

RADIO TEST REPORT FCC ID: 2A3PH-XR-636BP

Product: TURNTABLE Trade Mark: N/A Model No.: KXRM19 Family Model: KXRM19B2, KXRM19R2, XR-636BP Report No.: S24101700701002 Issue Date: Nov. 06, 2024

Prepared for

Axcel (Huizhou) Technology Co., Ltd.

Xinsongyaoyu Industrial Park, Dongming Village,516269 Shatian Town, Huiyang District, Huizhou, Guangdong, China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. No. 24 Xinfa East Road, Xiangshan Community, Xinqiao Street, Baoan District, Shenzhen, Guangdong, People's Republic of China Tel. 0755-2320 0050 Website: http://www.ntek.org.cn

TABLE OF CONTENTS

1	TEST RESULT CERTIFICATION	4	4
2	SUMMARY OF TEST RESULTS		5
3	FACILITIES AND ACCREDITATION	S	6
-		~	
		S AND LISTINGS	
		·	
4	GENERAL DESCRIPTION OF EUT		7
5	DESCRIPTION OF TEST MODES		9
6		ST10	
		TION OF TEST SYSTEM	
		11 11	
	6.3 EQUIPMENTS LIST FOR ALL TES	T ITEMS	2
7			
7		۷17	
		20	
-			
_			
		27	
	8		
	-		
	0		
	0		·
	-	29 29	
		23	
		2,	

ACCREDITED Certificate #4298.01

	7.6 1	POWER SPECTRAL DENSITY	30
	7.6.1	Applicable Standard	
	7.6.2	Conformance Limit	
	7.6.3	Measuring Instruments	
	7.6.4	Test Setup	
	7.6.5	Test Procedure	
	7.6.6	Test Results	
		CONDUCTED BAND EDGE MEASUREMENT	
	7.7.1	Applicable Standard	
	7.7.2	Conformance Limit	
	7.7.3	Measuring Instruments	
	7.7.4	Test Setup	
	7.7.5	Test Procedure	
	7.7.6	Test Results	
	7.8 \$	SPURIOUS RF CONDUCTED EMISSIONS	33
	7.8.1	Conformance Limit	33
	7.8.2	Measuring Instruments	33
	7.8.3	Test Setup	33
	7.8.4	Test Procedure	33
	7.8.5	Test Results	33
	7.9	ANTENNA APPLICATION	34
	<i>7.9.1</i>	Antenna Requirement	34
	7.9.2	Result	34
8	TEST		
U		' RESULTS	
		'RESULTS	
	8.1	M	35
	8.1 1 <i>8.1.1</i>	M Duty Cycle	35 35
	8.1 8.1.1 8.1.2	M Duty Cycle Maximum Conducted Output Power	35 <i>35</i> <i>3</i> 8
	8.1 8.1.1 8.1.2 8.1.3	M Duty Cycle Maximum Conducted Output Power -6dB Bandwidth	35 35 38 41
	8.1 8.1.1 8.1.2 8.1.3 8.1.4	M Duty Cycle Maximum Conducted Output Power -6dB Bandwidth Occupied Channel Bandwidth	35 35 38 41 44
	8.1 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5	M Duty Cycle Maximum Conducted Output Power -6dB Bandwidth Occupied Channel Bandwidth Maximum Power Spectral Density Level	35 35 38 41 44 47
	8.1 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6	M Duty Cycle Maximum Conducted Output Power -6dB Bandwidth Occupied Channel Bandwidth Maximum Power Spectral Density Level Band Edge	35 35 38 41 44 47 50
	8.1 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.1.7	M Duty Cycle Maximum Conducted Output Power -6dB Bandwidth Occupied Channel Bandwidth Maximum Power Spectral Density Level Band Edge Conducted RF Spurious Emission	35 38 41 44 47 50 53
	8.1 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.1.7 8.2	M Duty Cycle Maximum Conducted Output Power -6dB Bandwidth Occupied Channel Bandwidth Maximum Power Spectral Density Level Band Edge Conducted RF Spurious Emission	35 35 38 41 44 47 50 53 57
	8.1 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.1.7 8.2 8.2.1	M Duty Cycle Maximum Conducted Output Power -6dB Bandwidth Occupied Channel Bandwidth Maximum Power Spectral Density Level Band Edge Conducted RF Spurious Emission M. Duty Cycle	35 35 41 44 47 50 53 57 57
	8.1 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.1.7 8.2 8.2.1 8.2.2	M Duty Cycle Maximum Conducted Output Power -6dB Bandwidth Occupied Channel Bandwidth Maximum Power Spectral Density Level Band Edge Conducted RF Spurious Emission M. Duty Cycle Maximum Conducted Output Power	35 35 38 41 44 50 53 57 57 60
	8.1 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.1.7 8.2 8.2.1 8.2.2 8.2.3	M Duty Cycle Maximum Conducted Output Power -6dB Bandwidth Occupied Channel Bandwidth Maximum Power Spectral Density Level Band Edge Conducted RF Spurious Emission M Duty Cycle Maximum Conducted Output Power -6dB Bandwidth	35 35 38 41 44 47 50 53 57 60 63
	8.1 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.1.7 8.2 8.2.1 8.2.2 8.2.3 8.2.4	M Duty Cycle Maximum Conducted Output Power	35 35 38 41 44 47 50 53 57 57 60 63 66
	8.1 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.1.7 8.2 8.2.1 8.2.2 8.2.3 8.2.4 8.2.5	M Duty Cycle Maximum Conducted Output Power	35 35 38 41 44 47 50 53 57 60 63 66 69
	8.1 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.1.7 8.2 8.2.1 8.2.2 8.2.3 8.2.4	M Duty Cycle Maximum Conducted Output Power	35 35 38 41 44 47 50 53 57 57 60 63 66 69 72

Complied

1 TEST RESULT CERTIFICATION

Applicant's name:	Axcel (Huizhou) Technology Co., Ltd.			
Address:	Xinsongyaoyu Industrial Park, Dongming Village,516269 Shatian Town, Huiyang District, Huizhou, Guangdong, China			
Manufacturer's Name:	Axcel (Huizhou) Technology Co.,	Ltd.		
Address:	Xinsongyaoyu Industrial Park, Dongming Village,516269 Shatian Town, Huiyang District, Huizhou, Guangdong, China			
Product description				
Product name:	TURNTABLE			
Trade Mark:	N/A			
Model and/or type reference:	type reference: KXRM19			
Family Model:	Family Model KXRM19B2, KXRM19R2, XR-636BP			
Test Sample number: S241017007001				
Date (s) of performance of tests	Oct. 24, 2024 ~ Nov. 06, 2024			
Measurement Procedure Used:				
	APPLICABLE STANDARDS			
APPLICABLE STANDARD/ TEST PROCEDURE TEST RESULT				

FCC 47 CFR Part 2, Subpart J

FCC 47 CFR Part 15, Subpart C

ANSI C63.10-2013

KDB 558074 D01 15.247 Meas Guidance v05r02

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Aavon Cheng Prepared Yoyo Liang Reviewed :-By :-Approved _ (By [:] By Yoyo Liang Aaron Cheng Alex Li (Project Engineer) (Supervisor) (Manager)

2 SUMMARY OF TEST RESULTS

R

ilac-M

FCC Part15 (15.247), Subpart C						
Standard Section Test Item Verdict Remark						
15.207 Conducted Emission		PASS				
15.247 (a)(2)	6dB Bandwidth	PASS				
15.247 (b) Peak Output Power		PASS				
15.209 (a) 15.205 (a)						
15.247 (e)	Power Spectral Density	PASS				
15.247 (d)	Band Edge Emission	PASS				
15.247 (d)	Spurious RF Conducted Emission	PASS				
15.203	Antenna Requirement	PASS				

ACCREDITED

Certificate #4298.01

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

FACILITIES AND ACCREDITATIONS 3

FACILITIES 3.1

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

ACCRE

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab. : The Certificate Registration Number is L5516.	
IC-Registration The Certificate Registration Number is 9270A.	
CAB identifier:CN0074	
FCC- Accredited Test Firm Registration Number: 463705.	
Designation Number: CN1184	
A2LA-Lab. The Certificate Registration Number is 4298.01	
This laboratory is accredited in accordance with the recognize	d
International Standard ISO/IEC 17025:2005 General requirem	ents for
the competence of testing and calibration laboratories.	
This accreditation demonstrates technical competence for a d	efined
scope and the operation of a laboratory quality management s	system
(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 200)9).
Name of Firm : Shenzhen NTEK Testing Technology Co., Ltd.	
Site Location : 1/F, Building E, Fenda Science Park, Sanwei Community, Xixi	ang
Street, Bao'an District, Shenzhen 518126 P.R. China.	

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y±U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB
10	Occupied bandwidth	±3.7dB

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification				
Equipment TURNTABLE				
Trade Mark N/A				
FCC ID 2A3PH-XR-636BP				
Model No.	KXRM19			
Family Model	KXRM19B2, KXRM19R2, XR-636BP			
Model Difference	All models are the same circuit and RF module, except for model names, appearances and colors.			
Operating Frequency	BLE 1M: 2402~2480 MHz BLE 2M: 2402~2480 MHz			
Modulation GFSK				
Number of Channels	40 Channels			
Antenna Type PCB Antenna				
Antenna Gain -0.58 dBi				
Adapter Model: FJ-SW112S0501000U Input: 100-240V~50/60Hz 0.4A 96W MAX Output: 5.0V1.0A 5.0W				
Battery	N/A			
Power supply DC 5V/1A from adapter				
Hardware version:	XR-636BP-8 MAIN Board PM2			
Firmware version:	N/A			
Software version:	636DP-8-V12_55F_KXRM19			

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Note 2: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

Revision History

	Revision history				
Report No.	Version	Description	Issued Date		
S24101700701002	Rev.01	Initial issue of report	Nov. 06, 2024		

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps/2Mbps for GFSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

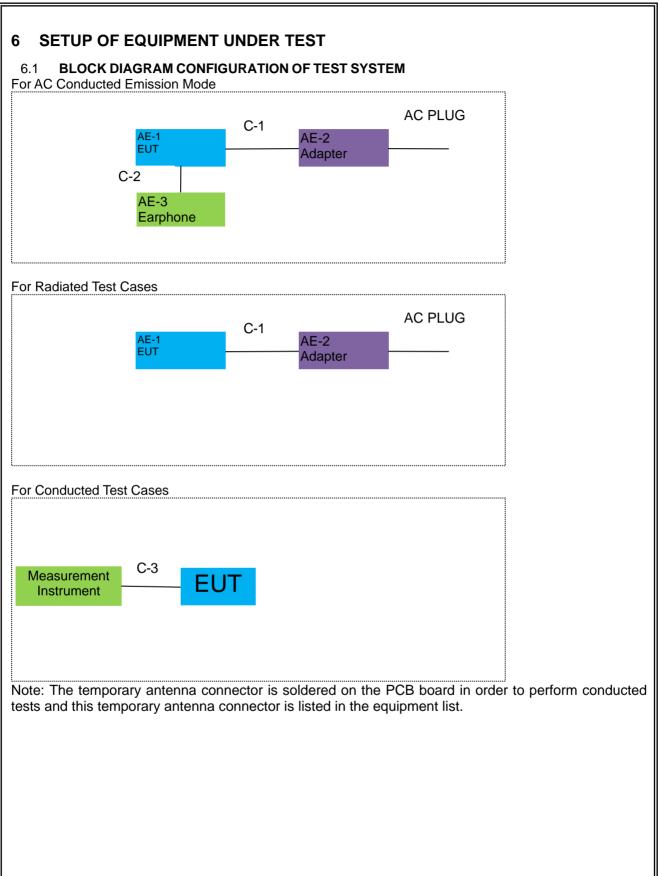
Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2404
19	2440
20	2442
38	2478
39	2480

Note: fc=2402MHz+k×2MHz k=0 to 39

The following summary table is showing all test modes to demonstrate in compliance with the standard.

