

FCC/ISED Test Report

FOR:

Motive Technologies, Inc.

Model Name: LBB-3.6CA-b

Product Description:

LBB-3.6CA-b is a Vehicle Gateway. Its purpose is to act as the primary gateway between various pieces of hardware and software in a motor vehicle and the Motive Technologies database backend in the cloud.

FCC ID: 2AQM7-36B IC: 24516-36B

Applied Rules and Standards:

47 CFR: Part 22, Part 24, Part 27 RSS-130 Issue 2; RSS-132 Issue 3; RSS-133 Issue 6; RSS-139 Issue 3

REPORT #: EMC_KPTRK-036-23001_FCC_22_24_27_C2PC_Rev1

DATE: 03-7-2023

A2LA Accredited

IC recognized # 3462B-2 CABID: US0187

CETECOM Inc.

411 Dixon Landing Road • Milpitas, CA 95035 • U.S.A.

V4.0 2012-07-25

Date of Report 3-7-2023

Page 2 of 48 IC: 24516-36B

TABLE OF CONTENTS

1	,	ASSESSMENT			
2		ADMINISTRATIVE DATA			
	2.1 2.2 2.3	1 IDENTIFICATION OF THE TESTING LABORATORY ISSUING THE EMC TEST REPORT	2		
3		EQUIPMENT UNDER TEST (EUT)	5		
	3.1 3.2 3.3 3.4 3.5 3.6	2 EUT SAMPLE DETAILS	6		
4	,	SUBJECT OF INVESTIGATION			
	4.1 4.2 4.3	2 MEASUREMENT UNCERTAINTY	7		
5		MEASUREMENT PROCEDURES	8		
	5.1 5.2				
6		MEASUREMENT RESULTS SUMMARY	10		
	6.1 6.2 6.3	2 FCC 24, RSS-133:	11		
7		TEST RESULT DATA	12		
	7.1 7.2				
8		TEST SETUP PHOTO	47		
9		TEST EQUIPMENT AND ANCILLARIES USED FOR TESTING	47		
10	j l	REVISION HISTORY	48		

Page 3 of 48 IC: 24516-36B

1 Assessment

Date of Report

3-7-2023

The following device as further described in section 3 of this report was evaluated for radiated spurious emissions in simultaneous transmission of cellular and unlicensed radios according to criteria specified in the Code of Federal Regulations Title 47 parts 22, 24, 27 and Industry Canada Radio Standard Specifications RSS: 130 Issue 2, 132 Issue 3, 133 Issue 6 and 139 Issue 3.

Company	Description	Model #
Motive Technologies, Inc.	LBB-3.6CA-b is a Vehicle Gateway. Its purpose is to act as the primary gateway between various pieces of hardware and software in a motor vehicle and the Motive Technologies database back-end in the cloud.	LBB-3.6CA-b

No deficiencies were ascertained.

Responsible for Testing Laboratory:

	Date	Section	Name	Signature
_	3-7-2023	Compliance	(Director of Regulatory Services)	
			Arndt Stoecker	

Responsible for the Report:

		Kris Lazarov	
3-7-2023	Compliance	(Test Engineer)	
Date	Section	Name	Signature

The test results of this test report relate exclusively to the test item specified in Section3.

CETECOM Inc. USA does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM Inc. USA.

Date of Report 3-7-2023 Page 4 of 48 IC: 24516-36B

2 Administrative Data

2.1 Identification of the Testing Laboratory Issuing the EMC Test Report

Company Name:	CETECOM Inc.
Department:	Compliance
Street Address:	411 Dixon Landing Road
City/Zip Code	Milpitas, CA 95035
Country	USA
Telephone:	+1 (408) 586 6200
Fax:	+1 (408) 586 6299
Director of Regulatory Services:	Arndt Stoecker
Responsible Project Leader:	Akanksha Baskaran

2.2 Identification of the Client

Client's Name:	Motive Technologies, Inc.
Street Address:	55 Hawthorne Street #400
City/Zip Code	San Francisco, California 94105
Country	USA

2.3 Identification of the Manufacturer

Manufacturer's Name:	
Manufacturers Address:	Same as Client
City/Zip Code	Same as Cheff
Country	

Date of Report 3-7-2023 Page 5 of 48 IC: 24516-36B

3 Equipment Under Test (EUT)

3.1 EUT Specifications

Model No:	I BB-3.6CA-b		
HW Version :	3		
SW Version :	75012		
FCC-ID:	2AQM7-36B		
IC:	24516-36B		
FWIN:	N/A		
HVIN:	LBB-3.6CA-b		
PMN:	Vehicle Gateway		
Product Description:	LBB-3.6CA-b is a Vehicle Gateway. Its purpose is to act as the primary gateway between various pieces of hardware and software in a motor vehicle and the Motive Technologies database back-end in the cloud.		
Radio Information:	Sierra Wireless module number RC7612 FCC ID: N7NRC76C IC: 2417C-RC76C		
Antenna Information as declared:	WCDMA/LTE Main Antenna Part No: WAG F LTE12 00 077 Type & Gain: Inverted–F Antenna (IFA); Max Gain 2.51dBi		
Power Supply/ Rated Operating Voltage Range:	Vmin: 6 VDC/ Vnom: 12 VDC / Vmax: 32 VDC		
Operating Temperature Range	Low -20°C, Nominal 20°C, High 85°C		
Other Radios included in the device:	MLAN & Bluetooth Manufacture: Laird Connectivity module number: LSR 450-0159R FCC ID: TFB-1003 IC: 5969A-1003		
Sample Revision	□Prototype Unit; □Production Unit; ■Pre-Production		
EUT Dimensions(mm)	110 X 105 X 25		
Weight(grams):	260		

3.2 EUT Sample details

EUT#	Serial Number	HW Version	SW Version	Notes/Comments
1	AABL36RC400018	3	75012	Radiated Measurement

Date of Report 3-7-2023 Page 6 of 48 IC: 24516-36B

3.3 Accessory Equipment details

AE#	Туре	Model	Manufacturer	Serial Number
1	Vehicle Cable	-	-	-

3.4 Test Sample Configuration

EUT Set-up # Combination of AE used for test set up		Comments
1	EUT# 1 +AE# 1	

3.5 Mode of Operation details

Mode of Operation	Description of Operating modes	Additional Information
Op. 1	Co-transmission Cellular & WLAN	Cellular was tested on Mid, Channel for each supported LTE/UMTS band at the maximum power, and co-transmitting with WLAN, also at the mid channel.

3.6 Justification for Worst Case Mode of Operation

During the testing process the EUT was tested with transmitter sets on mid channel and co-transmitting with WLAN mid channel at the maximum power transmission. For radiated measurements, all data in this report shows the worst case between horizontal and vertical antenna polarizations and for all orientations of the EUT.

List of Changes:

- 1. Change U3007 from SLG4A45639VTR to SLG4A45207VTR to support U22 buck IC change below
- 2. Change U22 from MP5416-0010 to TPS65216DORSLR
- 3. Add R5020 (0402 0 ohm resistor) for GPS RF tuning
- 4. Add C5039 footprint (reserve placeholder) for GPS RF tuning
- 5. Add C5038 footprint (reserve placeholder) for GPS RF tuning

Date of Report 3-7-2023 Page 7 of 48 IC: 24516-36B

4 Subject of Investigation

This test report is to support a request for C2PC under the FCC ID: 2AQM7-36B, and IC: 24516-36B

The pre-certified module to be integrated is Sierra Wireless RC7612, as described in Section 3, Radiated Spurious Emissions test was performed. Results have been checked to meet limits per Code of Federal Regulations Title 47 parts 22, 24, 27 and Industry Canada Radio Standard Specifications RSS: 130 Issue 2, 132 Issue 3, 133 Issue 6 and 139 Issue 3.

4.1 Dates of Testing:

01/16/2023 - 01/20/2023

4.2 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus, with 95% confidence interval (in dB delta to result), based on a coverage factor k=2.

