

No. 1 Workshop, M-10, Middle section, Science & Technology Park, Shenzhen, Guangdong, China 518057

Telephone:	+86 (0) 755 2601 2053
Fax:	+86 (0) 755 2671 0594
Email:	ee.shenzhen@sgs.com

Report No.: SZEM171101182702 Page: 1 of 89

TEST REPORT

Application No.:	SZEM1711011827CR		
Applicant:	TEAC Corporation		
Address of Applicant:	1-47 Ochiai, Tama-shi, Tokyo, 206-8530, Japan		
Manufacturer:	TEAC Corporation		
Address of Manufacturer:	1-47 Ochiai, Tama-shi, Tokyo, 206-8530, Japan		
Factory:	DONGGUAN TEAC ELECTRONICS CO., LTD.		
Address of Factory:	No.1 Shangxing Lu, Shangjao Community, Changan Towm, Dongguan Citty, Guangdong, China		
Equipment Under Test (EUT):		
EUT Name:	USB DAC/HEADPHONE AMPLIFIER		
Model No.:	UD-505		
FCC ID:	XEG-UD505		
Trade mark:	TEAC		
Standard(s) :	47 CFR Part 15, Subpart C 15.247		
Date of Receipt:	2017-11-23		
Date of Test:	2017-12-06 to 2018-01-12		
Date of Issue:	2018-01-19		
Test Result:	Pass*		

* In the configuration tested, the EUT complied with the standards specified above.

EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

Report No.: SZEM171101182702 Page: 2 of 89

	Revision Record					
Version	Version Chapter Date Modifier Rei					
01		2018-01-19		Original		

Authorized for issue by:		
	lester	
	Leo Lai /Project Engineer	
	Evic Fu	
	Eric Fu /Reviewer	

Report No.: SZEM171101182702 Page: 3 of 89

2 Test Summary

Radio Spectrum Technical Requirement						
Item Standard Method Requirement Res						
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(c)	Pass		
Other requirements Frequency Hopping Spread Spectrum System Hopping Sequence	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.247(a)(1),(g),(h)	Pass		

Radio Spectrum Matter Part					
ltem	Standard	Method	Requirement	Result	
Conducted Emissions at AC Power Line (150kHz-30MHz)	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.2	47 CFR Part 15, Subpart C 15.207	Pass	
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.5	47 CFR Part 15, Subpart C 15.247(b)(1)	Pass	
20dB Bandwidth	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.7	47 CFR Part 15, Subpart C 15.247(a)(1)	Pass	
Carrier Frequencies Separation	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.2	47 CFR Part 15, Subpart C 15.247a(1)	Pass	
Hopping Channel Number	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.3	47 CFR Part 15, Subpart C 15.247a(1)(iii)	Pass	
Dwell Time	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.4	47 CFR Part 15, Subpart C 15.247a(1)(iii)	Pass	
Conducted Band Edges Measurement	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.6	47 CFR Part 15, Subpart C 15.247(d)	Pass	
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.8	47 CFR Part 15, Subpart C 15.247(d)	Pass	
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.205 & 15.209	Pass	
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.4,6.5,6.6	47 CFR Part 15, Subpart C 15.205 & 15.209	Pass	

