

Please Contact with WSCT www.wsct-cert.com

TEST REPORT

FCC ID: 2ADYY-T16MAPRO **Product: Laptop Computer** Model No.: T16MA Pro **Trade Mark: TECNO** Report No.: WSCT-A2LA-R&E240300015A-LE Issued Date: 16 April 2024

Issued for:

TECNO MOBILE LIMITED FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG

Issued By:

World Standardization Certification & Testing Group(Shenzhen) Co., Ltd. Building A-B, Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL: +86-755-26996192

FAX: +86-755-86376605

Note: The results contained in this report pertain only to the tested sample. This report shall not be reproduced, except in full, without written approval of World Standardization Certification & Testing *** Group(Shenzhen) Co., Ltd. This report must not be used by the client to claim product certification, approval, or any agency of the U.S. Government.

WSET

NSET

ADD:Building A-B,Baoshi Science & Technology Park, Baoshi Road,Baoan District, Shenzhen, Guangdong, China TEL:0086-755-26996192 26996053 FAX:0086-755-86376605 E-mail:fengbing.wang@wscl-cert.com Http://www.wscl-cert.com 世标检测认证股份 World Stansfaultzation Certification & Teshn up (Shenzhen) Co., Ltd.

Member of the WSCT INC.

WSCI

1.10

Contration & Test

W5E1

BARDER COMPANY 100

dizatio

Croup (Shenzy

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

 $b \in \mathbb{R}^{n}$

ilac-MRA

For Question, Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300015A-LE

TABLE OF CONTENTS

/	
1.	Test Certification 3
2.	Test Result Summary 4
3.	EUT Description
4.	Genera Information
- /	4.1. TEST ENVIRONMENT AND MODE
1	4.2. DESCRIPTION OF SUPPORT UNITS
5.	Facilities and Accreditations7
-	5.1. FACILITIES
	5.2. ACCREDITATIONS
	5.3. MEASUREMENT UNCERTAINTY
	5.4. MEASUREMENT INSTRUMENTS
6.	Test Results and Measurement Data
	6.1. ANTENNA REQUIREMENT
7	6.2. CONDUCTED EMISSION
	6.3. CONDUCTED OUTPUT POWER
	6.4. EMISSION BANDWIDTH
	6.5. Power Spectral Density
1	6.6. CONDUCTED BAND EDGE AND SPURIOUS EMISSION MEASUREMENT
/	6.7. RADIATED SPURIOUS EMISSION MEASUREMENT

W54 Rep		R&E240300015A-LE ification
	Product:	Laptop Computer
	Model No.:	T16MA Pro
	Trade Mark:	TECNO
	Applicant:	TECNO MOBILE LIMITED
	Address:	FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG
	Manufacturer:	TECNO MOBILE LIMITED 7517 WSET
	Address:	FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG
	Date of Test:	02 April 2024 to 16 April 2024
	Applicable Standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247 KDB 558074 D01 DTS Meas Guidance v04

The above equipment has been tested by World Standardization Certification & Testing Group(Shenzhen)Co., Ltd. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By: Chen Checked By: (Wang Xiang) (Chen Xu) & Tes WSE Approved By: Date: (Liu Fuxin) ion & Tes WSET ISET ADD:Building A-B,Baoshi Science & Technology Park, Baoshi Road,Baoan District, Shenzhen, Guangdong, China TEL:0086-755-26996192 26996053 FAX:0086-755-86376605 E-mail:fengbing.wang@wscl-cert.com Http://www.wscl-cert.com 世标检测认证股份 World Start laidization Certimeans A Certification & Test ip (Shenzhen) Co., Ltd. Member of the WSCT INC. Page 3 of 45

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

For Question, Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300015A-LE

2. Test Result Summary

	AUXIMA AUXI		AVIA THE	WISTAT N
/	Requirement	CFR 47 Section	Result	
1	Antenna requirement	§15.203/§15.247 (c)	PASS	
T	AC Power Line Conducted Emission	§15.207	PASS	\checkmark
/	Conducted Peak Output Power	§15.247 (b)(3) §2.1046	PASS	WISTER
	6dB Emission Bandwidth	§15.247 (a)(2) §2.1049	PASS	
	Power Spectral Density	§15.247 (e)	PASS	
	Band Edge	1§5.247(d) §2.1051, §2.1057	PASS	WHE
	Spurious Emission	§15.205/§15.209 §2.1053, §2.1057	PASS	

Note:

ation & Tes

W5E

39 PLOM * PT

youp (Shenz)

60

Certific

dizatio

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

世标检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China

Report No.: WSCT-A2LA-R&E240300015A-LE

3. EUT Description

		Descript						www	vwsct-cert.com
_	Product:		Lapt	op Compute	er WSCI		AWSE		THE
\langle	Model No		T16	MA Pro		\times		\times	
1	Trade Ma	rk:	TEC	NO		1000	~	Antes	1
	Operation	n Frequency	/: 2402	2MHz~2480	MHz	/ siriar	1		
	Channel	Separation:	2MH	lz	X		X		\times
	Number o	of Channel:	40		AVISE		ATTA	λ	TIT
<	Modulatio Technolo		GFS	к		X		\times	
En	Antenna	Туре:	Integ	gral Antenna	a	ATER		AUGO	K
	Antenna	Gain:	2.40		V		V		
			Inpu Outp		~50/60H		-3A/15V:	3.0A	THE
< (4)	Operating	g Voltage:	PPS 3.3-2	/5A 5:3.3-11V 21V5A 1 hargeable L	00W Max	< / \		AVEN	
			Nom Rate Rate	ninal Voltage ed Capacity: ed Energy:9 ted Charge	e: 11.61V 8612mA 9.99Wh	۱h			
/	Remark:	\sim	N/A.						
1	¥	on difference	S	\wedge		\wedge			
UT	50A	nfiguration/ Processor		AWST	Ca	mera	1	WSET	A
	- Y	MA Pro (i5)	V		V	NC792	V		\bigvee
		MA Pro (i7)	\square			2B2B			\land
		(i7) has the							WEIT
	eported								
1	Operatio	n Frequenc	y each o	f channel		\wedge		\wedge	
141	Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	1
	0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz	
	1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz	X
			1000		1::		lin		
1	Mation 87esting	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz	
0	9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz	
dization Cen	Remark:	Channel 0, 1	9 & 39 ha	ave been tes	sted.	\wedge		\wedge	
Iprep	Z I	RUSIT		ATTEN	N	AVEST		AVISET	1

世标检测认证股份

Sugar compare 160

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992308 FAX-66-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http:www.wsct-cert.com

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300015A-LE

4. Genera Information

4.1. Test environment and mode

Operating Environment:

Temperature:	25.0 °C
Humidity:	56 % RH
Atmospheric Pressure:	1010 mbar

Test Mode:

Engineering mode:

Keep the EUT in continuous transmitting by select channel and modulations(The value of duty cycle is 98.46%) with Fully-charged battery.

ilac-MRA

The sample was placed (0.1m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Adapter	A879-200500C-US1		1	TECNO

Note:

MOM * P

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended

use.