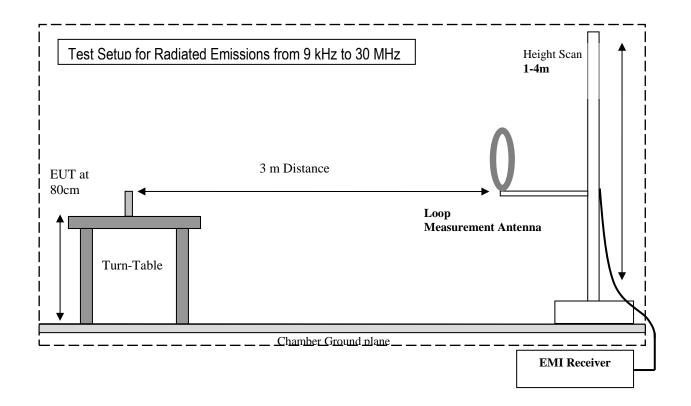
Measurement	System	EMC 1	EMC 2
Conducted emissions (mains p	oort)	1.12 dB	0.46 dB
Radiated emissions	(< 30 MHz)	3.66 dB	3.88 dB
	(30 MHz - 1GHz)	3.17 dB	3.34 dB
	(1 GHz – 3 GHz)	5.01 dB	4.45 dB
	(>3 GHz)	4.0 dB	4.79 dB

4.3 Environmental Conditions during Testing:

The following environmental conditions were maintained during the course of testing:

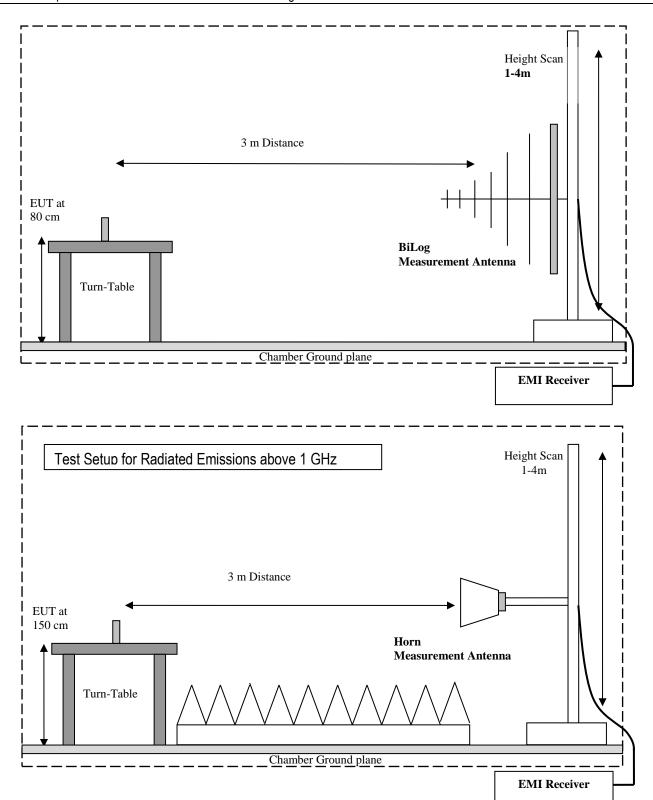
- Ambient Temperature: 20-25°C
- Relative humidity: 40-60%

Deviating test conditions are indicated at individual test description where applicable.



5 <u>Measurement Procedures</u>

Testing is performed according to the guidelines provided in FCC publication (KDB) 971168 D01 v03 – "Measurement Guidance for Certification of Licensed Digital Transmitters" and according to ANSI C63.26 as detailed below.


5.1 Radiated Measurement

- The exploratory measurement is accomplished by running a matrix of 16 sweeps over the required frequency range with R&S Test-SW EMC32 for 4 positions of the turntable, two orthogonal positions of the EUT and both antenna polarizations. This procedure exceeds the requirement of the above standards to cover the 3 orthogonal axis of the EUT. A max peak detector is utilized during the exploratory measurement. The Test-SW creates an overall maximum trace for all 12 sweeps and saves the settings for each point of this trace. The maximum trace is part of the test report.
- The 10 highest emissions are selected with an automatic algorithm of EMC32 searching for peaks in the noise floor and ensuring that broadband signals are not selected multiple times.
- The maxima are then put through the final measurement and again maximized in a 90deg range of the turntable, fine search in frequency domain and height scan between 1m and 4m.
- The above procedure is repeated for all possible ways of power supply to EUT and for all supported modulations.
- In case there are no emissions above noise floor level only the maximum trace is reported as described above.
- The results are split up into up to 4 frequency ranges due to antenna bandwidth restrictions. A magnetic loop is used from 9 kHz to 30 MHz, a Biconilog antenna is used from 30 MHz to 1 GHz, and two different horn antennas are used to cover frequencies up to 40 GHz.

Date of Report 3-7-2023 Page 9 of 48 IC: 24516-36B

Date of Report 3-7-2023 Page 10 of 48 IC: 24516-36B

5.2 Sample Calculations for Field Strength Measurements

Field Strength is calculated from the Spectrum Analyzer/ Receiver readings, taking into account the following parameters:

- Measured reading in dBµV
- Cable Loss between the receiving antenna and SA in dB and
- Antenna Factor in dB/m

All radiated measurement plots in this report are taken from a test SW that calculates the Field Strength based on the following equation:

FS $(dB\mu V/m)$ = Measured Value on SA $(dB\mu V)$ + Cable Loss (dB) + Antenna Factor (dB/m)

Example:

Frequency	Measured SA	Cable Loss	Antenna Factor Correction (dB)	Field Strength Result
(MHz)	(dBµV)	(dB)		(dBµV/m)
1000	80.5	3.5	14	98.0

6 Measurement Results Summary

6.1 FCC 22, RSS-132:

Test Specification	Test Case	Temperature and Voltage Conditions	Mode	Pass	Fail	NA	NP	Result
§2.1046; §22.913 (a)	RF Output Power	Nominal	Op.1					Note 1; Note 2; Note 3
§2.1055; §22.355	Frequency Stability	Nominal	-					Note 1; Note 2
§2.1049; §22.917	Occupied Bandwidth	Nominal	-				•	Note 1; Note 2
§2.1051; §22.917	Band Edge Compliance	Nominal	-					Note 1; Note 2
§2.1051; §22.917	Conducted Spurious Emissions	Nominal	-				-	Note 1; Note 2
§2.1053; §22.917(a); RSS-132 Issue 3-5.5;	Radiated Spurious Emissions	Nominal	Op.1					Complies

Note 1: NA= Not Applicable; NP= Not Performed.

Note 2: Leveraged from module certification FCC ID: / IC ID: N7NRC76C / 2417C-RC76C and documented in

Reports No.: BTL-FCCP-1-2203T030, BTL-FCCP-2-2203T030, Report No.: BTL-FCCP-3-2203T030 Issue Date: 2022/6/21 (Technology:

UMTS & LTE)

Note 3: Limited power verification measurement was conducted before RSE testing

Date of Report 3-7-2023 Page 11 of 48 IC: 24516-36B

6.2 FCC 24, RSS-133:

Test Specification	Test Case	Temperature and Voltage Conditions	Mode	Pass	Fail	NA	NP	Result
§2.1046; §24.232 (a)	RF Output Power	Nominal	Op.1					Note 1; Note 2; Note 3
§2.1055; §24.235	Frequency Stability	Nominal	-				•	Note 1; Note 2
§2.1049; §24.238	Occupied Bandwidth	Nominal	-					Note 1; Note 2
§2.1051; §24.238	Band Edge Compliance	Nominal	-				•	Note 1; Note 2
§2.1051; §24.238	Conducted Spurious Emissions	Nominal	-				•	Note 1; Note 2
§2.1053; §24.238(a); RSS-133 Issue 6-6.5.1;	Radiated Spurious Emissions	Nominal	Op.1					Complies

Note 1: NA= Not Applicable; NP= Not Performed.

Note 2: Leveraged from module certification FCC ID: / IC ID: N7NRC76C / 2417C-RC76C and documented in

Relevant Reports No.: BTL-FCCP-1-2203T030, BTL-FCCP-2-2203T030, Report No.: BTL-FCCP-3-2203T030 Issue Date: 2022/6/21

(Technology: UMTS & LTE)

Note 3: Limited power verification measurement was conducted before RSE testing

6.3 FCC 27, RSS-130, RSS-139:

Test Specification	Test Case	Temperature and Voltage Conditions	Mode	Pass	Fail	NA	NP	Result
§2.1046; §27.50 (d)	RF Output Power	Nominal	Op.1					Note 1; Note 2; Note 3
§2.1055; §27.54	Frequency Stability	Nominal	-					Note 1; Note 2
§2.1049; §27.53	Occupied Bandwidth	Nominal	-					Note 1; Note 2
§2.1051; §27.53	Band Edge Compliance	Nominal	-					Note 1; Note 2
§2.1051; §27.53	Conducted Spurious Emissions	Nominal	-				-	Note 1; Note 2
§2.1053; §27.53(g); §27.53(h); RSS-130 Issue 2-4.6; RSS-139 Issue 3-6.6;	Radiated Spurious Emissions	Nominal	Op.1	•				Complies

Note 1: NA= Not Applicable; NP= Not Performed.

