	NC				
94	NC				
95	NC				
96	NC				
101	NC				
105	NC				
106	NC				
107	NC				
108	NC				
GND					
2	GND				
12	GND				
30	GND				
43	GND				
58	GND				
63	GND				
65	GND				
66	GND				
68	GND				
69	GND				
70	GND				
72	GND				
93	GND				
97	GND				
98	GND				
99	GND				
100	GND				

Pin #	Pin Name	I/O	Reset Value	ldle Value	Description
102	GND				
103	GND				
104	GND				
109	GND				
110	GND				
111	GND				
112	GND				
113	GND				
114	GND				
115	GND				
116	GND				
117	GND				
118	GND				
119	GND				
120	GND				

H: High Voltage Level

L: Low Voltage Level

- PD: Pull-Down
- PU: Pull-Up
- T: Tristate
- OD: Open Drain
- PP: Push-Pull

Note:

③: the pin28(I2C_SDA) and pin27(I2S2_RX) of the H330S-XXX-20 series is floating, please don not use.

5 Hardware Interface

5.1 Power Interface

5.1.1 Power Supply

H330S modules require 3.3V~4.2V direct current power supply, which can provide the maximum GSM emission current of 2A.

Input power supply requirements:

Parameter	Minimum Value	Recommended Value	Maximum Value	Unit
VBAT	3.3	3.8	4.2	V

Points for attention in design:

- 1. Supply voltage fluctuation shall be lower than 300mV.
- 2. Minimum supply voltage drop shall be higher than 3.3V.

Filter capacitor of supply circuit is designed as follows:

Recommended capacitor	Application	Description
1000uF	Supply capacitance	Reduce power-supply fluctuation during phone call. The capacitance value bigger is better
10nF, 100nF	Digital signal noise	Filter the interference caused by clock and digital signals
8.2pF, 10pF	1800/1900/2100 MHz	Filter RF interference
33pF, 39pF	850/900 MHz	Filter RF interference

5.1.2 Logic level

As the power supply for the digital circuit inside the module, VIO can be used as the status indicator and digital signals reference level of the module.

The H330S module 1.8V logic level definition as shown in the following table:

Parameters	Minimum	Typical	Maximum	Unit
1.8V logic level	1.773	1.8	1.827	V

Parameters	Minimum	Typical	Maximum	Unit
VIH	1.3	1.8	1.89	V
VIL	-0.3	0	0.3	V

5.1.3 Power Consumption

Parameter	Description	Condition		Typical Value	Max Value	Unit
I _{OFF}	RTC mode			67	80	uA
I _{IDLE}	Idla moda	GSM		14.3	18	mA
		WCDMA		14.8	18	
		DRX	2	2.5	5	
	Low power mode(GSM)	DRX	5	2.1	5	
		DRX	9	2.0	5	
I _{SLEEP}	Low power	DRX	6	2.9	5	mA
	mode(WCDM	DRX	8	2.3	5	
	A)	DRX	9	2.2	5	
	Radio Off	AT+CFUN=4,Flight mode		2.1	3	
		GSM850 PCL	5	300	360	
			10	110	160	
			19	65	120	
		EGSM900 PCL	5	310	380	-
			10	110	160	
	GSM voice -		19	65	120	mΑ
IGSM-RMS	1 Rx slot		0	260	300	
		DCS1800 PCL	5	120	150	
			15	90	120	
			0	260	300	
		PCS1900 PCL	5	120	150	
			15	90	120	
I _{GPRS-RMS}	GPRS Class	GSM850	5	520	560	mA