Report No.: SZEM171101182702 Page: 4 of 89

3 Contents

				Page
3 CONTENTS 4 4 GENERAL INFORMATION 6 4.1 DETAILS OF E.U.T. 6 4.2 DESCRIPTION OF SUPPORT UNITS 6 4.3 MEASUREMENT UNCERTAINITY 6 4.4 TEST FACILITY. 6 4.4 TEST FACILITY. 7 4.5 TEST FACILITY. 7 4.6 DEVIATION RROM STANDARD CONDITIONS 7 5 EQUIPMENT LIST. 8 6 RADIO SPECTRUM TECHNICAL REQUIREMENT 12 6.1 ANTENNA REQUIREMENT 12 6.1.1 Test Requirement 12 6.1.2 OTHER REQUIREMENT SPECUENCY HOPPING SPREAD SPECTRUM SYSTEM HOPPING SEQUENCE 13 62.1 Test Requirement: 13 62.2 Conclusion 13 7 RADIO SPECTRUM MATTER TEST RESULTS 14 7.1.1 Consurement: 13 62.2 Conclusion 15 7.1.2 Test Setup Diagram 15 7.1.3 Measurement Procedure and Data. 15 7.1.2 Test Setup Diagram	1	cov	ER PAGE	1
3 CONTENTS 4 4 GENERAL INFORMATION 6 4.1 DETAILS OF E.U.T. 6 4.2 DESCRIPTION OF SUPPORT UNITS 6 4.3 MEASUREMENT UNCERTAINITY 6 4.4 TEST FACILITY. 6 4.4 TEST FACILITY. 7 4.5 TEST FACILITY. 7 4.6 DEVIATION RROM STANDARD CONDITIONS 7 5 EQUIPMENT LIST. 8 6 RADIO SPECTRUM TECHNICAL REQUIREMENT 12 6.1 ANTENNA REQUIREMENT 12 6.1.1 Test Requirement 12 6.1.2 OTHER REQUIREMENT SPECUENCY HOPPING SPREAD SPECTRUM SYSTEM HOPPING SEQUENCE 13 62.1 Test Requirement: 13 62.2 Conclusion 13 7 RADIO SPECTRUM MATTER TEST RESULTS 14 7.1.1 Consurement: 13 62.2 Conclusion 15 7.1.2 Test Setup Diagram 15 7.1.3 Measurement Procedure and Data. 15 7.1.2 Test Setup Diagram	2	TEO		2
4 GENERAL INFORMATION 6 4.1 DETAILS OF E.U.T. 6 4.2 DESCRIPTION OF SUPPORT UNITS 6 4.3 MEASUREMENT UNCERTAINTY 6 4.4 TEST LOCATION 7 4.5 TEST FACILITY 7 4.6 DEVIATION FROM STANDARDS. 7 4.7 ABNORMALITIES FROM STANDARD CONDITIONS 7 5 EQUIPMENT LIST 8 6 RADIO SPECTRUM TECHNICAL REQUIREMENT 12 6.1 ANTENNA REQUIREMENT 12 6.1.1 Test Requirement 12 6.2.1 Test Requirement 12 6.2.1 Test Requirement 12 6.2.1 Test Requirement 13 6.2.2 Conclusion 13 6.2.1 Test Requirement 13 6.2.2 Conclusion 13 6.2.1 Test Requirement 14 7.1 CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ) 14 7.1.1 CONDUCTED DEAR OUTPUT POWER 15 7.2.2 Conclusion 15 </th <th>Z</th> <th>IE2</th> <th></th> <th>3</th>	Z	IE2		3
4.1 DETAILS OF E.U.T. 6 4.2 DESCRIPTION OF SUPPORT UNITS. 6 4.3 MEASUREMENT UNCERTAINTY 6 4.4 TEST LOCATION 7 4.5 TEST FACILITY 7 4.6 TEST FACILITY 7 4.6 DEVATION FROM STANDARDS 7 4.7 ABNORMALITIES FROM STANDARD CONDITIONS 7 5 EQUIPMENT LIST. 8 6 RADIO SPECTRUM TECHNICAL REQUIREMENT 12 6.1 ANTENNA REQUIREMENT 12 6.1.1 Test Requirement: 12 6.2.2 OTHER REQUIREMENTS FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM HOPPING SEQUENCE 13 6.2.1 Test Requirement: 13 6.2.2 Conclusion 13 7 RADIO SPECTRUM MATTER TEST RESULTS 14 7.1 CONDUCTED EMISSIONS AT AC POWER LINE (150kHz-30MHz) 14 7.1.1 CONDUCTED DENK OUTPUT POWER 15 7.1.3 Measurement Procedure and Data. 15 7.2.1 Test Setup Diagram 19 7.2.2 Test Setup Diagram 2	3	CON	ITENTS	4
4.2 DESCRIPTION OF SUPPORT UNITS. 6 4.3 MEASUREMENT UNCERTAINTY 6 4.4 TEST LOCATION. 7 4.5 TEST LOCATION. 7 4.6 DEVIATION FROM STANDARD SANDARD CONDITIONS. 7 5 EQUIPMENT LIST	4	GEN	ERAL INFORMATION	6
4.2 DESCRIPTION OF SUPPORT UNITS. 6 4.3 MEASUREMENT UNCERTAINTY 6 4.4 TEST LOCATION. 7 4.5 TEST LOCATION. 7 4.6 DEVIATION FROM STANDARD SANDARD CONDITIONS. 7 5 EQUIPMENT LIST		4.1	DETAILS OF E.U.T.	6
4.3 MEASUREMENT UNCERTAINTY 6 4.4 TEST LOCATION 77 4.5 TEST FACILITY 7 4.6 DEVIATION FROM STANDARDS. 7 4.7 ABNORMALITIES FROM STANDARDS. 7 5 EQUIPMENT LIST. 8 6 RADIO SPECTRUM TECHNICAL REQUIREMENT 12 6.1 ANTENNA REQUIREMENT 12 6.1.1 Fost Requirement 12 6.1.2 Conclusion 12 6.1.2 Conclusion 12 6.2.1 Test Requirement 12 6.2.2 Conclusion 13 6.2.2 Conclusion 13 6.2.2 Conclusion 13 6.2.2 Conclusion 13 6.2.4 Test Requirement 13 6.2.5 Conclusion At AC Power Line (150kHz-30MHz) 14 7.1.1 CONDUCTED EMISSIONS AT AC Power Line (150kHz-30MHz) 14 7.1.1 CONDUCTED ENA OUTPUT POWER 15 7.2.2 Test Setup Diagram 15 7.3 Measurement Procedure and Data 15<				
4.4 TEST EACILITY. 7 4.5 TEST FACILITY. 7 4.6 DEVIATION FROM STANDARDS. 7 4.7 ABNORMALITIES FROM STANDARD CONDITIONS 7 5 EQUIPMENT LIST		4.3		
4.6 Deviation FROM STANDARDS 7 4.7 ABNORMALTIES FROM STANDARD CONDITIONS 7 5 EQUIPMENT LIST 8 6 RADIO SPECTRUM TECHNICAL REQUIREMENT 12 6.1 ANTENNA REQUIREMENT 12 6.1.1 Test Requirement: 12 6.1.2 Conclusion 12 6.2 OTHER REQUIREMENT FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM HOPPING SEQUENCE 13 6.2.1 Test Requirement: 13 6.2.2 Conclusion 13 7 RADIO SPECTRUM MATTER TEST RESULTS 14 7.1 CONDUCTED EMISSIONS AT AC POWER LINE (150kHz-30MHz) 14 7.1.1 E.U.T. Operation 15 7.1.2 Test Setup Diagram 15 7.1.2 Test Setup Diagram 16 7.3 Measurement Procedure and Data 19 7.2.1 E.U.T. Operation 19 7.3.2 Test Setup Diagram 19 7.3.3 Measurement Procedure and Data 20 7.3.4 Measurement Procedure and Data 20 7.3.3 Measurement Procedure				
4.7 ABNORMALITIES FROM STANDARD CONDITIONS 7 5 EQUIPMENT LIST 8 6 RADIO SPECTRUM TECHNICAL REQUIREMENT 12 6.1 ANTENNA REQUIREMENT 12 6.1.1 Test Requirement 12 6.1.2 Conclusion 12 6.2.3 Other REQUIREMENTS FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM HOPPING SEQUENCE 13 6.2.1 Test Requirement: 13 6.2.2 Conclusion 13 6.2.3 Conclusion 13 6.2.4 Thest Requirement: 13 6.2.5 Conclusion 13 6.2.6 Conclusion 13 6.2.7 Conclusion 13 6.2.8 Conclusion 13 6.1.1 Test Requirement: 14 7.1 Conducted Emissions at AC Power Line (150kHz-30MHz) 14 7.1.1 FU.T. Operation 15 7.1.3 Measurement Procedure and Data 15 7.2.4 EU.T. Operation 20 7.3.1 EU.T. Operation 20 7.3.2 Test Setu		4.5	TEST FACILITY	7
5 EQUIPMENT LIST		4.6	DEVIATION FROM STANDARDS	7
6 RADIO SPECTRUM TECHNICAL REQUIREMENT 12 6.1 ANTENNA REQUIREMENT 12 6.1.1 Test Requirement: 12 6.1.2 Conclusion 12 6.2 OTHER REQUIREMENTS FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM HOPPING SEQUENCE 13 6.2.1 Test Requirement: 13 6.2.2 Conclusion 13 6.2.1 Test Requirement: 13 6.2.2 Conclusion 13 6.2.2 Conclusion 13 6.2.1 Test Requirement: 13 6.2.2 Conclusion 13 6.2.2 Conclusion 13 6.2.1 Test Requirement: 13 7.8 ADIO SPECTRUM MATTER TEST RESULTS. 14 7.1 CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ). 14 7.1 E.U.T. Operation 15 7.1.2 Test Setup Diagram 15 7.1.3 Measurement Procedure and Data 15 7.3 20DB BANDWIDTH 20 7.3.1 E.U.T. Operation 20 7.3.3		4.7	ABNORMALITIES FROM STANDARD CONDITIONS	7
6.1 ANTENNA REQUIREMENT 12 6.1.1 Test Requirement: 12 6.1.2 Conclusion 12 6.2 OTHER REQUIREMENTS FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM HOPPING SEQUENCE 13 6.2.1 Test Requirement: 13 6.2.2 Conclusion 13 6.2.2 Conclusion 13 7 RADIO SPECTRUM MATTER TEST RESULTS 14 7.1 CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ) 14 7.1.1 E.U.T. Operation 15 7.1.2 Test Setup Diagram 15 7.1.3 Measurement Procedure and Data 15 7.2 CONDUCTED PEAK OUTPUT POWER 18 7.2.1 Test Setup Diagram 19 7.2.3 Measurement Procedure and Data 19 7.3 20DB BANDWIDTH 200 7.3.1 E.U.T. Operation 20 7.3.2 Measurement Procedure and Data 20 7.3.3 Measurement Procedure and Data 20 7.4 CARRIER FREQUENCIES SEPARATION 21 7.4.4 E.U.T. Operation	5	EQU	IPMENT LIST	8
6.1 ANTENNA REQUIREMENT 12 6.1.1 Test Requirement: 12 6.1.2 Conclusion 12 6.2 OTHER REQUIREMENTS FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM HOPPING SEQUENCE 13 6.2.1 Test Requirement: 13 6.2.2 Conclusion 13 6.2.2 Conclusion 13 7 RADIO SPECTRUM MATTER TEST RESULTS 14 7.1 CONDUCTED EMISSIONS AT AC POWER LINE (150kHz-30MHz) 14 7.1.1 E.U.T. Operation 15 7.1.2 Test Setup Diagram 15 7.1.3 Measurement Procedure and Data 15 7.2 CONDUCTED PEAK OUTPUT POWER 18 7.2.1 Test Setup Diagram 19 7.2.3 Measurement Procedure and Data 19 7.3 20DB BANDWIDTH 20 7.3.1 E.U.T. Operation 20 7.3.2 Measurement Procedure and Data 20 7.3.3 Measurement Procedure and Data 20 7.4 CARRIER FREQUENCIES SEPARATION 21 7.4.4 E.U.T. Operation				
6.1.1 Test Requirement: 12 6.1.2 Conclusion 12 6.2.0 OTHER REQUIREMENTS FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM HOPPING SEQUENCE 13 6.2.1 Test Requirement: 13 6.2.2 Conclusion 13 7 RADIO SPECTRUM MATTER TEST RESULTS 14 7.1 CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ) 14 7.1.1 E.U.T. Operation 15 7.1.2 Test Setup Diagram 15 7.1.3 Measurement Procedure and Data. 15 7.1.3 Measurement Procedure and Data. 19 7.2.1 E.U.T. Operation 19 7.2.2 Test Setup Diagram 19 7.2.3 Measurement Procedure and Data. 19 7.3.1 E.U.T. Operation 20 7.3.1 E.U.T. Operation 20 7.3.2 Deb BANDWIDTH 20 7.3.3 Measurement Procedure and Data. 20 7.4 CARRIER FREQUENCIES SEPARATION 21 7.4.1 E.U.T. Operation 21 7.4.2 Test Setup Diagram <th>6</th> <th>RAD</th> <th>IO SPECTRUM TECHNICAL REQUIREMENT</th> <th>12</th>	6	RAD	IO SPECTRUM TECHNICAL REQUIREMENT	12
6.1.1 Test Requirement: 12 6.1.2 Conclusion 12 6.2.0 OTHER REQUIREMENTS FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM HOPPING SEQUENCE 13 6.2.1 Test Requirement: 13 6.2.2 Conclusion 13 7 RADIO SPECTRUM MATTER TEST RESULTS 14 7.1 CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ) 14 7.1.1 E.U.T. Operation 15 7.1.2 Test Setup Diagram 15 7.1.3 Measurement Procedure and Data. 15 7.1.3 Measurement Procedure and Data. 19 7.2.1 E.U.T. Operation 19 7.2.2 Test Setup Diagram 19 7.2.3 Measurement Procedure and Data. 19 7.3.1 E.U.T. Operation 20 7.3.1 E.U.T. Operation 20 7.3.2 Deb BANDWIDTH 20 7.3.3 Measurement Procedure and Data. 20 7.4 CARRIER FREQUENCIES SEPARATION 21 7.4.1 E.U.T. Operation 21 7.4.2 Test Setup Diagram <th></th> <td>6.1</td> <td>ANTENNA REQUIREMENT</td> <td>12</td>		6.1	ANTENNA REQUIREMENT	12
6.1.2 Conclusion 12 6.2 OTHER REQUIREMENTS FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM HOPPING SEQUENCE 13 6.2.1 Test Requirement: 13 6.2.2 Conclusion 13 7 RADIO SPECTRUM MATTER TEST RESULTS . 14 7.1 CONDUCTED EMISSIONS AT AC POWER LINE (150kHz-30MHz). 14 7.1.1 E.U.T. Operation 15 7.1.2 Test Setup Diagram. 15 7.1.3 Measurement Procedure and Data. 15 7.1.4 E.U.T. Operation 19 7.2.2 Test Setup Diagram. 19 7.2.3 Measurement Procedure and Data. 19 7.2.4 Fest Setup Diagram. 200 7.3.1 E.U.T. Operation 200 7.3.2 DoB BANDWIDTH 200 7.3.3 Measurement Procedure and Data. 20 7.4 CARRIER FREQUENCIES SEPARATION 21 7.4.1 E.U.T. Operation. 21 7.4.2 Test Setup Diagram. 21 7.4.3 Measurement Procedure and Data. 20 7.4 CARRIER FREQU		6.1.1		
62.1 Test Requirement: 13 6.2.2 Conclusion 13 7 RADIO SPECTRUM MATTER TEST RESULTS. 14 7.1 CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ) 14 7.1.1 E.U.T. Operation 15 7.1.2 Test Setup Diagram 15 7.1.3 Measurement Procedure and Data. 15 7.2 CONDUCTED PEAK OUTPUT POWER 18 7.2.1 E.U.T. Operation 19 7.2.2 Test Setup Diagram 19 7.3 200B BANDWIDTH 200 7.3.1 E.U.T. Operation 20 7.3.2 Test Setup Diagram 20 7.3.3 Measurement Procedure and Data. 20 7.3.4 E.U.T. Operation 20 7.3.3 Measurement Procedure and Data. 20 7.4 CARRIER FREQUENCIES SEPARATION 21 7.4.1 E.U.T. Operation 21 7.4.3 Measurement Procedure and Data. 21 7.5.4 Test Setup Diagram 22 7.5.1 FLU.T. Operation 22 <		6.1.2	•	
62.2 Conclusion 13 7 RADIO SPECTRUM MATTER TEST RESULTS 14 7.1 CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ) 14 7.1.1 E.U.T. Operation 15 7.1.2 Test Setup Diagram 15 7.1.3 Measurement Procedure and Data. 15 7.1.4 E.U.T. Operation 18 7.2.1 E.U.T. Operation 19 7.2.2 Test Setup Diagram 19 7.2.3 Measurement Procedure and Data. 19 7.3 20DB BANDWIDTH 200 7.3.1 E.U.T. Operation 20 7.3.3 Measurement Procedure and Data. 20 7.3.4 Fest Setup Diagram 20 7.3.5 Atter Department Procedure and Data. 20 7.3.4 E.U.T. Operation 20 7.3.5 Atter Department Procedure and Data. 20 7.4 CARRIER FREQUENCIES SEPARATION 21 7.4.1 E.U.T. Operation 21 7.4.2 Test Setup Diagram 21 7.5.4 HOEPING CHANNEL NUMBER 22 </td <th></th> <td>6.2</td> <td>OTHER REQUIREMENTS FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM HOPPING SEQUENCE</td> <td>13</td>		6.2	OTHER REQUIREMENTS FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM HOPPING SEQUENCE	13