S

3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

世际检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX-86-755-86376605 E-mail: Fengbing, Wang@wsci-cert.com Http://www.wsci-cert.com

For Question, Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300015A-LE

5. Facilities and Accreditations

5.1. Facilities

All measurement facilities used to collect the measurement data are located at Building A-B, Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China of the World Standardization Certification & Testing Group(Shenzhen) CO., LTD

The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 32. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.2.ACCREDITATIONS

CNAS - Registration Number: L3732

China National Accreditation Service for Conformity Assessment, The test firm Registration Number: L3732

FCC - Designation Number: CN1303

World Standardization Certification & Testing Group(Shenzhen) CO., LTD. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Designation Number: CN1303.

A2LA - Certificate Number: 5768.01

on & Tes

MOM * P

S

The EMC Laboratory has been accredited by the American Association for Laboratory Accreditation (A2LA).Certification Number: 5768.01

Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300015A-LE

5.3. Measurement Uncertainty

The reported uncertainty of measurement y ± U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

~				
2	No.	Item	MU	
	1	Conducted Emission Test	±3.2dB	
	2	RF power, conducted	±0.16dB	X
;	3.150	Spurious emissions, conducted	±0.21dB	WEIT
/	4	All emissions, radiated(<1GHz)	±4.7dB	
1	5	All emissions, radiated(>1GHz)	±4.7dB	
LU	6	Temperature	±0.5°C	
	7	Humidity	±2.0%	X
	AVET		a	WEITER
/				

mon & Tes oup (Shen

Cettific

W5E

S PHOM * PT

60

dizatio

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX-86-755-86376605 E-mail: Fengbing.Wang@wscl-cert.com Http://www.wscl-cert.com 世标检测认证股份

Page 8 of 45

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

For Question, Please Contact with WSCT www.wsct-cert.com

Member of the WSCT INC.

Report No.: WSCT-A2LA-R&E240300015A-LE

YOUP (Shenzy

60

e

W5E

SPUOM * PT

Zatio

5.4. MEASUREMENT INSTRUMENTS

NAME OF EQUIPMENT	MANUFACTURER	MODEL	SERIAL NUMBER	Calibration Date	Calibration Due.	
Test software		EZ-EMC	CON-03A	A	ATT A	
Test software	\sim	MTS8310	<u> </u>	X	-	X
EMI Test Receiver	R&S	ESCI	100005	11/05/2023	11/04/2024	
LISN	AFJ	LS16	16010222119	11/05/2023	11/04/2024	61
LISN(EUT)	Mestec	AN3016	04/10040	11/05/2023	11/04/2024	
Universal Radio Communication Tester	R&S	CMU 200	1100.0008.02	11/05/2023	11/04/2024	
Coaxial cable	Megalon	LMR400	N/A	11/05/2023	11/04/2024	>
GPIB cable	Megalon	GPIB	N/A	11/05/2023	11/04/2024	
Spectrum Analyzer	R&S	FSU	100114	11/05/2023	11/04/2024	51
Pre Amplifier	H.P.	HP8447E	2945A02715	11/05/2023	11/04/2024	
Pre-Amplifier	CDSI	PAP-1G18-38		11/05/2023	11/04/2024	
Bi-log Antenna	SCHWARZBECK	VULB9168	01488	11/05/2023	11/04/2024	
9*6*6 Anechoic	×	- X		11/05/2023	11/04/2024	>
Horn Antenna	COMPLIANCE ENGINEERING	CE18000	-	11/05/2023	11/04/2024	27
Horn Antenna	SCHWARZBECK	BBHA9120D	9120D-631	11/05/2023	11/04/2024	
Cable	TIME MICROWAVE	LMR-400	N-TYPE04	11/05/2023	11/04/2024	
System-Controller	ccs	N/A	N/A	N.C.R	N.C.R	
Turn Table	CCS	N/A	N/A	N.C.R	N.C.R	
Antenna Tower	CCS	N/A	N/A	N.C.R	N.C.R	/
RF cable	Murata	MXHQ87WA300 0		11/05/2023	11/04/2024	15
Loop Antenna	EMCO	6502	00042960	11/05/2023	11/04/2024	
Horn Antenna	SCHWARZBECK	BBHA 9170	1123	11/05/2023	11/04/2024	
Power meter	Anritsu	ML2487A	6K00003613	11/05/2023	11/04/2024	
Power sensor	Anritsu	MX248XD	<u> </u>	11/05/2023	11/04/2024	>
Spectrum Analyzer	Keysight	N9010B	MY60241089	11/05/2023	11/04/2024	
cation & Testing	ALL ALL	ALL PT			1	1-1