Parameter	Description	Condition		Typical Value	Max Value	Unit
	33 - 4 TX slot	PCL	10	260	300	
1	1 Rx slot	EGSM900	5	540	580	
		PCL	10	260	300	
		DCS1800	0	360	400	
		PCL	10	125	150	
		PCS1900	0	390	420	
		PCL	10	125	160	
		GSM850	8	600	650	
		PCL	15	140	180	
	FGDRS	EGSM900	8	580	620	
	Class 33 -	PCL	15	160	200	mA
IEGPRS-RMS	4 TX slot 1 Rx slot	DCS1800 PCL	2	385	420	
			10	135	180	
		PCS1900 PCL	2	575	620	
			10	135	180	1
	Peak current During TX slot	GSM850 PCL	5	2100	2300	
			10	540	700	
		EGSM900	5	2200	2400	
		PCL	10	600	700	mA
IGSM-MAX		DCS1800	0	1550	1700	
		PCL	5	540	700	
		PCS1900	0	1600	1800	
		PCL	5	540	700	
		Band5	22.5dBm	535	560	
		(850)	0dBm	170	200	
huoru sus	WCDMA	Band2	22.5dBm	670	700	mA
WCDMA-RMS		(1900)	0dBm	170	200	
		Band1	22.5dBm	700	730	1
		(2100)	0dBm	170	200	1

Parameter	Description	Condition		Typical Value	Max Value	Unit
		Band8	22.5dBm	605	650	
	(900)	0dBm	165	200		

Note:

The data above is an average value obtained by testing some samples.

5.1.4 VRTC

VRTC is the power supply of the RTC inside the module, and it can be used as the backup power signal as well.

Parameters	Minimum Value	Recommended Value	Maximum Value	Unit
VRTC output voltage	1.71	1.8	1.89	V
VRTC input voltage	0.5	10	1 90	V
(RTC is in normal)	0.5	1.0	1.09	V
VRTC input current			10	
(RTC is in normal)			1.0	uA

The reference design of VRTC circuit is as follows:

Figure 5-1 VRTC Reference Design

- R8 is a current-limiting resistor, used to ensure the VRTC module works properly, free from being affected by peripheral circuits. R8≥1k ohm
- VRTC power consumption current<1uA

• The value of C9 will affect the retaining time of RTC after VBAT powers off. The retaining time of RTC can be roughly calculated by the following formula:

T= (1.8-0.5)*C/1=1.3C, unit: second. Namely, if the value of C9 is 100uF, the retaining time of RTC will be around 130s.

5.2 Power on/off and Reset Signal

5.2.1 Pin Definition of Power on/off Control Signal

H330S wireless modules provide three control signals to start up, shut down, and reset the modules.

Pins definition as listed below :

Pin#	Pin Name	Electrical Level	Description
48	POWER_OFF	CMOS 1.8V	Power off signal
49	POWER_ON	CMOS 1.8V	Power on signal
77	RESET_ALL_N	CMOS 1.8V	External reset signal input

5.2.2 Power on Signal

After the module is connected to the power supply, the user can start up the module by setting low POWER_ON signal low.

Timing sequence requirement of the startup pulse:

Parameter	Minimum Value	Typical Value	Maximum Value	Unit
Pulse Width	100	300	3000	ms

The timing sequence control is shown in the diagram below:

Figure 5-2 Timing Control

The recommended design of POWER_ON signal is as follows:

Figure 5-3 POWER_ON Reference Design

5.2.3 Power off Signal

When setting POWER_OFF signal low, the module's PMU (Power Management Unit) will be reset. Then, the module will turn to shutdown state from operation state. The timing sequence requirements of the pulse are as follows:

Parameter	Minimum Value	Typical Value	Maximum Value	Unit
Pulse Width	100	300	3000	ms

The timing sequence control is shown in the diagram below:

The recommended design of POWER_OFF signal is as follows:

Figure 5-5 POWER_OFF Reference Design

5.2.4 Reset Signal

H330S wireless modules support external reset function. It is feasible to reset the module back to the original state by the Reset Signal.

When setting the Reset Signal low for 100ms, the module will be reset and restarted. When the user uses the Reset function, the PMU inside the module will not lose power.

Note:

Reset signal is a sensitive signal line. In designing PCB layout, please keep the line away from RF interference, and make it well wrapped with ground wire. And it is advised to add an anti-shaking capacitor at the place close to the module end.

