

TEST REPORT FCC ID:ZHZHP0D

Report Number. ZKT-2111266451E

Date of Test Nov. 25, 2021 to Dec. 06, 2021

Date of issue...... Dec. 06, 2021

Total number of pages 66

Test Result PASS

Testing Laboratory...... Shenzhen ZKT Technology Co., Ltd.

Applicant's name: Dragino Technology Co., Limited.

Address Room 202, BaoCheng Tai industrial park, No. 8 Cai Yun Long Cheng

Street, LongGang District, Shenzhen 518116, China

Manufacturer's name: Dragino Technology Co., Limited.

Address Room 202, BaoCheng Tai industrial park, No. 8 Cai Yun Long Cheng

Street, LongGang District, Shenzhen 518116, China

Test specification:

Standard FCC CFR Title 47 Part 15 Subpart C Section 15.247

Test procedure /

Non-standard test method: N/A

Test Report Form No....: TRF-EL-110_V0

Test Report Form(s) Originator....: ZKT Testing

Master TRF: Dated: 2020-01-06

This device described above has been tested by ZKT, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of ZKT, this document may be altered or revised by ZKT, personal only, and shall be noted in the revision of the document.

Product name.....: LoRaWAN Gateway

Trademark DRAGINO

Model/Type reference HP0D

Ratings Input: DC 12V From AC Adapter

Shenzhen ZKT Technology Co., Ltd.

Testing procedure and testing location:

Testing Laboratory: Shenzhen ZKT Technology Co., Ltd.

Address 1/F, No. 101, Building B, No. 6, Tangwei Community

Industrial Avenue, Fuhai Street, Bao'an District,

Shenzhen, China

Tested by (name + signature)..... Alen He

[me.) -1

Reviewer (name + signature) Joe Liu

Approved (name + signature) Lake Xie

TABLE OF CONTENTS

	Page
1.VERSION	4
2. TEST SUMMARY	5
2.1 TEST FACILITY	6
2.2 MEASUREMENT UNCERTAINTY	
3. GENERAL INFORMATION	
3.1 GENERAL DESCRIPTION OF EUT	
3.1 GENERAL DESCRIPTION OF EUT	
3.3 TEST MODE	- Control of the Cont
3.4 SUPPORT EQUIPMENT	
3.5 TEST INSTRUMENTS LIST	
4. EMC EMISSION TEST	12
4.1 CONDUCTED EMISSIONS	12
4.2 CONDUCTED PEAK OUTPUT POWER	
4.3 20DB EMISSION BANDWIDTH	
4.4 CARRIER FREQUENCIES SEPARATION	21
4.5 HOPPING CHANNEL NUMBER	24
4.6 DWELL TIME	
4.7 BAND EDGE	
4.8 SPURIOUS EMISSION	
4.9 CONDUCTED PEAK OUTPUT POWER	
4.10 CHANNEL BANDWIDTH	
4.11 POWER SPECTRAL DENSITY 4.12 BAND EDGES	
4.13 Spurious Emission	
5. ANTENNA REQUIREMENT	
6. TEST SETUP PHOTO	66
7. EUT CONSTRUCTIONAL DETAILS	66

1.Version

1110101011	I		T
Report No.	Version	Description	Approved
ZKT-2111266451E	Rev.01	Initial issue of report	Dec. 06, 2021
		120.	
N			

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

2. Test Summary

Test Item	Section in CFR 47	Result	
Antenna Requirement	15.203/15.247 (c)	Pass	
AC Power Line Conducted Emission	15.207	Pass	
Conducted Peak Output Power	15.247 (b)(1)	Pass	
20dB Occupied Bandwidth	15.247 (a)(1)	Pass	
Carrier Frequencies Separation	15.247 (a)(1)	Pass	
Hopping Channel Number	15.247 (a)(1)	Pass	
Dwell Time	15.247 (a)(1)	Pass	
Pseudorandom Frequency Hopping Sequence	15.247(b)(4)	Pass	
Radiated Emission	15.205/15.209	Pass	
Band Edge	15.247(d)	Pass	
Power Spectral Density	15.247 (e)	Pass	

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

2.1 TEST FACILITY

Shenzhen ZKT Technology Co., Ltd.

Add.: 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street,

Bao'an District, Shenzhen, China

FCC Test Firm Registration Number: 692225

Designation Number: CN1299 IC Registered No.: 27033

2.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	3m camber Radiated spurious emission(30MHz-1GHz)	U=4.3dB
2	3m chamber Radiated spurious emission(1GHz-18GHz)	U=4.5dB
3	3m chamber Radiated spurious emission(18GHz-40GHz)	U=3.34dB
4	Conducted Adjacent channel power	U=1.38dB
5	Conducted output power uncertainty Above 1G	U=1.576dB
6	Conducted output power uncertainty below 1G	U=1.28dB
7	humidity uncertainty	U=5.3%
8	Temperature uncertainty	U=0.59℃
9	Radiated disturbance(30MHz-1000MHz)	U=4.8dB
10	Radiated disturbance(1GHz-6GHz)	U=4.9dB
11	Radiated disturbance(1GHz- 18GHz)	U=5.0dB