世标检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

For Question, Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300015A-LE

6. Test Results and Measurement Data

6.1. Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

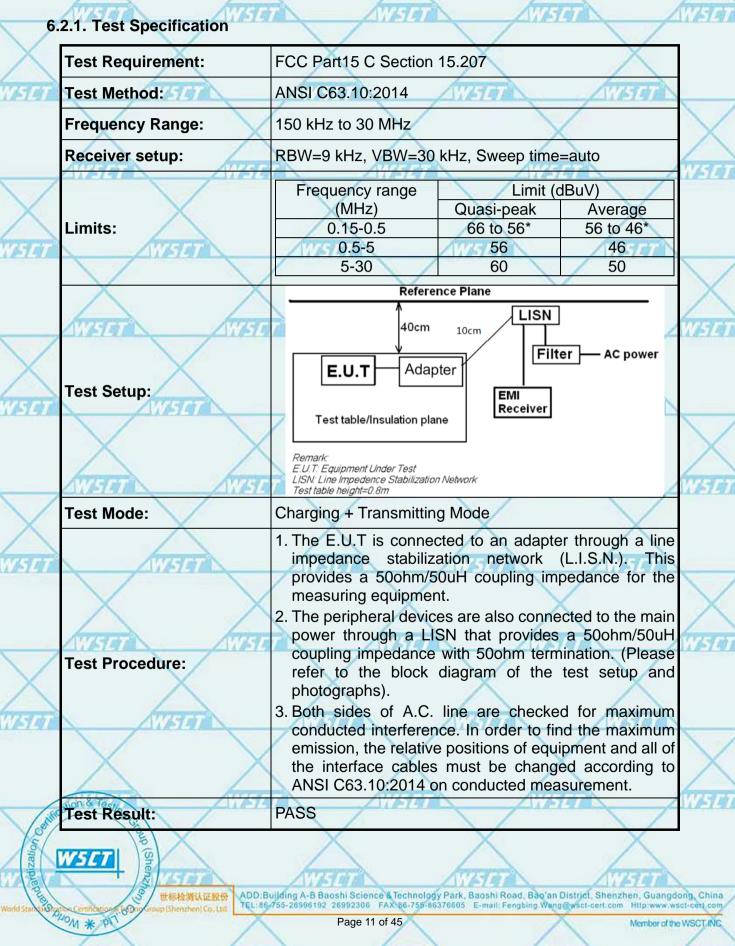
E.U.T Antenna:

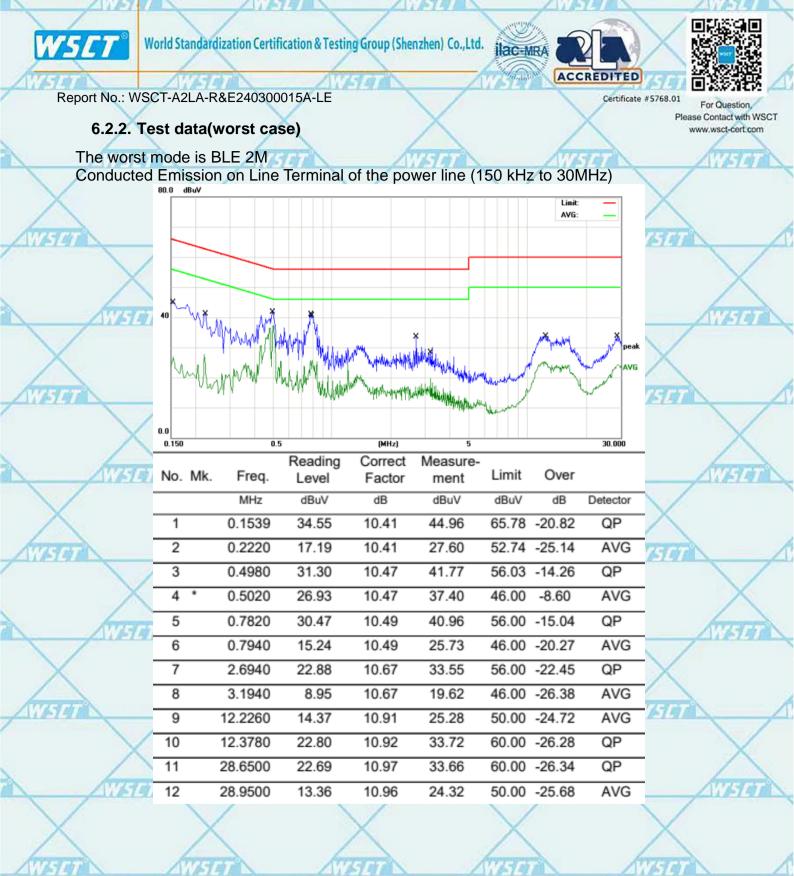
S

MOM * P

The Bluetooth antenna is a Integral Antenna. it meets the standards, and the best case gain of the antenna is 2.40dBi.

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.





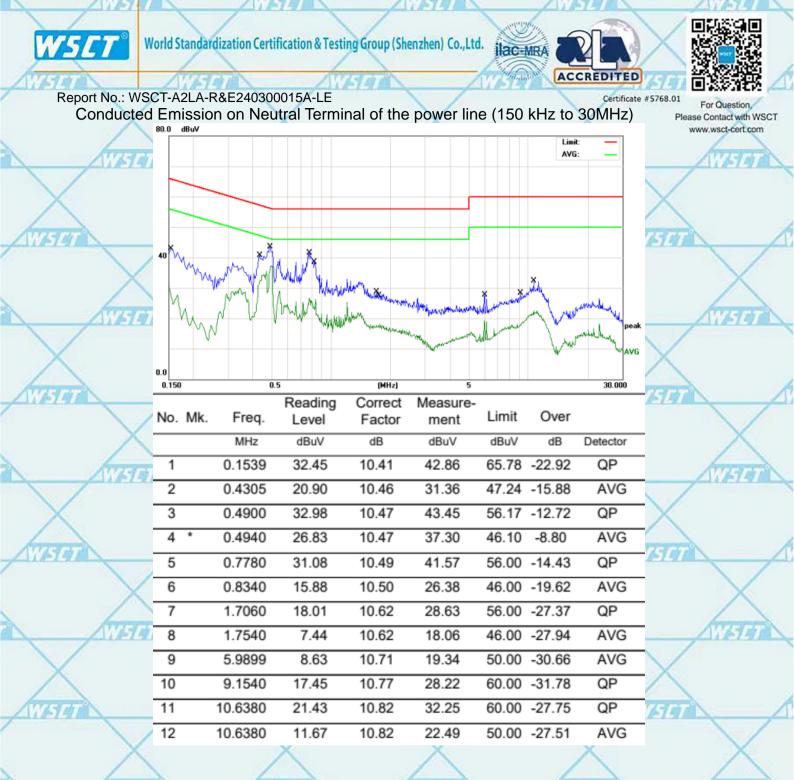
For Question, Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300015A-LE

6.2. Conducted Emission

世标检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86,755-26998192 26992308 FAX 66-755-86376605. E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

ation & Tes


S PHOM * PT

OUP

60

(Shenz

Certific

Note1:

Centifi

PHOM * PT

Freq. = Emission frequency in MHz Reading level ($dB\mu V$) = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss

Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)