Test Cases			
Test Item	Data Rate/ Modulation		
AC Conducted Emission	N/A		
	Mode 1: normal link mode		
Radiated Test	Mode 2: GFSK Tx Ch00_2402MHz_1Mbps/2Mbps		
Cases	Mode 3: GFSK Tx Ch19_2440MHz_1Mbps/2Mbps		
	Mode 4: GFSK Tx Ch39_2480MHz_1Mbps/2Mbps		
Conducted Test	Mode 2: GFSK Tx Ch00_2402MHz_1Mbps/2Mbps		
Conducted Test Cases	Mode 3: GFSK Tx Ch19_2440MHz_1Mbps/2Mbps		
Cases	Mode 4: GFSK Tx Ch39_2480MHz_1Mbps/2Mbps		


Note:

1. The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode(duty cycle =100% during the test)

2. AC power line Conducted Emission was tested under maximum output power.

3. For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

Report No.: S24101700701002

ACCREE

Certificate #4298.01

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
EUT	EUT TURNTABLE KXRM19		N/A	N/A
AE-1 Adapter FJ-		FJ-SW112S0501000U	N/A	Peripherals
AE-3 Earphone		N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	NO	NO	1.0m
C-2	Earphone Cable	NO	NO	1.2m
C-3	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Agilent	E4440A	MY41000130	2024.04.26	2025.04.25	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2024.04.25	2025.04.24	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2024.04.25	2025.04.24	1 year
4	Test Receiver	R&S	ESPI7	101318	2024.04.26	2025.04.25	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2024.05.12	2025.05.11	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2024.04.26	2027.04.25	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2024.05.12	2027.05.11	3 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2024.05.12	2027.05.11	3 year
9	Amplifier	EMC	EMC051835 SE	980246	2024.04.25	2025.04.24	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2024.05.17	2027.05.16	3 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2024.04.25	2025.04.24	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2023.05.06	2026.05.05	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2023.05.06	2026.05.05	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	Filter	TRILTHIC	2400MHz	29	2024.04.26	2027.04.25	3 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Co	AC Conduction Test equipment						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2024.03.12	2025.03.11	1 year
2	LISN	R&S	ENV216	101313	2024.03.12	2025.03.11	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2024.03.12	2025.03.11	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2024.04.26	2027.04.25	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2023.05.06	2026.05.05	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2023.05.06	2026.05.05	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2023.05.06	2026.05.05	3 year

ACCRE

Certificate #4298.01

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

Measurement Software

Item	Manufacturer	Software Name	Software Version	Description
1	MWRFtest	MTS 8310 2.4GHz/5GHz	2.0	RF Conducted Test
2	Farad	EZ-EMC_RE	AIT-03A	RadiatedTest
3	raditeq	RadiMation	2023.1.3	RadiatedTest
4	Farad	EZ-EMC_CE	AIT-03A	AC Conducted Test

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

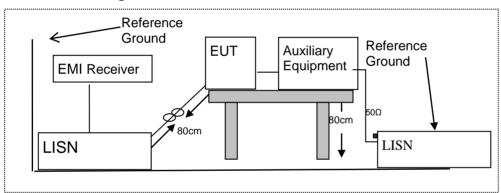
7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 Conformance Limit

	Conducted	d Emission Limit
Frequency(MHz)	Quasi-peak	Average
0.15-0.5	66-56*	56-46*
0.5-5.0	56	46
5.0-30.0	60	50

Note: 1. *Decreases with the logarithm of the frequency


2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

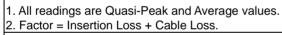
The Measuring equipment is listed in the section 6.3 of this test report.

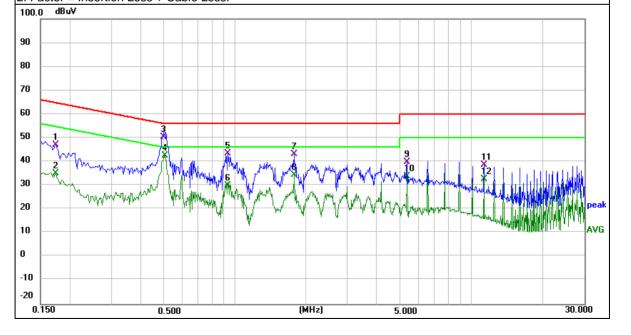
7.1.4 Test Configuration

7.1.5 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support
 equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the
 measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

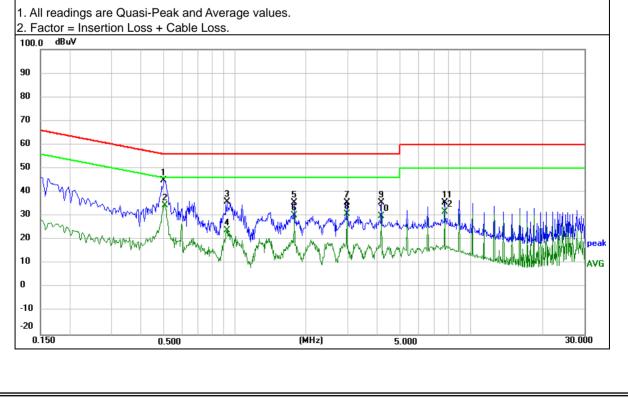



7.1.6 Test Results

EUT:	TURNTABLE	Model Name :	KXRM19
Temperature:	22 °C	Relative Humidity:	57%
		Phase :	L
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Demerik
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1740	37.07	10.04	47.11	64.77	-17.66	QP
0.1740	25.06	10.04	35.10	54.77	-19.67	AVG
0.5020	39.72	10.68	50.40	56.00	-5.60	QP
0.5060	31.90	10.70	42.60	46.00	-3.40	AVG
0.9300	31.79	11.59	43.38	56.00	-12.62	QP
0.9380	18.48	11.61	30.09	46.00	-15.91	AVG
1.7780	29.72	13.35	43.07	56.00	-12.93	QP
1.7780	21.13	13.35	34.48	46.00	-11.52	AVG
5.3420	29.80	10.15	39.95	60.00	-20.05	QP
5.3420	23.61	10.15	33.76	50.00	-16.24	AVG
11.2739	38.73	-0.16	38.57	60.00	-21.43	QP
11.2739	32.88	-0.16	32.72	50.00	-17.28	AVG

Remark:



EUT:	TURNTABLE	Model Name :	KXRM19
Temperature:	22 ℃	Relative Humidity:	57%
Pressure:			Ν
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.5020	35.04	9.97	45.01	56.00	-10.99	peak
0.5060	24.59	9.99	34.58	46.00	-11.42	AVG
0.9260	25.14	10.86	36.00	56.00	-20.00	peak
0.9260	13.20	10.86	24.06	46.00	-21.94	AVG
1.7820	22.93	12.61	35.54	56.00	-20.46	peak
1.7820	17.65	12.61	30.26	46.00	-15.74	AVG
2.9700	26.59	9.14	35.73	56.00	-20.27	peak
2.9700	21.63	9.14	30.77	46.00	-15.23	AVG
4.1540	26.30	9.25	35.55	56.00	-20.45	peak
4.1540	20.83	9.25	30.08	46.00	-15.92	AVG
7.7180	25.91	9.70	35.61	60.00	-24.39	peak
7.7180	22.09	9.70	31.79	50.00	-18.21	AVG

Remark:

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

Certificate #4298.01

MHz	MHz	GHz	
16.42-16.423	399.9-410	4.5-5.15	
16.69475-16.69525	608-614	5.35-5.46	
16.80425-16.80475	960-1240	7.25-7.75	
25.5-25.67	1300-1427	8.025-8.5	
37.5-38.25	1435-1626.5	9.0-9.2	
73-74.6	1645.5-1646.5	9.3-9.5	
74.8-75.2	1660-1710	10.6-12.7	
123-138	2200-2300	14.47-14.5	
149.9-150.05	2310-2390	15.35-16.2	
156.52475-156.52525	2483.5-2500	17.7-21.4	
156.7-156.9	2690-2900	22.01-23.12	
162.0125-167.17	3260-3267	23.6-24.0	
167.72-173.2	3332-3339	31.2-31.8	
240-285	3345.8-3358	36.43-36.5	
322-335.4	3600-4400	(2)	
	16.42-16.423 16.69475-16.69525 16.80425-16.80475 25.5-25.67 37.5-38.25 73-74.6 74.8-75.2 123-138 149.9-150.05 156.52475-156.52525 156.7-156.9 162.0125-167.17 167.72-173.2 240-285	16.42-16.423399.9-41016.69475-16.69525608-61416.80425-16.80475960-124025.5-25.671300-142737.5-38.251435-1626.573-74.61645.5-1646.574.8-75.21660-1710123-1382200-2300149.9-150.052310-2390156.52475-156.525252483.5-2500156.7-156.92690-2900162.0125-167.173260-3267167.72-173.23332-3339240-2853345.8-3358	

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

	Class B (dBuV/m) (at 3M)		
Frequency(MHz)	PEAK	AVERAGE	
Above 1000	74	54	

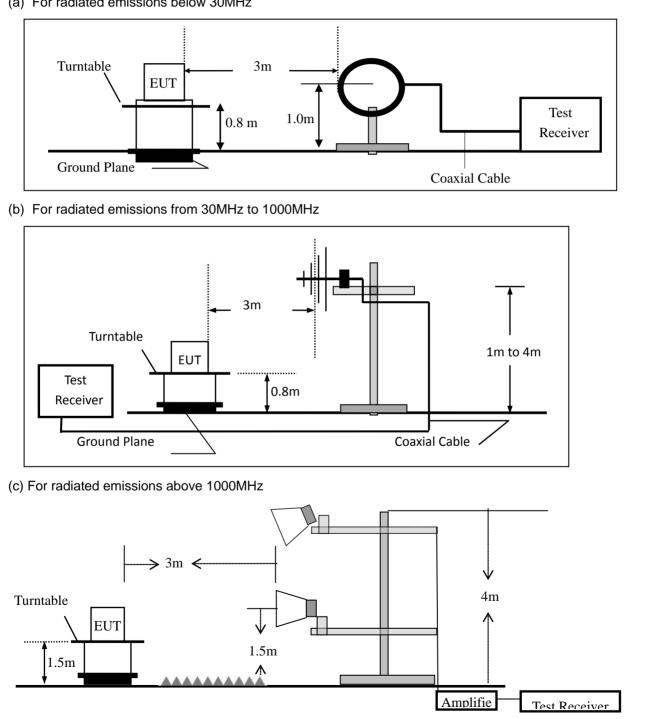
Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz: Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz: Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.


Certificate #4298.01

7.2.3 **Measuring Instruments**

The Measuring equipment is listed in the section 6.3 of this test report.

Test Configuration 7.2.4

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1MHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.

- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item -EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Certificate #4298.01

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
Above 4000	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	1 MHz

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

	Spurious	Emission	below	30MHz	(9KHz to 30MHz)
--	----------	----------	-------	-------	-----------------

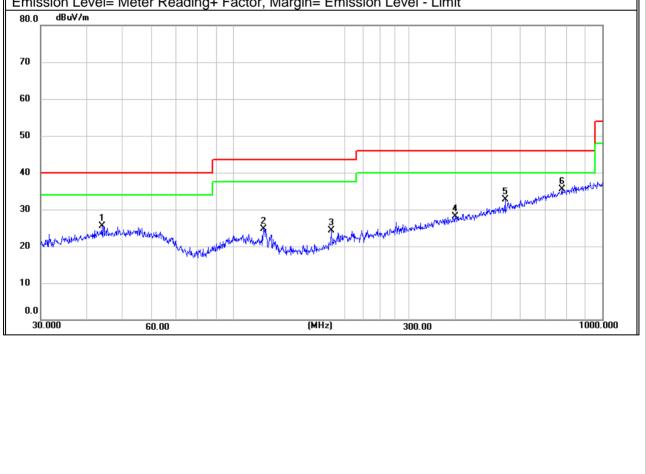
EUT:	TURNTABLE	Model No.:	KXRM19
Temperature:	20 °C	Relative Humidity:	48%
Lest Mode.	Mode1/Mode2/Mode3/ Mode4	Test By:	Yoyo Liang

Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB)		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was report as below:

EUT:	TURNTABLE	Model Name :	KXRM19
Temperature:	25 ℃	Relative Humidity:	55%
Pressure:	1010hPa	Test Mode:	Mode 4(GFSK 1Mbps)
Test Voltage :	DC 5V		


ACCREDITED

Certificate #4298.01

Polar	Frequency	requency Meter Reading Factor Emission Level		Limits	Margin	Remark	
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m) (dB)		
V	43.9658	5.99	19.45	25.44	40.00	-14.56	peak
V	120.6991	8.82	15.97	24.79	43.50	-18.71	peak
V	184.4898	7.64	16.73	24.37	43.50	-19.13	peak
V	399.0302	5.21	22.94	28.15	46.00	-17.85	peak
V	545.1826	7.29	25.46	32.75	46.00	-13.25	peak
V	776.8778	6.13	29.36	35.49	46.00	-10.51	peak

Remark:

Report No.: S24101700701002

Polar	Frequ	iency		leter ading	Factor	Emissio Level	n Limi	ts Margin	Remark	
(H/V)	(MI	Ηz)	(dl	BuV)	(dB)	(dBuV/n	n) (dBuV	/m) (dB)		
Н	48.8	429	5	5.96	19.75	25.71	40.0	0 -14.29	peak	
Н	103.0	0080	5	5.99	18.10	24.09	43.5	-19.41	peak	
Н	207.	1226	9	.58	18.17	27.75	43.5	-15.75	peak	
Н	393.4	4723	5	5.84	22.82	28.66	46.0	0 -17.34	peak	
Н	499.4	4247	7	'.44	24.58	32.02	46.0	-13.98	peak	
Н	845.0	0878	6	6.83	30.22	37.05	46.0	0 -8.95	peak	
		Meter	Readir	ng+ Fac	ctor, Margir	<u>ı= Emissior</u>	n Level - Limi	it		
70										
60										
50										
40									5 Junitor wilder	
30		1		2			4	Stand and a		
20 ////	regeller Alexandrean	ማርማጥራላትሌላ	Monadore and a start	Umm Martha	Makay manager and a strategy of	what a what	Awadawa			
10										
0.0 30.000						(40-)	200.00		1000.000	
30.000		60.	00			(MHz)	300.00		1000.000	

ACCREDITED

Certificate #4298.01

EUT:		TURNTAE	BLE	Ν	Nodel No.:		KXRM19	KXRM19			
Temperatu	re:	20 °C		F	Relative Humi	dity:	48%				
Test Mode: Mode2/Mode3/Mode4 Test By:							Yoyo Liang				
		·									
Frequency	Read Level	Cable loss	Antenna Factor	Pream Factor		Limits	Margin	Remark	Comment		
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/n	n) (dB)				
Low Channel (2402 MHz)(GFSK)Above 1G											
4804.54	69.30	5.21	35.59	44.30	65.80	74.00	-8.20	Pk	Vertical		
4804.54	51.24	5.21	35.59	44.30) 47.74	54.00	-6.26	AV	Vertical		
7206.62	71.17	6.48	36.27	44.60	69.32	74.00	-4.68	Pk	Vertical		
7206.62	45.62	6.48	36.27	44.60	43.77	54.00	-10.23	AV	Vertical		
4804.55	70.13	5.21	35.55	44.30	66.59	74.00	-7.41	Pk	Horizontal		
4804.55	46.34	5.21	35.55	44.30	42.80	54.00	-11.20	AV	Horizontal		
7206.61	69.79	6.48	36.27	44.52	68.02	74.00	-5.98	Pk	Horizontal		
7206.61	49.59	6.48	36.27	44.52	47.82	54.00	-6.18	AV	Horizontal		
Mid Channel (2440 MHz)(GFSK)Above 1G											
4880.57	71.25	5.21	35.66	44.20	67.92	74.00	-6.08	Pk	Vertical		
4880.57	46.50	5.21	35.66	44.20	43.17	54.00	-10.83	AV	Vertical		
7320.66	69.73	7.10	36.50	44.43	68.90	74.00	-5.10	Pk	Vertical		
7320.66	50.63	7.10	36.50	44.43	49.80	54.00	-4.20	AV	Vertical		
4880.36	70.91	5.21	35.66	44.20	67.58	74.00	-6.42	Pk	Horizontal		
4880.36	50.55	5.21	35.66	44.20	47.22	54.00	-6.78	AV	Horizontal		
7320.78	70.87	7.10	36.50	44.43	3 70.04	74.00	-3.96	Pk	Horizontal		
7320.78	50.78	7.10	36.50	44.43	49.95	54.00	-4.05	AV	Horizontal		
			High (Channel (2480 MHz)(GFSI	<) Above	1G				
4960.45	69.08	5.21	35.52	44.21	65.60	74.00	-8.40	Pk	Vertical		
4960.45	45.92	5.21	35.52	44.21	42.44	54.00	-11.56	AV	Vertical		
7440.75	70.15	7.10	36.53	44.60	69.18	74.00	-4.82	Pk	Vertical		
7440.75	49.35	7.10	36.53	44.60	48.38	54.00	-5.62	AV	Vertical		
4960.57	68.94	5.21	35.52	44.21	65.46	74.00	-8.54	Pk	Horizontal		
4960.57	47.41	5.21	35.52	44.21	43.93	54.00	-10.07	AV	Horizontal		
7440.53	69.75	7.10	36.53	44.60	68.78	74.00	-5.22	Pk	Horizontal		
7440.53	48.50	7.10	36.53	44.60	47.53	54.00	-6.47	AV	Horizontal		

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor

(2)All other emissions more than 20dB below the limit.

(3)Only the worst data is recorded in the report, the data rates (1Mbps for GFSK modulation) test result is the worst

EUT:	TURNT	ABLE		Mode	el No.:	K	XRM1	9		
Temperature:	20 °C			Relat	ive Humidit	y: 48	8%			
Fest Mode:	st Mode: Mode2/ Mode4 Te				By:	Y	oyo Lia	ang		
Frequency	Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limit	s N	/largin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	dB) (dBµV/m)		/m)	(dB)	Туре	
				1Mbp	s(GFSK)					
2310.00	69.74	2.97	27.80	43.80	56.71	74	-	17.29	Pk	Horizontal
2310.00	48.57	2.97	27.80	43.80	35.54	54	-	18.46	AV	Horizontal
2310.00	69.78	2.97	27.80	43.80	56.75	74	-	17.25	Pk	Vertical
2310.00	47.94	2.97	27.80	43.80	34.91	54	-	19.09	AV	Vertical
2390.00	71.29	3.14	27.21	43.80	57.84	74	-	16.16	Pk	Vertical
2390.00	51.13	3.14	27.21	43.80	37.68	54	-	16.32	AV	Vertical
2390.00	69.52	3.14	27.21	43.80	56.07	74	-	17.93	Pk	Horizontal
2390.00	48.53	3.14	27.21	43.80	35.08	54	-	18.92	AV	Horizontal
2483.50	68.46	3.58	27.70	44.00	55.74	74	-	18.26	Pk	Vertical
2483.50	46.29	3.58	27.70	44.00	33.57	54	-:	20.43	AV	Vertical
2483.50	69.51	3.58	27.70	44.00	56.79	74	-	17.21	Pk	Horizontal
2483.50	46.68	3.58	27.70	44.00	33.96	54	-:	20.04	AV	Horizontal

ilac-M

ACCREE

Certificate #4298.01

Note: (1) All other emissions more than 20dB below the limit.

(2)Only the worst data is recorded in the report, the data rates (1Mbps for GFSK modulation) test result is the worst

Spurious	s Emis	sion i	in Restric	ted Band	326	60MHz-	18000MHz					
EUT:	Т	FURN	TABLE			Model No.:			KXRM19			
Temperature	e: 2	20 °C				Relativ	e Humidity	lumidity: 48%				
Test Mode: Mode2/ Mode4 Test					Test B	y:		Yoyo l	_iang			
Frequency	Read Lev	-	Cable Loss	Antenna Factor		reamp actor	Emission Level	L	imits	Margin	Detector	Comment
(MHz)	(dBµ	JV)	(dB)	dB/m		(dB)	(dBµV/m)	(dB	μV/m)	(dB)	Туре	
3260	69.	51	4.04	29.57	2	14.70	58.42		74	-15.58	Pk	Vertical
3260	50.0	01	4.04	29.57	2	14.70	38.92		54	-15.08	AV	Vertical
3260	69.3	38	4.04	29.57	2	14.70	58.29	3.29 74		-15.71	Pk	Horizontal
3260	48.0	65	4.04	29.57	2	14.70	37.56		54	-16.44	AV	Horizontal
3332	68.	13	4.26	29.87	2	14.40	57.86		74	-16.14	Pk	Vertical
3332	47.2	26	4.26	29.87	2	14.40	36.99		54	-17.01	AV	Vertical
3332	69.0	01	4.26	29.87	2	14.40	58.74		74	-15.26	Pk	Horizontal
3332	45.6	62	4.26	29.87	4	14.40	35.35		54	-18.65	AV	Horizontal
17797	57.2	20	10.99	43.95	4	43.50	68.64		74	-5.36	Pk	Vertical
17797	34.2	23	10.99	43.95	4	43.50	45.67		54	-8.33	AV	Vertical
17788	48.8	87	11.81	43.69	2	14.60	59.77		74	-14.23	Pk	Horizontal
17788	36.9	94	11.81	43.69	2	14.60	47.84		54	-6.16	AV	Horizontal

ilac-MF

ACCRED

Certificate #4298.01

ITED

Note: (1) All other emissions more than 20dB below the limit.

(2)Only the worst data is recorded in the report, the data rates (1Mbps for GFSK modulation) test result is the worst

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.2.

Certificate #4298.01

7.3.2 Conformance Limit

The minimum permissible 6dB bandwidth is 500 kHz.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows Subclause 11.8 of ANSI C63.10

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \geq 3*RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3.6 Test Results

EUT:	TURNTABLE	Model No.:	KXRM19
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Yoyo Liang

7.4 DUTY CYCLE

7.4.1 Applicable Standard

According to KDB 558074 D01 15.247 Meas Guidance v05r02s Section 6.

7.4.2 Conformance Limit

No limit requirement.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

Certificate #4298.01

The transmitter output is connected to the Spectrum Analyzer. We tested accroding to the zero-span measurement method, 6.0)b) in KDB 558074

The largest available value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if $T \le 6.25$ microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Zero Span RBW = 8MHz(the largest available value) VBW = 8MHz (\geq RBW) Number of points in Sweep >100 Detector function = peak Trace = Clear write Measure T_{total} and T_{on} Calculate Duty Cycle = T_{on} / T_{total}

7.4.6 Test Results

EUT:	TURNTABLE	Model No.:	KXRM19
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Yoyo Liang

ACCREDITED

Certificate #4298.01

7.5 **PEAK OUTPUT POWER**

7.5.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.3.1.

Certificate #4298.01

7.5.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows Subclause 11.9.1.1 of ANSI C63.10 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Set the RBW \geq DTS bandwidth. Set VBW =3*RBW. Set the span \geq 3*RBW Set Sweep time = auto couple. Set Detector = peak. Set Trace mode = max hold. Allow trace to fully stabilize. Use peak marker function to determine the peak amplitude level.

7.5.6 Test Results

EUT:	TURNTABLE	Model No.:	KXRM19
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Yoyo Liang

7.6 POWER SPECTRAL DENSITY

7.6.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.4.

7.6.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows Measurement Procedure Subclause 11.10.2 of ANSI C63.10 This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5*DTS bandwidth.
- c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d) Set the VBW \geq 3 RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.6.6 Test Results

EUT:	TURNTABLE	Model No.:	KXRM19
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Yoyo Liang

7.7 CONDUCTED BAND EDGE MEASUREMENT

7.7.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

7.7.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows FCC KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.7.6 Test Results

EUT:	TURNTABLE	Model No.:	KXRM19
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2/Mode4	Test By:	Yoyo Liang

7.8 SPURIOUS RF CONDUCTED EMISSIONS

7.8.1 Conformance Limit

1. Below -20dB of the highest emission level in operating band.

2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

ACCREE

Certificate #4298.01

7.8.2 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.3 Test Setup

Please refer to Section 6.1 of this test report.

7.8.4 Test Procedure

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength , and measure frequency range from 30MHz to 26.5GHz.