Shenzhen ZKT Technology Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

3. General Information

3.1 General Description of EUT

45,797 3,790		
Product Name:	LoRaWAN Gateway	(0)(0)
Model No.:	HP0D	
Test sample(s) ID:	ZKT-2111266451-1	
Sample(s) Status:	Engineer sample	
Serial No.:	N/A	1
Hardware Version:	N/A)
Software Version:	N/A	
Operation Frequency:	902MHz~928MHz	
Channel numbers:	128 for 125KHz bandwidth	
678	77 for 250KHz bandwidth	
(4)	9 for 500KHz bandwidth	200
Channel separation:	200KHz for 125KHz bandwidth	
	330KHz for 250KHz bandwidth	
	500KHz for 500KHz bandwidth	
Modulation type:	FSK	
Antenna Type:	fibre-glass epoxy antenna	
Antenna gain:	3dBi	1
Power supply:	DC 12V From AC Adapter	
		

125KHz for FHSS:

Operation	Operation Frequency each of channel								
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
1	902.3	34	908.9	67	915.5	100	922.1		
2	902.5	35	909.1	68	915.7	101	922.3		
3	902.7	36	909.3	69	915.9	102	922.5		
4	902.9	37	909.5	70	916.1	103	922.7		
· .									
	-	•	-		1671				
•				•	- 20				
30	908.1	63	914.7	96	921.3	128	927.7		
31	908.3	64	914.9	97	921.5				
32	908.5	65	915.1	98	921.7				
33	908.7	66	915.3	99	921.9				

250KHz for FHSS:

Operation	Frequency eac	h of chann	el				100
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	902.40	21	909.00	41	915.60	61	922.20
2	902.73	22	909.33	42	915.93	62	922.53
3	903.06	23	909.66	43	916.26	63	922.86
4	903.39	24	909.99	44	916.59	64	923.19
ě		•	·	·		÷	
		•	·	•		ė	
17	907.68	37	914.28	57	920.88	77	927.48
18	908.01	38	914.61	58	921.21		W 14
19	908.34	39	914.94	59	921.54		
20	908.67	40	915.27	60	921.87		

500KHz for DTS:

Operation Frequency each of channel								
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)			
1	923.50	4	925.00	7	926.50			
2	924.00	5	925.50	8	927.00			
3	924.50	6	926.00	9	927.50			

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency(125KHz)	Frequency(250KHz)	Frequency(500KHz)
The lowest channel	902.30MHz	902.40MHz	923.50MHz
The middle channel	915.10MHz	914.94MHz	-
The Highest channel	927.70MHz	927.48MHz	927.50MHz

Shenzhen ZKT Technology Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

3.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

3.3 Test Setup Configuration

Conducted Emission

AC Line EUT

Radiated Emission

EUT

Conducted Spurious

EUT

3.4 Support Equipment

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
E-1	LoRaWAN Gateway	DRAGINO	HPOD	N/A	EUT
		67.67			

_				
Item	Shielded Type	Ferrite Core	Length	Note
	22			

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <code>[Length]</code> column.

Shenzhen ZKT Technology Co., Ltd.

3.5 Test Instruments list

Radiation Test equipment

Item	Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1	Spectrum Analyzer (9kHz-26.5GHz)	KEYSIGHT	9020A	MY45109572	Sep. 22, 2021	Sep. 21, 2022
2	Spectrum Analyzer (1GHz-40GHz)	Agilent	E4446A	100363	Sep. 22, 2021	Sep. 21, 2022
3	Test Receiver (9kHz-7GHz)	R&S	ESCI7	101169	Sep. 22, 2021	Sep. 21, 2022
4	Bilog Antenna (30MHz-1400MHz)	Schwarzbeck	VULB9168	00877	Sep. 22, 2021	Sep. 21, 2022
5	Horn Antenna (1GHz-18GHz)	SCHWARZBEC K	BBHA9120D	1541	Sep. 22, 2021	Sep. 21, 2022
6	Horn Antenna (18GHz-40GHz)	A.H. System	SAS-574	588	Sep. 22, 2021	Sep. 21, 2022
7	Amplifier (30-1000MHz)	EM Electronics	EM330 Amplifier	N/A	Sep. 22, 2021	Sep. 21, 2022
8	Amplifier (1GHz-40GHz)	全聚达	DLE-161	097	Sep. 22, 2021	Sep. 21, 2022
9	Loop Antenna (9KHz-30MHz)	SCHWARZBEC K	FMZB1519B	014	Sep. 22, 2021	Sep. 21, 2022
10	RF cables1 (9kHz-30MHz)	N/A	9kHz-30MHz	N/A	Sep. 22, 2021	Sep. 21, 2022
11	RF cables2 (30MHz-1GHz)	N/A	30MHz-1GHz	N/A	Sep. 22, 2021	Sep. 21, 2022
12	RF cables3 (1GHz-40GHz)	N/A	1GHz-40GHz	N/A	Sep. 22, 2021	Sep. 21, 2022
13	CMW500 Test	R&S	CMW500	106504	Sep. 22, 2021	Sep. 21, 2022
14	ESG Signal Generator	Agilent	E4421B	GB40051203	Sep. 22, 2021	Sep. 21, 2022
15	Signal Generator	Agilent	N5182A	MY47420215	Sep. 22, 2021	Sep. 21, 2022
16	D.C. Power Supply	LongWei	TPR-6405D	\	\	1
17	Software	Frad	EZ-EMC	FA-03A2 RE	\	\

Conduction Test equipment

	Condition 100 columns					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1	LISN	R&S	ENV216	101471	Sep. 22, 2021	Sep. 21, 2022
2	LISN	CYBERTEK	EM5040A	E185040014	Sep. 22, 2021	Sep. 21, 2022
3	Test Cable	N/A	C01	N/A	Sep. 22, 2021	Sep. 21, 2022
4	Test Cable	N/A	C02	N/A	Sep. 22, 2021	Sep. 21, 2022
5	EMI Test Receiver	R&S	ESRP3	101946	Sep. 22, 2021	Sep. 21, 2022
6	Absorbing Clamp	DZ	ZN23201	N/A	Sep. 22, 2021	Sep. 21, 2022

Shenzhen ZKT Technology Co., Ltd.