Limit $(dB\mu V) = Limit$ stated in standard

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. =Quasi-Peak AVG =average

up (Sher

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

世标检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86/755-26998192 26992308 FAX 86-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

27

Contration & Test

W5E1

DUOM * PT

dizatio

aroup (Shenz)

60

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

ilac MRA

For Question Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300015A-LE

6.3. Conducted Output Power

6.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)	
Test Method:	KDB558074	
Limit:	30dBm	\mathbf{X}
Test Setup:		WISTO
	Spectrum Analyzer EUT	
Test Mode:	Refer to item 4.1	
Test Procedure:	 The testing follows the Measurement Procedure of FCC KDB No. 558074 DTS D01 Meas. Guidance v04. Set spectrum analyzer as following: a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 x RBW. c) Set span ≥ 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. 	
Test Result:	 g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level. PASS 	WEIGT

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

For Question Please Contact with WSCT

www.wsct-cert.com

15

Report No.: WSCT-A2LA-R&E240300015A-LE

6.3.2. Test Data

BLE 1M						
Test channel	Maximum Conducted Output Power (dBm)	Limit (dBm)	Result			
Lowest	6.74	30.00	PASS			
Middle	6.32	30.00	PASS			
Highest	6.55	30.00	PASS			

	BLE 2M					
Test channel	Maximum Conducted Output Power (dBm)	Limit (dBm)	Result			
Lowest	6.35577	30.00	PASS			
Middle	6.83	30.00	PASS			
Highest	5.89	30.00	PASS			

Test plots as follows:

110

Sentification & Test

W5E7

BOUON * PT

dizatio

Group (Shenzy

60

1514

世标检测认证数例 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China m(Shenzhen) Co. Lts TEL:86-755-28998192 26992308 FAX 86-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

10

tion & Tes

W51

S PUOM * PT

roup (Shenza

60

Certific

Zatio

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

Report No.: WSCT-A2LA-R&E240300015A-LE

6.4. Emission Bandwidth

For Question, Please Contact with WSCT www.wsct-cert.com

6.4.1. Test Specification	STAT AVISTAT AVISTAT	AVE
Test Requirement:	FCC Part15 C Section 15.247 (a)(2)	
Test Method:	KDB558074	
Limit:	>500kHz	
Test Setup:	Spectrum Analyzer EUT	And
Test Mode:	Refer to item 4.1	
Test Procedure:	 The testing follows FCC KDB Publication No. 5580 DTS D01 Meas. Guidance v04. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to ma an accurate measurement. The 6dB bandwidth mu be greater than 500 kHz. Measure and record the results in the test report. 	r's ke
Test Result:	PASS	X
AWSET	ANSIE ANSIE	ATEL
WSET		
AVISION AV		
WEIT		
(IIIIII	TIPIA TIPIA	1

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

For Question, Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300015A-LE

6.4.2. Test data

B	LE 1M	WATER AVAILABLE	AW5		W751		
/	Test channel	6dB Emission Bandwidth (kHz)					
1		BT LE mode	Limit	Result			
	Lowest	0.657	>500k	AVISION			
	Middle	0.714	>500k	PASS	1		
	Highest	0.679	>500k				
	AUTOR	MEET AUGERT	ATTZ		117-1		

BLE 2M

X	Test channel	6dB Emission I			
CT AT	Test channel	BT LE mode	Limit	Result	k
961	Lowest	1.126	>500k	/ Inclaime	
	Middle	1.107	>500k	PASS	X
	Highest	1.101	>500k		WESTER

Test plots as follows:

1.11

Sentication & Test

W5E7

BBUOM * PT

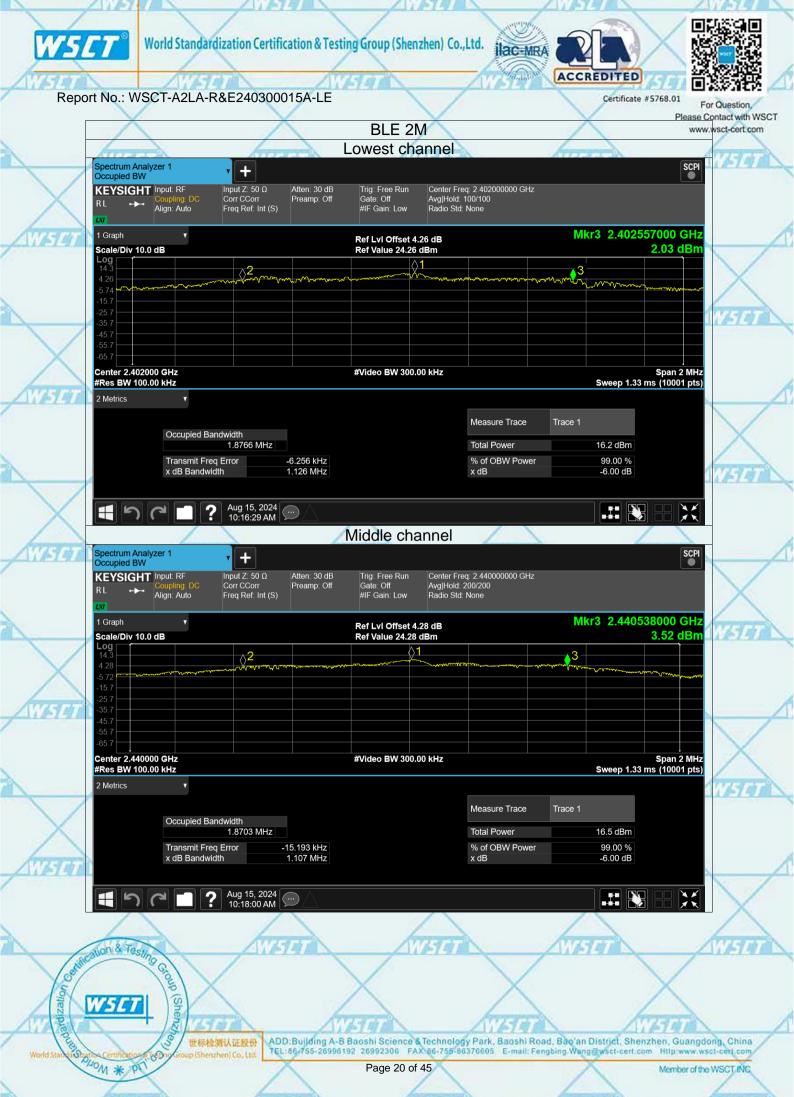
dizatio

Group (Shenzy

60

世标检测认证数例 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China m(Shenzhen) (p. 18