7.8.5 Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

7.9 ANTENNA APPLICATION

7.9.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.9.2 Result

The EUT antenna is permanent attached PCB antenna (Gain: -0.58 dBi). It comply with the standard requirement.

8 TEST RESULTS

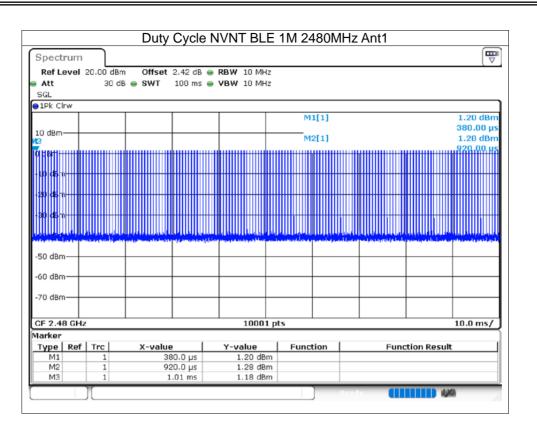
8.1 **1M**

8.1.1 Duty Cycle


Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	BLE 1M	2402	Ant1	15.62	8.06	11.11
NVNT	BLE 1M	2440	Ant1	15.61	8.07	11.11
NVNT	BLE 1M	2480	Ant1	15.51	8.09	11.11

ACCREDITED

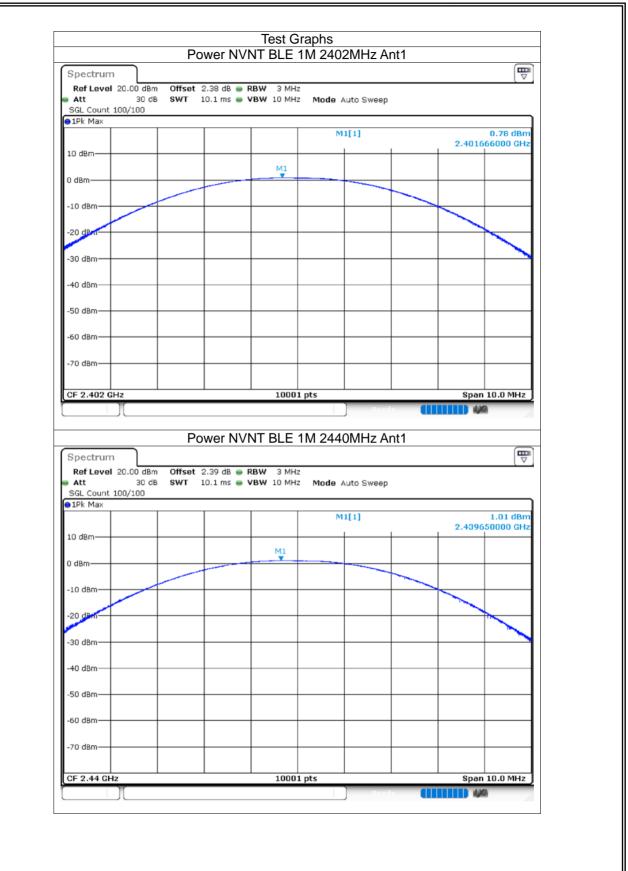
Certificate #4298.01


Report No.: S24101700701002

ACCREDITED

Certificate #4298.01

ACCREDITED



8.1.2 Maximum Conducted Output Power

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	0.78	30	Pass
NVNT	BLE 1M	2440	Ant1	1.01	30	Pass
NVNT	BLE 1M	2480	Ant1	1.19	30	Pass

ACCREDITED

ACCREDITED

	Power N	VNT BLE 1M	I 2480MHz An	t1	
Spectrum					
Ref Level 20.00 dBn		RBW 3 MHz			
Att 30 de	8 SWT 10.1 ms 🖷	VBW 10 MHz	Mode Auto Sweep		
SGL Count 100/100					
			M1[1]		1.19 dBm
				2.479	9617000 GHz
10 dBm					
		M1			
0 dBm					
-10 dBm					
-20 dbm					
-30 dBm					
40 dBm					
50 d0-1					
50 dBm					
-60 dBm					
-oo usiii					
70 dBm					
CF 2.48 GHz		10001 pt	s	Spa	n 10.0 MHz
			Ready		ya)

ACCREDITED

8.1.3 -6dB Bandwidth

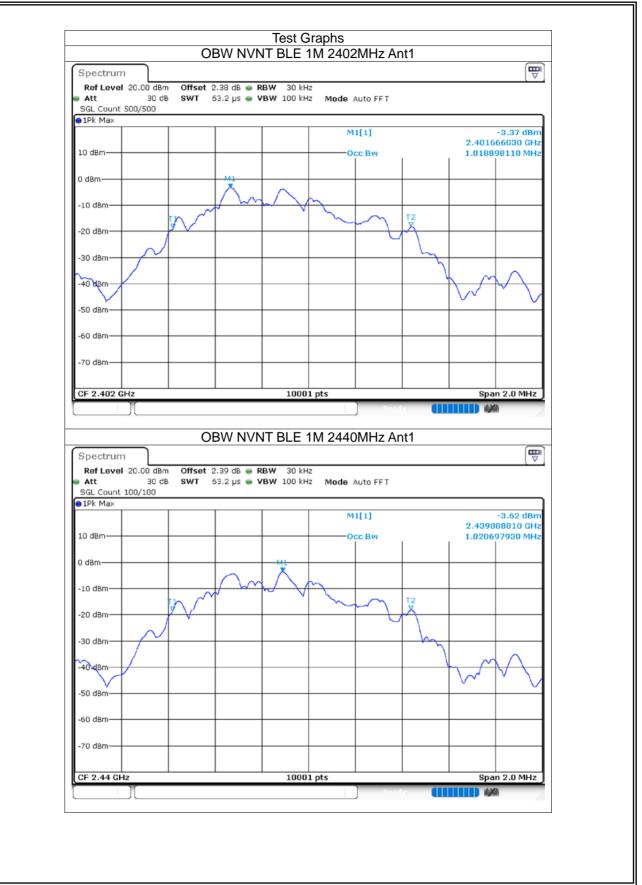
Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE 1M	2402	Ant1	0.504	0.5	Pass
NVNT	BLE 1M	2440	Ant1	0.509	0.5	Pass
NVNT	BLE 1M	2480	Ant1	0.597	0.5	Pass

ACCREDITED

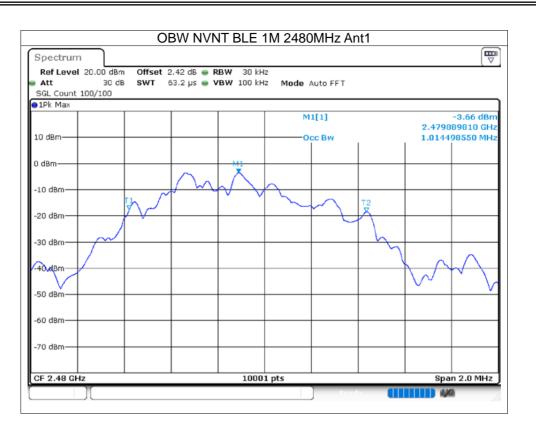
ACCREDITED

							E
Spectrum	L						
Ref Level	20.00 0	dBm Offset 2.42 dB	👄 RBW 100 kHz				
Att			👄 VBW 300 kHz	Mode Auto FFT			
GGL Count 1	.00/100						
1Pk Max							
				M1[1]		-0	.64 dBm
0 dBm						2.479847	820 GHz
				M2[1]			.66 dBm
dBm			M1			2.479552	000 GHz
		M2		M3			
				- the second			
20 dBm —		<u> </u>					
30 dBm —							
40 dBm							<u> </u>
50 dBm —							
i0 dBm —							
I							
'0 dBm —							
F 2.48 GH	2		10001 p	ts		Span 2	2.0 MHz
arker							
	Trc	X-value	Y-value	Function	Func	tion Result	
M1	1	2.47984782 GHz					
M2	1	2.479552 GHz					
M3	1	2.480149 GHz	-6.64 dBm				

ACCREDITED



8.1.4 Occupied Channel Bandwidth


Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE 1M	2402	Ant1	1.019
NVNT	BLE 1M	2440	Ant1	1.021
NVNT	BLE 1M	2480	Ant1	1.014

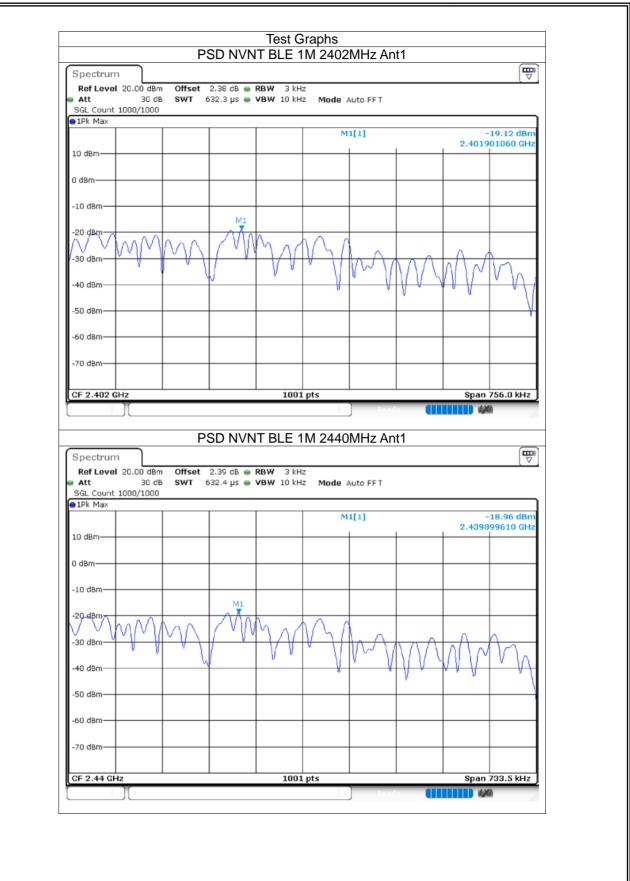
ACCREDITED

ACCREDITED

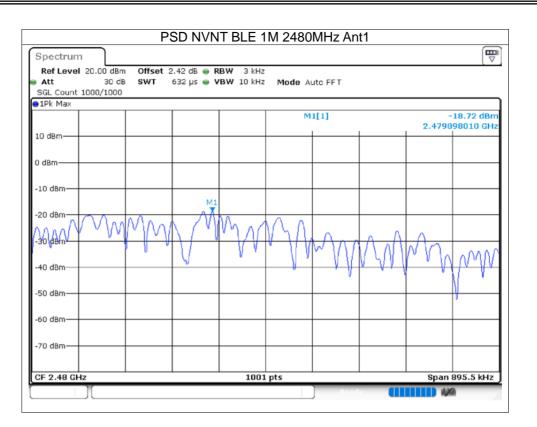
8.1.5 Maximum Power Spectral Density Level

Condition	Mode	Frequency (MHz)	Antenna	Conducted PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	-19.12	8	Pass
NVNT	BLE 1M	2440	Ant1	-18.96	8	Pass
NVNT	BLE 1M	2480	Ant1	-18.72	8	Pass