4. EMC EMISSION TEST

4.1 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.20	7	
Test Method:	ANSI C63.10:2013		
Test Frequency Range:	150KHz to 30MHz		
Class / Severity:	Class B		
Receiver setup:	RBW=9KHz, VBW=30KHz, S	Sweep time=auto	
Limit:	Frequency range (MHz)	Limit	(dBuV)
		Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5 5-30	56 60	46 50
			50
Test setup:		•	-67%
Test procedure:	* Decreases with the logarithm of the frequency. Reference Plane LISN AUX Equipment Test table/Insulation plane Receiver Test table /Insulation plane Receiver Test table height=0.8m 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative		
Test Instruments:	according to ANSI C63.10:2013 on conducted measurement. Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test environment:		mid.: 52%	Press.: 1012mbar
Test voltage:	AC 120V, 60Hz		1
Test results:	Pass		
. 551. 555.161	. 200		

We pretest AC 120V and AC 230V, the worst voltage was AC 120V and the data recording in the report.

Test Result:

Temperature:	26.8℃	Relative Humidity:	63%
Pressure:	101kPa	Phase :	L
Test Voltage:	AC120/60Hz		

Notes:

- 1.An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3.Mesurement Level = Reading level + Correct Factor

Shenzhen ZKT Technology Co., Ltd.

Temperature:	26.8℃	Relative Humidity:	63%
Pressure:	101kPa	Phase :	N
Test Voltage:	AC 120V/60Hz		

Notes:

- 1.An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2.Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3.Mesurement Level = Reading level + Correct Factor

Shenzhen ZKT Technology Co., Ltd.

4.2 Conducted Peak Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)	
Test Method:	ANSI C63.10:2013	
Limit:	30dBm	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

Measurement Data

Mode	Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
	Lowest	20.277		
125KHz Bandwidth	Middle	19.825	30.00	Pass
Dandwidth	Highest	19.525		
	Lowest	20.226		0.732
250KHz Bandwidth	1 Middle 1 19.880 1 30.0	30.00	Pass	
Dandwidth	Highest	19.427		

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

Test plot as follows:

125KHz Bandwidth Test mode:

Lowest channel

Middle channel

Highest channel

Shenzhen ZKT Technology Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

Test mode: 250KHz Bandwidth

Lowest channel

Middle channel

Highest channel

4.3 20dB Emission Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)	
Test Method:	ANSI C63.10:2013	
Limit:	N/A	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

Measurement Data

Mode	Test channel	20dB Emission Bandwidth (KHz)	Result
125KHz	Lowest	132.8	
Bandwidth	Middle	132.8	Pass
Danawiath	Highest	134.3	
OCON I-	Lowest	261.2	
250KHz Bandwidth	Middle	258.4	Pass
Danuwiutii	Highest	260.5	

Test plot as follows:

Test mode: 125KHz Bandwidth

Lowest channel

Middle channel

Highest channel

Shenzhen ZKT Technology Co., Ltd.

Test mode: 250KHz Bandwidth

Lowest channel

Middle channel

Highest channel

Shenzhen ZKT Technology Co., Ltd.

4.4 Carrier Frequencies Separation

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2013	
Receiver setup:	RBW=100KHz, VBW=300KHz, detector=Peak	
Limit:	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details Pass	
Test results:		

Measurement Data

Mode	Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result
	Lowest	200.00	134.3	Pass
125KHz Bandwidth	Middle	200.00	134.3	Pass
Danuwidin	Highest	200.00	134.3	Pass
1/2/24	Lowest	330.00	261.2	Pass
250KHz Bandwidth	Middle	330.00	261.2	Pass
Danuwium	Highest	330.00	261.2	Pass

Note: According to section 8.2

Mode	20dB bandwidth (kHz) (worse case)	Limit (kHz) (Carrier Frequencies Separation)
125KHz Bandwidth	134.3	134.3
250KHz Bandwidth	261.2	261.2

Shenzhen ZKT Technology Co., Ltd.
1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

Test plot as follows:

Modulation mode:

125KHz Bandwidth

Lowest channel

Middle channel

Highest channel

Shenzhen ZKT Technology Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

Test mode: 250KHz Bandwidth

Lowest channel

Middle channel

Highest channel

4.5 Hopping Channel Number

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2013	
Receiver setup:	RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak	
Limit:	If the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies. If the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	uments: Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results: Pass		

Measurement Data:

Mode	Hopping channel numbers	Limit	Result
125KHz Bandwidth	128	50	Pass
250KHz Bandwidth	77	25	Pass