World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. ilac-MRA



Report No.: WSCT-A2LA-R&E240300015A-LE

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

For Question, Please Contact with WSCT www.wsct-cert.com

6.5. Power Spectral Density

Report No.: WSCT-A2LA-R&E240300015A-LE

5.1. Test Specification	
Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	KDB558074
Limit:	The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Refer to item 4.1
Test Procedure:	 The testing follows Measurement Procedure 10.2 Method PKPSD of FCC KDB Publication No.558074 D01 DTS Meas. Guidance v04 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW) Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level. Measure and record the results in the test report.
Test Result:	PASS

6.5.2. Test Instruments

RF Test Room										
Equipment	Manufacturer	Model	Serial Number	Calibration Due						
Spectrum Analyzer	R&S	FSU	200054	Nov. 04, 2024						
RF cable (9kHz-26.5GHz)	тст	RE-06	N/A	Nov. 04, 2024						
Antenna Connector	тст	RFC-01	N/A	Nov. 04, 2024						

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to

international system unit (SI).

PHOM * PT

世标检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86/755-26996192 26992306 FAX 86-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

Result

PASS

For Question Please Contact with WSCT

Report No.: WSCT-A2LA-R&E240300015A-LE

6.5.3. Test data

0.5.3	b. Test uala	\wedge	\wedge		w	ww.wsct-cert.com
	Tost channel	F	Power Spectral D	ensity (dBm/3kH	łz)	(TETA)
Test channel		BL	E 1M	Limit	Result	
	Lowest	-5	5. <mark>98</mark>	8 dBm/3kHz		
à	Middle	W-5	5.87	8 dBm/3kHz	PASS	
	Highest	-6	6.68	8 dBm/3kHz		\sim
	\wedge	\wedge	\wedge			

BLE 2M

-6.58

-6.89

-7.22

Power Spectral Density (dBm/3kHz)

Limit

8 dBm/3kHz

8 dBm/3kHz

8 dBm/3kHz

15

Test channel	
iest channel	
Lowest	
Middle	
Highest	

25

Test plots as follows:

670

Contration & Test

WSET

DUOM * PT

dizatio

youp (Shenz)

60

世标检测认证数例 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China m(Shenzhen) Co. Ltt

10

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

Certificate #5768.01

Report No.: WSCT-A2LA-R&E240300015A-LE

(Shenz)