Note 2: Leveraged from module certification FCC ID: / IC ID: N7NRC76C / 2417C-RC76C and documented in

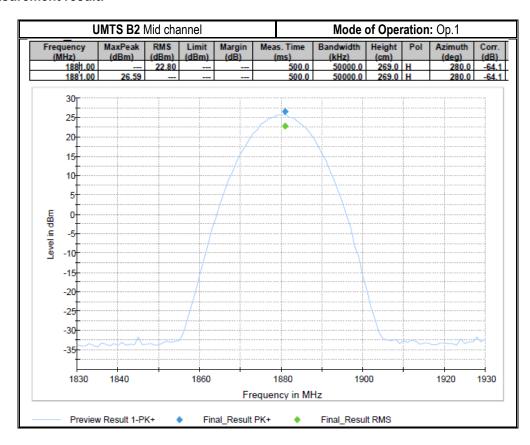
Relevant Reports No.: BTL-FCCP-1-2203T030, BTL-FCCP-2-2203T030, Report No.: BTL-FCCP-3-2203T030 Issue Date: 2022/6/21

(Technology: UMTS & LTE)

Note 3: Limited power verification measurement was conducted before RSE testing

7 Test Result Data

7.1 RF Output Power Verification

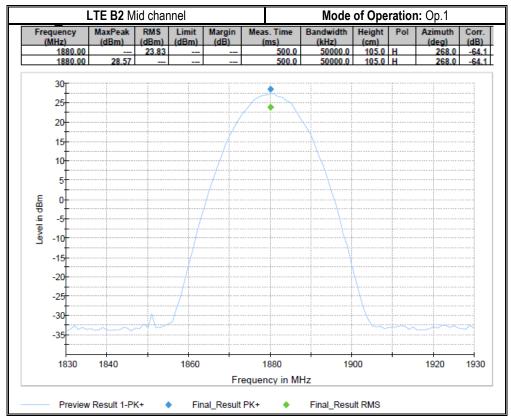

Spectrum Analyzer settings:

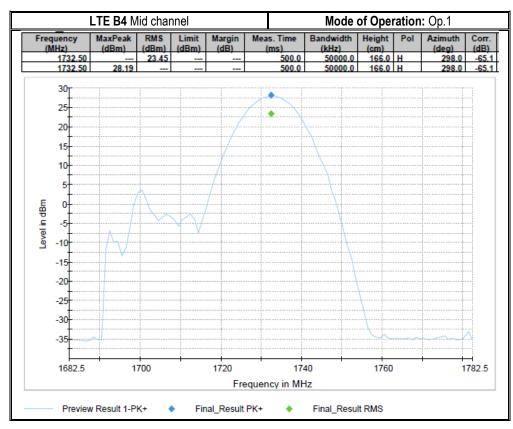
- RBW ≥ DTS bandwidth.
- VBW \geq 3 x RBW
- Span ≥ [3 × RBW]
- Sweep = Auto couple
- Detector function = Peak
- Trace = Max-hold
- Use peak marker function to determine the peak amplitude level.

7.1.1 Test conditions and setup:

Ambient Temperature	EUT Set-Up#	EUT operating mode	Power Input
23°C	1	Op.1	12 VDC

7.1.2 Measurement result:


Date of Report 3-7-2023 Page 13 of 48 IC: 24516-36B



Frequ (MH	z)	MaxPeak (dBm)	RMS (dBm)	Limit (dBm)	Margin (dB)	Meas. Time (ms)	Bandv (kH		Height (cm)	Pol	Azimuth (deg)	Cor (dB
	732.50		24.20			500.0		0.000	168.0	Н	298.0	-65
	732.50	27.69				500.0) 50	0.000	168.0	Н	298.0	-65
3	30 <u>T</u>		1								1 1	
2	25											
2	20				/		-					
1	15				/							
1	10				/		ļ\-	-‡				
	5				7-1		ļ\					
B B	0				<u>/ </u>		-	\ <u> </u>				
Level in dBm	-5			/-				1				
e ve	10			4/-			-	-: \				
	15			 			-	#				
-2	20								ļ			
	25								<u> </u>			
	30											
	35											
_												
1	1682.5	17	700	'	1720	1	740		1760		1	782.
					Fre	equency in M	1Hz					

Date of Report 3-7-2023 Page 14 of 48 IC: 24516-36B

7.2 Radiated Spurious Emissions

7.2.1 Measurement according to FCC: CFR 47 Part 2.1053; CFR Part 22.917; CFR Part 24.238 and Part 27.53 utilizing KDB 971168 D01 Power Meas License Digital Systems v03, and according to ANSI C63.26 2017

Spectrum Analyzer Settings for FCC 22

Frequency Range	30 MHz – 1 GHz	1 – 1.58 GHz	1.58 – 9 GHz
Resolution Bandwidth	100 kHz	1 MHz	1 MHz
Video Bandwidth	100 kHz	1 MHz	1 MHz
Detector	Peak	Peak	Peak
Trace Mode	Max Hold	Max Hold	Max Hold
Sweep Time	Auto	Auto	Auto

Spectrum Analyzer Settings for FCC 24 and 27

Frequency Range	30MHz – 1 GHz	1 – 2.7 GHz	2.7 – 18 GHz	18 – 19.1 GHz
Resolution Bandwidth	100 kHz	1 MHz	1 MHz	1 MHz
Video Bandwidth	100 kHz	1 MHz	1 MHz	1 MHz
Detector	Peak	Peak	Peak	Peak
Trace Mode	Max Hold	Max Hold	Max Hold	Max Hold
Sweep Time	Auto	Auto	Auto	Auto

7.2.2 Limits:

7.2.2.1 FCC Part 22.917 (a); FCC Part 24.238 (a); FCC Part 27.53 (h); FCC Part 90.699 (a)

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

7.2.2.2 RSS-132 Part 5.5; RSS-133 Part 6.5; RSS-139 Part 6.6 Transmitter Unwanted Emissions Mobile and base station equipment shall comply with the limits in (i) and (ii) below.

2020. In the first 1.0 MHz band immediately outside and adjacent to each of the sub-bands specified in Section 5.1, the power of emissions per any 1% of the occupied bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log10p (watts).

ii. After the first 1.0 MHz immediately outside and adjacent to each of the sub-bands, the power of emissions in any 100 kHz bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log10 p (watts). If the measurement is performed using 1% of the occupied bandwidth, power integration over 100 kHz is required.

Note: The limit calculation result is a constant of -13 dBm.

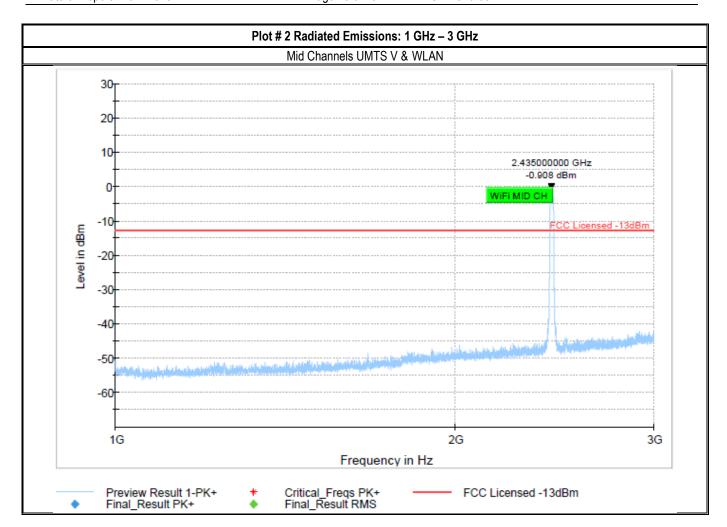
7.2.3 Test conditions and setup:

Ambient Temperature (C)	EUT operating mode	Power Input
23	Op. 1	12 VDC

7.2.4 Measurement result:

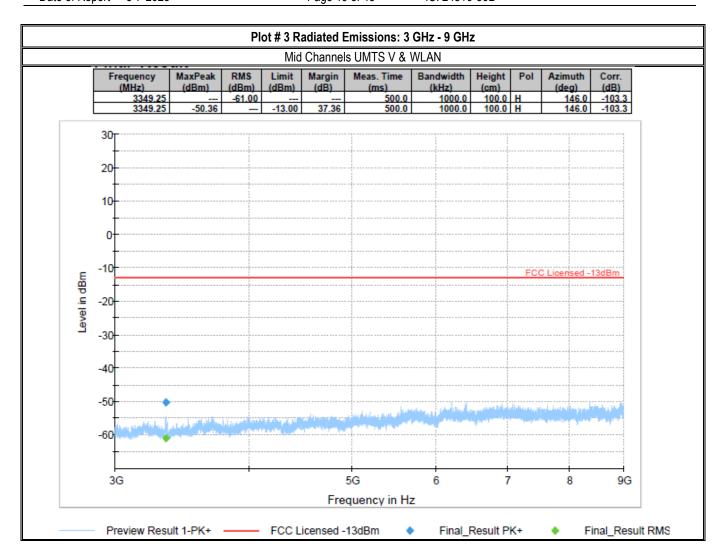
Plot #	EUT Operating Mode	Transmitter Configuration	Scan Frequency	Limit (dBm)	Result
1-3	1	UMTS V + WLAN	30 MHz – 9 GHz	-13	Pass
4-6	1	LTE 5 + WLAN	30 MHz – 9 GHz	-13	Pass
7-10	1	UMTS II + WLAN	9 kHz – 18 GHz	-13	Pass
11-14	1	LTE 2 + WLAN	9 kHz – 18 GHz	-13	Pass
15-18	1	UMTS IV + WLAN	9 kHz – 18 GHz	-13	Pass
19-22	1	LTE 4 + WLAN	9 kHz – 18 GHz	-13	Pass
23-26	1	LTE 12 + WLAN	9 kHz – 9 GHz	-13	Pass
27-30	1	LTE 13 + WLAN	9 kHz – 9 GHz	-13	Pass