7 RADIO SPECTRUM MATTER TEST RESULTS. 14 7.1 CONDUCTED EMISSIONS AT AC POWER LINE (150KHz-30MHz). 14 7.1.1 E.U.T. Operation. 15 7.1.2 Test Setup Diagram. 15 7.1.3 Measurement Procedure and Data. 15 7.1 Measurement Procedure and Data. 15 7.2 CONDUCTED PEAK OUTPUT POWER. 18 7.2.1 E.U.T. Operation. 19 7.2.2 Test Setup Diagram. 19 7.2.3 Measurement Procedure and Data. 19 7.3 20DB BANDWIDTH 200 7.3.1 E.U.T. Operation. 20 7.3.2 Test Setup Diagram. 20 7.3.3 Measurement Procedure and Data. 20 7.3.4 E.U.T. Operation. 20 7.3.5 Measurement Procedure and Data. 20 7.4.1 E.U.T. Operation. 21 7.4.2 Test Setup Diagram. 21 7.4.3 Measurement Procedure and Data. 21 7.4.4 CARRIER FREQUENCIES SEPARATION. 22 7.5.1 F.U.T. Operation.<		6.2.1	Test Requirement:	13
7.1 CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)		6.2.2	2 Conclusion	13
7.1.1 E.U.T. Operation 15 7.1.2 Test Setup Diagram 15 7.1.3 Measurement Procedure and Data 15 7.1.4 E.U.T. Operation 15 7.2 CONDUCTED PEAK OUTPUT POWER 18 7.2.1 E.U.T. Operation 19 7.2.2 Test Setup Diagram 19 7.2.3 Measurement Procedure and Data 19 7.3 20DB BANDWIDTH 20 7.3.1 E.U.T. Operation 20 7.3.2 Test Setup Diagram 20 7.3.3 Measurement Procedure and Data 20 7.3.4 CARRIER FREQUENCIES SEPARATION 20 7.4 CARRIER FREQUENCIES SEPARATION 21 7.4.1 E.U.T. Operation 21 7.4.3 Measurement Procedure and Data 21 7.5.4 HOPPING CHANNEL NUMBER 22 7.5.1 FU.T. Operation 22 7.5.2 Test Setup Diagram 22 7.5.3 Measurement Procedure and Data 22 7.5.4 E.U.T. Operation 22 7.5.5	7	RAD	IO SPECTRUM MATTER TEST RESULTS	14
7.1.1 E.U.T. Operation 15 7.1.2 Test Setup Diagram 15 7.1.3 Measurement Procedure and Data 15 7.1.4 E.U.T. Operation 15 7.2 CONDUCTED PEAK OUTPUT POWER 18 7.2.1 E.U.T. Operation 19 7.2.2 Test Setup Diagram 19 7.2.3 Measurement Procedure and Data 19 7.3 20DB BANDWIDTH 20 7.3.1 E.U.T. Operation 20 7.3.2 Test Setup Diagram 20 7.3.3 Measurement Procedure and Data 20 7.3.4 CARRIER FREQUENCIES SEPARATION 20 7.4 CARRIER FREQUENCIES SEPARATION 21 7.4.1 E.U.T. Operation 21 7.4.3 Measurement Procedure and Data 21 7.5.4 HOPPING CHANNEL NUMBER 22 7.5.1 FU.T. Operation 22 7.5.2 Test Setup Diagram 22 7.5.3 Measurement Procedure and Data 22 7.5.4 E.U.T. Operation 22 7.5.5				
7.1.2 Test Setup Diagram				
7.1.3 Measurement Procedure and Data. 15 7.2 CONDUCTED PEAK OUTPUT POWER 18 7.2.1 E.U.T. Operation 19 7.2.2 Test Setup Diagram 19 7.2.3 Measurement Procedure and Data. 19 7.3 20DB BANDWIDTH 20 7.3.1 E.U.T. Operation 20 7.3.2 Test Setup Diagram 20 7.3.3 Measurement Procedure and Data. 20 7.3.4 E.U.T. Operation 20 7.3.5 Setup Diagram 20 7.3.6 Measurement Procedure and Data. 20 7.4 CARRIER FREQUENCIES SEPARATION 21 7.4.1 E.U.T. Operation 21 7.4.2 Test Setup Diagram 21 7.4.3 Measurement Procedure and Data 21 7.5.4 HOPPING CHANNEL NUMBER 22 7.5.1 E.U.T. Operation 22 7.5.2 Test Setup Diagram 22 7.5.3 Measurement Procedure and Data 22 7.6.1 E.U.T. Operation 22 7.6.2 <th></th> <td></td> <td></td> <td></td>				
7.2 CONDUCTED PEAK OUTPUT POWER 18 7.2.1 E.U.T. Operation 19 7.2.2 Test Setup Diagram 19 7.2.3 Measurement Procedure and Data 19 7.3 20DB BANDWIDTH 20 7.3.1 E.U.T. Operation 20 7.3.2 Test Setup Diagram 20 7.3.3 Measurement Procedure and Data 20 7.3.4 CARRIER FREQUENCIES SEPARATION 20 7.4 CARRIER FREQUENCIES SEPARATION 20 7.4.1 E.U.T. Operation 20 7.4.2 Test Setup Diagram 20 7.4.3 Measurement Procedure and Data 20 7.4.4 Test Setup Diagram 21 7.4.3 Measurement Procedure and Data 21 7.5.4 HOPPING CHANNEL NUMBER 22 7.5.5 Test Setup Diagram 22 7.5.6 Test Setup Diagram 22 7.5.7 Test Setup Diagram 22 7.5.3 Measurement Procedure and Data 22 7.6 DWELL TIME 23 7.6.3				
7.2.1 E.U.T. Operation 19 7.2.2 Test Setup Diagram 19 7.2.3 Measurement Procedure and Data 19 7.3 20DB BANDWIDTH 20 7.3.1 E.U.T. Operation 20 7.3.2 Test Setup Diagram 20 7.3.3 Measurement Procedure and Data 20 7.3.4 CARRIER FREQUENCIES SEPARATION 20 7.4 CARRIER FREQUENCIES SEPARATION 21 7.4.1 E.U.T. Operation 21 7.4.2 Test Setup Diagram 21 7.4.3 Measurement Procedure and Data 21 7.4.4 Forest Setup Diagram 21 7.4.5 HOPPING CHANNEL NUMBER 22 7.5.1 F.U.T. Operation 22 7.5.2 Test Setup Diagram 22 7.5.3 Measurement Procedure and Data 22 7.6 DWELL TIME 23 7.6.1 E.U.T. Operation 23 7.6.2 Test Setup Diagram 22 7.6 DWELL TIME 23 7.6.1 E.U.T. Operation		-		
7.2.2 Test Setup Diagram 19 7.2.3 Measurement Procedure and Data 19 7.3 20DB BANDWIDTH 20 7.3.1 E.U.T. Operation 20 7.3.2 Test Setup Diagram 20 7.3.3 Measurement Procedure and Data 20 7.3.4 CARRIER FREQUENCIES SEPARATION 20 7.4 CARRIER FREQUENCIES SEPARATION 21 7.4.1 E.U.T. Operation 21 7.4.2 Test Setup Diagram 21 7.4.3 Measurement Procedure and Data 21 7.4.4 Test Setup Diagram 21 7.4.5 HOPPING CHANNEL NUMBER 21 7.5 HOPPING CHANNEL NUMBER 22 7.5.1 E.U.T. Operation 22 7.5.2 Test Setup Diagram 22 7.5.3 Measurement Procedure and Data 22 7.6 DWELL TIME 23 7.6.1 E.U.T. Operation 23 7.6.2 Test Setup Diagram 23 7.6.3 Measurement Procedure and Data 23 7.6.4 <t< td=""><th></th><td></td><td></td><td></td></t<>				
7.2.3 Measurement Procedure and Data. 19 7.3 20DB BANDWIDTH 20 7.3.1 E.U.T. Operation 20 7.3.2 Test Setup Diagram 20 7.3.3 Measurement Procedure and Data 20 7.4 CARRIER FREQUENCIES SEPARATION 21 7.4.1 E.U.T. Operation 21 7.4.2 Test Setup Diagram 21 7.4.3 Measurement Procedure and Data 21 7.4.3 Measurement Procedure and Data 21 7.4.3 Measurement Procedure and Data 21 7.5 HOPPING CHANNEL NUMBER 22 7.5.1 E.U.T. Operation 22 7.5.2 Test Setup Diagram 22 7.5.3 Measurement Procedure and Data 22 7.5.3 Measurement Procedure and Data 22 7.5.3 Measurement Procedure and Data 22 7.6 DWELL TIME 23 7.6.1 E.U.T. Operation 23 7.6.2 Test Setup Diagram 23 7.6.3 Measurement Procedure and Data 23 <				
7.3 20DB BANDWIDTH 20 7.3.1 E.U.T. Operation 20 7.3.2 Test Setup Diagram 20 7.3.3 Measurement Procedure and Data. 20 7.4 CARRIER FREQUENCIES SEPARATION 21 7.4.1 E.U.T. Operation 21 7.4.2 Test Setup Diagram 21 7.4.3 Measurement Procedure and Data. 21 7.4.3 Measurement Procedure and Data. 21 7.4.3 Measurement Procedure and Data. 21 7.5 HOPPING CHANNEL NUMBER 22 7.5.1 E.U.T. Operation 22 7.5.2 Test Setup Diagram 22 7.5.3 Measurement Procedure and Data. 22 7.5.3 Measurement Procedure and Data. 22 7.6 DWELL TIME 23 7.6.1 E.U.T. Operation 23 7.6.2 Test Setup Diagram 23 7.6.3 Measurement Procedure and Data. 23 7.6.3 Measurement Procedure and Data. 23 7.6.3 Measurement Procedure and Data. 23 <th></th> <td></td> <td></td> <td></td>				
7.3.1 E.U.T. Operation 20 7.3.2 Test Setup Diagram 20 7.3.3 Measurement Procedure and Data. 20 7.4 CARRIER FREQUENCIES SEPARATION 21 7.4.1 E.U.T. Operation 21 7.4.2 Test Setup Diagram 21 7.4.3 Measurement Procedure and Data. 21 7.4.3 Measurement Procedure and Data. 21 7.5 HOPPING CHANNEL NUMBER 22 7.5.1 E.U.T. Operation 22 7.5.2 Test Setup Diagram 22 7.5.3 Measurement Procedure and Data. 22 7.5.4 E.U.T. Operation 22 7.5.5 Test Setup Diagram 22 7.5.3 Measurement Procedure and Data. 22 7.6 DWELL TIME 23 7.6.1 E.U.T. Operation 23 7.6.2 Test Setup Diagram 23 7.6.3 Measurement Procedure and Data. 23 7.6.3 Measurement Procedure and Data. 23 7.6.3 Measurement Procedure and Data. 23 <t< td=""><th></th><td>7.3</td><td></td><td></td></t<>		7.3		
7.3.2Test Setup Diagram207.3.3Measurement Procedure and Data.207.4CARRIER FREQUENCIES SEPARATION217.4.1E.U.T. Operation217.4.2Test Setup Diagram217.4.3Measurement Procedure and Data.217.5HOPPING CHANNEL NUMBER227.5.1E.U.T. Operation227.5.2Test Setup Diagram227.5.3Measurement Procedure and Data.227.6DWELL TIME237.6.1E.U.T. Operation237.6.2Test Setup Diagram237.6.3Measurement Procedure and Data.237.6.4E.U.T. Operation237.6.5Measurement Procedure and Data.237.6.6DWELL TIME237.6.7CONDUCTED BAND EDGES MEASUREMENT24		7.3.1		
7.4CARRIER FREQUENCIES SEPARATION.217.4.1E.U.T. Operation.217.4.2Test Setup Diagram.217.4.3Measurement Procedure and Data.217.5HOPPING CHANNEL NUMBER227.5.1E.U.T. Operation.227.5.2Test Setup Diagram.227.5.3Measurement Procedure and Data.227.6DWELL TIME.227.6.1E.U.T. Operation.237.6.2Test Setup Diagram.237.6.3Measurement Procedure and Data.237.6.3Measurement Procedure and Data.237.7CONDUCTED BAND EDGES MEASUREMENT.24				
7.4.1E.U.T. Operation217.4.2Test Setup Diagram217.4.3Measurement Procedure and Data217.5HOPPING CHANNEL NUMBER227.5.1E.U.T. Operation227.5.2Test Setup Diagram227.5.3Measurement Procedure and Data227.6DWELL TIME237.6.1E.U.T. Operation237.6.2Test Setup Diagram237.6.3Measurement Procedure and Data237.6.3Measurement Procedure and Data237.7CONDUCTED BAND EDGES MEASUREMENT24		7.3.3	3 Measurement Procedure and Data	20
7.4.2Test Setup Diagram.217.4.3Measurement Procedure and Data.217.5HOPPING CHANNEL NUMBER227.5.1E.U.T. Operation.227.5.2Test Setup Diagram.227.5.3Measurement Procedure and Data.227.6DWELL TIME.237.6.1E.U.T. Operation.237.6.2Test Setup Diagram.237.6.3Measurement Procedure and Data.237.6.4E.U.T. Operation.237.6.5Measurement Procedure and Data.237.6.6Test Setup Diagram.237.6.7CONDUCTED BAND EDGES MEASUREMENT.24		7.4	CARRIER FREQUENCIES SEPARATION	21
7.4.3 Measurement Procedure and Data.217.5 HOPPING CHANNEL NUMBER227.5.1 E.U.T. Operation.227.5.2 Test Setup Diagram.227.5.3 Measurement Procedure and Data.227.6 DWELL TIME.237.6.1 E.U.T. Operation.237.6.2 Test Setup Diagram.237.6.3 Measurement Procedure and Data.237.6.1 E.U.T. Operation.237.6.2 Test Setup Diagram.237.6.3 Measurement Procedure and Data.237.6.3 Measurement Procedure and Data.237.6.3 Measurement Procedure and Data.237.7 CONDUCTED BAND EDGES MEASUREMENT.24				21
7.5HOPPING CHANNEL NUMBER227.5.1E.U.T. Operation227.5.2Test Setup Diagram227.5.3Measurement Procedure and Data227.6DWELL TIME237.6.1E.U.T. Operation237.6.2Test Setup Diagram237.6.3Measurement Procedure and Data237.6.3Measurement Procedure and Data237.7CONDUCTED BAND EDGES MEASUREMENT24		7.4.2		
7.5.1 E.U.T. Operation 22 7.5.2 Test Setup Diagram 22 7.5.3 Measurement Procedure and Data 22 7.6 DWELL TIME 23 7.6.1 E.U.T. Operation 23 7.6.2 Test Setup Diagram 23 7.6.3 Measurement Procedure and Data 23 7.6.3 Measurement Procedure and Data 23 7.7 CONDUCTED BAND EDGES MEASUREMENT 24		7.4.3		
7.5.2Test Setup Diagram227.5.3Measurement Procedure and Data227.6DWELL TIME237.6.1E.U.T. Operation237.6.2Test Setup Diagram237.6.3Measurement Procedure and Data237.7CONDUCTED BAND EDGES MEASUREMENT24				
7.5.3 Measurement Procedure and Data.227.6 DWELL TIME237.6.1 E.U.T. Operation237.6.2 Test Setup Diagram237.6.3 Measurement Procedure and Data237.7 CONDUCTED BAND EDGES MEASUREMENT24				
7.6 DWELL TIME 23 7.6.1 E.U.T. Operation 23 7.6.2 Test Setup Diagram 23 7.6.3 Measurement Procedure and Data 23 7.7 CONDUCTED BAND EDGES MEASUREMENT 24				
7.6.1E.U.T. Operation237.6.2Test Setup Diagram237.6.3Measurement Procedure and Data237.7CONDUCTED BAND EDGES MEASUREMENT24				
7.6.2 Test Setup Diagram				
7.6.3 Measurement Procedure and Data			•	
7.7 CONDUCTED BAND EDGES MEASUREMENT				
				