The timing sequence requirements of its pulse are as follows:

Parameters	Minimum Value	Typical Value	Maximum Value	Unit
Pulse Width	100	300	3000	ms

Recommended design:

Figure 5-6 Reset Recommended Design

5.3 Status Indicating Signal

The pins of status indicating signal as listed below:

Pin#	Pin Name	Description
86	LPG	Status indicating
89	SMI	Sleep Status indicating
56	WAKE_UP	Sleep wake-up pin
1	VTRX	Transceiver power supply signal, indicating the power status of the transceiver
64	VPA	Power supply signal of RF power amplifier
5.3.1 LPG sigr	LPG Sign	al as listed below:

5.3.1 LPG Signal

Status	Mode	
idle(unregistered)	600ms high level, 600ms low level	
idle(registered)	75ms high level, 3S low level	
Voice communication (Call)	low level	
Data communicating	75ms high level, 75ms low level	
Sleep (sleep mode)	high level	

Note:

High level voltage is 1.8V.

5.3.2 SMI Signal

SMI signal description as listed below :

Modes	Description
Sleep Mode	2.5S High; 100ms Low, repeat this
Other Mode	low level

5.3.3 WAKE_UP Signal

WAKE_UP is for waking up the module from Sleep mode, it is high level by default, but low level is activated.

Module Mode	WAKE_UP Signal	Description
Sleep	Low level	Wake up the module from Sleep mode to Idle mode
	High level	Keep the module in Sleep mode
Idle/Call	Low/High level	Keep the module in Idle/Call mode

When the module is in Sleep mode, the function of EINT1/WAKE_UP signal is as follows:

When EINT1/WAKE_UP is at low level under the control of MCU GPIO, it will wake up the module to idle mode.

When EINT1/WAKE_UP is at high level under the control of MCU GPIO, it will keep the module in sleep mode.

5.3.4 Other Work Indications

Pin Name	Electrical Level	Description	
VTRX	1.8V	Work indication of RF Transceiver PMU	
	0-51/	In transmission, output VCC; 0.65V at the lowest power; 5V at the	
VIX	0-31	largest power; 0V in the case of no transmission	

Note:

It is only used for indicating work conditions. Keep it in the idle state in actual use. It cannot be used for other purposes.

5.4 USB Interface

5.4.1 USB Interface Definition

Pin#	Pin Name	I/O	Description
31	USB_DP	I/O	USB signal+
32	USB_DM	I/O	USB signal-
33	USB_ID	—	USB ID signal (NC is recommended)
34	VUSB	I	USB power input
92	USB_TEST		USB TEST signal(NC is recommended)

H330S wireless modules support USB 2.0. Before connecting it to PC, it is necessary to install the related USB driver.

After inserting the H330S wireless modules to PC, the USB interface will work with the driver and map seven ports on PC, as follows:

- One 3G Modem/AT port for initiating data traffic
- Three ports for dispatching AT Command
- Two ports for capturing LOG information of the software
- One port reserved for future use

5.4.2 USB Interface Application

Reference Circuit Design:

Figure 5-7 USB Interface Reference Circuit Design

T101 and T102 shall be TVS with capacitance lower than 1pF; there is no specific limitation for the capacitance of T103.

VUSB pin supplies power for USB. The recommended power supply range is 2.5V ~ 5.25V. In designing VUSB, there must be input, or it cannot recognize USB port.

USB_DP and USB_DM are the high-speed differential signal line, and their highest transmission rate is 480Mbps. The following requirements should be followed in designing PCB layout.

- USB_DP and USB_DM signal lines should have the same length, and should be parallel; avoid right angle wiring;
- USB_DP and USB_DM signal lines should be wrapped with GND at the ends.
- USB2.0 differential signal line should be laid at the signal layer closest to the ground layer.
- Ensure impedance matching; impedance is required to be 90ohm.

5.5 UART Interface

5.5.1 UART Interface Description

H330S wireless modules provide two UART for the users; one is standard 8-line serial port, and the other 2-line serial port.

The 8-line serial port UART1 supports full serial port mode with flow control function, and all the AT commands. Users can download software or receive and dispatch AT through UART1. The 2-line serial port UART2 only supports part of the AT commands.

Note:

UART2 only supports the ordinary query function.