ACCREDITED



ilac-MR


ACCREDITED

Certificate #4298.01

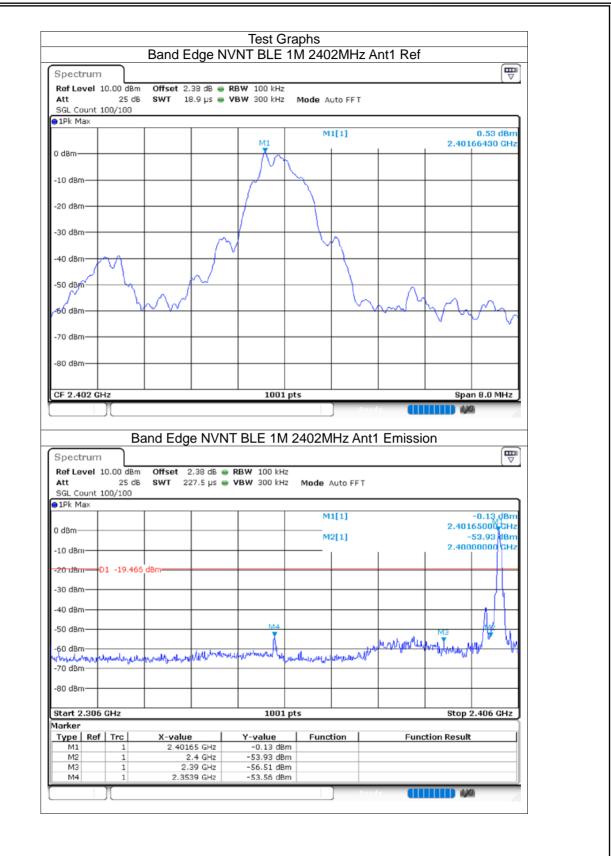
Report No.: S24101700701002

ACCREDITED

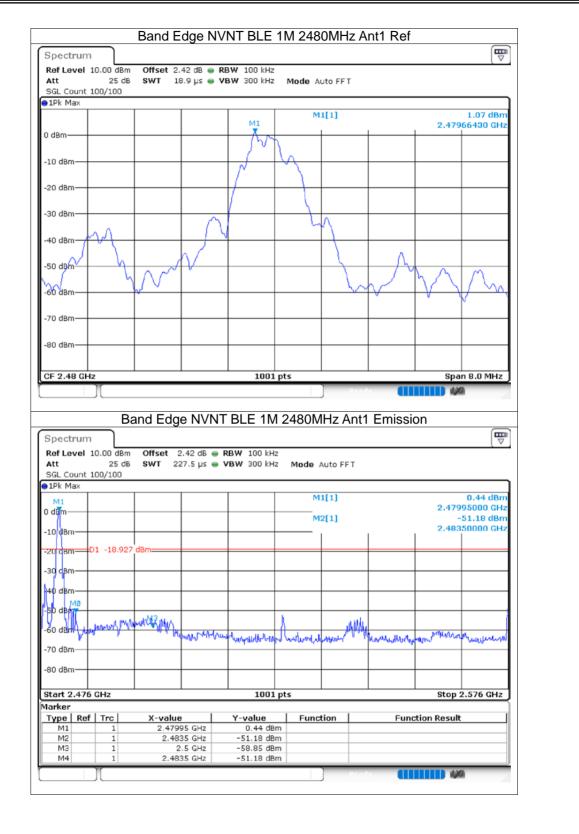
8.1.6 Band Edge

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-54.09	-20	Pass
NVNT	BLE 1M	2480	Ant1	-52.24	-20	Pass

ACCREDITED



ilac-MR


ACCREDITED

Certificate #4298.01

Report No.: S24101700701002

ACCREDITED

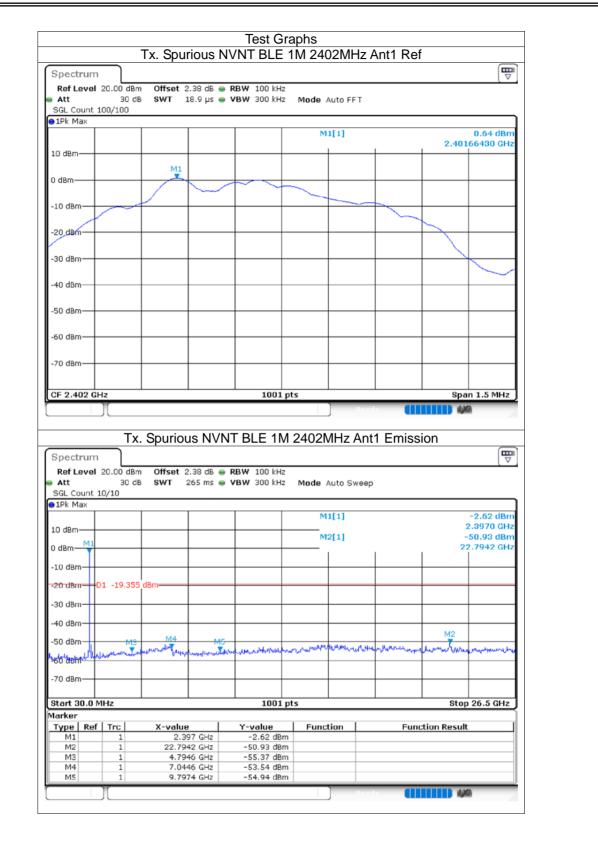
8.1.7 Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-51.57	-20	Pass
NVNT	BLE 1M	2440	Ant1	-50.43	-20	Pass
NVNT	BLE 1M	2480	Ant1	-51.58	-20	Pass

ACCREDITED

Certificate #4298.01

ilac-MR



ilac-MR

ACCREDITED

Certificate #4298.01

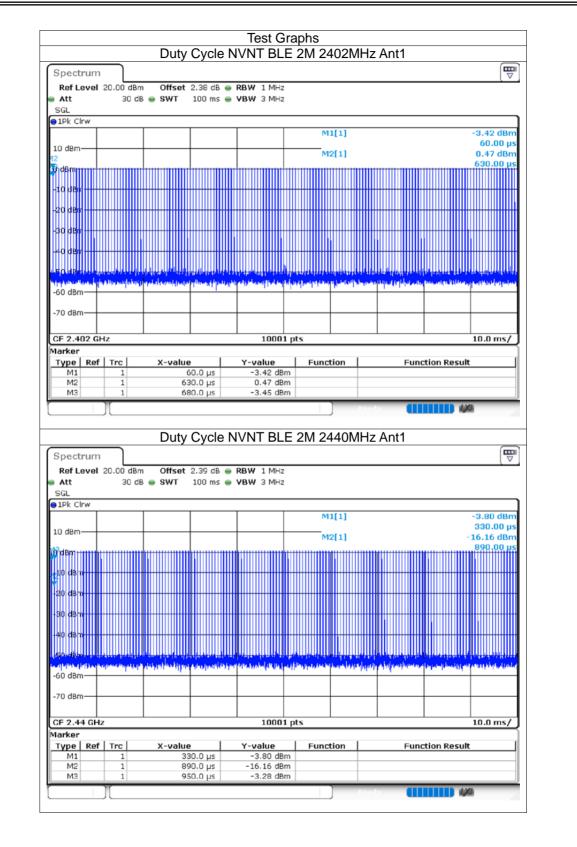
Report No.: S24101700701002

Spectrum Ref Level Att	1 20.00 dBm 30 dB		dB 👄 RBW 100 kHz µs 👄 VBW 300 kHz				
SGL Count		0.0.1		Mode Auto FFT			
1Pk Max							
				M1[1]			-0.44 dBm
10 dBm					_	2.43986	521550 GHz
0 dBm			M1				
			\sim				
-10 dBm					-		
-20 d8m							
-30 dBm							
-40 dBm							
-vo ubili							
-50 dBm							
-60 dBm							
-70 dBm							
CF 2.44 GH	17	I	30001	nte		Spa	n 1.5 MHz
	12			pes			
Spectrum	J Tx.	Spurious	NVNT BLE 1M	Re	nt1 Emiss	ion	
Ref Level Att	Tx. 20.00 dBm 30 dB	Offset 2.39		1 2440MHz Ai		ion	
Ref Level	Tx. 20.00 dBm 30 dB	Offset 2.39		1 2440MHz Ai		ion	
Ref Level Att SGL Count	Tx. 20.00 dBm 30 dB	Offset 2.39		1 2440MHz Ai			0.26 dBm
Ref Level Att SGL Count 1Pk Max	Tx. 20.00 dBm 30 dB	Offset 2.39		Mode Auto Swe		2.4	0.26 dBm H40010 GHz
Ref Level Att SGL Count 1Pk Max	Tx. 20.00 dBm 30 dB	Offset 2.39		1 2440MHz An Mode Auto Swe		2.4	0.26 dBm
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm	Tx. 20.00 dBm 30 dB	Offset 2.39		Mode Auto Swe		2.4	0.26 dBm H40010 GHz -50.88 dBm
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm	Tx. 20.00 dBm 30 dB 10/10	Offset 2.39 SWT 265		Mode Auto Swe		2.4	0.26 dBm H40010 GHz -50.88 dBm
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm	Tx. 20.00 dBm 30 dB	Offset 2.39 SWT 265		Mode Auto Swe		2.4	0.26 dBm H40010 GHz -50.88 dBm
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm	Tx. 20.00 dBm 30 dB 10/10	Offset 2.39 SWT 265		Mode Auto Swe		2.4	0.26 dBm H40010 GHz -50.88 dBm
Ref Level Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm	Tx. 20.00 dBm 30 dB 10/10	Offset 2.39 SWT 265		Mode Auto Swe		2.4	0.26 dBm H40010 GHz -50.88 dBm
Ref Level Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	Tx. 20.00 dBm 30 dB 10/10	Offset 2.39 SWT 265		Mode Auto Swe		2.4	0.26 dBm H40010 GHz -50.88 dBm
Ref Level Att SGL Count IPk Max 10 dBm -10 dBm -20 dBm -30 dBm	Tx. 20.00 dBm 30 dB 10/10	Offset 2.39 SWT 265	NVNT BLE 1M	Mode Auto Swe		2.4	0.26 dBm H40010 GHz -50.88 dBm
Ref Level Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	Tx. 20.00 dBm 30 dB 10/10	Offset 2.39 SWT 265	NVNT BLE 1M	Mode Auto Swe		2.4	0.26 dBm H40010 GHz -50.88 dBm
Ref Level Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	Tx. 20.00 dBm 30 dB 10/10	Offset 2.39 SWT 265	NVNT BLE 1M	Mode Auto Swe		2.4	0.26 dBm H40010 GHz -50.88 dBm
Ref Level Att SGL Count IPk Max IO dBm ID dB	Tx. 20.00 dBm 30 dB 10/10	Offset 2.39 SWT 265	MVNT BLE 1M	Mode Auto Swe		2.2 2.5	0.26 dBm H40010 GHz -50.88 dBm 534944 GHz
Ref Level Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm	Tx. 20.00 dBm 30 dB 10/10	Offset 2.39 SWT 265	NVNT BLE 1M	Mode Auto Swe		2.2 2.5	0.26 dBm H40010 GHz -50.88 dBm
Ref Level Att SGL Count IPk Max 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 dBm -70 dBm -70 dBm -70 dBm -70 dBm	Tx. 20.00 dBm 30 dB 10/10 D1 -20.439 2 M3 MHz	dBm	NVNT BLE 1M	Mode Auto Swe	ep	2 2.5	0.26 dBm H40010 GHz -50.88 dBm 334944 GHz
Ref Level Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm	Tx. 20.00 dBm 30 dB 10/10 D1 -20.439 2 M3 MHz	Offset 2.39 SWT 265	NVNT BLE 1M	Mode Auto Swe	ep	2.2 2.5	0.26 dBm H40010 GHz -50.88 dBm 334944 GHz
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -70 dBm Start 30.0 Marker Type Ref M1 M2	Tx. 20.00 dBm 30 dB 10/10 D1 -20.439 2 MR MHz f Trc 1 1	Offset 2.39 SWT 265	MVNT BLE 1M	Mode Auto Swe Mode Auto Swe M1[1] M2[1] pts Function	ep	2 2.5	0.26 dBm H40010 GHz -50.88 dBm 334944 GHz
Ref Level Att SGL Count IPk Max 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -	Tx. 20.00 dBm 30 dB 10/10 D1 -20.439 2 MHz f Trc 1 1 1	Offset 2.39 SWT 265	NVNT BLE 1M	Mode Auto Swe Mode Auto Swe M1[1] M2[1] m2[1] pts Function 1 1 1 1 1 1 1 1 1	ep	2 2.5	0.26 dBm H40010 GHz -50.88 dBm 334944 GHz
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -70 dBm Start 30.0 Marker Type Ref M1 M2	Tx. 20.00 dBm 30 dB 10/10 D1 -20.439 2 MR MHz f Trc 1 1	Offset 2.39 SWT 265	NVNT BLE 1M	Mode Auto Swe Mode Auto Swe M1[1] M2[1] pts Function 1 1 1 1 1 1 1 1 1	ep	2 2.5	0.26 dBm H40010 GHz -50.88 dBm 334944 GHz
Ref Level Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm Start 30.0 Marker Type Ref M1 M2 M3 M4	Tx. 20.00 dBm 30 dB 10/10 D1 -20.439 2 M3 2 M3 MHz f Trc 1 1 1	Offset 2.39 SWT 265	NVNT BLE 1M	Mode Auto Swe Mode Auto Swe M1[1] M2[1] pts Function 1 1 1 1 1 1 1 1 1	ep	2 2.5	0.26 dBm H40010 GHz -50.88 dBm 334944 GHz