.60

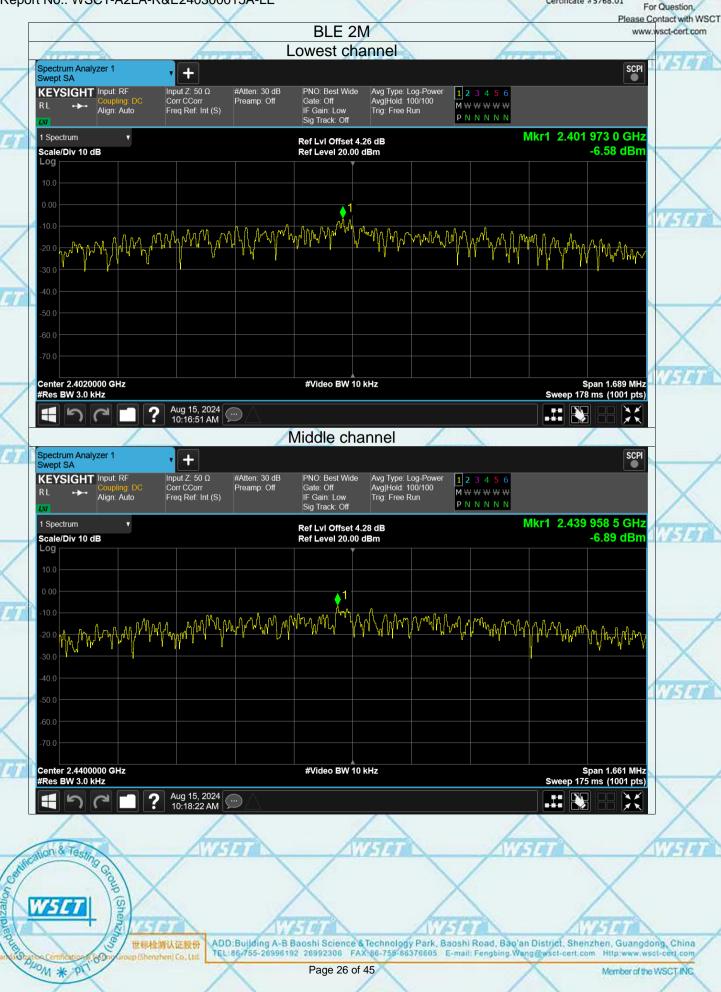
Zath

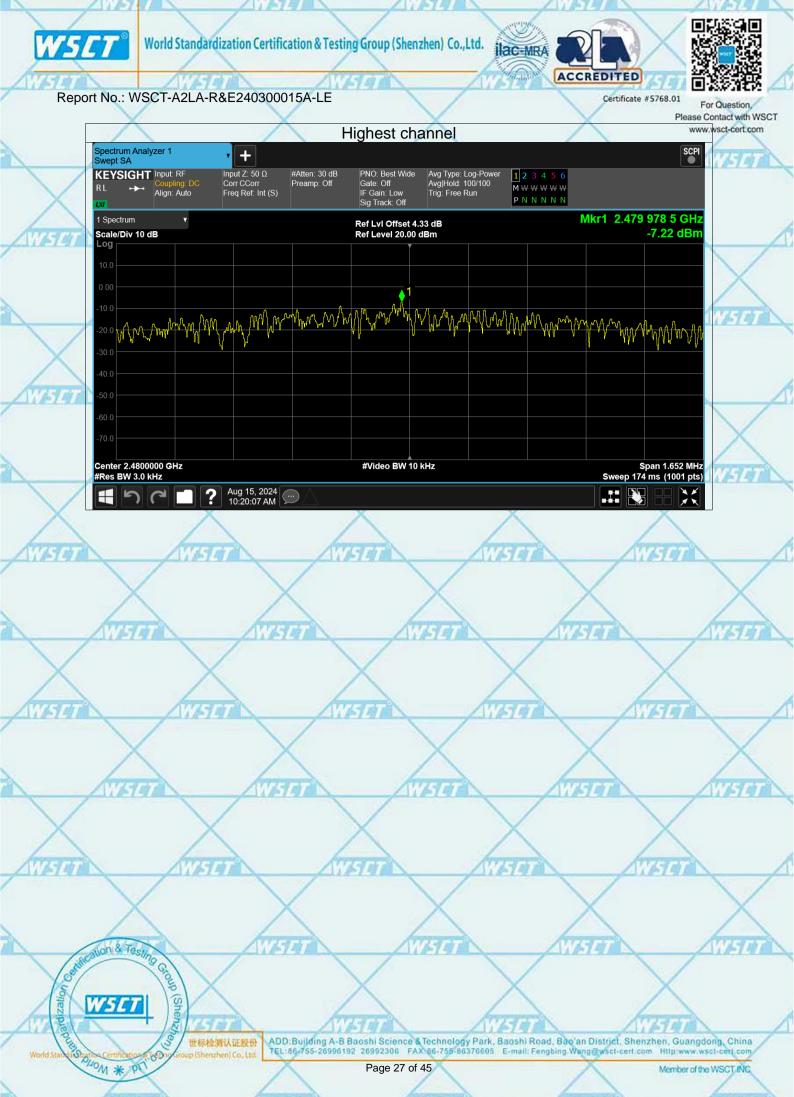
BB BLOM * PT

世标检测认证数例 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China n(Shenzhen) [o. M]

Page 25 of 45

Zath


60


World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. ilac-MRA

Certificate #5768.01

Report No.: WSCT-A2LA-R&E240300015A-LE

e

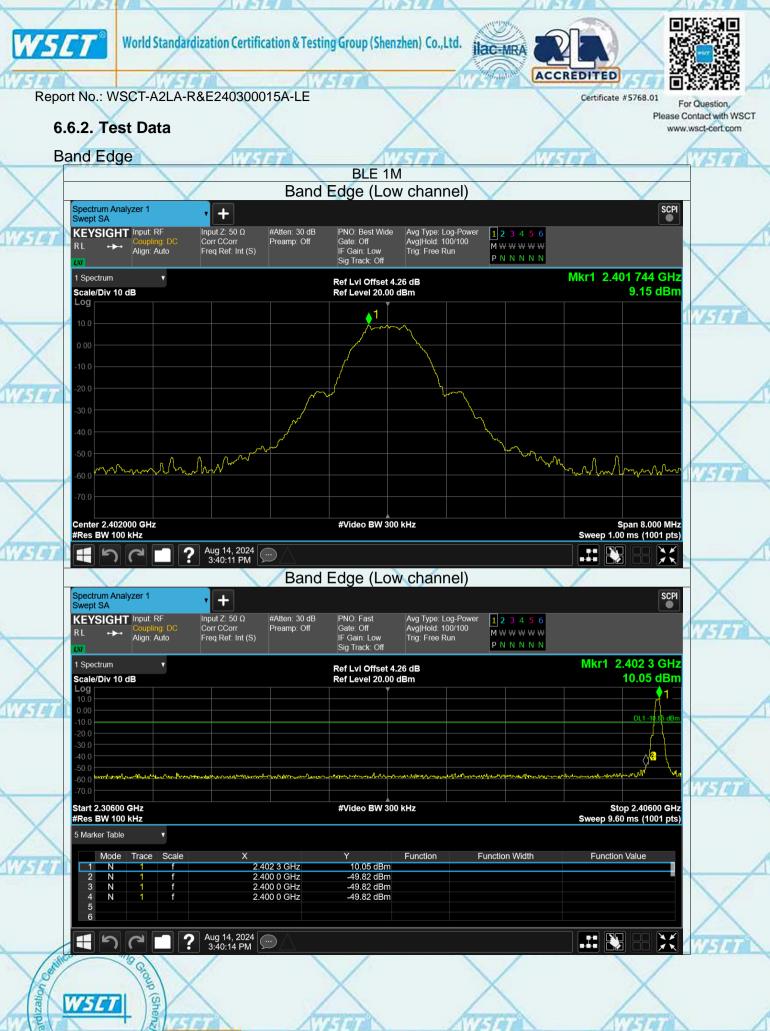
W5E

PHOM * PT

Zatio

E (She

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. ilac-MRA


Report No.: WSCT-A2LA-R&E240300015A-LE

6.6. Conducted Band Edge and Spurious Emission Measurement

For Question Please Contact with WSCT www.wsct-cert.com

1. Test Specification	ECC Part 15 C Santian 15 247 (d)
Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB558074
Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).
Test Setup:	Spectrum Analyzer
Test Mode:	Refer to item 4.1
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
Test Result:	PASS

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992308 FAX 86-755-86376605 E-mail: Fengbing.Wang@wsci-cert.com Http://www.wsci-cert.com 世标检测认证股份

世标检测认证数的 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bae an District, Shenzhen, Guangdong, China n(Shenzhen Co. III) TEL:86-755-26996192 26992306 FAX-86-755-86376605 E-mail: Fengbing.Wang@wsci-cert.com Http://www.wsci-cert.com/

BB BLOM * PT

.60

Settication & Testi

BB BLOM * PT

Group

.60

(Shenz)

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

Certificate #5768.01

Report No.: WSCT-A2LA-R&E240300015A-LE

世标检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-28998192 26992308 FAX 86-755-88376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. ilac-MRA

Certificate #5768.01

Report No.: WSCT-A2LA-R&E240300015A-LE

Settication & Testi

BB BLOM * PT

Group

60

(Shenz)

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

Certificate #5768.01

Report No.: WSCT-A2LA-R&E240300015A-LE

世标检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX 66-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

Settication & Test

BB BLOM * PT

Group

.60

(Shenz)

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

Certificate #5768.01

Report No.: WSCT-A2LA-R&E240300015A-LE

世标检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX 86-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

世标检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX 86-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

(Shenz)

.60

BB BLOM * PT

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. ilac-MRA

Certificate #5768.01

֮

Report No.: WSCT-A2LA-R&E240300015A-LE

世标检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-28998192 26992308 FAX 86-755-88376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

Page 37 of 45

(Shenz)

.60

BB BLOM * PT

世标检测认证数例 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China n(Shenzhen) [o. 14] TEL:86-755-26996192 26992306 FAX 66-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