The definitions of UART1 and UART2 signal interfaces are as follows:

UART1			
Pin#	Pin Name	I/O	Description
35	UART1_RI	0	UART1 Ring Indicator
36	UART1_DSR	I	UART1 DTE Ready
37	UART1_DTR	0	UART1 DCE Ready
38	UART1_DCD	0	UART1 Carrier Detect

UART1			
Pin#	Pin Name	I/O	Description
39	UART1_CTS	I	UART1 Clear to send
40	UART1_RTS	0	UART1 Request to send
41	UART1_TXD	0	UART1 Transmitted Data
42	UART1_RXD	I	UART1 Received Data
UART2			
Pin#	Pin Name	I/O	Description
44	UART2_RXD	1	UART2 Received Data
45	UART2_TXD	0	UART2 Transmitted Data

5.5.2 UART Interface Application

Connect UART1 of H330S wireless module (DCE) to PC, and the signal direction of (DTE) is as follows:

MCU (DTE) application	Signal Direction	H330S module (DCE)
RXD		UART1_TXD
TXD	\rightarrow	UART1_RXD
RTS	\rightarrow	UART1_CTS
CTS		UART1_RTS
DSR		UART1_DTR
DTR		UART1_DSR
RI		UART1_RI
DCD		UART1_DCD

Connect UART2 of H330S wireless module (DCE) to PC, and the signal direction of (DTE) is as follows:

MCU (DTE) application	Signal direction	H330S module (DCE)
RXD		UART2_TXD
TXD	>	UART2_RXD

Note:

the high level of the module's UART interface is 1.8V. If it needs to connect it to 2.8V or 3.3V IO

interface, it is necessary to switch the level.

In design: it is recommended to use SN74LVC2G07 to switch the level from 1.8V to 3.3V. During the communication between UART1 and PC, firstly raise the level from 1.8V to 3.3V, and then, employ SP3238 to switch the level. During the communication between UART2 and PC, firstly raise the level from 1.8V to 3.3V, and then, employ SPIEX3232EEA to switch the level. Pay attention to the signal direction when switching the level.

5.5.3 Ring Indication

UART1_RI signal is used to indicate the incoming calls and SMS, and dispatch pulses to the host application.

Working modes	Status
Default status	Low level
Incoming call ring	1s high level, and 1s low level, repeat this.
New SMS	150ms pulse

5.6 USIM Interface

H330S series wireless modules support USIM and high speed SIM cards. For now, they do not support 8-line intelligent USIM.

5.6.1 USIM Pins

Pin#	Pin Name	I/O	Function Description
5	USIM_VCC	0	USIM power supply signal
6	USIM_RST	0	USIM Reset signal
7	USIM_CLK	0	USIM clock signal
8	USIM_IO	I/O	USIM data signal
12	GND	GND	USIM ground signal
			USIM Plug-in detection signal
4 USIM_CD		I	The internal module has been pulled up.
			High level indicates that SIM card is not inserted.
			Low level indicates that card is inserted.

5.6.2 USIM Design

Reference Circuit Design:

Figure 5-8 USIM Interface Reference Circuit

Note:

- In order to improve EMC performance, the SIM card slot should be close to the module to the largest extent.
- The filter capacitor on the SIM-card signal circuit should be placed close to SIM card pin to the largest extent.
- ESD device (like TVS) shall be added to the SIM-card signal circuit protection. ESD device should be placed close to SIM card pin.
- USIM_IO has been pulled up inside the module. No need to pull it up again from the outside.
- USIM_CD signal connection supports hot-plugging; active low. If the module detects the signal at low level, it means there is a card in the module.

5.6.3 Points for Attention in USIM Design

SIM card interface design is very important for the normal operation of the module and SIM card.

The following points need to be complied with during the design:

- SIM card layout and wiring must keep away from EMI interference source, like RF antenna and digital switch signal.
- In order to ensure signal completeness, the wire distance between the module and SIM card should

not exceed 100mm.

- In order to avoid mutual interference, USIM_CLK and USIM_IO signals should be separated in wiring.
 It would be best to wrap them with ground wire respectively.
- SIM card signal line should be protected with ESD. These protective devices should have small capacitance (like Zener diode, etc.). Users are recommended to select ESD devices with equivalent capacitance lower than 33pF. During layout, ESD device should be close to the SIM card interface.