ACCREDITED

Att	10.00 dBn 30 dB			RBW 100 kHz VBW 300 kHz	Mode Auto F	FFT			
SGL Count	100/100								
					M1[1]				0.97 dBm
		M1						2.47966	526610 GHz
0 dBm									
-10 dBm				_					
-20 d8m-									
00 d0-									
-30 dBm									
-40 dBm									
-50 dBm									
-60 dBm									
-70 dBm				+					
-80 dBm									
CF 2.48 GH				30001	ots			spa	an 1.5 MHz
Spectrum	ī	•		IT BLE 1M	2480MHz	Ready Ant1	Emiss	ion	
Ref Level Att	10.00 dBn 30 dB	n Offset 2.4	42 dB 👄	IT BLE 1M			Emiss	ion	
Ref Level	10.00 dBn 30 dB	n Offset 2.4	42 dB 👄	RBW 100 kHz	Mode Auto S		Emiss	ion	
Ref Level Att SGL Count 1Pk Max	10.00 dBn 30 dB	n Offset 2.4	42 dB 👄	RBW 100 kHz			Emiss		-3.59 dBm
Ref Level Att SGL Count 1Pk Max	10.00 dBn 30 dB	n Offset 2.4	42 dB 👄	RBW 100 kHz	Mode Auto S		Emiss	2.4	-3.59 dBm 179720 GHz -50.62 dBm
Ref Level Att SGL Count IPk Max 0 dBm -10 dBm	10.00 dBn 30 dE 10/10	n Offset 2.4 3 SWT 26	42 dB 👄	RBW 100 kHz	Mode Auto s		Emiss	2.4	-3.59 dBm 179720 GHz
Ref Level Att SGL Count 1Pk Max	10.00 dBn 30 dE 10/10	n Offset 2.4 3 SWT 26	42 dB 👄	RBW 100 kHz	Mode Auto s		Emiss	2.4	-3.59 dBm 179720 GHz -50.62 dBm
Ref Level Att SGL Count IPk Max 0 dBm -10 dBm	10.00 dBn 30 dE 10/10	n Offset 2.4 3 SWT 26	42 dB 👄	RBW 100 kHz	Mode Auto s		Emiss	2.4	-3.59 dBm 179720 GHz -50.62 dBm
Ref Level Att SGL Count IPk Max 0 dBm	10.00 dBn 30 dE 10/10	n Offset 2.4 3 SWT 26	42 dB 👄	RBW 100 kHz	Mode Auto s		Emiss	2.4	-3.59 dBm 179720 GHz -50.62 dBm
Ref Level Att SGL Count 1Pk Max 0 dBm 10 dBm 20 dBm -30 dBm	10.00 dBn 30 dE 10/10	dBm	42 dB ● 55 ms ●	RBW 100 kHz VBW 300 kHz	Mode Auto 9	Sweep		2.4	-3.59 dBm H79720 GHz -50.62 dBm 924353 GHz
Ref Level Att SGL Count 1Pk Max 0 dBm -10 dBm -20 dBm -30 dBm	10.00 dBn 30 dE 10/10	n Offset 2.4 3 SWT 26	42 dB ● 55 ms ●	RBW 100 kHz VBW 300 kHz	Mode Auto 9	Sweep	eks dimensi y . (y	2.4	-3.59 dBm 179720 GHz -50.62 dBm
Ref Level Att SGL Count IPk Max 0 dBm 10 dBm 20 dBm -20 dBm -30 dBm -50 dBm	10.00 dBn 30 dE 10/10	dBm	42 dB ● 55 ms ●	RBW 100 kHz VBW 300 kHz	Mode Auto 9	Sweep	eks dimensi y . (y	2.4	-3.59 dBm 179720 GHz -50.62 dBm 224353 GHz
Ref Level Att SGL Count 1Pk Max 0 dBm M1 0 dBm 20 dBm 30 dBm 40 dBm 50 dBm 50 dBm	10.00 dBn 30 dE 10/10	dBm	42 dB ● 55 ms ●	RBW 100 kHz VBW 300 kHz	Mode Auto 9	Sweep	eks dimensi y . (y	2.4	-3.59 dBm 179720 GHz -50.62 dBm 224353 GHz
Ref Level Att SGL Count IPk Max 0 dBm 10 dBm 20 dBm -20 dBm -30 dBm -50 dBm	10.00 dBn 30 dE 10/10	dBm	42 dB ● 55 ms ●	RBW 100 kHz VBW 300 kHz	Mode Auto 9	Sweep	eks dimensi y . (y	2.4	-3.59 dBm 179720 GHz -50.62 dBm 224353 GHz
Ref Level Att SGL Count IPk Max 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -70 dBm	10.00 dBn 30 dE 10/10 D1 -19.026	dBm	42 dB ● 55 ms ●	RBW 100 kHz VBW 300 kHz	Mode Auto 9	Sweep	eks dimensi y . (y	2.4	-3.59 dBm +79720 GHz -50.62 dBm 224353 GHz
Ref Level Att SGL Count IPk Max 0 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -70 dBm -80 dBm -80 dBm -80 dBm -70 dBm	10.00 dBn 30 dE 10/10 D1 -19.026	dBm	42 dB ● 55 ms ●	RBW 100 kHz	Mode Auto 9	Sweep		2 15.9	-3.59 dBm 179720 GHz -50.62 dBm 224353 GHz
Ref Level Att SGL Count IPk Max 0 dBm M1 -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -80 dBm -70 dBm -80 dBm -70 dBm -80 dBm -70 dBm	10.00 dBn 30 dE 10/10 D1 -19.026	dBm	42 dB ● 55 ms ●	RBW 100 kHz	Mode Auto 9 M1[1] M2[1] M2 M2 M2 M2 M2 M2 M2 M	Sweep		2.4	-3.59 dBm 179720 GHz -50.62 dBm 224353 GHz
Ref Level Att SGL Count 1Pk Max 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70 dBm -80 dBm -80 dBm -70 dBm -80 dBm -70 dBm -70 dBm -80 dBm -70 dBm	10.00 dBn 30 dE 10/10 01 -19.026 MG MHz f Trc 1	D Offset 2.4 3 SWT 26 dBm dBm x-value 2.47972 15.924353	42 dB ● 55 ms ● 15 ms ● 10 ms	RBW 100 kHz VBW 300 kHz 	Mode Auto 9 M1[1] M2[1] M2[1] M2 M2 M2 M2 M2 M2 M2 M	Sweep		2 15.9	-3.59 dBm 179720 GHz -50.62 dBm 224353 GHz
Ref Level Att SGL Count IPk Max 0 dBm M1 M2 M3	MHz	Offset 2.4 SWT 26 B	42 dB ● 55 ms ● 15 ms ● 10 ms	RBW 100 kHz VBW 300 kHz 	Mode Auto 9 M1[1] M2[1] M2[1] M2 M2 M2 M2 M2 M2 M2 M	Sweep		2 15.9	-3.59 dBm 179720 GHz -50.62 dBm 224353 GHz
Ref Level Att SGL Count 1Pk Max 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70 dBm -80 dBm -80 dBm -70 dBm -80 dBm -70 dBm -70 dBm -80 dBm -70 dBm	10.00 dBn 30 dE 10/10 01 -19.026 MG MHz f Trc 1	D Offset 2.4 3 SWT 26 dBm dBm x-value 2.47972 15.924353	42 dB ● 55 ms ● 15 ms ● 42 dH2 42 dH2 4 GH2 4	RBW 100 kHz VBW 300 kHz 	Mode Auto 9 M1[1] M2[1] M2[1] M2 M2 M2 M2 M2 M2 M2 M	Sweep		2 15.9	-3.59 dBm 179720 GHz -50.62 dBm 224353 GHz

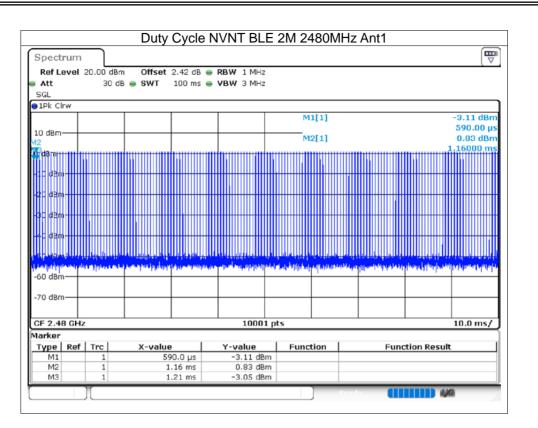
ACCREDITED



8.2 **2M**

8.2.1 Duty Cycle

Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	BLE 2M	2402	Ant1	10.47	9.8	20
NVNT	BLE 2M	2440	Ant1	10.45	9.81	16.67
NVNT	BLE 2M	2480	Ant1	10.75	9.69	20

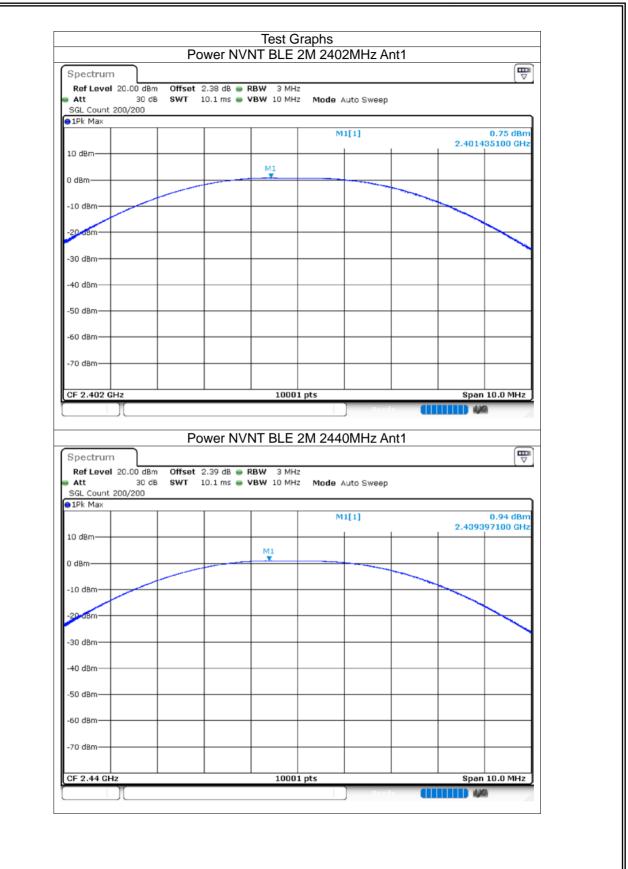


ACCREDITED

Certificate #4298.01

Version.1.3

ACCREDITED



8.2.2 Maximum Conducted Output Power

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE 2M	2402	Ant1	0.75	30	Pass
NVNT	BLE 2M	2440	Ant1	0.94	30	Pass
NVNT	BLE 2M	2480	Ant1	1.16	30	Pass