Member of the WSCT INC

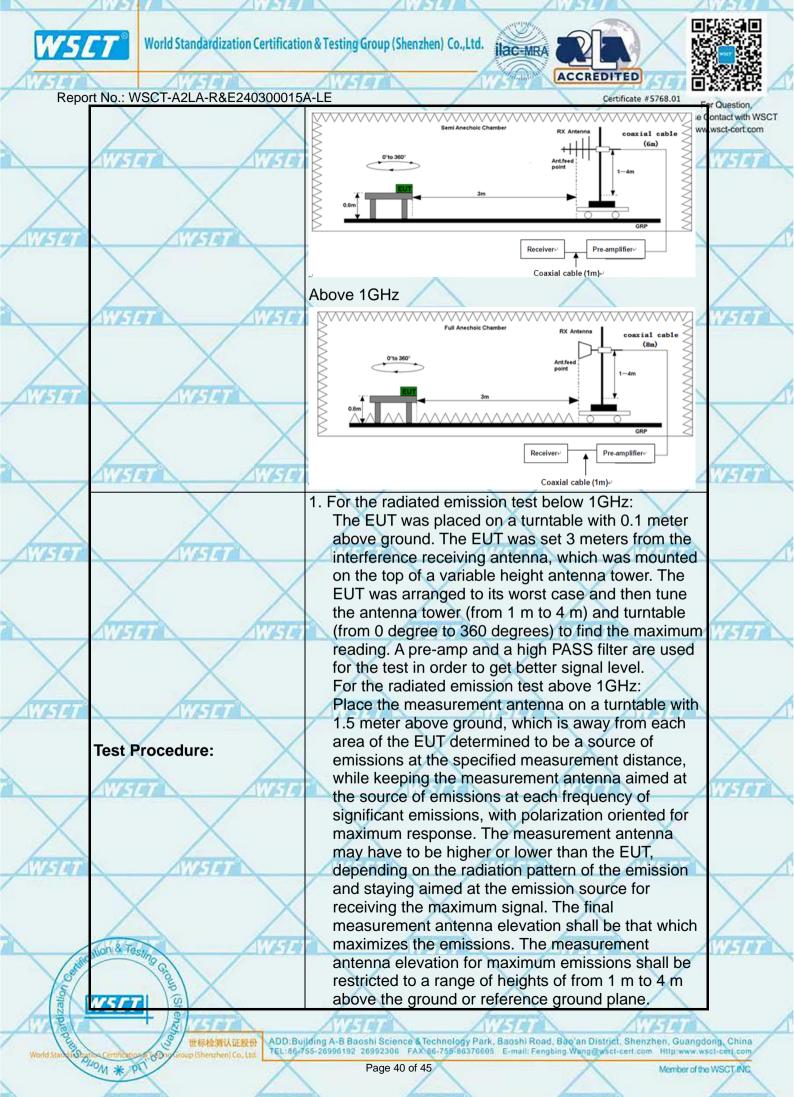
(Shenz)

.60

Zat

BB BLOM * PT

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd. ilac-MRA



Report No.: WSCT-A2LA-R&E240300015A-LE

6.7. Radiated Spurious Emission Measurement

For Question, Please Contact with WSCT www.wsct-cert.com

Test Requirement:	FCC Part15 C S	ection 15.209		X
Test Method:	ANSI C63.10:20	14	À	AVERTER
Frequency Range:	9 kHz to 25 GHz	1	/	/
Measurement Distance:	3 m	X	X	
Antenna Polarization:	Horizontal & Ver	tical	1777	
Operation mode:	Refer to item 4.1			\sim
\wedge	Frequency De	etector RBW	VBW	Remark
WEIT		asi-peak 200Hz	1kHz	Quasi-peak Value
1		asi-peak 9kHz	30kHz	Quasi-peak Value
Receiver Setup:	30MHz 30MHz-1GHz Qua	asi-peak 100KHz	300KHz	Quasi-peak Value
\wedge		Peak 1MHz	3MHz	Peak Value
ATTEN ATT		Peak 1MHz	10Hz	Average Value
			1	
X	Frequency	Field S (microvol	U U	Measurement Distance (meters
	0.009-0.490	2400/F	,	300
AVISTAT .	0.490-1.705	24000/	, ,	30
	1.705-30	3	0	30
X	30-88			3
Limit:	88-216	15		3
	216-960 Above 960	20		3
	AD076 300			3
X	X		Measure	ment
	Frequency	Field Strength (microvolts/meter	Distan	ce Detector
ATTENT	AULTA	CALLER F	(meter	
	Above 1GHz	500	3	Average
X	X	5000	3	Peak
	For radiated emi	ssions below 3	BOMHz	
AVERA	Distance =	- 3m		
\sim	4			Computer
\wedge			Pre -	Amplifier
Test setup: 7507		\bigvee		📄 🎅
	EUT			
$\mathbf{\mathbf{Y}}$	Turn t	able		
\wedge				Receiver
Non & Terry	14	Ground Plane]	
alion & Testing Grad WSCT U	30MHz to 1GHz		/	
WSCT	X	X		X
	(TITES)	ATT ST	5	12300

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

			13/00		3.2 Section
	WISIAT	AVAIA	W State	ACCREDITED	1039777
Report No.: WSCT-A	A2LA-R&E240300015	A-LE		Certificate #5768.01	Eer Question
X	X	2. Corrected Rea	ding: Antenna F	actor + Cable Loss	Hase Contact with WSCT
		Read Level -	Preamp Factor =	= Level	www.wsct-cert.com
ATTACA	ATT AL	3. For measurem	ent below 1GHz	, If the emission lev	/el
7	- Circiai	of the EUT me	easured by the p	beak detector is 3 d	B
	\sim	lower than the	e applicable limit	, the peak emission	
	\wedge			se, the emission	
8				d using the quasi-pe	eak
	WATER A	detector and i		/1/414	
		4. Use the follow		alyzer settings:	
X	X			fully capture the	X
			eing measured;		
AWSET	AWSEN	(2) Set RBW-	100 kHz for f	I GHz; VBW ≥RBW	. / WSET
A States and					/
	X			nction = peak; Trace	3 =
		max hold;		2MUz for f T 1 CL	17
	WSET			3MHz for f □ 1 GH	4
			easurement.	BW = 10 Hz, when	
\sim	X	-	X	X	\mathbf{X}
\wedge	\wedge	duty cycle is r	no less than 98 p	percent. VBW $\geq 1/$	Г, <u>/</u>
AUZZA	Kursa	when duty cy	cle is less than 9	8 percent where T	is war
	Curria.	the minimum	transmission du	ration over which th	e
	\sim			nitting at its maximu	
	\wedge	power control	level for the tes	ted mode of operati	on.
Test mode:	THE	Refer to section 4	4.1 for details	ATTEN A	
Test result	s:	PASS	/		
X	X		X	X	$ \times$
Note: Fred - En	niesion frequency in MHz				