5.6.4 USIM Hot-Plugging

H330S supports SIM card status-detection function. This function allows the hot-plugging of SIM card.

5.6.4.1 Hardware Connection

SIM card hot-plugging function needs to work with USIM_CD signal.

USIM_CD will be at high level without SIM card; after inserting SIM card, USIM_CD will be at low level.

In fig. 5-8, USIM_CD signal line is connected to U2' s Pin8 (SW2), and Pin7 (SW1) is connected to the ground. When the SIM card is not inserted, SW2 will be at high level. When the SIM card is inserted, SW2 will be connected to SW1 and thus USIM_CD level will be pulled down.

5.6.4.2 Software Settings

"+MSMPD" configures AT command for the SIM card status-detection function.

If set AT+MSMPD=0, SIM card status-detection function will be closed, and the module will not detect USIM_CD signal.

If set AT+MSMPD=1, SIM card status-detection function will be in operation, and the module will detect if the SIM card is inserted by USIM_CD Pin.

If USIM_CD is at low level, which indicates SIM card is inserted, the module will automatically register it to the network.

If USIM_CD is at high level or unconnected, which indicates SIM card is not inserted, the module will not register it to the network.

Note:

The default of +MSMPD parameter is "0".

5.7 Analog Audio Interface

5.7.1 Definition of Audio Interface Signals

H330S wireless modules provide two channels of audio signal input and two channels of audio signal output.

Pin#	Pin Name	I/O	Description
13	AUXO+	0	Audio channel 2 output signal +
14	AUXO-	0	Audio channel 2 output signal -
15	EAR-	0	Audio channel 1 earphone signal output -
16	EAR+	0	Audio channel 1 earphone signal output +
17	MIC+	1	Audio channel 1 MIC input signal +
18	MIC-	Ŧ	Audio channel 1 MIC input signal -
19	AUXI-	1	Audio channel 2 auxiliary MIC input signal -
20	AUXI+	L	Audio channel 2 auxiliary MIC input signal +
21	AGND	GND	Audio GND
			Power supply input for audio codec chip's internal
22	VSPK		power amplifier
			Recommended to connect to VBAT

Audio signal definition:

Note:

Audio channel 2's downlink can only be used when VSPK power supply is normal. Generally, VSPK is connected directly to VBAT.

5.7.2 Description of Audio Interface Application

Audio input/output signals are differential signals that have good performance in anti-RF-interference. When connecting to the phone handle, it is not necessary to add audio power amplifier.

As to PCB layout, the wires should have the same length, and should be parallel and as short as possible. The wires should be wrapped with ground wire. The input and output signals should be separated by grounding. It would be best to add ESD protection to the audio signal port.

5.7.2.1 Audio Channel 1

Audio channel 1 is a differential audio port for calls through phone handle.

Audio channel 1: level features of MIC input interface

Parameters	Test conditions	Minimum Value	Typical Value	Maximum Value	Unit
Bias voltage	Without load		2.5	2.6	V
Gain	Programmable, stepping gain: 2dB	0		16	dB
Designed load impedance			2.2		Kohm

Audio channel 1: level features of EAR output interface:

Parameters	Test conditions	Minimum Value	Typical Value	Maximum Value	Unit
Output voltage	Without load			1.4	Vpp
Designed load			32		ohm
impedance			52		Onin
DC Bias voltage			1		V

5.7.2.2 Audio Channel 2

Audio channel 2 is a differential audio port for applicable to hands-free calls.

Parameter	Test conditions	Minimum Value	Typical Value	Maximum Value	Unit
Bias voltage	No load		2.5	2.6	V
Gain	Programmable, steps gain:2dB	0		32	dB
Load resistance			2.2		Kohm

Audio channel 2: level features of AUXI input interface:

Audio channel 2: level features of AUXO output interface:

Parameter	Test conditions	Minimum Value	Typical Value	Maximum Value	Unit
Out voltage	No load			3.8	Vpp
Load resistance			8		ohm

5.8 Digital Audio

H330S supports digital audio I2S interface that supports normal I2S mode and PCM mode. I2S interface level is 1.8V on average.