Date of Report 3-7-2023 Page 17 of 48 IC: 24516-36B



7.2.5 Measurement Plots:

F	requency	MaxPeak	RMS	Limit	Margin	Meas. Time	Bandwidth	Height	Pol	Azimuth	Corr.
	(MHz) 217.08	(dBm) -56.95	(dBm)	(dBm) -13.00	(dB) 43.95	(ms) 500.0	(kHz) 100.0	(cm) 143.0	ш	(deg) 101.0	(dB) -76.2
	217.08	-36.33	-63.66	-13.00	45.55	500.0	100.0	143.0	H	101.0	-76.2
	253.33	-51.10		-13.00	38.10	500.0	100.0	107.0	Н	90.0	-72.9
\vdash	253.33		-55.12			500.0	100.0	107.0		90.0	-72.9
\vdash	434.23		50.07	-13.00	32.22	500.0	100.0			236.0	
\vdash	434.23 470.38		-53.07	-13.00	32.06	500.0 500.0	100.0 100.0	100.0 100.0		236.0 141.0	-71.8 -69.8
\vdash	470.38		-56.26	-13.00	32.00	500.0				141.0	
1	0									35.876000 N .19.436 dB7 B5 MID CH	
-1									FCCI	Licensed -13	dBm
E -2	+									880 625	5333 MHz
	0									-36.5	65 dBm ▼
B -4	0									Downlink	4
	+							••			
-5	0						*			·	
-6	0				الترش وأستحق	A I				and a set of	
-7	0	4	-	بالغبالي	A STATE OF THE STA	V. Telegr					
-8	0									 	
	30M	50 60	80	100N		200 quency in Hz	300	400	500	800	1G

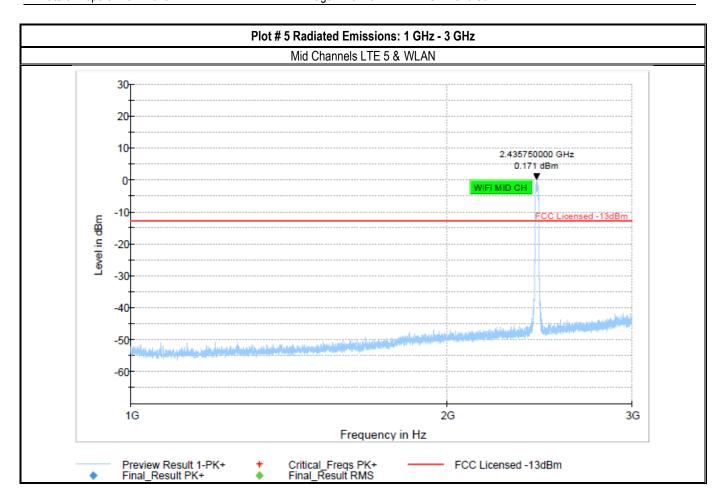

Date of Report 3-7-2023 Page 18 of 48 IC: 24516-36B

Date of Report 3-7-2023 Page 19 of 48 IC: 24516-36B

Date of Report 3-7-2023 Page 20 of 48 IC: 24516-36B

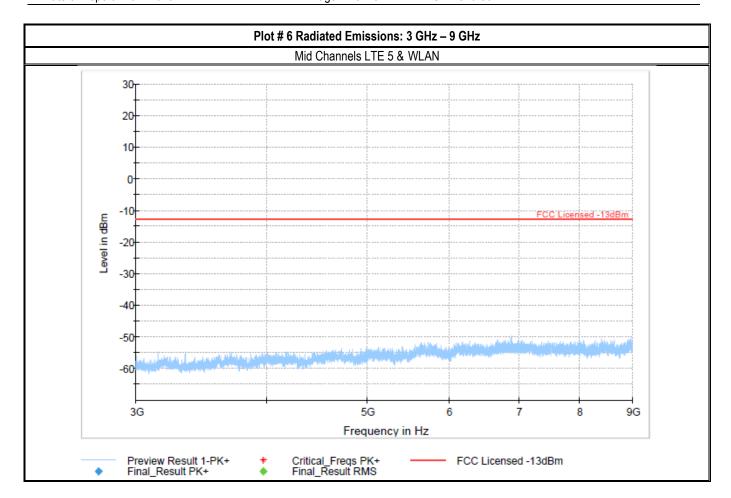
Preview Result 1-PK+ -

Final_Result RMS


Plot # 4 Radiated Emissions: 30 MHz - 1000 MHz Mid Channels LTE 5 & WLAN Bandwidth (kHz) Frequency (MHz) MaxPeak Margin (dB) Azimuth RMS Limit Meas. Time Height Pol Corr. (dBm) (dBm) (dBm) (ms) (cm) (deg) (dB) 500.0 500.0 100.0 H 100.0 H 434.01 -54.57 100.0 63.0 -71.8 -13.00 -44.73 31.73 434.01 100.0 63.0 -71.8 -61.59 107.0 H 129.0 470.19 500.0 100.0 -69.8 -13.00 36.38 470.19 -49.38 500.0 100.0 107.0 H 129.0 -69.8 506.30 500.0 100.0 142.0 H 319.0 -69.1 46.01 500.0 100.0 142.0 H 835.682000 MHW 20 22.618 dBm 10 0--10 -20 Level in dBm -30 884:214333 MHz .-39.325.dBm -40 -50 -60 -80 100M 200 30M 50 60 80 300 400 500 800 1G Frequency in Hz

FCC Licensed -13dBm

Final_Result PK+


Date of Report 3-7-2023 Page 21 of 48 IC: 24516-36B

Date of Report 3-7-2023 Page 22 of 48 IC: 24516-36B

Date of Report 3-7-2023 Page 23 of 48 IC: 24516-36B

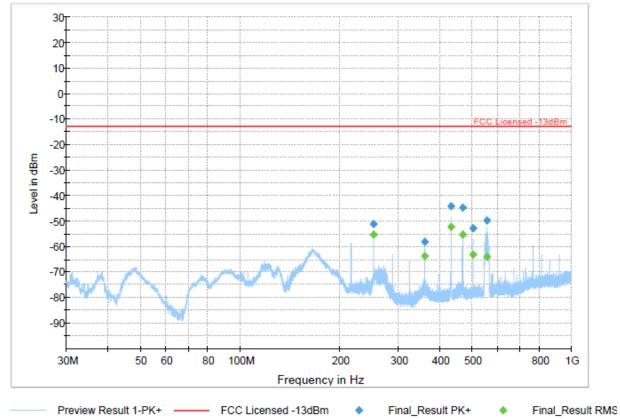
Preview Result 1-PK+ FCC Licensed -13dBm

Plot # 7 Radiated Emissions: 9 kHz - 30 MHz Mid Channels UMTS II & WLAN Frequency (MHz) MaxPeak Margin Bandwidth RMS Limit Meas. Time Height Pol Azimuth Corr. (dBm) (dBm) (dBm) (kHz) (dB) (cm) (dea) (ms) 100.0 V 100.0 V 0.10 0.10 -29.89 500.0 9.0 130.0 -76.9 -13.00 -76.9 -21.08 8.08 500.0 9.0 130.0 7.29 7.29 -71.28 500.0 9.0 100.0 V 336.0 -77.7 -13.00 48.41 100.0 V -61.41 500.0 336.0 -77.7 -60.37 100.0 V 16.84 500.0 9.0 -82.0 -78.6 -13.00 39.09 16.84 -52.09 500.0 9.0 100.0 V -82.0 -78.6 -75.70 30.00 500.0 9.0 100.0 H 4.0 -79.3 30.00 51.78 0 -10 -20 -30 -40 Level in dBm -50 -60 -70 -80 -90 200 300 500 20 30 100k 2M 3M 10M 20 30M Frequency in Hz