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-a

Report No.: SZEM171101182702 Page: 5 of 89

7.7.1 E.U.T. Operation	24
7.7.2 Test Setup Diagram	24
7.7.3 Measurement Procedure and Data	24
7.8 CONDUCTED SPURIOUS EMISSIONS	25
7.8.1 E.U.T. Operation	25
7.8.2 Test Setup Diagram	25
7.8.3 Measurement Procedure and Data	25
7.9 RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	
7.9.1 E.U.T. Operation	
7.9.2 Test Setup Diagram	
7.9.3 Measurement Procedure and Data	27
7.10 RADIATED SPURIOUS EMISSIONS	
7.10.1 E.U.T. Operation	
7.10.2 Test Setup Diagram	
7.10.3 Measurement Procedure and Data	34
8 APPENDIX	43
8.1 Appendix 15.247	

Report No.: SZEM171101182702 Page: 6 of 89

4 General Information

4.1 Details of E.U.T.

Power supply:	AC 120V/60Hz
Cable:	1.5m AC cable
Frequency Range:	2402MHz to 2480MHz
Bluetooth Version:	4.2 BT Dual mode
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)
Modulation Type:	GFSK, π/4DQPSK, 8DPSK
Number of Channels:	79
Hopping Channel Type:	Adaptive Frequency Hopping systems
Antenna Type:	PCB
Antenna Gain:	-3.0dBi

4.2 Description of Support Units

The EUT has been tested as an independent unit.

4.3 Measurement Uncertainty

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.25 x 10 ⁻⁸
2	Duty cycle	0.37%
3	Occupied Bandwidth	3%
4	RF conducted power	0.75dB
5	RF power density	2.84dB
6	Conducted Spurious emissions	0.75dB
7	DE Dedicted newer	4.5dB (below 1GHz)
/	RF Radiated power	4.8dB (above 1GHz)
0	Dedicted Cruvicus emission test	4.5dB (Below 1GHz)
8	Radiated Spurious emission test	4.8dB (Above 1GHz)
9	Temperature test	1°C
10	Humidity test	3%
11	Supply voltages	1.5%
12	Time	3%

Report No.: SZEM171101182702 Page: 7 of 89

4.4 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

4.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC

Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

VCCI

The 3m Fully-anechoic chamber for above 1GHz, 10m Semi-anechoic chamber for below 1GHz, Shielded Room for Mains Port Conducted Interference Measurement and Telecommunication Port Conducted Interference Measurement of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-20026, R-14188, C-12383 and T-11153 respectively.

• FCC – Designation Number: CN1178

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been recognized as an accredited testing laboratory.

Designation Number: CN1178. Test Firm Registration Number: 406779.

• Industry Canada (IC)

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3.

4.6 Deviation from Standards

None

4.7 Abnormalities from Standard Conditions

None

Report No.: SZEM171101182702 Page: 8 of 89

5 Equipment List

Conducted Emissions at AC Power Line (150kHz-30MHz)						
Equipment Manufacturer Model No Inventory No Cal Date Cal Due						
Shielding Room	ZhongYu Electron	GB-88	SEM001-06	2017-05-10	2018-05-09	
Measurement Software	AUDIX	e3 V5.4.1221d	N/A	N/A	N/A	
Coaxial Cable	SGS	N/A	SEM024-01	2017-07-13	2018-07-12	
LISN	Rohde & Schwarz	ENV216	SEM007-01	2017-09-27	2018-09-26	
LISN	ETS-LINDGREN	3816/2	SEM007-02	2017-04-14	2018-04-13	
EMI Test Receiver	Rohde & Schwarz	ESCI	SEM004-02	2017-04-14	2018-04-13	

Conducted Peak Output Power					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2017-09-27	2018-09-26
Spectrum Analyzer	Rohde & Schwarz	FSP	SEM004-06	2017-09-27	2018-09-26
Measurement Software	JS Tonscend	JS1120-2 BT/WIFI V2.	N/A	N/A	N/A
Coaxial Cable	SGS	N/A	SEM031-02	2017-07-13	2018-07-12
Attenuator	Weinschel Associates	WA41	SEM021-09	N/A	N/A
Signal Generator	KEYSIGHT	N5173B	SEM006-05	2017-09-27	2018-09-26
Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2017-09-27	2018-09-26