Note: Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = Attenuation factor + Cable loss Level $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Level $(dB\mu V)$ – Limits $(dB\mu V)$

Ostification & Test


W5E

BUD Comparent 60

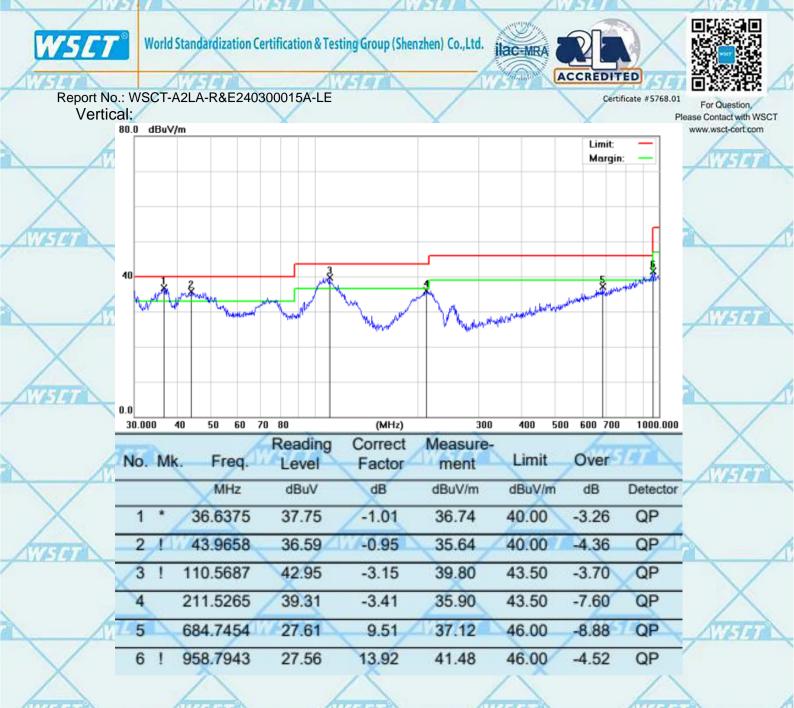
dizatio

Group (Shenzy

世标检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China n(Shenzhen) [o. ts] TEL:86-755-28998192 26992308 FAX 86-755-88376805 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com Ľ

Member of the WSCT INC

ation & Tes


WSL

PHOM * PT

oup

(Shenz

Certific

Note1:

non & Tee

PHOM * PT

up (Shen

Certifit

Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = Antenna factor + Cable loss - Amplifier factor. Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$

> 世标检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-28998192 26992308 FAX-86-755-88376605 E-mail: Fengbing, Wang@wsci-cert.com Http://www.wsci-cert.com

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300015A-LE

_			Above 1GHz				\wedge	www.		
	Freq. (MHz)		Low channel: 2402MHz							
4		Ant.Pol	Emission I	_evel(dBuV)	Limit 3m	(dBuV/m)	Ove	r(dB)		
		H/V	PK	AV	PK	AV	PK	AV		
	4804	V	58.83	40.25	74	54	-15.17	-13.75		
k	7206	V	59.13	40.37	74 📈	54	-14.87	-13.63		
	4804	H	58.41	39.13	74	54	-15.59	-14.87		
	7206	Н	58.82	39.82	74	54	-15.18	-14.18		
	Y		X		X		- Alexandre			

Frog	Middle channel: 2440MHz							
Freq. (MHz)	Ant.Pol	Emission I	_evel(dBuV)	Limit 3m(dBuV/m)		Over(dB)		
	H/V	PK	AV	PK	AV	PK	AV	
4880	V	60.73	40.61	74	54	-13.27	-13.39	
7320	V	58.15	39.12	74	54	-15.85	-14.88	
4880	W5H7	59.69	40.27	74	54	-14.31	-13.73	
7320	Н	59.26	40.26	74	54	-14.74	-13.74	

Frog	High channel: 2480 MHz							
Freq. (MHz)	Ant.Pol	Emission Level(dBuV)		Limit 3m(dBuV/m)		Over(dB)		
(10112)	H/V	PK	AV	PK	AV	PK	AV	
4960	V	58.24	39.82	74	54	-15.76	-14.18	
7440	V	59.72	39.63	74	54	-14.28	-14.37	
4960	H	59.70	39.86	74	54	-14.30	-14.14	
7440	UNH L	58.78	39.78	74	54	-15.22	-14.22	

Note:

ation & Tes

WSL

PHOM * PI

oup (Shen

Cer

Zatio

1. All emissions not reported were more than 20dB below the specified limit or in the noise floor.

2. Emission Level= Reading Level+ Probe Factor +Cable Loss.

3. Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

1.11

Contration & Test

WSET

BB BLOM * PT

60

dizatio

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

For Question, Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300015A-LE

Restricted Bands Requirements

Test result	for BLE 2M	(the wors	t case)	AULTE		AULA	
Frequency	Reading	Correct Factor	Emission Level	Limit	Margin	Polar	Detector
(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	H/V	
	AVISTO	1	Low Cha	nnel	ATTER	7	AUR
2390	61.27	-8.76	52.51	74	21.49	H	PK
2390	56.33	-8.76	47.57	54	6.43	нХ	AV
2390	60.65	-8.73	51.92	74	22.08	V	PK
2390	54.03	-8.73	45.30	54	8.70	V	AV
High Channel							
2483.5	61.13	-8.76	52.37	74	21.63	н	PK
2483.5	54.01	-8.76	45.25	54	8.75	Н	AV
2483.5	59.00	-8.73	50.27	74	23.73	V	PK
2483.5	55.70	-8.73	46.97	54	7.03	VX	AV
	S				K		1

*****END OF REPORT*****

145

15

Page 45 of 45