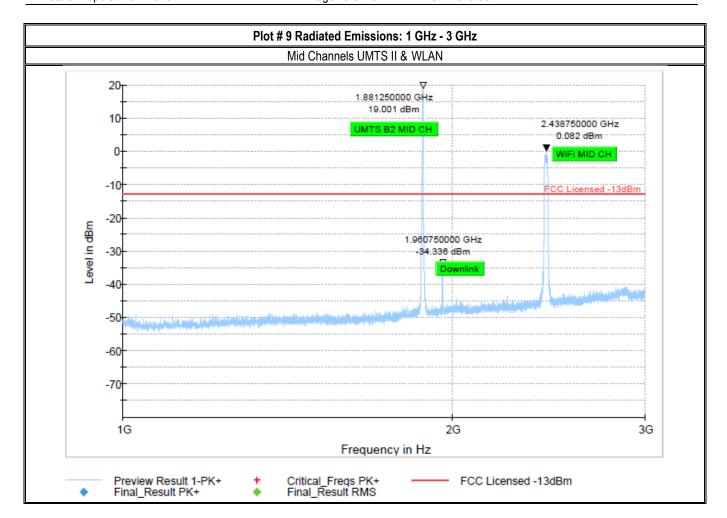
Final_Result PK+

٠

Final_Result RMS

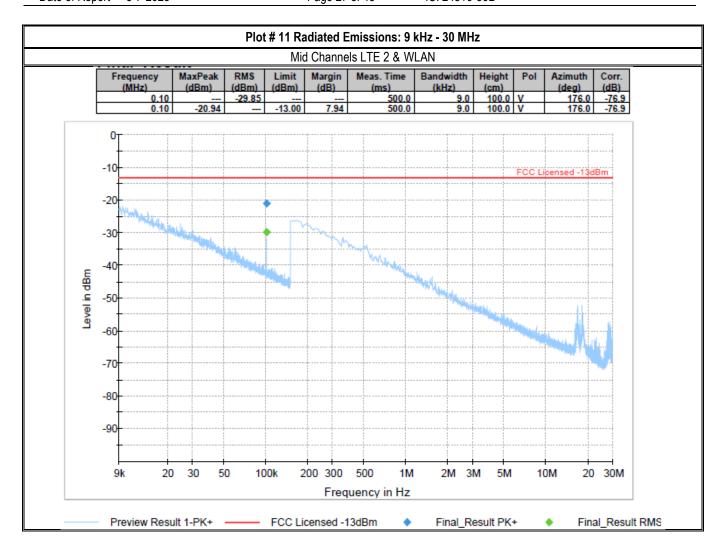

Date of Report 3-7-2023 Page 24 of 48 IC: 24516-36B

Plot # 8 Radiated Emissions: 30 MHz - 1000 MHz


Mid Channels UMTS II & WLAN

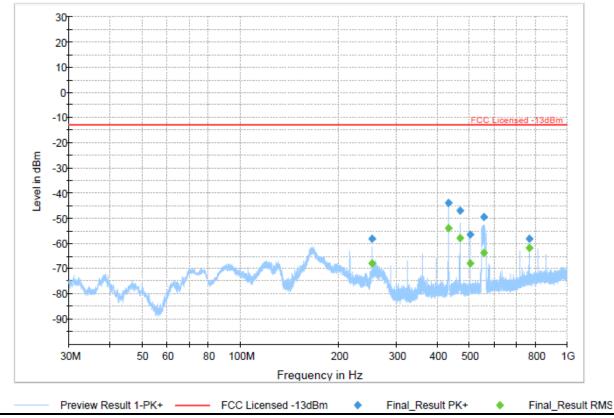
Frequency	MaxPeak	RMS	Limit	Margin	Meas. Time	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBm)	(dBm)	(dBm)	(dB)	(ms)	(kHz)	(cm)		(deg)	(dB)
253.32	-51.20		-13.00	38.20	500.0	120.0	125.0	Н	94.0	-108.3
253.32	-	-55.23			500.0	120.0	125.0	Н	94.0	-108.3
361.89	-	-63.69	-	-	500.0	120.0	100.0	Н	258.0	-108.8
361.89	-58.11	1	-13.00	45.11	500.0	120.0	100.0	Н	258.0	-108.8
434.27	-	-52.18	-	-	500.0	120.0	100.0	Н	229.0	-107.1
434.27	-44.11	1	-13.00	31.11	500.0	120.0	100.0	Н	229.0	-107.1
470.48	-44.78	1	-13.00	31.78	500.0	120.0	107.0	Н	135.0	-105.1
470.48	-	-55.40	-		500.0	120.0	107.0	Н	135.0	-105.1
506.56		-63.28			500.0	120.0	100.0	Н	138.0	-104.3
506.56	-52.89		-13.00	39,89	500.0	120.0	100.0	Н	138.0	-104.3
557.07		-63,94			500.0	120.0	168.0	Н	178.0	-103.5
557.07	-49.73		-13.00	36.73	500.0	120.0	168.0	Н	178.0	-103.5

Date of Report 3-7-2023 Page 25 of 48 IC: 24516-36B

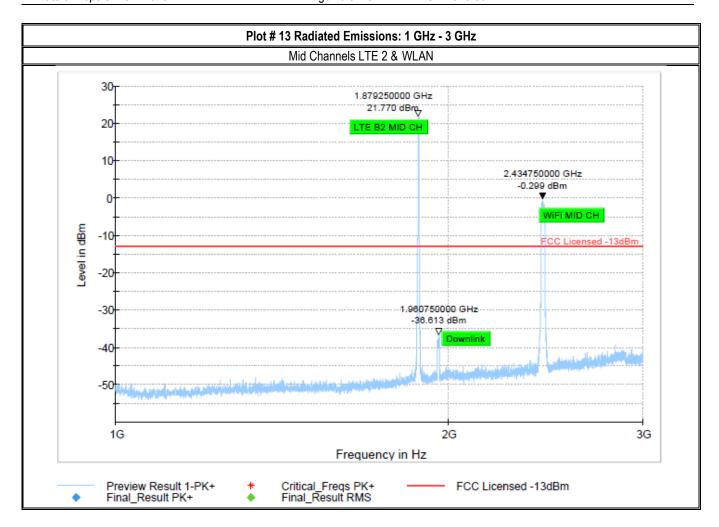

Date of Report 3-7-2023 Page 26 of 48 IC: 24516-36B

Plot # 10 Radiated Emissions: 3 GHz - 18 GHz Mid Channels UMTS II & WLAN Bandwidth (kHz) Azimuth (deg) Frequency (MHz) MaxPeak RMS Margin (dB) Limit Meas. Time Height Pol Corr. (dBm) (dBm) (ms) (cm) (dB) 3757.75 3757.75 500.0 500.0 -100.9 -100.9 1000.0 1000.0 303.0 V 303.0 V 186.0 V 254.0 254.0 -51.24 -13.00 28.41 -41.41 -58.41 4318.75 500.0 -99.8 1000.0 31.57 4318.75 -44.57 -13.00 500.0 1000.0 186.0 V 3.0 -99.8 30 20 10-0--10 Level in dBm -20 -30 -40 -50 -60 5G 10G 18G 3G 6 7 8 9 Frequency in Hz Preview Result 1-PK+ FCC Licensed -13dBm Final_Result PK+ Final_Result RMS

Date of Report 3-7-2023 Page 27 of 48 IC: 24516-36B

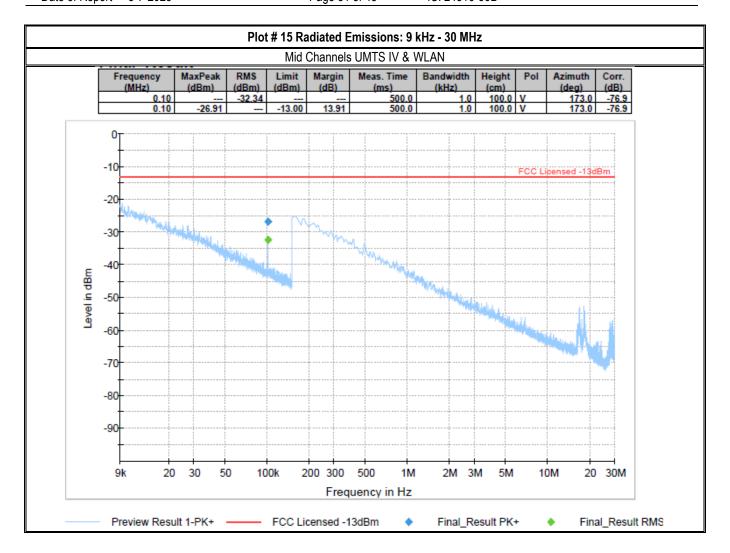

Date of Report 3-7-2023 Page 28 of 48 IC: 24516-36B

Plot # 12 Radiated Emissions: 30 MHz - 1000 MHz


Mid Channels LTE 2 & WLAN

Frequency	MaxPeak	RMS	Limit	Margin	Meas. Time	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBm)	(dBm)	(dBm)	(dB)	(ms)	(kHz)	(cm)		(deg)	(dB)
253.29	-58.23	-	-13.00	45.23	500.0	120.0	125.0	Н	79.0	-108.3
253.29		-68.04			500.0	120.0	125.0	Н	79.0	-108.3
434.17		-53.88	-		500.0	120.0	107.0	Ξ	55.0	-107.1
434.17	-43.95	-	-13.00	30.95	500.0	120.0	107.0	Н	55.0	-107.1
470.53	-46.92	_	-13.00	33.92	500.0	120.0	100.0	Н	58.0	-105.1
470.53		-57.83		-	500.0	120.0	100.0	Н	58.0	-105.1
506.54		-68.05		-	500.0	120.0	100.0	Н	106.0	-104.3
506.54	-56.50	_	-13.00	43.50	500.0	120.0	100.0	Н	106.0	-104.3
556.66	-49.59		-13.00	36.59	500.0	120.0	237.0	Н	351.0	-103.4
556.66		-63.72			500.0	120.0	237.0	Н	351.0	-103.4
768.00	-58.08		-13.00	45.08	500.0	120.0	107.0	Н	49.0	-99.8
768.00		-61.87			500.0	120.0	107.0	Н	49.0	-99.8