4.6 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)			
Test Method:	ANSI C63.10:2013			
Receiver setup:	RBW=10kHz, VBW=30KHz, Span=0Hz, Detector=Peak			
Limit:	0.4 Second			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			

Measurement Data

Mode	Ton(ms)	Tcycle(ms)	Dwell time(ms)	Limit(ms)	Result
125KHz Bandwidth	8.40	37.80	294.00	400	Pass
250KHz Bandwidth	2.30	19.75	75.90	400	Pass

Note: Transmit numbers= Continue TX Time/Tcycle

Dwell time=Transmit numbers*Ton

Test plot as follows:

Test Mode: 125KHz Bandwidth

Ton&Tcycle

Continue TX Time

Test Mode: 250KHz Bandwidth

Ton&Tcycle

Continue TX Time

4.7 Band Edge

Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)				
Test Method:	ANSI C63.10:2013				
Receiver setup:	RBW=100kHz, VBW=300kHz, Detector=Peak				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

Test plot as follows:

125KHz Bandwidth:

Test channel:

Lowest channel

No-hopping mode

Hopping mode

Test channel:

No-hopping mode

Highest channel

Hopping mode

+86-755-2233 6688

具

250KHz Bandwidth:

Test channel:

No-hopping mode

Lowest channel

Hopping mode

Test channel:

No-hopping mode

Highest channel

Hopping mode

Shenzhen ZKT Technology Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

Radiated Emission Method

Radiated Emission Method							
Test Requirement:	FCC Part15 C Section 15.209 and 15.205						
Test Method:	ANSI C63.10:2013						
Test Frequency Range:	All of the restrict bands were tested, only the worst band's (902MHz to 928MHz) data was showed.						
Test site:	Measurement D	Distance: 3m					
Receiver setup:	Frequency	Detector	RBW	VBW	Remark		
·	Above 1GHz	Peak	1MHz	3MHz	Peak Value		
		Peak	1MHz	10Hz	Average Value		
Limit:	Freque	Frequency Limit (dBuV/m @3m) Rem					
	Above 1	GHz	54.0 74.0		Average Value Peak Value		
	Tum Table+ ~ = <150cm>,	EUT+	Test Antenna	?			
Test Procedure:	4 The FUT we	a placed on the		eamplifier+	1.5 meters above the		
	ground at a 3 determine th 2. The EUT wa antenna, whi tower. 3. The antenna ground to de horizontal an measuremer 4. For each sus and then the and the rota maximum res 5. The test-rece Specified Ba 6. If the emissic limit specified EUT would be 10dB margin	a meter cambe e position of th s set 3 meters ich was mounte termine the ma nd vertical polar nt. spected emissic antenna was t table was turne ading. eiver system wandwidth with M on level of the E d, then testing te reported. Oth	r. The table is the highest race away from the ed on the top of th	was rotated diation. The interference of a variable of the field the antenna was arrang that from 1 in grees to 36 at Detect Find Mode. The mode was apped and the missions the one using the interference of the field mode was apped and the missions the one using the interference of the	nce-receiving ple-height antenna remeters above the distrength. Both are set to make the ed to its worst case meter to 4 meters 0 degrees to find the unction and 10dB lower than the ne peak values of the nat did not have peak, quasi-peak or		
Test Instruments:	Refer to section	6.0 for details	-				
Test mode:	Refer to section	5.2 for details					
Test results:	Pass						

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

Measurement Data

		Test channel:	Lowest channel
--	--	---------------	----------------

QP value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
902.00	36.77	22.30	4.87	37.60	26.34	46.00	-19.66	Horizontal
902.00	39.49	22.30	4.87	37.60	29.06	46.00	-16.94	Vertical

Test channel: Highest channel

QP value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
928.00	34.00	22.41	4.96	37.57	23.80	46.00	-22.20	Horizontal
928.00	32.00	22.41	4.96	37.57	21.80	46.00	-24.20	Vertical

Remarks:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.
- 4. During the test, pre-scan the 125KHz bandwidth and 250KHz bandwidth mode, and found the 125KHz bandwidth which it is worse case.

Shenzhen ZKT Technology Co., Ltd.

4.8 Spurious Emission

Conducted Emission Method

Conducted Emission Method					
Test Requirement:	FCC Part15 C Section 15.247 (d)				
Test Method:	ANSI C63.10:2013				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

125KHz Bandwidth:

Test channel: Lowest channel

30MHz~10GHz

Test channel:

Middle channel

30MHz~10GHz

Test channel:

Highest channel

30MHz~10GHz

Shenzhen ZKT Technology Co., Ltd.

250KHz Bandwidth:

Test channel: Lowest channel

30MHz~10GHz

Test channel:

Middle channel

30MHz~10GHz

Test channel:

Highest channel

30MHz~10GHz

Shenzhen ZKT Technology Co., Ltd.