I2S signal description:

Pin#	Pin Name	I/O	Description
24	I2S2_CLK0	0	Bit Clock
25	I2S2_WA0	0	Left and right channel clock (LRCK)
26	I2S2_TX	0	Serial data output
27	I2S2_RX	I	Serial data input
28	I2C_DATA	I/O	I2C control signal input/output
29	I2C_SCL	0	I2C control clock signal
54	CLKOUT0	0	26MHz main clock output

5.8.1 I2S

H330S	Signal Direction	Audio CODEC I2S Port
I2S2_CLK0		I2S_CLK
12S2_WA0	\longrightarrow	I2S_LRCK
I2S2_RX		I2S_SDIN
I2S2_TX		I2S_SDOUT
CLKOUT0		I2S_MCLK
582 120		

5.8.2 I2C

H330S	Signal Direction	Audio CODEC I2C Port	
I2C_SDA	← →	I2C_SDA	
I2C_SCL	>	I2C_SCL	

Description:

- I2S interface can be configured as client-server work mode.
- Suitable for various audio sampling frequencies(48KHz, 44.1KHz, 32KHz, 24KHz, 22.5KHz, 16KHz, 12KHz, 11.025KHz and 8KHz).

5.8.3 PCM Port Description

H330S	Signal Direction	Audio CODEC PCM Port
I2S2_CLK0 (PCM_CLK, PCM clock signal)		PCM_CLK (PCM clock signal)
I2S2_WA0 (PCM_SYNC, PCM frame synchronization signal)		PCM_SYNC (PCM frame synchronization signal)
I2S2_RX (PCM_DIN, PCM data input)	←	PCM_DOUT (PCM data output)
I2S2_TX (PCM_DOUT, PCM data output)		PCM_DIN (PCM data input)

Note:

- PCM interface can be configured as client-server work mode.
- Support short frame synchronization at 16, 32, 48, and 64 bit mode
- Support burst and continuous mode transmission
- Suitable for various audio sampling frequencies(48KHz, 44.1KHz, 32KHz, 24KHz, 22.5KHz, 16KHz, 12KHz, 11.025KHz and 8KHz).

5.9 ADC Interface

H330S supports ADC detection, including two channels (ADC1 and ADC2), with precision of 10bit. ADC input voltage is required to be 0~1.2V.

Pin#	Pin Name	I/O	Description
50	ADC2		ADC detection channel 2
51	ADC1	1	ADC detection channel 1

ADC signal description:

5.10 Other Interfaces

The module support GPIO port when reusing with other function ports, but does not support MIPI、MMC、 DAC ports yet.

6 Electrical and Environmental Features

6.1 Electrical Features

The table below lists the range of H330S's electrical characteristics:

Parameters	Minimum Value	Maximum Value	Unit
Power supply signal	0	4.2	V
Digital signal	0	1.9	V

6.2 Environmental Features

This table below shows the environmental features of H330S.

Parameters	Minimum Value	Maximum Value	Unit
Operational Temperature	-30	+75	°C
Restricted operating temperature ⁽¹⁾	-40	+85	°C
Storage Temperature	-40	+85	°C

Note^[1]:

for the temperature is out of the normal temperature range: -30°C \sim +75, some indexes may slightly deviate from the related 3GPP codes.

7 **RF Interface**

There are small differences between different models. Please refer to the first table in chapter two.

7.1 Operating Frequency Band

7.1.1 Frequency Range of Main Antenna

Operating Band	Тх	Rx
UMTS 2100	1920–1980 MHz	2110–2170 MHz
UMTS 1900	1850–1910 MHz	1930–1990 MHz

Operating Band	Тх	Rx
UMTS 850	824–849 MHz	869–894 MHz
UMTS 900	880–915 MHz	925–960 MHz
GSM 850	824–849 MHz	869–894 MHz
GSM 900	880–915 MHz	925–960 MHz
DCS 1800	1710–1785 MHz	1805–1880 MHz
PCS 1900	1850–1910 MHz	1930–1990 MHz

7.2 Transmitting Power

The transmitting power for each band of the H330S module as shown in the following table:

Mode	Band	3GPP Requirement(dBm)	Tx Power(dBm)	Note
	GSM850	33±2	32.5±1	
0014	GSM900	33±2	32.5±1	
GSM	DCS1800	30±2	29.5±1	
	PCS1900	30±2	29.5±1	
WCDMA	Band I	24+1.7/-3.7	22.5±1	
	Band II	24+1.7/-3.7	22.5±1	
	Band V	24+1.7/-3.7	22.5±1	
	Band VIII	24+1.7/-3.7	22.5±1	

7.3 Receiver Sensitivity

The receiver sensitivity for each band of the H330S module as shown in the following table:

Mode	Band	3GPP	Rx Sensitivity(dBm)	Note
		Requirement(dBm)	Typical	
GSM	GSM850	-102	-108	BER<2.439%
	GSM900	-102	-108	BER<2.439%
	DCS1800	-102	-108	BER<2.439%
	PCS1900	-102	-108	BER<2.439%

Mode	Band	3GPP	Rx Sensitivity(dBm)	Noto
		Requirement(dBm)	Typical	NOLE
	Band I	-106.7	-109	BER<0.1%
	Band II	-104.7	-109	BER<0.1%
WCDMA	Band V	-104.7	-109	BER<0.1%
	Band VIII	-103.7	-109	BER<0.1%

7.4 RF PCB Design

7.4.1 Wiring Principle

Because H330S has no RF connector, the user needs to connect a length of RF line to the antenna, or design a connector on the board. So, it is recommended to use microstrip line for RF line. It should be as short as possible with loss controlled below 0.2dB, and impedance of 50 ohm.

Reserve a π circuit (the earth terminals of the two parallel devices should be directly connected to the main ground) between H330S module and the antenna connector (or feed point) for antenna tuning.

Figure 7-1π-type Circuit

7.4.2 Impedance Design

The impedance of RF signal line of antenna interface needs to be controlled at 50 ohm.

7.5 Antenna Design

7.5.1 Main Antenna Design Requirements

7.5.1.1 Antenna efficiency

Antenna efficiency is the ratio of the input power and radiant power. Because of the antenna's return loss, material loss and coupling loss, the radiant power is always lower than the input power. The ratio is

recommended to be > 40% (- 4dB).

7.5.1.2 S11 or VSWR

S11 shows the matching degree of the antenna' s 50 ohm impedance, which affects antenna efficiency to a certain extent. It is feasible to use VSWR testing method to measure the index. It is recommended that S11 < -10dB.

7.5.1.3 Polarization

Polarization is the rotation direction of the electric field of the antenna at the direction of the largest radiation.

It is recommended to use linear polarization; for diversity antenna, it is recommended to use different polarization directions from that of the main antenna.

7.5.1.4 Radiation pattern

Radiation pattern refers to the electromagnetic field intensity at various directions in the far field of the antenna. Half-wave doublet antenna is the perfect terminal antenna. In the case of built-in antenna, it is recommended to use PIFA.

- Antenna area: H 6mm * W 10mm * L 100mm. It is recommended to use PIFA or IFA.
- Antenna radiation direction: Omni-directional.

7.5.1.5 Gain and directivity

Antenna directivity refers to the electromagnetic field intensity at various directions of the electromagnetic wave. Gain is the combination of the antenna efficiency and antenna directivity. It is recommended that antenna gain ≤ 2.5 dBi.

7.5.1.6 Interference

In addition to antenna performance, other interference from the PCB will also affect the module performance. In order to ensure the high performance of the module, the interference must be under control. Suggestions: keep speaker, LCD, CPU, FPC wiring, audio circuit, and power supply away from the antenna; add appropriate separation and shielding devices, or conduct filtering on the path.

7.5.1.7 TRP/TIS

Recommended TRP (Total Radiated Power):

- W850/W900/W1900/W2100>19dBm
- GSM850>28dBm
- GSM900>28dBm
- DCS1800>25dBm
- PCS1900>25dBm

Recommended TIS (Total Isotropic Sensitivity) :

- W850/W900<-102dBm
- W1700/W1900/W2100<-103dBm
- GSM850<-102dBm
- GSM900<-102dBm
- DCS1800/PCS1900<-102dBm