Date of Report 3-7-2023 Page 29 of 48 IC: 24516-36B


Date of Report 3-7-2023 Page 30 of 48 IC: 24516-36B

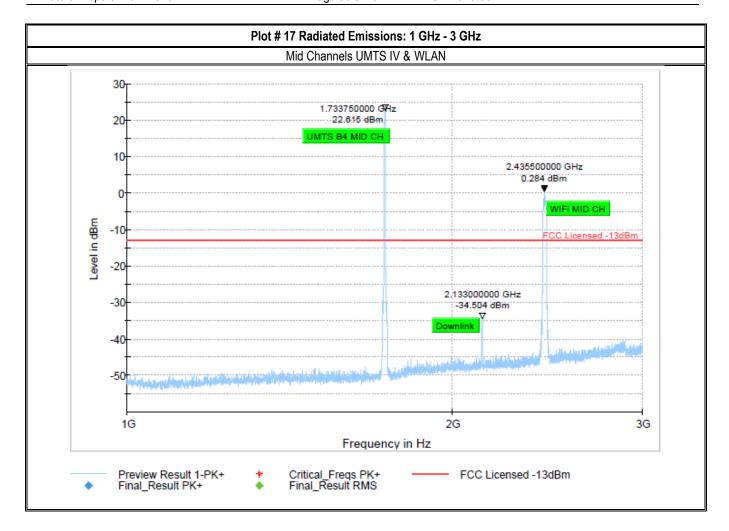
Plot # 14 Radiated Emissions: 3 GHz – 18 GHz Mid Channels LTE 2 & WLAN Bandwidth (kHz) Azimuth (deg) Frequency (MHz) MaxPeak RMS Limit (dBm) Margin (dB) Meas. Time Height Pol Corr. (dBm) (dBm) (ms) (cm) (dB) 3757.75 3757.75 500.0 500.0 -100.9 -100.9 1000.0 1000.0 303.0 V 303.0 V 186.0 V 254.0 254.0 -51.24 -13.00 28.41 -41.41 -58.41 4318.75 500.0 -99.8 1000.0 31.57 4318.75 -44.57 -13.00 500.0 1000.0 186.0 V 3.0 -99.8 30 20 10 0 Level in dBm -20 -30 -40 -50 -60 5G 7 8 9 10G 18G 3G 6 Frequency in Hz Preview Result 1-PK+ FCC Licensed -13dBm Final_Result PK+ Final_Result RMS

Date of Report 3-7-2023 Page 31 of 48 IC: 24516-36B

Date of Report 3-7-2023 Page 32 of 48 IC: 24516-36B

Final_Result RMS

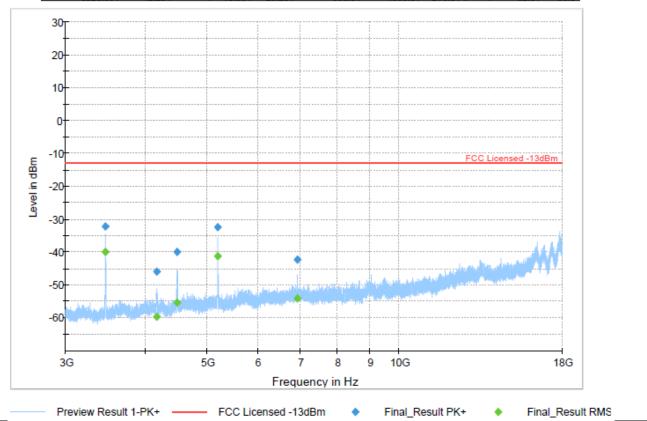
Plot # 16 Radiated Emissions: 30 MHz - 1000 MHz Mid Channels UMTS IV & WLAN Frequency (MHz) MaxPeak Margin (dB) Bandwidth (kHz) RMS Limit Meas. Time Height Pol Azimuth Corr. (dBm) (dBm) (dBm) (ms) (cm) (deg) (dB) 217.11 500.0 142.0 H 142.0 H -13.00 43.73 100.0 109.0 -76.2 -56.73-62.22 109.0 217.11 500.0 100.0 -76.2 -52.36 -13.00 39.36 253.29 117.0 H 500.0 100.0 104.0 -72.9 253.29 -60.61 500.0 100.0 117.0 H 104.0 -72.9 434.22 -45.65 -13.00 32.65 500.0 100.0 100.0 H 240.0 -71.8 240.0 434.22 -55.76 500.0 100.0 100.0 H -71.8 470.60 -46.39 -13.00 33.39 500.0 100.0 100.0 H 139.0 -69.8 -58.35 100.0 100.0 H 470.60 500.0 139.0 -69.8 40_T 30 20 10 0--10 Level in dBm -20 -30 -40 . -50 -60 -70 -80 -90 30M 50 80 100M 200 300 400 500 800 1G


Frequency in Hz

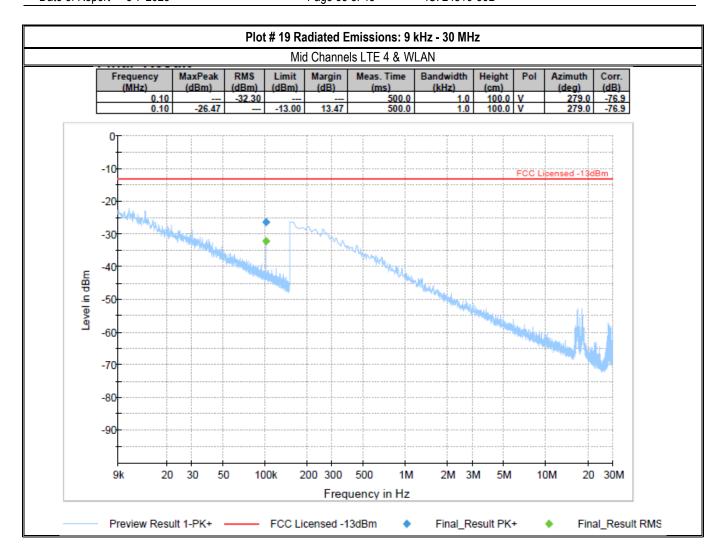
Preview Result 1-PK+ FCC Licensed -13dBm

Final_Result PK+

Date of Report 3-7-2023 Page 33 of 48 IC: 24516-36B


Date of Report 3-7-2023 Page 34 of 48 IC: 24516-36B

Plot # 18 Radiated Emissions: 3 GHz - 18 GHz


Mid Channels UMTS IV & WLAN

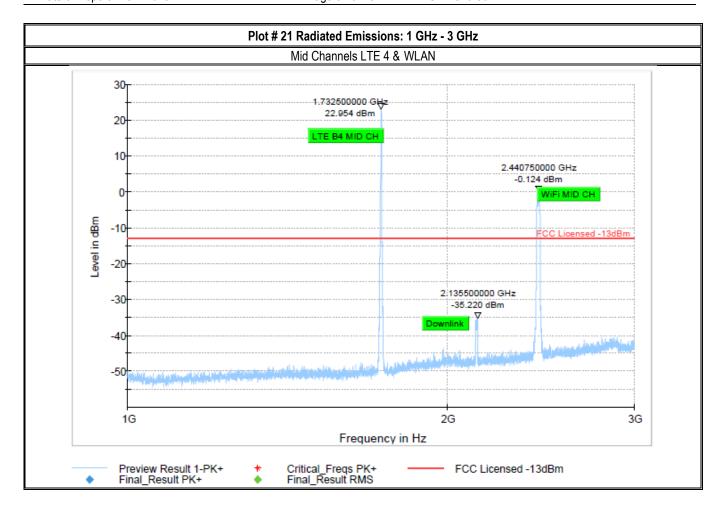
Frequency (MHz)	MaxPeak (dBm)	RMS (dBm)	Limit (dBm)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (dea)	Corr. (dB)
3466.75	-	-39.85		-	500.0	1000.0	179.0	V	264.0	-102.2
3466.75	-32.32	-	-13.00	19.32	500.0	1000.0	179.0	V	264.0	-102.2
4171.00		-59.69			500.0	1000.0	205.0	V	13.0	-99.3
4171.00	-45.92		-13.00	32.92	500.0	1000.0	205.0	V	13.0	-99.3
4491.25		-55.34			500.0	1000.0	151.0	V	6.0	-99.2
4491.25	-39.91		-13.00	26.91	500.0	1000.0	151.0	V	6.0	-99.2
5201.00		-41.14			500.0	1000.0	164.0	V	25.0	-97.7
5201.00	-32.43		-13.00	19.43	500.0	1000.0	164.0	V	25.0	-97.7
6925.50		-54.07			500.0	1000.0	216.0	V	52.0	-95.3
6925.50	-42.28		-13.00	29.28	500.0	1000.0	216.0	V	52.0	-95.3