Radiated Emission Method

FCC Part15 C Section ANSI C63.10:2013 9kHz to 25GHz Measurement Distant Frequency 9KHz-150KHz	nce: (}	RBV	۸,		Ŕ		
9kHz to 25GHz Measurement Distar Frequency	С		RBV	۸,		1	16	
Measurement Distar Frequency	С		RBV	۸,				
Frequency	С		RB\	۸,				
		refector	NDV				Value	
9KHZ-15UKHZ	\sim	ioci pook	200H		VBW 600Hz		Quasi-peak	
150KHz-30MHz		ıasi-peak ıasi-peak	9KF		30KHz		Quasi-peak Quasi-peak	
30IVITZ-TGTZ	Qt						Quasi-peak Peak	
Above 1GHz								
		Реак	TIVIF	12	10H2		Average	
Frequency		Limit (u\	//m)	V	alue	IV	leasurement Distance	
0.009MHz-0.490M	0.009MHz-0.490MHz		(Hz)		QP		300m	
0.490MHz-1.705M	0.490MHz-1.705MHz		KHz)		QP	30m		
1.705MHz-30MH	1.705MHz-30MHz			(QP		30m	
30MHz-88MHz	30MHz-88MHz			(QP			
88MHz-216MHz	88MHz-216MHz			(QP			
216MHz-960MH	216MHz-960MHz			(QP		3m	
960MHz-1GHz		500	500		QP		SIII	
Abovo 1CHz		500		Average				
Above 1G112		5000		P	Peak			
For radiated emission	ns fr	om 9kHz to	30MH	Z			_	
*		< 3m > Test A	·······›) }	************	THE PERSON NAMED IN COLUMN	D	
	Frequency 0.009MHz-0.490M 0.490MHz-1.705M 1.705MHz-30MH 30MHz-88MHz 88MHz-216MHz 216MHz-960MH 960MHz-1GHz Above 1GHz	Frequency 0.009MHz-0.490MHz 0.490MHz-1.705MHz 1.705MHz-30MHz 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz Above 1GHz	Above 1GHz	Peak 1MH Peak 2400/F(KHz) 0.490MHz-1.705MHz 24000/F(KHz) 1.705MHz-30MHz 30 30MHz-88MHz 100 88MHz-216MHz 150 216MHz-960MHz 200 960MHz-1GHz 500 500 Above 1GHz 500 5000 For radiated emissions from 9kHz to 30MH Peak 1MH 1MH	Peak 1MHz Peak 1MHz Peak 1MHz	Peak	Peak	

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

Shenzhen ZKT Technology Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

Measurement data:

Remarks:

1. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

Shenzhen ZKT Technology Co., Ltd.

■ Below 1GHz

Pre-scan all test modes, found worst case at lowest channel of 125KHz bandwidth, so only show the worst case on the report.

Horizontal:

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	81.4970	45.08	-19.58	25.50	40.00	-14.50	QP
2	195.8219	54.36	-19.57	34.79	43.50	-8.71	QP
3	217.5443	59.63	-19.09	40.54	46.00	-5.46	QP
4	241.6763	57.62	-17.63	39.99	46.00	-6.01	QP
5	340.1847	58.26	-18.82	39.44	46.00	-6.56	QP
6	560.6928	43.21	-11.93	31.28	46.00	-14.72	QP

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	40.4172	53.21	-16.88	36.33	40.00	-3.67	QP
2	77.3212	52.18	-21.19	30.99	40.00	-9.01	QP
3	201.0402	53.73	-21.69	32.04	43.50	-11.46	QP
4	217.5443	61.73	-21.60	40.13	46.00	-5.87	QP
5	340.1847	52.25	-19.00	33.25	46.00	-12.75	QP
6	560.6928	43.46	-11.27	32.19	46.00	-13.81	QP

Above 1GHz

Test channel: Lowest channel

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
1804.60	41.19	25.35	4.67	34.04	37.17	74.00	-36.83	Vertical
2706.90	34.94	28.26	5.43	33.25	35.38	74.00	-38.62	Vertical
3609.20	33.71	29.18	7.11	37.34	32.66	74.00	-41.34	Vertical
4511.50	*					74.00		Vertical
5413.80	*					74.00		Vertical
6316.10	*					74.00		Vertical
1804.60	39.78	25.35	4.67	34.04	35.76	74.00	-38.24	Horizontal
2706.90	34.99	28.26	5.43	33.25	35.43	74.00	-38.57	Horizontal
3609.20	32.67	29.18	7.11	37.34	31.62	74.00	-42.38	Horizontal
4511.50	*					74.00		Horizontal
5413.80	*					74.00		Horizontal
6316.10	*					74.00		Horizontal

Average value:

Average var	ue.							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
1804.60	30.27	25.35	4.67	34.04	26.25	54.00	-27.75	Vertical
2706.90	23.81	28.26	5.43	33.25	24.25	54.00	-29.75	Vertical
3609.20	24.06	29.18	7.11	37.34	23.01	54.00	-30.99	Vertical
4511.50	*					54.00	V	Vertical
5413.80	*			-		54.00		Vertical
6316.10	*					54.00		Vertical
1804.60	29.31	25.35	4.67	34.04	25.29	54.00	-28.71	Horizontal
2706.90	23.57	28.26	5.43	33.25	24.01	54.00	-29.99	Horizontal
3609.20	22.42	29.18	7.11	37.34	21.37	54.00	-32.63	Horizontal
4511.50	*				1/3	54.00		Horizontal
5413.80	*					54.00		Horizontal
6316.10	*					54.00		Horizontal

Shenzhen ZKT Technology Co., Ltd.