20dB Bandwidth							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2017-09-27	2018-09-26		
Spectrum Analyzer	Rohde & Schwarz	FSP	SEM004-06	2017-09-27	2018-09-26		
Measurement Software	JS Tonscend	JS1120-2 BT/WIFI V2.	N/A	N/A	N/A		
Coaxial Cable	SGS	N/A	SEM031-02	2017-07-13	2018-07-12		
Attenuator	Weinschel Associates	WA41	SEM021-09	N/A	N/A		
Signal Generator	KEYSIGHT	N5173B	SEM006-05	2017-09-27	2018-09-26		
Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2017-09-27	2018-09-26		

Carrier Frequencies Separation							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2017-09-27	2018-09-26		
Spectrum Analyzer	Rohde & Schwarz	FSP	SEM004-06	2017-09-27	2018-09-26		
Measurement Software	JS Tonscend	JS1120-2 BT/WIFI V2.	N/A	N/A	N/A		
Coaxial Cable	SGS	N/A	SEM031-02	2017-07-13	2018-07-12		
Attenuator	Weinschel Associates	WA41	SEM021-09	N/A	N/A		
Signal Generator	KEYSIGHT	N5173B	SEM006-05	2017-09-27	2018-09-26		
Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2017-09-27	2018-09-26		

Report No.: SZEM171101182702 Page: 9 of 89

Hopping Channel Number								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2017-09-27	2018-09-26			
Spectrum Analyzer	Rohde & Schwarz	FSP	SEM004-06	2017-09-27	2018-09-26			
Measurement Software	JS Tonscend	JS1120-2 BT/WIFI V2.	N/A	N/A	N/A			
Coaxial Cable	SGS	N/A	SEM031-02	2017-07-13	2018-07-12			
Attenuator	Weinschel Associates	WA41	SEM021-09	N/A	N/A			
Signal Generator	KEYSIGHT	N5173B	SEM006-05	2017-09-27	2018-09-26			
Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2017-09-27	2018-09-26			

Dwell Time								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2017-09-27	2018-09-26			
Spectrum Analyzer	Rohde & Schwarz	FSP	SEM004-06	2017-09-27	2018-09-26			
Measurement Software	JS Tonscend	JS1120-2 BT/WIFI V2.	N/A	N/A	N/A			
Coaxial Cable	SGS	N/A	SEM031-02	2017-07-13	2018-07-12			
Attenuator	Weinschel Associates	WA41	SEM021-09	N/A	N/A			
Signal Generator	KEYSIGHT	N5173B	SEM006-05	2017-09-27	2018-09-26			
Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2017-09-27	2018-09-26			

Conducted Band Edges Measurement								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2017-09-27	2018-09-26			
Spectrum Analyzer	Rohde & Schwarz	FSP	SEM004-06	2017-09-27	2018-09-26			
Measurement Software	JS Tonscend	JS1120-2 BT/WIFI V2.	N/A	N/A	N/A			
Coaxial Cable	SGS	N/A	SEM031-02	2017-07-13	2018-07-12			
Attenuator	Weinschel Associates	WA41	SEM021-09	N/A	N/A			
Signal Generator	KEYSIGHT	N5173B	SEM006-05	2017-09-27	2018-09-26			
Power Meter	Rohde & Schwarz	NRVS	SEM014-02					

Conducted Spurious Emissions								
Equipment	Equipment Manufacturer Model No Invento		Inventory No	Cal Date	Cal Due Date			
DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2017-09-27	2018-09-26			
Spectrum Analyzer	Rohde & Schwarz	FSP	SEM004-06	2017-09-27	2018-09-26			
Measurement Software	JS Tonscend	JS1120-2 BT/WIFI V2.	N/A	N/A	N/A			
Coaxial Cable	SGS	N/A	SEM031-02	2017-07-13	2018-07-12			
Attenuator	Weinschel Associates	WA41	SEM021-09	N/A	N/A			
Signal Generator	KEYSIGHT	N5173B	SEM006-05	2017-09-27	2018-09-26			
Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2017-09-27	2018-09-26			

Report No.: SZEM171101182702 Page: 10 of 89

Radiated Emissions which fall in the restricted bands								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
3m Semi-Anechoic Chamber	AUDIX	N/A	SEM001-02	2017-05-02	2020-05-01			
Measurement Software	AUDIX	e3 V8.2014-6- 27	N/A	N/A	N/A			
Coaxial Cable	SGS	N/A	SEM026-01	2017-07-13	2018-07-12			
Spectrum Analyzer	Rohde & Schwarz	FSU43	SEM004-08	2017-04-14	2018-04-13			
BiConiLog Antenna (26-3000MHz)	ETS-Lindgren	3142C	SEM003-01	2017-06-27	2020-06-26			
Horn Antenna (1-18GHz)	Rohde & Schwarz	HF907	SEM003-07	2015-06-14	2018-06-13			
Horn Antenna (15GHz-40GHz)	Schwarzbeck	BBHA 9170	SEM003-15	2017-10-17	2020-10-16			
Pre-amplifier (0.1-1300MHz)	HP	8447D	SEM005-02	2017-09-27	2018-09-26			
Low Noise Amplifier (100MHz-18GHz)	Black Diamond Series	BDLNA-0118- 352810	SEM005-05	2017-09-27	2018-09-27			
Pre-amplifier(18-26GHz)	Rohde & Schwarz	CH14-H052	SEM005-17	2017-12-04	2018-12-03			
Pre-amplifier (26GHz-40GHz)	Compliance Directions Systems Inc.	PAP-2640-50	SEM005-08	2017-04-14	2018-04-13			
DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2017-09-27	2018-09-26			
Active Loop Antenna	ETS-Lindgren	6502	SEM003-08	2017-08-22	2020-08-21			
Band filter	N/A	N/A	SEM023-01	N/A	N/A			

Report No.: SZEM171101182702 Page: 11 of 89

Radiated Spurious Emissions								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
3m Semi-Anechoic Chamber	AUDIX	N/A	SEM001-02	2017-05-02	2020-05-01			
Measurement Software	AUDIX	e3 V8.2014-6- 27	N/A	N/A	N/A			
Coaxial Cable	SGS	N/A	SEM026-01	2017-07-13	2018-07-12			
Spectrum Analyzer	Rohde & Schwarz	FSU43	SEM004-08	2017-04-14	2018-04-13			
BiConiLog Antenna (26-3000MHz)	ETS-Lindgren	3142C	SEM003-01	2017-06-27	2020-06-26			
Horn Antenna (1-18GHz)	Rohde & Schwarz	HF907	SEM003-07	2015-06-14	2018-06-13			
Horn Antenna (15GHz-40GHz)	Schwarzbeck	BBHA 9170	SEM003-15	2017-10-17	2020-10-16			
Pre-amplifier (0.1-1300MHz)	HP	8447D	SEM005-02	2017-09-27	2018-09-26			
Low Noise Amplifier (100MHz-18GHz)	Black Diamond Series	BDLNA-0118- 352810	SEM005-05	2017-09-27	2018-09-27			
Pre-amplifier(18-26GHz)	Rohde & Schwarz	CH14-H052	SEM005-17	2017-12-04	2018-12-03			
Pre-amplifier (26GHz-40GHz)	Compliance Directions Systems Inc.	PAP-2640-50	SEM005-08	2017-04-14	2018-04-13			
DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2017-09-27	2018-09-26			
Active Loop Antenna	ETS-Lindgren	6502	SEM003-08	2017-08-22	2020-08-21			
Band filter	N/A	N/A	SEM023-01	N/A	N/A			

General used equipment							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
Humidity/ Temperature Indicator	Shanghai Meteorological Industry Factory	ZJ1-2B	SEM002-03	2017-09-29	2018-09-28		
Humidity/ Temperature Indicator	Shanghai Meteorological Industry Factory	ZJ1-2B	SEM002-04	2017-09-29	2018-09-28		
Humidity/ Temperature Indicator	Mingle N/A		SEM002-08	2017-09-29	2018-09-28		
Barometer	Changchun Meteorological Industry Factory	DYM3	SEM002-01	2017-04-18	2018-04-17		

Report No.: SZEM171101182702 Page: 12 of 89

6 Radio Spectrum Technical Requirement

6.1 Antenna Requirement

6.1.1 Test Requirement:

47 CFR Part 15, Subpart C 15.203 & 15.247(c)

6.1.2 Conclusion

Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is -3.0dBi.

Report No.: SZEM171101182702 Page: 13 of 89

6.2 Other requirements Frequency Hopping Spread Spectrum System Hopping Sequence

6.2.1 Test Requirement:

47 CFR Part 15, Subpart C 15.247(a)(1),(g),(h)

6.2.2 Conclusion

Standard Requirement:

The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.

The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

Compliance for section 15.247(a)(1):

According to Technical Specification, the pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

> Number of shift register stages: 9

- > Length of pseudo-random sequence: 29 -1 = 511 bits
- > Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

According to Technical Specification, the receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any transmitters and shift frequencies in synchronization with the transmitted signals.

Compliance for section 15.247(g):

According to Technical Specification, the system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system.

Compliance for section 15.247(h):

According to Technical specification, the system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

The system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.

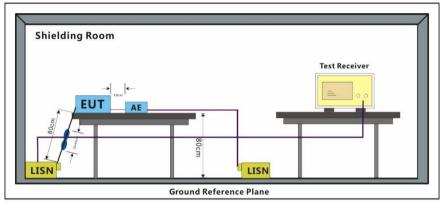
Report No.: SZEM171101182702 Page: 14 of 89

7 Radio Spectrum Matter Test Results

7.1 Conducted Emissions at AC Power Line (150kHz-30MHz)

Test Requirement47 CFR Part 15, Subpart C 15.207Test Method:ANSI C63.10 (2013) Section 6.2Limit:Limit:

Execution of emission (MUT)	Conducted limit(dBµV)				
Frequency of emission(MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			
*Decreases with the logarithm of the frequency.					


Report No.: SZEM171101182702 Page: 15 of 89

7.1.1 E.U.T. Operation

Operating Environment:

Temperature:25 °CHumidity:47.8 % RHAtmospheric Pressure:1020mbarTest modeg: TX_non-Hop mode_Keep the EUT in continuously transmitting mode with
GFSK modulation, $\pi/4DQPSK$ modulation, 8DPSK modulation. All modes have
been tested and only the data of worst case is recorded in the report.