ACCREDITED

ACCREDITED

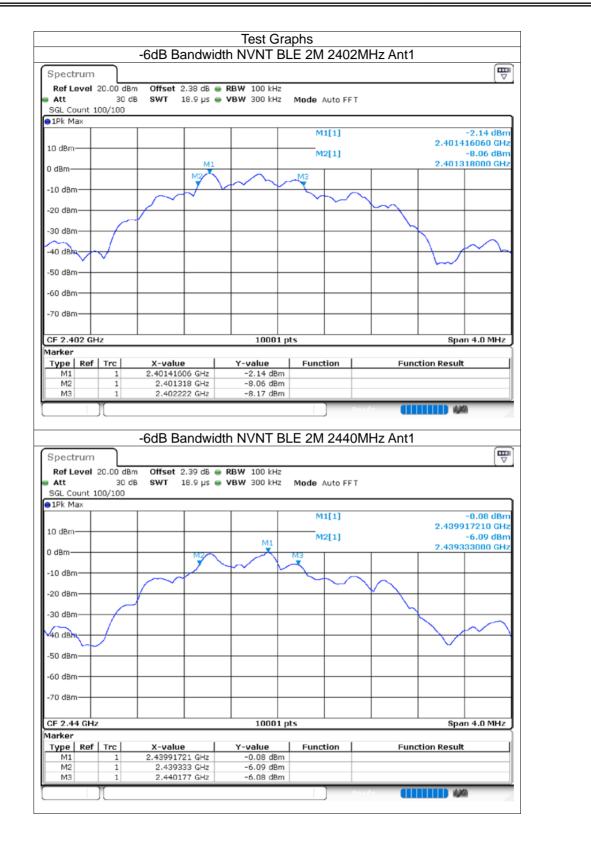
	Pov	wer NVN	NT BLE 2	M 248	0MHz Ai	nt1		
Spectrum								
Ref Level 20.00 dBr Att 30 d		.42 dB 👄 R	BW 3 MHz BW 10 MHz	Mode /	uto Sweep			
SGL Count 200/200	5 3001 1	5.1 ms 🚽 🗸	BW IO MHZ	Mode	uto sweep			
●1Pk Max								
				м	1[1]		2.4793	1.16 dBm 84100 GHz
10 dBm			M1					
0 dBm			•			_		
-10 dBm								
-20 dBm								
-30 dBm								
-40 dBm								
-50 dBm								
-60 dBm								
-70 dBm								
CF 2.48 GHz			10001	pts			Span	10.0 MHz
Ĭ					Read	· •		3

ACCREDITED

8.2.3 -6dB Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE 2M	2402	Ant1	0.904	0.5	Pass
NVNT	BLE 2M	2440	Ant1	0.844	0.5	Pass
NVNT	BLE 2M	2480	Ant1	0.684	0.5	Pass

ACCREDITED



ilac-MR

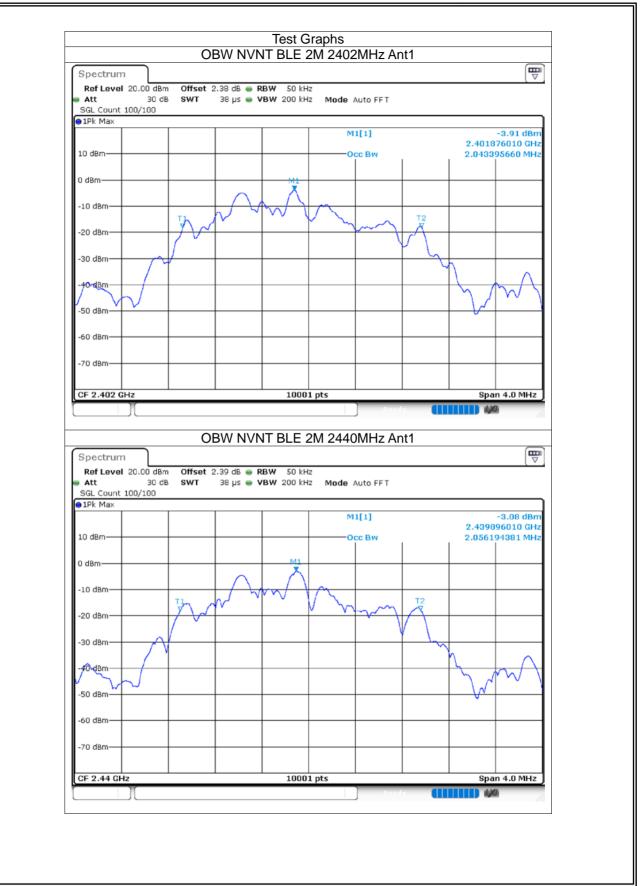
ACCREDITED

Certificate #4298.01

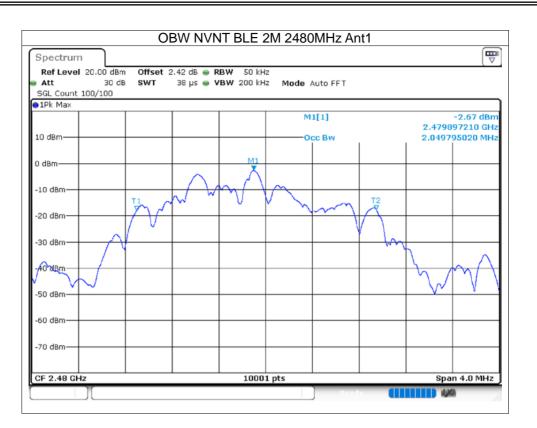
Report No.: S24101700701002

					E 2M 2480			m
Spectrum								
Ref Level	20.00 dB	m Offset 2.42	dB 👄 R	BW 100 kHz				
Att	30 c	B SWT 18.9) µs 👄 🛛	'BW 300 kHz	Mode Auto FFT			
GL Count	100/100							
1Pk Max								
					M1[1]			-0.18 dBm
0 dBm—								19660 GHz
			M1		M2[1]			-6.24 dBm
dBm —		- · · · ·					2.4793	28000 GHz
		N 1						
.0 dBm —			, •		\sim			
20 dBm —						\sim		
	~							
0 dBm		+ +						
\sim 1								
0 dBm	/	+ +					\rightarrow	\rightarrow
Y								
0 dBm-+								
o								
0 dBm								
'0 dBm								
F 2.48 GH	z			10001 pt	s		Spa	n 4.0 MHz
arker								
ype Ref	Trc	X-value		Y-value	Function	Fun	ction Result	
M1	1	2.47941966 (-0.18 dBm				
M2	1	2.479328 (-6.24 dBm				
M3	1	2.480013 (GHz	-6.19 dBm				

ACCREDITED



8.2.4 Occupied Channel Bandwidth


Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE 2M	2402	Ant1	2.043
NVNT	BLE 2M	2440	Ant1	2.056
NVNT	BLE 2M	2480	Ant1	2.05

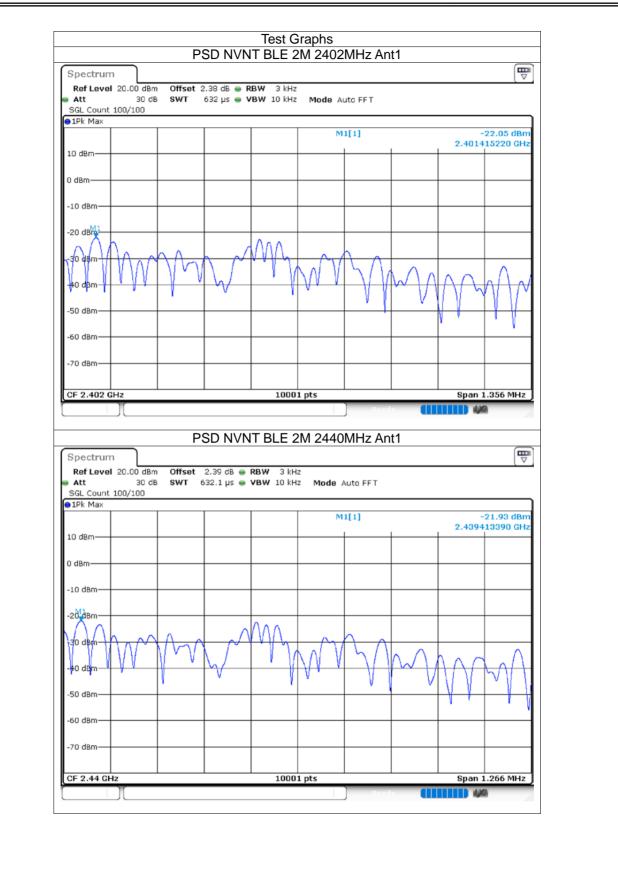
ACCREDITED

ACCREDITED

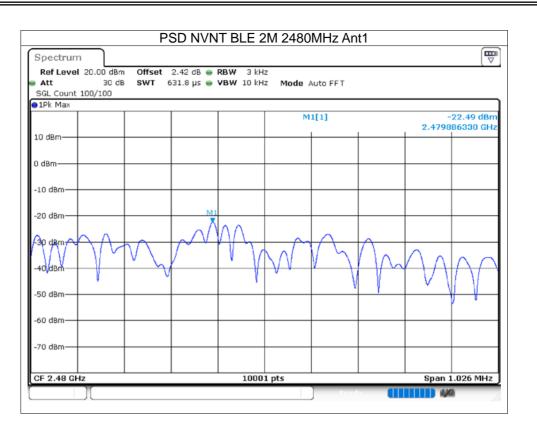
8.2.5 Maximum Power Spectral Density Level

Condition	Mode	Frequency (MHz)	Antenna	Conducted PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE 2M	2402	Ant1	-22.05	8	Pass
NVNT	BLE 2M	2440	Ant1	-21.93	8	Pass
NVNT	BLE 2M	2480	Ant1	-22.49	8	Pass

ACCREDITED



ilac-MR


ACCREDITED

Certificate #4298.01

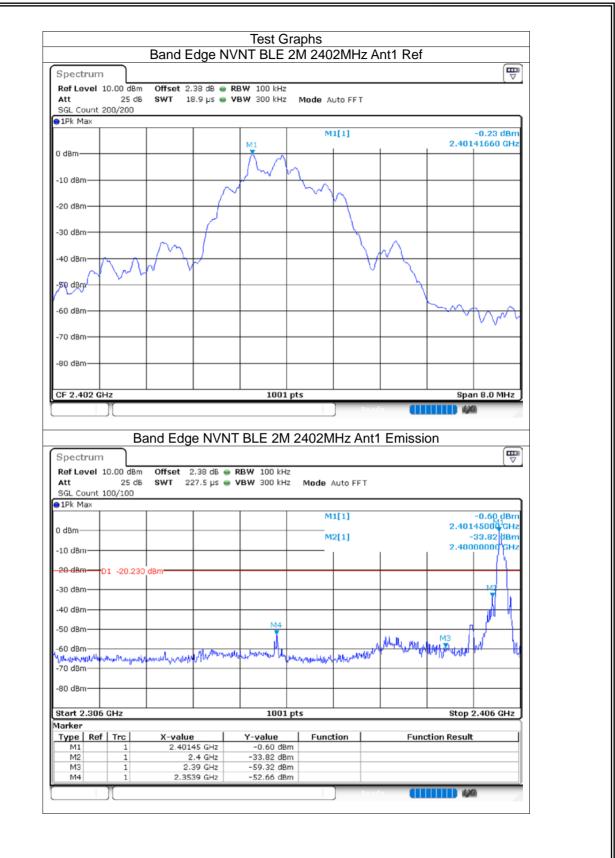
Report No.: S24101700701002

ACCREDITED

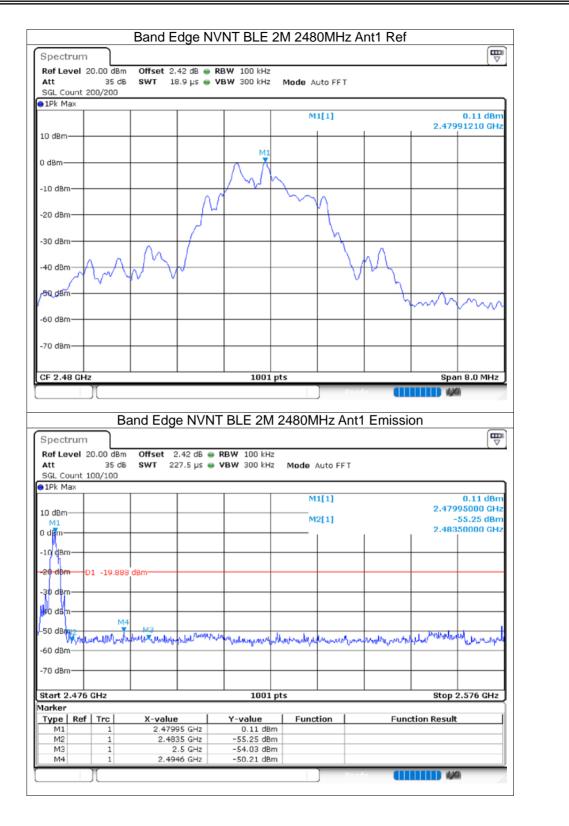
8.2.6 Band Edge

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 2M	2402	Ant1	-52.43	-20	Pass
NVNT	BLE 2M	2480	Ant1	-50.31	-20	Pass