Date of Report 3-7-2023 Page 35 of 48 IC: 24516-36B

Date of Report 3-7-2023 Page 36 of 48 IC: 24516-36B

Preview Result 1-PK+ -

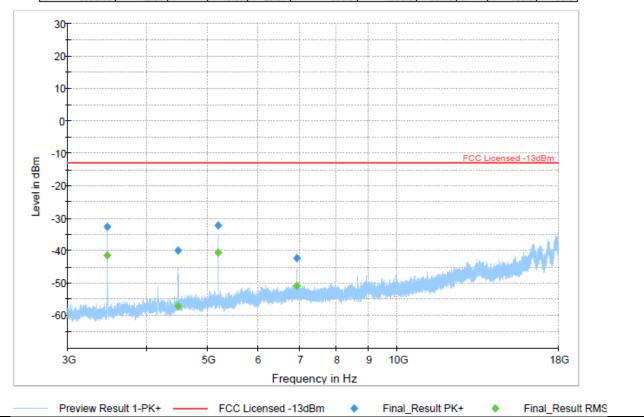
Final_Result RMS


Plot # 20 Radiated Emissions: 30 MHz - 1000 MHz Mid Channels LTE 4 & WLAN Bandwidth (kHz) Frequency (MHz) MaxPeak Margin (dB) Azimuth RMS Limit Meas. Time Height Pol Corr. (dBm) (dBm) (dBm) (cm) (deg) (dB) 216.19 216.19 500.0 500.0 184.0 H 184.0 H 125.0 H -81.98 100.0 -19.0 -76.3 -70.59 -13.00 57.59 100.0 -19.0 -76.3 -76.21 252.25 133.0 -72.5 500.0 100.0 -13.00 51.91 252.25 -64.91 500.0 100.0 125.0 H 133.0 -72.5 100.0 H 432.48 500.0 100.0 239.0 -71.9 49.94 432.48 100.0 100.0 H 30 20 10 0--10 Level in dBm -20 -30 -40 -50 -70 -90 30M 50 60 80 100M 200 300 400 500 800 1G Frequency in Hz

FCC Licensed -13dBm

Final_Result PK+

Date of Report 3-7-2023 Page 37 of 48 IC: 24516-36B


Date of Report 3-7-2023 Page 38 of 48 IC: 24516-36B

Plot # 22 Radiated Emissions: 3 GHz – 18 GHz

Mid Channels LTE 4 & WLAN

	Frequency (MHz)	MaxPeak (dBm)	RMS (dBm)	Limit (dBm)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (dea)	Corr. (dB)
- [3463.75		-41.47			500.0	1000.0	142.0	V	264.0	-102.2
	3463.75	-32.55		-13.00	19.55	500.0	1000.0	142.0	٧	264.0	-102.2
	4492.75		-57.07			500.0	1000.0	194.0	٧	350.0	-99.2
[4492.75	-40.04	-	-13.00	27.04	500.0	1000.0	194.0	٧	350.0	-99.2
	5199.00	-	-40.66	-	-	500.0	1000.0	107.0	٧	32.0	-97.7
	5199.00	-32.29	1	-13.00	19.29	500.0	1000.0	107.0	٧	32.0	-97.7
[6930.00	-	-50.98	-	-	500.0	1000.0	307.0	٧	168.0	-95.3
[6930.00	-42.37		-13.00	29.37	500.0	1000.0	307.0	V	168.0	-95.3

Date of Report 3-7-2023 Page 39 of 48 IC: 24516-36B

20

30

9k

50

Preview Result 1-PK+ FCC Licensed -13dBm

100k

200 300 500

Frequency in Hz

2M 3M

Final_Result PK+

5M

10M

20 30M

Final_Result RMS

Plot # 23 Radiated Emissions: 9 kHz - 30 MHz Mid Channels LTE 12 & WLAN Frequency (MHz) MaxPeak Bandwidth (kHz) RMS Limit Margin Meas. Time Height Pol Azimuth Corr. (dBm) (dBm) (dBm) (dB) (cm) (deg) (dB) 500.0 500.0 100.0 V 100.0 V 100.0 V 0.10 -25.69 -13.00 12.69 1.0 330.0 -76.9 -31.80 0.10 1.0 330.0 -76.9 0.16 -38.81 500.0 1.0 164.0 -77.0 -30.45 -13.00 17.45 0.16 500.0 1.0 100.0 V 164.0 -77.0 0.52 -45.11 -13.00 32.11 500.0 1.0 100.0 V 319.0 -77.0 100.0 V 100.0 V 0.52 -54.56 500.0 1.0 319.0 -77.0 1.56 -42.63 500.0 1.0 166.0 -76.9 -37.22 -13.00 24.22 100.0 V 1.56 500.0 1.0 166.0 -76.9 -20 Whiteher -30 -40 Level in dBm -50 -60 -70 -80 -90

Date of Report 3-7-2023 Page 40 of 48 IC: 24516-36B

Plot # 24 Radiated Emissions: 30 MHz - 1000 MHz Mid Channels LTE 12 & WLAN Frequency (MHz) MaxPeak Limit Margin Meas. Time Bandwidth Height Pol Azimuth Corr. (dBm) (dBm) (dBm) (dB) (kHz) (dB) (dea) (ms) (cm) 168.0 H 168.0 H -76.2 -76.2 216.97 57.33 -13.00 44.33 500.0 100.0 98.0 -68.39 500.0 100.0 216.97 98.0 -13.00 50.55 -63.55 253.12 500.0 100.0 116.0 H -19.0 -72.8 253.12 -75.27 500.0 100.0 116.0 H -19.0 -72.8 36.45 -49.45 -13.00 434.01 500.0 100.0 100.0 H 232.0 -71.8 434.01 -60.17 500.0 100.0 100.0 H 232.0 -71.8 38.34 470.14 -51.34 -13.00 500.0 100.0 100.0 H 153.0 -69.8 470.14 500.0 100.0 100.0 H 30 707.205500 MHz 20 ..13.938.dBm. LTE B12 MID CH 10 0--10 Level in dBm -20 740.937250 MHz 40.540 dBm -30 -40 -50 -60 -80 -90 30M 60 80 100M 200 300 400 500 800 Frequency in Hz Preview Result 1-PK+ -FCC Licensed -13dBm Final Result PK+ Final Result RMS

Date of Report 3-7-2023 Page 41 of 48 IC: 24516-36B

Plot # 25 Radiated Emissions: 1 GHz - 3 GHz Mid Channels LTE 12 & WLAN Bandwidth (kHz) Frequency (MHz) MaxPeak Limit Margin (dB) RMS Meas. Time Height Pol Azimuth Corr. (dBm) (dBm) (dB) (dBm) (cm) (deg) 149.0 H 149.0 H 243.0 V 153.0 153.0 -63.4 -63.4 2121.00 -52.76 500.0 1000.0 -13.00 -40.81 27.81 2121.00 500.0 1000.0 -50.00 2878.25 500.0 1000.0 223.0 -60.6 -38.48 -13.00 25.48 2878.25 500.0 1000.0 243.0 V 223.0 -60.6 10 5 -2:433750000 GHz -1.180 dBm· 0 WiFi MID CH -10 -15 Level in dBm -20 -25 -30 -35 -40 -45 -50 -55 2G 3G 1G Frequency in Hz Preview Result 1-PK+ -FCC Licensed -13dBm Final_Result PK+ Final_Result RMS

Date of Report 3-7-2023 Page 42 of 48 IC: 24516-36B

Plot # 26 Radiated Emissions: 3 GHz - 9 GHz Mid Channels LTE 12 & WLAN Margin (dB) Frequency (MHz) MaxPeak RMS Meas. Time Bandwidth Limit Height Pol Azimuth Corr. (dBm) (dBm) (kHz) (dB) (cm) (dea) 3540.00 3540.00 116.0 V 116.0 V -102.1 -102.1 500.0 1000.0 -55.66 103.0 31.78 44.78 -13.00 500.0 1000.0 103.0 4241.80 4241.80 -59.94 500.0 500.0 107.0 V 69.0 69.0 -98.9 1000.0 -47.15 -13.00 34.15 -98.9 1000.0 107.0 V 30_T 20 10 0--10 Level in dBm -20 -30 -40 -50 -60 5G 8 9G 3G Frequency in Hz Preview Result 1-PK+ Final_Result RMS FCC Licensed -13dBm Final_Result PK+