7.1.2 Test Setup Diagram

7.1.3 Measurement Procedure and Data

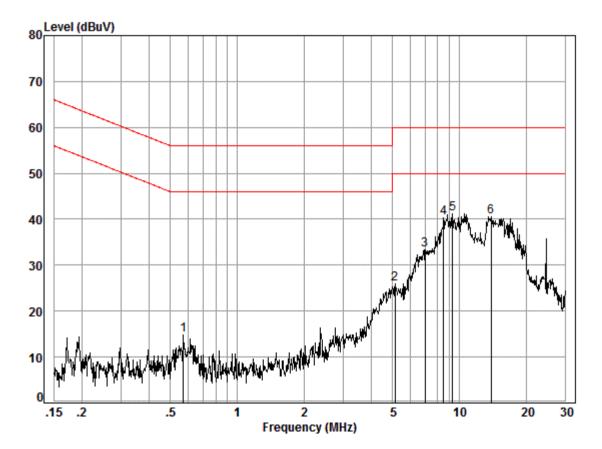
1) The mains terminal disturbance voltage test was conducted in a shielded room.

2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 500hm/50 μ H + 50hm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.

3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,

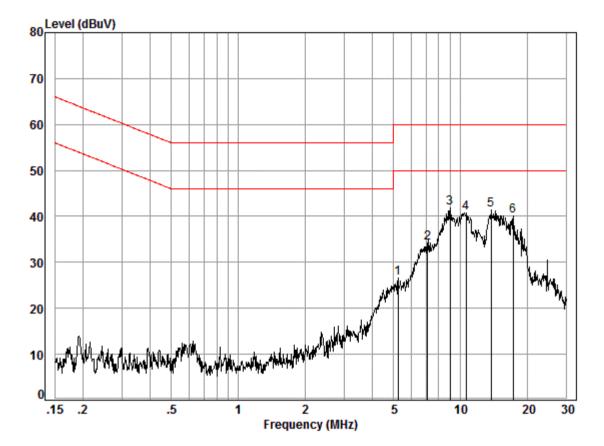
4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.

5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.


Remark: LISN=Read Level+ Cable Loss+ LISN Factor

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-an

Report No.: SZEM171101182702 Page: 16 of 89


Site :	Shielding	Room
Condition:	Line	
Job No. :	11827CR	

Test	mode: g							
		Cable	LISN	Read		Limit	0ver	
	Freq	Loss	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.57	0.01	9.52	5.22	14.75	46.00	-31.25	Peak
2	5.14	0.01	9.55	16.31	25.87	50.00	-24.13	Peak
3	7.02	0.01	9.59	23.74	33.34	50.00	-16.66	Peak
4	8.50	0.01	9.61	30.77	40.39	50.00	-9.61	Peak
5	9.35	0.01	9.62	31.60	41.23	50.00	-8.77	Peak
6	13.91	0.01	9.70	30.75	40.46	50.00	-9.54	Peak

Report No.: SZEM171101182702 Page: 17 of 89

Mode:d; Line:Neutral Line

Site : Shielding Room Condition: Neutral Job No. : 11827CR Test mode: g

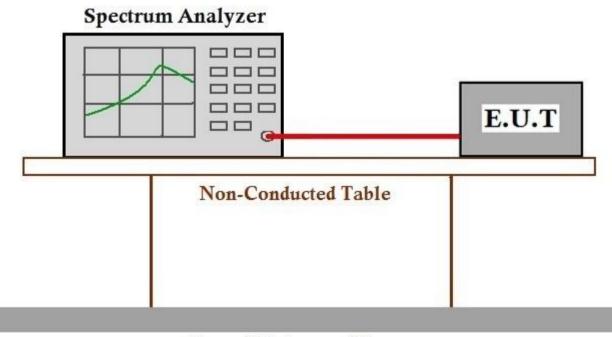
		Cable	LISN	Read		Limit	0ver	
	Freq	Loss	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	5.25	0.01	9.69	16.97	26.67	50.00	-23.33	Peak
2	7.14	0.01	9.72	24.50	34.23	50.00	-15.77	Peak
3	9.01	0.01	9.76	32.04	41.81	50.00	-8.19	Peak
4	10.62	0.01	9.80	31.05	40.86	50.00	-9.14	Peak
5	13.77	0.01	9.90	31.43	41.34	50.00	-8.66	Peak
6	17.29	0.02	9.98	30.03	40.03	50.00	-9.97	Peak

Report No.: SZEM171101182702 Page: 18 of 89

7.2 Conducted Peak Output Power

Test Requirement47 CFR Part 15, Subpart C 15.247(b)(1)Test Method:ANSI C63.10 (2013) Section 7.8.5Limit:Limit:

Frequency range(MHz)	Output power of the intentional radiator(watt)		
	1 for ≥50 hopping channels		
902-928	0.25 for 25≤ hopping channels <50		
	1 for digital modulation		
	1 for ≥75 non-overlapping hopping channels		
2400-2483.5	0.125 for all other frequency hopping systems		
	1 for digital modulation		
5725-5850	1 for frequency hopping systems and digital modulation		


Report No.: SZEM171101182702 Page: 19 of 89

7.2.1 E.U.T. Operation

Operating Environment:

Temperature:24.5 °CHumidity:53.8 % RHAtmospheric Pressure:1005mbarTest modeg: TX_non-Hop mode_Keep the EUT in continuously transmitting mode with
GFSK modulation, $\pi/4DQPSK$ modulation, 8DPSK modulation. All modes have
been tested and only the data of worst case is recorded in the report.

7.2.2 Test Setup Diagram

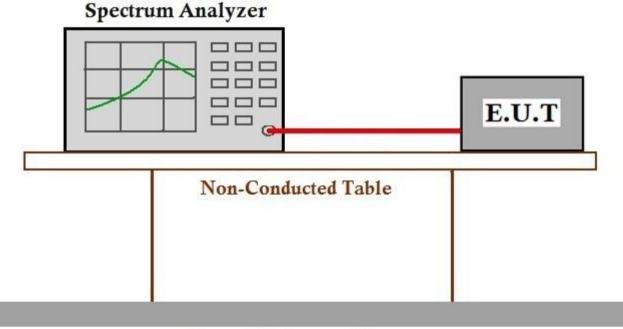
Ground Reference Plane

7.2.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.247

Report No.: SZEM171101182702 Page: 20 of 89

7.3 20dB Bandwidth


Test Requirement47 CFR Part 15, Subpart C 15.247(a)(1)Test Method:ANSI C63.10 (2013) Section 7.8.7

7.3.1 E.U.T. Operation

Operating Environment:

Temperature: Test mode 24.5 °C Humidity: 53.9 % RH Atmospheric Pressure: 1005 mbar g: TX_non-Hop mode_Keep the EUT in continuously transmitting mode with GFSK modulation, π /4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report.

7.3.2 Test Setup Diagram

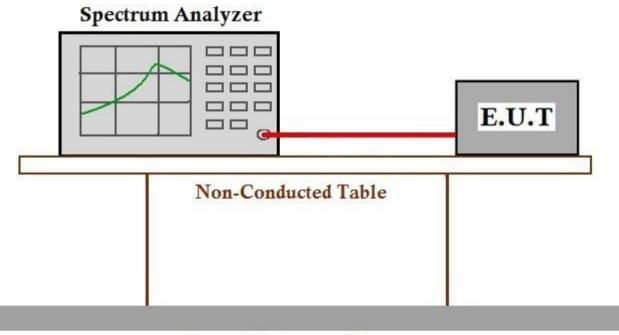
Ground Reference Plane

7.3.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.247

Report No.: SZEM171101182702 Page: 21 of 89

7.4 Carrier Frequencies Separation


Test Requirement	47 CFR Part 15, Subpart C 15.247a(1)
Test Method:	ANSI C63.10 (2013) Section 7.8.2
Limit:	$2/3$ of the 20dB bandwidth base on the transmission power is less than $0.125 \mathrm{W}$

7.4.1 E.U.T. Operation

Operating Environment:

Temperature:24.5 °CHumidity:53.8 % RHAtmospheric Pressure:1005mbarTest modea:TX_Hop mode_Keep the EUT in frequency hopping mode with GFSK
modulation, $\pi/4DQPSK$ modulation, 8DPSK modulation. All modes have been
tested and only the data of worst case is recorded in the report.

7.4.2 Test Setup Diagram

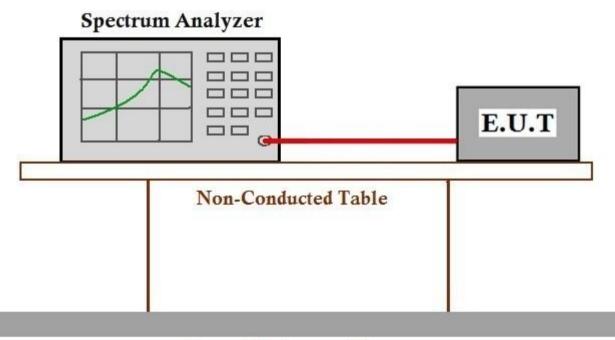
Ground Reference Plane

7.4.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.247

Report No.: SZEM171101182702 Page: 22 of 89

7.5 Hopping Channel Number


Test Requirement47 CFR Part 15, Subpart C 15.247a(1)(iii)Test Method:ANSI C63.10 (2013) Section 7.8.3Limit:Limit:

Frequency range(MHz)	Number of hopping channels (minimum)		
002.028	50 for 20dB bandwidth <250kHz		
902-928	25 for 20dB bandwidth ≥250kHz		
2400-2483.5	15		
5725-5850	75		

7.5.1 E.U.T. Operation

Operating Environment:

7.5.2 Test Setup Diagram

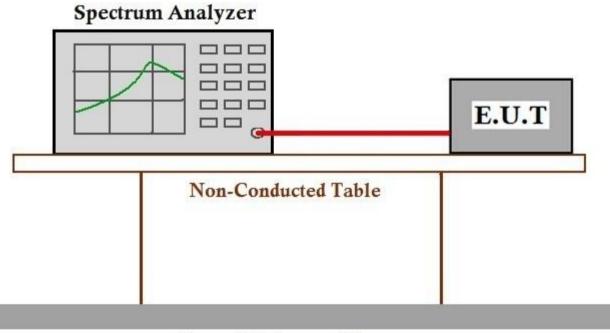
Ground Reference Plane

7.5.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.247

Report No.: SZEM171101182702 Page: 23 of 89

7.6 Dwell Time


Test Requirement47 CFR Part 15, Subpart C 15.247a(1)(iii)Test Method:ANSI C63.10 (2013) Section 7.8.4Limit:Limit:

Frequency(MHz)	Limit		
902-928	0.4S within a 20S period(20dB bandwidth<250kHz)		
902-928	0.4S within a 10S period(20dB bandwidth≥250kHz)		
2400 2402 5	0.4S within a period of 0.4S multiplied by the number		
2400-2483.5	of hopping channels		
5725-5850	0.4S within a 30S period		

7.6.1 E.U.T. Operation

Operating Environment:

7.6.2 Test Setup Diagram

Ground Reference Plane

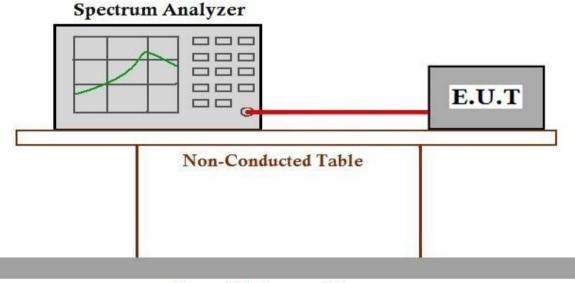
7.6.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.247

Report No.: SZEM171101182702 Page: 24 of 89

7.7 Conducted Band Edges Measurement

Test Requirement	47 CFR Part 15, Subpart C 15.247(d)
Test Method:	ANSI C63.10 (2013) Section 7.8.6
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)


7.7.1 E.U.T. Operation

Operating Environment:

Temperature:24.5 °CHumidity:54% RHAtmospheric Pressure:1005mbarTest modea:TX_Hop mode_Keep the EUT in frequency hopping mode with GFSK
modulation, $\pi/4DQPSK$ modulation, 8DPSK modulation. All modes have been
tested and only the data of worst case is recorded in the report.

g: TX_non-Hop mode_Keep the EUT in continuously transmitting mode with GFSK modulation, π /4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report.

7.7.2 Test Setup Diagram

Ground Reference Plane

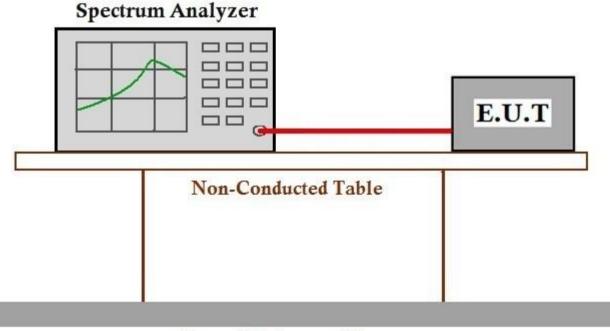
7.7.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.247

Report No.: SZEM171101182702 Page: 25 of 89

7.8 Conducted Spurious Emissions

•	
Test Requirement	47 CFR Part 15, Subpart C 15.247(d)
Test Method:	ANSI C63.10 (2013) Section 7.8.8
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)


7.8.1 E.U.T. Operation

Operating Environment:

Temperature:		
Test mode		

24.5 °C Humidity: 54 % RH Atmospheric Pressure: 1005 mbar g: TX_non-Hop mode_Keep the EUT in continuously transmitting mode with GFSK modulation, π /4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report.

7.8.2 Test Setup Diagram

Ground Reference Plane

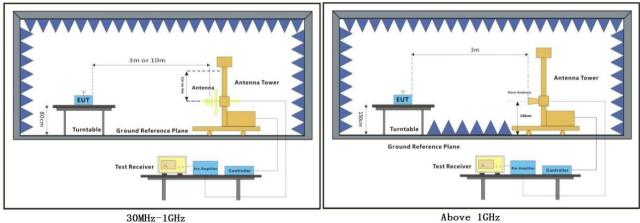
7.8.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.247

Report No.: SZEM171101182702 Page: 26 of 89

7.9 Radiated Emissions which fall in the restricted bands

Test Requirement	47 CFR Part 15, Subpart C 15.205 & 15.209
Test Method:	ANSI C63.10 (2013) Section 6.10.5
Measurement Distance:	3m
Limit:	


Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

7.9.1 E.U.T. Operation

Operating Environment:					
Temperature:	19.5 °C	Humidity:	24.7 % RH	Atmospheric Pressure: 1020 mbar	
Test mode	GFSK modu	lation, π/4DQF	SK modulation	ontinuously transmitting mode with , 8DPSK modulation. All modes have se is recorded in the report.	

7.9.2 Test Setup Diagram

Report No.: SZEM171101182702 Page: 27 of 89

7.9.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

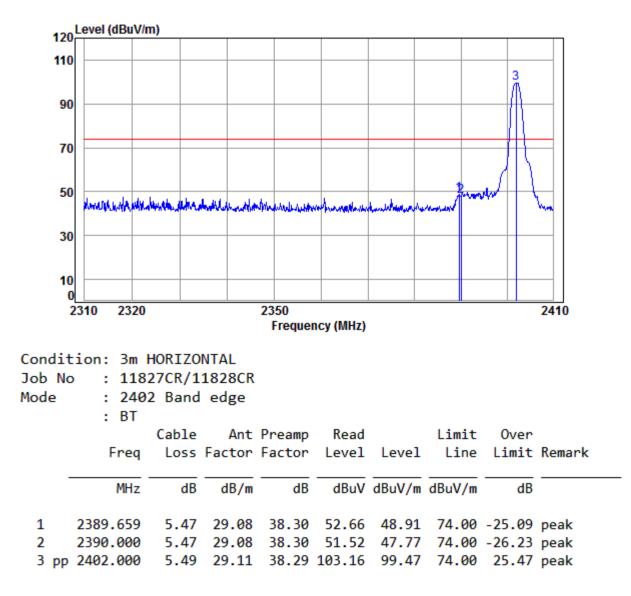
f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

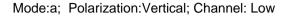
h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

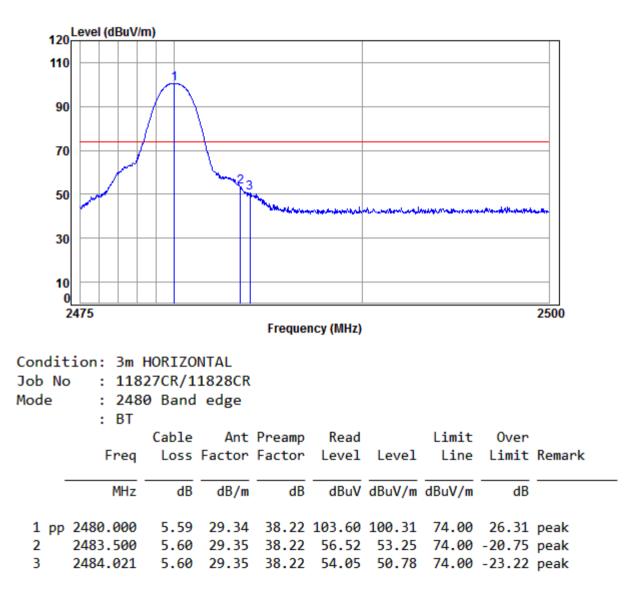

Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.


Report No.: SZEM171101182702 Page: 28 of 89



Report No.: SZEM171101182702 Page: 29 of 89



Report No.: SZEM171101182702 Page: 30 of 89

Report No.: SZEM171101182702 Page: 31 of 89

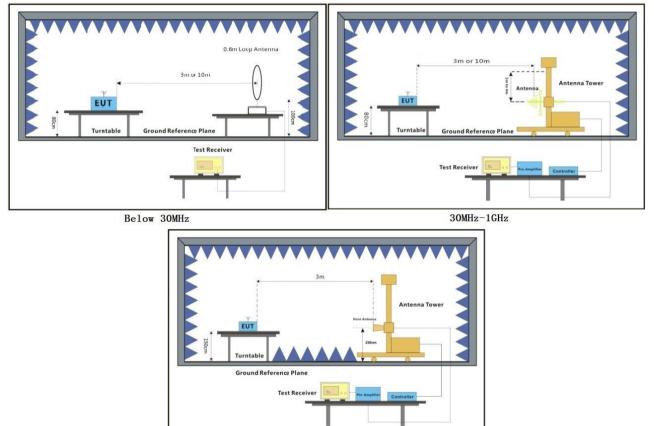
Report No.: SZEM171101182702 Page: 32 of 89

7.10 Radiated Spurious Emissions

Test Requirement47 CFR Part 15, Subpart C 15.205 & 15.209Test Method:ANSI C63.10 (2013) Section 6.4,6.5,6.6Measurement Distance:3mLimit:Image: Compare the section of the

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.


Report No.: SZEM171101182702 Page: 33 of 89

7.10.1 E.U.T. Operation

Operating Environment:

Temperature:18.4 °CHumidity:29.9 % RHAtmospheric Pressure:1020mbarTest modeg: TX_non-Hop mode_Keep the EUT in continuously transmitting mode with
GFSK modulation, $\pi/4DQPSK$ modulation, 8DPSK modulation. All modes have
been tested and only the data of worst case is recorded in the report.