Middle channel Test channel:

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
1830.20	40.23	25.43	4.89	34.12	36.43	74.00	-37.57	Vertical
2745.30	35.00	28.34	5.68	33.57	35.45	74.00	-38.55	Vertical
3660.40	34.73	29.42	7.29	37.66	33.78	74.00	-40.22	Vertical
4575.50	*	100				74.00		Vertical
5490.60	*					74.00		Vertical
6405.70	*					74.00		Vertical
1830.20	40.63	25.43	4.89	34.12	36.83	74.00	-37.17	Horizontal
2745.30	33.95	28.34	5.68	33.57	34.40	74.00	-39.60	Horizontal
3660.40	33.99	29.42	7.29	37.66	33.04	74.00	-40.96	Horizontal
4575.50	*					74.00		Horizontal
5490.60	*					74.00		Horizontal
6405.70	*	47%				74.00		Horizontal

Average value:

Average van								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
1830.20	31.08	25.43	4.89	34.12	27.28	54.00	-26.72	Vertical
2745.30	23.32	28.34	5.68	33.57	23.77	54.00	-30.23	Vertical
3660.40	23.98	29.42	7.29	37.66	23.03	54.00	-30.97	Vertical
4575.50	*					54.00	10	Vertical
5490.60	*					54.00		Vertical
6405.70	*					54.00		Vertical
1830.20	30.74	25.43	4.89	34.12	26.94	54.00	-27.06	Horizontal
2745.30	23.04	28.34	5.68	33.57	23.49	54.00	-30.51	Horizontal
3660.40	23.71	29.42	7.29	37.66	22.76	54.00	-31.24	Horizontal
4575.50	*				100	54.00		Horizontal
5490.60	*					54.00		Horizontal
6405.70	*					54.00		Horizontal

Shenzhen ZKT Technology Co., Ltd.

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
1855.40	45.80	25.64	4.75	34.67	41.52	74.00	-32.48	Vertical
2783.10	35.70	28.46	5.87	33.83	36.20	74.00	-37.80	Vertical
3710.80	38.04	29.75	7.59	37.76	37.62	74.00	-36.38	Vertical
4638.50	*	7/4	200			74.00		Vertical
5566.20	*					74.00		Vertical
6493.90	*					74.00		Vertical
1855.40	45.02	25.64	4.75	34.67	40.74	74.00	-33.26	Horizontal
2783.10	34.91	28.46	5.87	33.83	35.41	74.00	-38.59	Horizontal
3710.80	33.59	29.75	7.59	37.76	33.17	74.00	-40.83	Horizontal
4638.50	*			100		74.00	10	Horizontal
5566.20	*					74.00		Horizontal
6493.90	*					74.00		Horizontal

Average value:

Average val	40.							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
1855.40	36.71	25.64	4.75	34.67	32.43	54.00	-21.57	Vertical
2783.10	25.62	28.46	5.87	33.83	26.12	54.00	-27.88	Vertical
3710.80	26.54	29.75	7.59	37.76	26.12	54.00	-27.88	Vertical
4638.50	*					54.00		Vertical
5566.20	*			16/64		54.00		Vertical
6493.90	*			14 74		54.00	10	Vertical
1855.40	35.38	25.64	4.75	34.67	31.10	54.00	-22.90	Horizontal
2783.10	24.29	28.46	5.87	33.83	24.79	54.00	-29.21	Horizontal
3710.80	22.85	29.75	7.59	37.76	22.43	54.00	-31.57	Horizontal
4638.50	*					54.00		Horizontal
5566.20	*	1414			150	54.00		Horizontal
6493.90	*					54.00		Horizontal

Remarks:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- "*", means this data is the too weak instrument of signal is unable to test. 2.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- The test data shows only the worst case 125KHz bandwidth mode.

Shenzhen ZKT Technology Co., Ltd.

Test Items for DTS

4.9 Conducted Peak Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v05r02
Limit:	30dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement Data

500KHz Bandwidth:

Test channel	Peak Output Power (dBm)	Limit(dBm)	Result		
Lowest	17.686	20.00	Page		
Highest	18.330	30.00	Pass		

Test plot as follows:

Lowest channel

Highest channel

4.10 Channel Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)			
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v05r02			
Limit:	>500KHz			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			

Measurement Data

500KHz Bandwidth:

Test channel	Channel Bandwidth (KHz)	Limit(KHz)	Result
Lowest	621.1	· F00	Door
Highest	628.1	>500	Pass

Test plot as follows:

Lowest channel

Highest channel

4.11 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v05r02
Limit:	8dBm/3kHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement Data

Test channel	Power Spectral Density (dBm/3kHz)	Limit(dBm/3kHz)	Result							
Lowest	5.248	9.00	Door							
Highest	5.534	8.00	Pass							

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

Test plot as follows:

Lowest channel

Highest channel

4.12 Band edges

Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v05r02						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						

Test plot as follows:

Highest Channel

Radiated Emission Method

Radiated Emission Method										
Test Requirement:	FCC Part15 C Section 15.209 and 15.205									
Test Method:	ANSI C63.10:20)13			6262					
Test Frequency Range:	All of the restrict 928MHz) data w		re tested, only	the worst b	pand's (902MHz to					
Test site:	Measurement D	istance: 3m								
Receiver setup:	Frequency	Detector	RBW	VBW	Value					
	AL 4011	Above 1GHz Peak 1MHz 3MHz RMS 1MHz 3MHz								
	Above 1GHz	Above 1GHz RMS		3MHz	Average					
Limit:	Freque	ncy	Limit (dBuV	/m @3m)	Value					
		011	54.0	00	Average					
	Above 1	GHz	74.0	00	Peak					
	Tum Table - Company Receiver - Preamplifier - Pream									
	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. The radiation measurements are performed in X, Y, Z axis 									
Test Instruments:		worst case n	node is record		t is worse case, ort.					
rest motiuments.	1.0101 10 30011011	J. J. JUI UEIA								