ACCREDITED



ilac-MR


ACCREDITED

Certificate #4298.01

Report No.: S24101700701002

ACCREDITED

8.2.7 Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 2M	2402	Ant1	-50.7	-20	Pass
NVNT	BLE 2M	2440	Ant1	-50.02	-20	Pass
NVNT	BLE 2M	2480	Ant1	-51.33	-20	Pass

ACCREDITED

Certificate #4298.01

ilac-MR

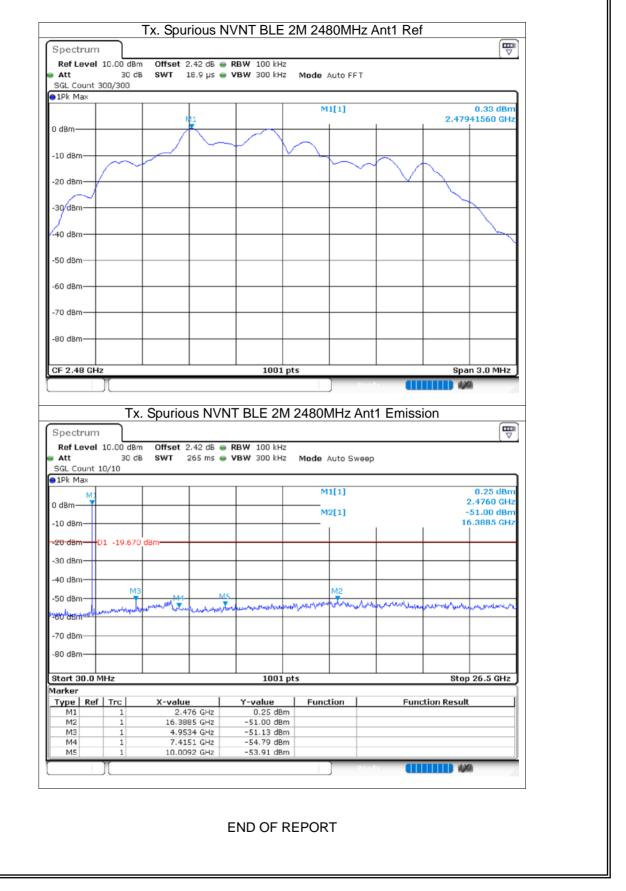


ilac-MR

ACCREDITED

Certificate #4298.01

Report No.: S24101700701002



	10.00 dBr		dB 👄 RBW 100 ki					
SGL Count	30 d 300/300	5 SWT 18.9	µs 👄 VBW 300 ki	Hz Mode /	uto FFT			
1Pk Max								
				M	1[1]			0.13 dBm
0 dBm		11				1	2.439	941860 GHz
0 00.0								
-10 dBm—				\sim \sim		_		
	\sim				\sim		\sim	
-20 dBm—						· ·		
-30 dBm-	1							
-30 abm—								
40 dBm-								
-50 dBm—								
-60 dBm—								
-70 dBm—								
-80 dBm—								
CF 2.44 G	Hz		100	1 pts		I	Spa	an 3.0 MHz
	Tx	. Spurious I	NVNT BLE 2	M 2440N) Rea /IHz Ant	1 Emiss	ion	
Ref Leve Att	n # 10.00 dBr 30 d	n Offset 2.39	NVNT BLE 2 dB • RBW 100 ki ms • VBW 300 ki	Hz			ion	
Spectrui Ref Leve Att SGL Couni 1Pk Max	n # 10.00 dBr 30 d	n Offset 2.39	dB 👄 RBW 100 ki	Hz			ion	
Ref Leve Att SGL Count 1Pk Max	n # 10.00 dBr 30 d	n Offset 2.39	dB 👄 RBW 100 ki	Hz Hz Mode A				-6.56 dBm
Ref Leve Att SGL Coun	n # 10.00 dBr 30 d	n Offset 2.39	dB 👄 RBW 100 ki	Hz Hz Mode A	auto Sweep			
Ref Leve Att SGL Count 1Pk Max	n # 10.00 dBr 30 d	n Offset 2.39	dB 👄 RBW 100 ki	Hz Hz Mode A	outo Sweep 1[1]			-6.56 dBm 2.4500 GHz
Ref Leve Att SGL Count 1Pk Max	n # 10.00 dBr 30 d	n Offset 2.39 B SWT 265	dB 👄 RBW 100 ki	Hz Hz Mode A	outo Sweep 1[1]			-6.56 dBm 2.4500 GHz -49.90 dBm
Ref Leve Att SGL Coun 1Pk Max 0 dBm -10 dBm	n 10.00 dBr 30 d 10/10	n Offset 2.39 B SWT 265	dB 👄 RBW 100 ki	Hz Hz Mode A	outo Sweep 1[1]			-6.56 dBm 2.4500 GHz -49.90 dBm
Ref Leve Att SGL Coun IPk Max 0 dBm -10 dBm -20 dBm -30 dBm	n 10.00 dBr 30 d 10/10	n Offset 2.39 B SWT 265	dB 👄 RBW 100 ki	Hz Hz Mode A	outo Sweep 1[1]			-6.56 dBm 2.4500 GHz -49.90 dBm
Ref Leva Att SGL Coun 1Pk Max 0 dBm -10 dBm -20 dBm -30 dBm	10.00 dBr 30 d : 10/10	n Offset 2.39 B SWT 265	dB • RBW 100 ki	Hz Mode /	auto Sweep 1[1] 2[1]			-6.56 dBm 2.4500 GHz -49.90 dBm 4.8740 GHz
Ref Leva Att SGL Coun 1Pk Max 0 dBm -10 dBm -20 dBm -30 dBm	10.00 dBr 30 d : 10/10	n Offset 2.39 B SWT 265	dB • RBW 100 ki	Hz Mode /	auto Sweep 1[1] 2[1]			-6.56 dBm 2.4500 GHz -49.90 dBm 4.8740 GHz
Ref Leva Att SGL Coun 1Pk Max 0 dBm -10 dBm -20 dBm -30 dBm	10.00 dBr 30 d : 10/10	n Offset 2.39 B SWT 265	dB 👄 RBW 100 ki	Hz Mode /	auto Sweep 1[1] 2[1]			-6.56 dBm 2.4500 GHz -49.90 dBm 4.8740 GHz
Ref Leva Att SGL Coun 1Pk Max 0 dBm -10 dBm -20 dBm -30 dBm	n 30 d 30 d : 10/10	n Offset 2.39 B SWT 265	dB • RBW 100 ki	Hz Mode /	auto Sweep 1[1] 2[1]			-6.56 dBm 2.4500 GHz -49.90 dBm 4.8740 GHz
Ref Leve Att SGL Coun IPk Max 0 d8m -10 d8m -20 d8m -30 d8m -40 d8m -50 d8m	n 30 d 30 d : 10/10	n Offset 2.39 B SWT 265	dB • RBW 100 ki	Hz Mode /	auto Sweep 1[1] 2[1]			-6.56 dBm 2.4500 GHz -49.90 dBm 4.8740 GHz
Ref Leve Att SGL Coun 1Pk Max 0 d8m -10 d8m -20 d8m -30 d8m -40 d8m -50 d8m -50 d8m -50 d8m -60 d8m -60 d8m -70 d8m -80 d8m	н 10.00 dBr 30 d 10/10	n Offset 2.39 B SWT 265	dB RBW 100 ki ms VBW 300 ki	Hz Hz Mode /	auto Sweep 1[1] 2[1]			-6.56 dBm 2.4500 GHz 49.90 dBm 4.8740 GHz
Ref Leve Att SGL Coun IPk Max 0 d8m 10 d8m -10 d8m -20 d8m -30 d8m -40 d8m -50 d8m -50 d8m -60 d8m -70 d8m -80 d8m -80 d8m	н 10.00 dBr 30 d 10/10	n Offset 2.39 B SWT 265	dB RBW 100 ki ms VBW 300 ki	Hz Mode /	auto Sweep 1[1] 2[1]			-6.56 dBm 2.4500 GHz -49.90 dBm 4.8740 GHz
Ref Leve Att SGL Coun 1Pk Max 0 d8m 10 d8m -10 d8m -20 d8m -30 d8m -50 d8m -50 d8m -60 d8m -70 d8m -80 d8m -80 d8m -70 d8m -80 d8m	M3 M3 M3 M3 M3 M3 M3 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4	n Offset 2.39 B SWT 265	dB RBW 100 ki ms VBW 300 ki	Hz Hz Mode / M: 	vuto Sweep 1[1] 2[1]		uruh-ug/stylu Stop	-6.56 dBm 2.4500 GHz -49.90 dBm 4.8740 GHz
Ref Leve Att SGL Coun 1Pk Max 0 dBm 10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -80 dBm -80 dBm -70 dBm -80 dBm -30 dBm -40 dBm	10/10 10	m Offset 2.39 B SwT 265	dB ● RBW 100 ki ms ● VBW 300 ki 	Hz Hz Mode / M: M: M: M: M: M: M: M: M: M:	vuto Sweep 1[1] 2[1]			-6.56 dBm 2.4500 GHz -49.90 dBm 4.8740 GHz
Ref Leve Att SGL Coun IPk Max 0 d8m 10 d8m -20 d8m -30 d8m -30 d8m -50 d8m -50 d8m -60 d8m -50 d8m -50 d8m -50 d8m -60 d8m -70 d8m -80 d8m -80 d8m -70 d8m -80 d8m	M 10.00 dBr 30 d 10/10 -D1 -19.873 M2 M42 MHz f Trc 1 1	n Offset 2.39 B SWT 265	dB	Hz Hz Mode / Hz Mode / M: M: M: M: M: M: M: M: M: M:	vuto Sweep 1[1] 2[1]		uruh-ug/stylu Stop	-6.56 dBm 2.4500 GHz -49.90 dBm 4.8740 GHz
Ref Leve Att SGL Coun 1Pk Max 0 dBm 1Pk Max 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -80 dBm -80 dBm -80 dBm -70 dBm -70 dBm -80 dBm -80 dBm -80 dBm -70 dBm -80 dBm -80 dBm -70 dBm -80 dBm -80 dBm -70 dBm -80 dBm	M 10.00 dBr 30 d 10/10 -01 -19.873 -01	m Offset 2.39 B SWT 265 B SWT 265 B dBm B dBm B dBm C State of the sta	dB ● RBW 100 ki ms ● VBW 300 ki >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	Hz Hz Mode / M: M: M: M: M: M: M: M: M: M: M: M: M:	vuto Sweep 1[1] 2[1]		uruh-ug/stylu Stop	-6.56 dBm 2.4500 GHz -49.90 dBm 4.8740 GHz
Ref Leve Att SGL Coun 1Pk Max 0 d8m 1Pk Max 0 d8m -10 d8m -20 d8m -30 d8m -50 d8m -50 d8m -60 d8m -70 d8m -80 d8m -80 d8m -70 d8m -80 d8m -70 d8m -70 d8m -80 d8m -70 d8m -70 d8m -80 d8m -70 d8m -70 d8m -80 d8m -70 d8m -70 Marker Type M1 M2 M3	M 10.00 dBr 30 d 10/10 01 -19.873 M3 M3 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4	m Offset 2.39 B SWT 265	dB ● RBW 100 ki ms ● VBW 300 ki MS MS	Hz Hz Mode / M: M: M: M: M: M: M: M: M: M: M: M: M:	vuto Sweep 1[1] 2[1])	uruh-ug/stylu Stop	-6.56 dBm 2.4500 GHz -49.90 dBm 4.8740 GHz

ACCREDITED

ACCREDITED