Date of Report 3-7-2023 Page 43 of 48 IC: 24516-36B

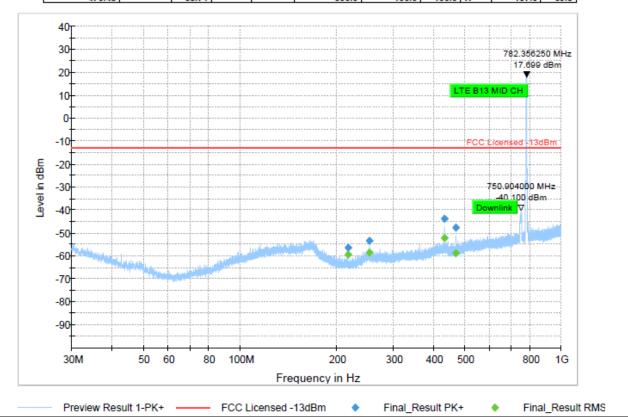
Preview Result 1-PK+ -

Plot # 27 Radiated Emissions: 9 kHz - 30 MHz Mid Channels LTE 13 & WLAN Frequency (MHz) MaxPeak Margin Bandwidth Height RMS Limit Meas. Time Pol Azimuth Corr. (dBm) (dBm) (dBm) (dB) (kHz) (dB) (cm) (dea) 100.0 V 100.0 V 0.10 12.52 500.0 -25.52 -13.00 1.0 182.0 -76.9 -32.29 -76.9 0.10 500.0 1.0 182.0 100.0 V 100.0 V -77.0 -77.0 500.0 0.52 -45.09 1.0 165.0 -37.73 -13.00 24.73 1.0 0.52 500.0 165.0 -44.47 100.0 V 31.47 1.56 -13.00 500.0 1.0 163.0 -76.9 1.56 -49.09 500.0 1.0 100.0 V 163.0 -76.9 0--10 FCC Licensed -13dBm -20 -30 -40 Level in dBm -50 -60 -70 -80 -90 100k 9k 20 30 50 200 300 500 2M 3M 5M 10M 20 30M Frequency in Hz

FCC Licensed -13dBm

Final_Result PK+

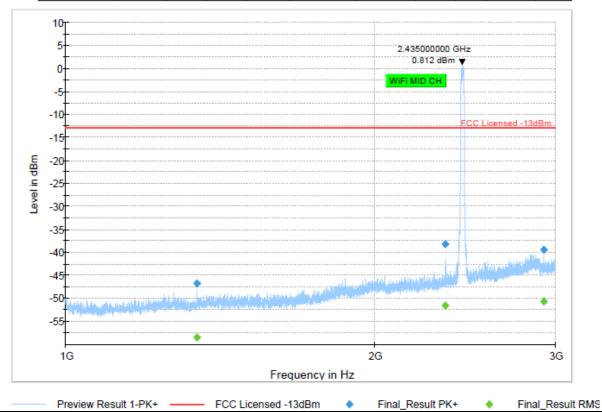
٠


Final_Result RMS

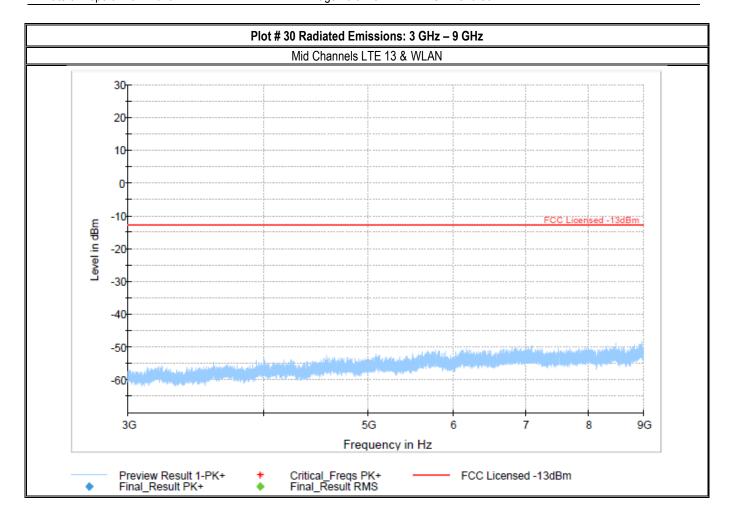
Date of Report 3-7-2023 Page 44 of 48 IC: 24516-36B

Plot # 28 Radiated Emissions: 30 MHz – 1000 MHz Mid Channels LTE 13 & WLAN

÷											
	Frequency	MaxPeak	RMS	Limit	Margin	Meas. Time	Bandwidth	Height	Pol	Azimuth	Corr.
L	(MHz)	(dBm)	(dBm)	(dBm)	(dB)	(ms)	(kHz)	(cm)		(dea)	(dB)
	217.19	. 1	-59.53	.		500.0	100.0	116.0	Н	85.0	-76.2
	217.19	-56.30	-	-13.00	43.30	500.0	100.0	116.0	Н	85.0	-76.2
	253.34		-58.66			500.0	100.0	116.0	Н	87.0	-72.9
	253.34	-53.47	-	-13.00	40.47	500.0	100.0	116.0	Н	87.0	-72.9
	434.39	-43.90	_	-13.00	30.90	500.0	100.0	100.0	Н	228.0	-71.8
	434.39		-52.33			500.0	100.0	100.0	Н	228.0	-71.8
	470.48	-47.85		-13.00	34.85	500.0	100.0	100.0	Н	157.0	-69.8
	470.48		-58.71			500.0	100.0	100.0	Н	157.0	-69.8


Date of Report 3-7-2023 Page 45 of 48 IC: 24516-36B

Plot # 29 Radiated Emissions: 1 GHz - 3 GHz


Mid Channels LTE 13 & WLAN

Frequency	MaxPeak	RMS	Limit	Margin	Meas. Time	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBm)	(dBm)	(dBm)	(dB)	(ms)	(kHz)	(cm)		(dea)	(dB)
1342.	50	-58.54			500.0	1000.0	107.0	Н	230.0	-66.6
1342.	50 -46.82		-13.00	33.82	500.0	1000.0	107.0	Н	230.0	-66.6
2344.		-51.66			500.0	1000.0	125.0	Н	280.0	-62.6
2344.	00 -38.22		-13.00	25.22	500.0	1000.0	125.0	Н	280.0	-62.6
2923.	25	-50.71			500.0	1000.0	270.0	٧	32.0	-60.3
2923.	25 -39.38		-13.00	26.38	500.0	1000.0	270.0	V	32.0	-60.3

Date of Report 3-7-2023 Page 46 of 48 IC: 24516-36B

Date of Report 3-7-2023 Page 47 of 48 IC: 24516-36B

8 Test setup photo

Setup photos are included in supporting file name: "EMC_KPTRK-036-23001_Setup_Photos.pdf"

9 Test Equipment and Ancillaries Used For Testing

Equipment Name/Type	Manufacturer	Model	Serial #	Calibration Cycle	Last Calibration Date
EMI Receiver	Rohde & Schwarz	ESW44	101715	3 Years	9/13/2021
Signal Analyzer	Rohde & Schwarz	FSV40	101022	3 Years	9/14/2021
Active Loop antenna	ETS Lindgren	6507	161344	3 Years	10/30/2020
Loop antenna	ETS Lindgren	6512	164698	3 Years	8/14/2020
Biconlog Antenna	AH systems	BiLA2G	569	3 years	12/1/2020
Horn Antenna	EMCO	3115	35111	3 years	9/30/2021
Horn Antenna	ETS Lindgren	3117-PA	169547	3 years	9/1/2020
Horn Antenna	ETS Lindgren	3116C-PA	169535	3 years	9/30/2020
Digital Thermometer	Control Company	36934-164	191872028	3 Years	10/20/2021
Digital Barometer	VWR	10510-922	200236891	3 Years	4/13/2020

Note: Equipment used meets the measurement uncertainty requirements as required per applicable standards for 95% confidence levels. Calibration due dates, unless defined specifically, falls on the last day of the month. Items indicated "N/A" for cal status either do not specifically require calibration or is internally characterized before

Date of Report 3-7-2023 Page 48 of 48 IC: 24516-36B

10 Revision History

Date	Report Name	Changes to report	Report prepared by	
1-23-2023	EMC_KPTRK-036-23001_FCC_22_24_27_C2PC	Initial Draft version	Kris Lazarov	
3-7-2023	EMC_KPTRK-036-23001_FCC_22_24_27_C2PC_Rev1	Updated the plots in section 7.1	Kris Lazarov	

<<The End>>