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

Test mode: Refer to section 5.2 for details

Test results: Pass

Shenzhen ZKT Technology Co., Ltd.
1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

Measurement Data

Test channel:	Lowest channel
---------------	----------------

QP value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
902.00	35.76	22.30	4.87	37.60	25.33	46.00	-20.67	Horizontal
902.00	33.27	22.30	4.87	37.60	22.84	46.00	-23.16	Vertical

Test channel:	Highest channel

QP value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
928.00	36.45	22.41	4.96	37.57	26.25	46.00	-19.75	Horizontal
928.00	39.35	22.41	4.96	37.57	29.15	46.00	-16.85	Vertical

Remarks:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

Shenzhen ZKT Technology Co., Ltd.

4.13 Spurious Emission

Conducted Emission Method

Conducted Emission Method							
Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v05r02						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						

Test plot as follows:

Test channel: Lowest channel

30MHz~10GHz

Test channel:

Highest channel

30MHz~10GHz

Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209							
Test Method:	ANSI C63.10:2013		7.0				74.57	
Test Frequency Range:	9kHz to 25GHz	W	P					
Test site:	Measurement Distar	nce: 3	3m					
Receiver setup:	Frequency		etector	RBV	٧	VBW	Value	
	9KHz-150KHz	ğ	asi-peak	200F	łz	600Hz	Quasi-peak	
	150KHz-30MHz	ď	asi-peak	9KH	Z	30KHz	Quasi-peak	
	30MHz-1GHz	ď	asi-peak	120K	Hz	300KH	z Quasi-peak	
	Above 1GHz		Peak	1MH	lz	3MHz	Peak	
	Above IGHZ		Peak	1MH	lz	10Hz	Average	
Limit:	Frequency	ħ	Limit (u\	//m)	V	alue	Measurement Distance	
	0.009MHz-0.490M	lHz	2400/F(k	(Hz)		QP	300m	
	0.490MHz-1.705M	lHz	24000/F(KHz)		QP		30m	
	1.705MHz-30MHz		30		QP		30m	
	30MHz-88MHz		100		QP			
	88MHz-216MHz		150		QP			
	216MHz-960MHz		200			QP	3m	
	960MHz-1GHz		500		QP		SIII	
	Above 1CHz	Above 4011-		500 A		erage		
	Above 1GHz		5000		Peak			
Test setup:	For radiated emission Turn Table < 80cm > 1	<	< 3m >	Antenna lm		***************************************		

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

For radiated emissions from 30MHz to1GHz

For radiated emissions above 1GHz

Test Procedure:

- 7. The EUT was placed on the top of a rotating table (0.8m for below 1G and 1.5m for above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- 8. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 3. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 4. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

	•			<u> </u>		
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar

Shenzhen ZKT Technology Co., Ltd.

Test voltage:	AC 120V, 60Hz
Test results:	Pass

Measurement data:

Remark:

Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

Shenzhen ZKT Technology Co., Ltd.

■ Below 1GHz

Horizontal:

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	40.7730	38.81	-14.13	24.68	40.00	-15.32	QP
2	77.3210	48.99	-18.78	30.21	40.00	-9.79	QP
3	217.5442	60.13	-19.09	41.04	46.00	-4.96	QP
4	241.6762	58.12	-17.63	40.49	46.00	-5.51	QP
5	340.1847	58.26	-18.82	39.44	46.00	-6.56	QP
6	685.9469	42.92	-9.01	33.91	46.00	-12.09	QP

Vertical:

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	40.4170	53.71	-16.88	36.83	40.00	-3.17	QP
2	77.3210	51.68	-21.19	30.49	40.00	-9.51	QP
3	201.0401	53.73	-21.69	32.04	43.50	-11.46	QP
4	217.5442	62.23	-21.60	40.63	46.00	-5.37	QP
5	340.1847	52.75	-19.00	33.75	46.00	-12.25	QP
6	560.6928	44.46	-11.27	33.19	46.00	-12.81	QP

Above 1GHz

Test channel:	Lowest channel
Peak value:	DID KING

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
1806.00	41.35	25.25	4.85	34.08	37.37	74.00	-36.63	Vertical
2709.00	35.00	28.12	5.66	33.68	35.10	74.00	-38.90	Vertical
3612.00	33.64	29.19	7.25	37.37	32.71	74.00	-41.29	Vertical
4515.00	*					74.00		Vertical
5418.00	*					74.00		Vertical
6321.00	*					74.00		Vertical
1806.00	39.90	25.25	4.85	34.08	35.92	74.00	-38.08	Horizontal
2709.00	34.95	28.12	5.66	33.68	35.05	74.00	-38.95	Horizontal
3612.00	32.74	29.19	7.25	37.37	31.81	74.00	-42.19	Horizontal
4515.00	*					74.00		Horizontal
5418.00	*					74.00		Horizontal
6321.00	*					74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
1806.00	30.40	25.25	4.85	34.08	26.42	54.00	-27.58	Vertical
2709.00	23.86	28.12	5.66	33.68	23.96	54.00	-30.04	Vertical
3612.00	23.98	29.19	7.25	37.37	23.05	54.00	-30.95	Vertical
4515.00	*			W. (9.57)		54.00		Vertical
5418.00	*			1414		54.00		Vertical
6321.00	*					54.00		Vertical
1806.00	29.41	25.25	4.85	34.08	25.43	54.00	-28.57	Horizontal
2709.00	23.52	28.12	5.66	33.68	23.62	54.00	-30.38	Horizontal
3612.00	22.48	29.19	7.25	37.37	21.55	54.00	-32.45	Horizontal
4515.00	*	7474				54.00		Horizontal
5418.00	*			_	1.7	54.00		Horizontal
6321.00	*					54.00		Horizontal

Remarks:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. "*", means this data is the too weak instrument of signal is unable to test.

Shenzhen ZKT Technology Co., Ltd.

Test channel: Highest

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
1831.60	40.33	25.43	4.89	34.12	36.53	74.00	-37.47	Vertical
2747.40	35.03	28.34	5.68	33.57	35.48	74.00	-38.52	Vertical
3663.20	34.62	29.42	7.29	37.66	33.67	74.00	-40.33	Vertical
4579.00	*	1/4	P. A.			74.00		Vertical
5494.80	*					74.00		Vertical
6410.60	*					74.00		Vertical
1831.60	40.70	25.43	4.89	34.12	36.90	74.00	-37.10	Horizontal
2747.40	33.87	28.34	5.68	33.57	34.32	74.00	-39.68	Horizontal
3663.20	34.04	29.42	7.29	37.66	33.09	74.00	-40.91	Horizontal
4579.00	*			100		74.00		Horizontal
5494.80	*					74.00		Horizontal
6410.60	*					74.00		Horizontal

Average value:

•								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
1831.60	31.15	25.43	4.89	34.12	27.35	54.00	-26.65	Vertical
2747.40	23.33	28.34	5.68	33.57	23.78	54.00	-30.22	Vertical
3663.20	23.87	29.42	7.29	37.66	22.92	54.00	-31.08	Vertical
4579.00	*					54.00		Vertical
5494.80	*			10 Ca		54.00		Vertical
6410.60	*			2474		54.00		Vertical
1831.60	30.80	25.43	4.89	34.12	27.00	54.00	-27.00	Horizontal
2747.40	22.95	28.34	5.68	33.57	23.40	54.00	-30.60	Horizontal
3663.20	23.75	29.42	7.29	37.66	22.80	54.00	-31.20	Horizontal
4579.00	*	AN				54.00		Horizontal
5494.80	*	7474			- A	54.00		Horizontal
6410.60	*				1.7	54.00		Horizontal

Remarks:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.
- "*", means this data is the too weak instrument of signal is unable to test.

Shenzhen ZKT Technology Co., Ltd.

Test channel: Highest

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
1854.00	46.12	25.56	4.89	34.23	42.34	74.00	-31.66	Vertical
2781.00	35.87	28.23	5.7	33.63	36.17	74.00	-37.83	Vertical
3708.00	38.04	29.25	7.34	37.37	37.26	74.00	-36.74	Vertical
4635.00	*	1/4	24			74.00		Vertical
5562.00	*					74.00		Vertical
6489.00	*					74.00		Vertical
1854.00	45.28	25.56	4.89	34.23	41.50	74.00	-32.50	Horizontal
2781.00	34.95	28.23	5.7	33.63	35.25	74.00	-38.75	Horizontal
3708.00	33.73	29.25	7.34	37.37	32.95	74.00	-41.05	Horizontal
4635.00	*			10		74.00		Horizontal
5562.00	*					74.00		Horizontal
6489.00	*					74.00		Horizontal

Average value:

•								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
1854.00	36.98	25.56	4.89	34.23	33.20	54.00	-20.80	Vertical
2781.00	25.77	28.23	5.7	33.63	26.07	54.00	-27.93	Vertical
3708.00	26.53	29.25	7.34	37.37	25.75	54.00	-28.25	Vertical
4635.00	*					54.00		Vertical
5562.00	*			10 EA		54.00		Vertical
6489.00	*			1414		54.00		Vertical
1854.00	35.61	25.56	4.89	34.23	31.83	54.00	-22.17	Horizontal
2781.00	24.33	28.23	5.7	33.63	24.63	54.00	-29.37	Horizontal
3708.00	22.98	29.25	7.34	37.37	22.20	54.00	-31.80	Horizontal
4635.00	*	100				54.00		Horizontal
5562.00	*	1414				54.00		Horizontal
6489.00	*				- 17	54.00		Horizontal

Remarks:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen ZKT Technology Co., Ltd.

5. Antenna Requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

EUT Antenna:

The antenna is fibre-glass epoxy antenna, the best case gain of the antennas is 3dBi, reference to the appendix II for details

6. Test Setup Photo

Reference to the appendix I for details.

7. EUT Constructional Details

Reference to the appendix II for details.

*** ** END OF REPORT ****

Shenzhen ZKT Technology Co., Ltd.
1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

4