7.10.2 Test Setup Diagram

Above 1GHz

Report No.: SZEM171101182702 Page: 34 of 89

7.10.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

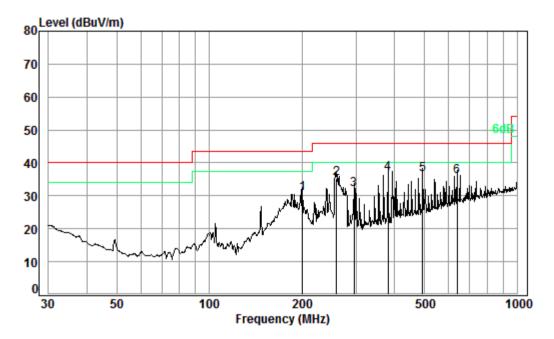
Remark:

1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

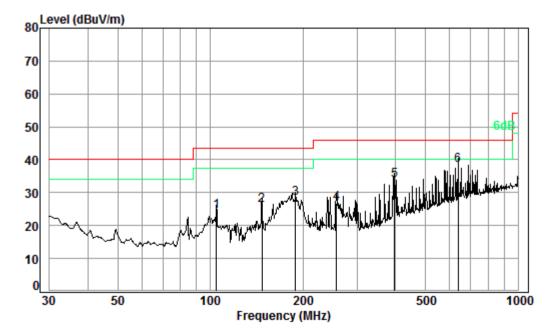
3) Scan from 9kHz to 25GHz, the disturbance above 18GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

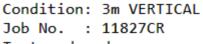

4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

Report No.: SZEM171101182702 Page: 35 of 89

30MHz~1GHz

QP value: Mode: d; Polarization: Horizontal;

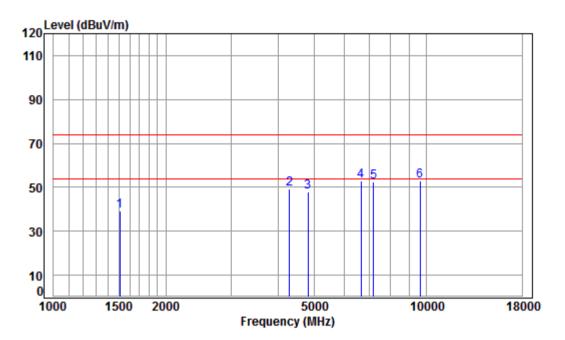

Condition: 3m HORIZONTAL Job No. : 11827CR Test mode: d


				Preamp				0ver
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	200.69	1.40	16.53	27.53	40.25	30.65	43.50	-12.85
2	259.23	1.72	19.09	27.54	42.02	35.29	46.00	-10.71
3	295.15	1.88	19.41	27.54	38.16	31.91	46.00	-14.09
4 pp	381.25	2.15	21.93	27.70	40.48	36.86	46.00	-9.14
5	492.47	2.57	24.45	27.87	37.26	36.41	46.00	-9.59
6	638.37	2.78	27.12	27.64	33.50	35.76	46.00	-10.24

Report No.: SZEM171101182702 Page: 36 of 89

Mode :d; Polarization: Vertical

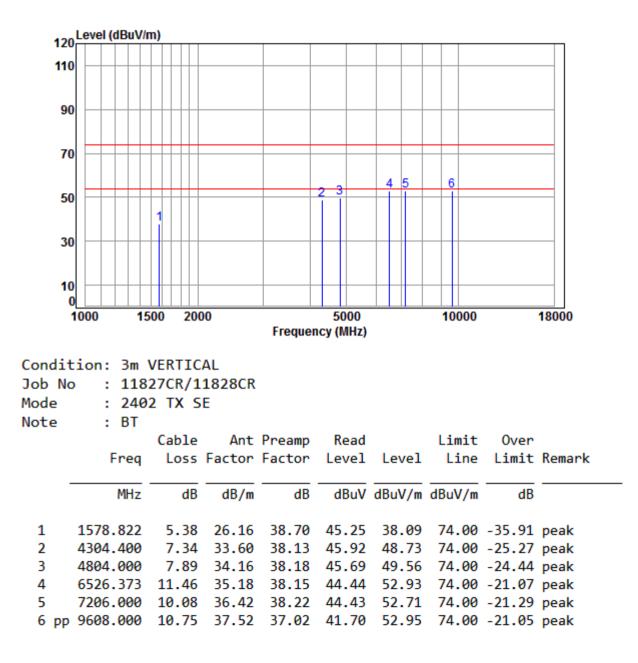
Test mode: d


		Cable	Ant	Preamp	Read		Limit	0ver
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
-								
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	104.54	1.21	13.78	27.51	36.78	24.26	43.50	-19.24
2	147.40	1.31	14.39	27.52	38.00	26.18	43.50	-17.32
3	189.07	1.38	16.18	27.53	38.17	28.20	43.50	-15.30
4	257.42	1.71	19.06	27.54	33.51	26.74	46.00	-19.26
5	396.24	2.19	22.31	27.73	37.01	33.78	46.00	-12.22
6 pp	638.37	2.78	27.12	27.64	36.20	38.46	46.00	-7.54

Report No.: SZEM171101182702 Page: 37 of 89

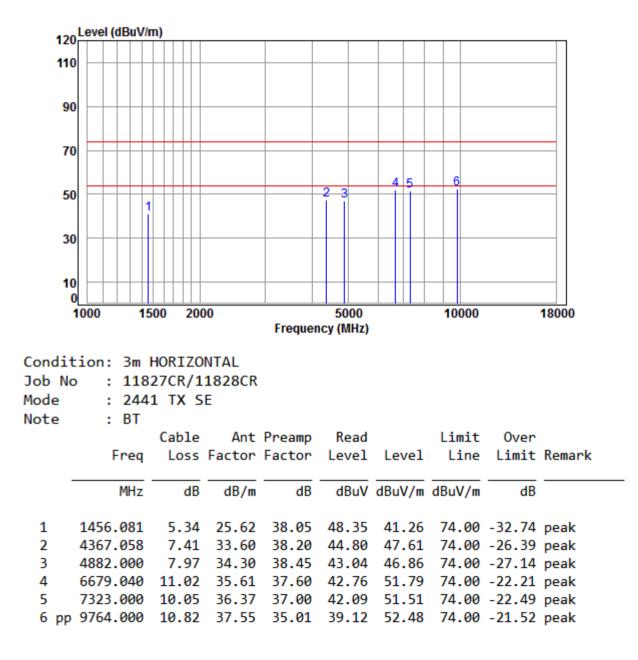
Above 1 GHz

Mode:b; Polarization:Horizontal; Modulation:GFSK; Channel:Low

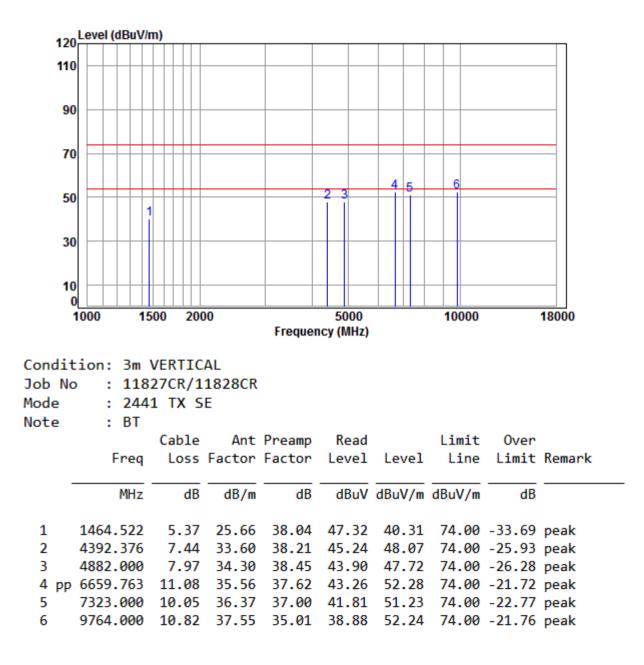

Condition: 3m HORIZONTAL Job No : 11827CR/11828CR Mode : 2402 TX SE

nouc	. 240	2 17 2							
Note	: BT								
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1507.470	5.47	25.83	38.70	46.53	39.13	74.00	-34.87	peak
2	4291.977	7.33	33.60	38.13	46.40	49.20	74.00	-24.80	peak
3	4804.000	7.89	34.16	38.18	44.18	48.05	74.00	-25.95	peak
4	6659.763	11.08	35.56	38.17	44.48	52.95	74.00	-21.05	peak
5	7206.000	10.08	36.42	38.22	43.99	52.27	74.00	-21.73	peak
6 p	p 9608.000	10.75	37.52	37.02	41.74	52.99	74.00	-21.01	peak

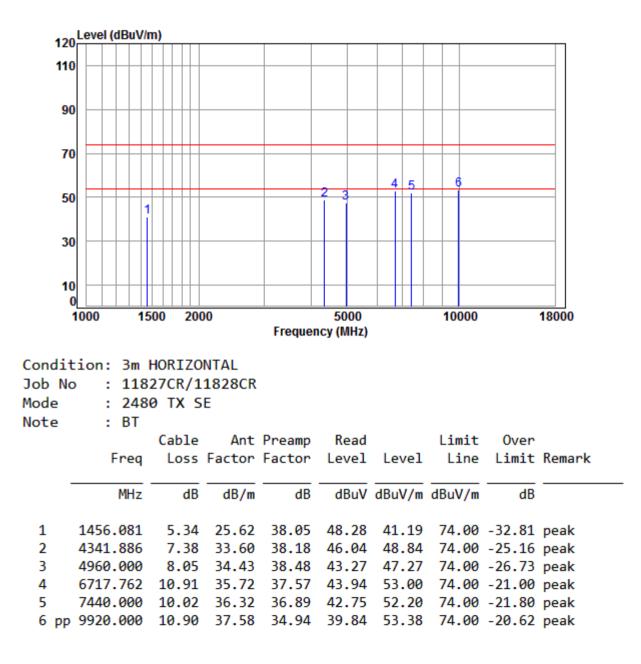
Report No.: SZEM171101182702 Page: 38 of 89


Mode:b; Polarization:Vertical; Modulation:GFSK; Channel:Low

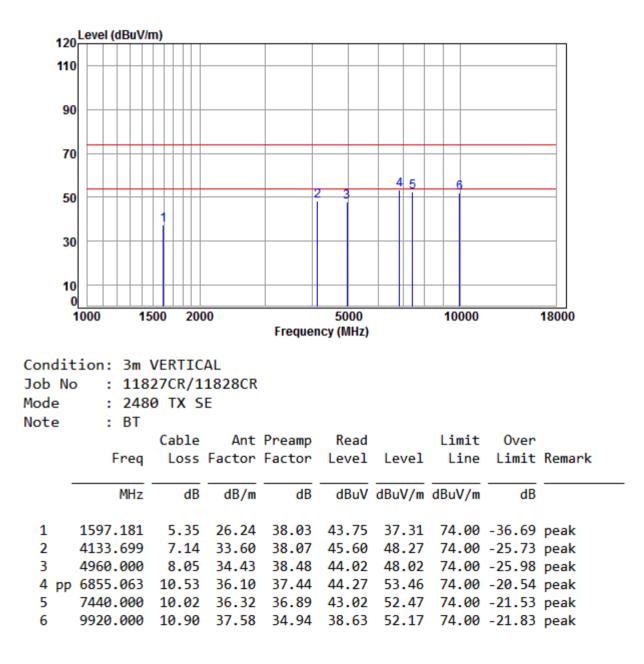
Report No.: SZEM171101182702 Page: 39 of 89


Mode:b; Polarization:Horizontal; Modulation:GFSK; Channel:middle

Report No.: SZEM171101182702 Page: 40 of 89


Mode:b; Polarization:Vertical; Modulation:GFSK; Channel:middle

Report No.: SZEM171101182702 Page: 41 of 89

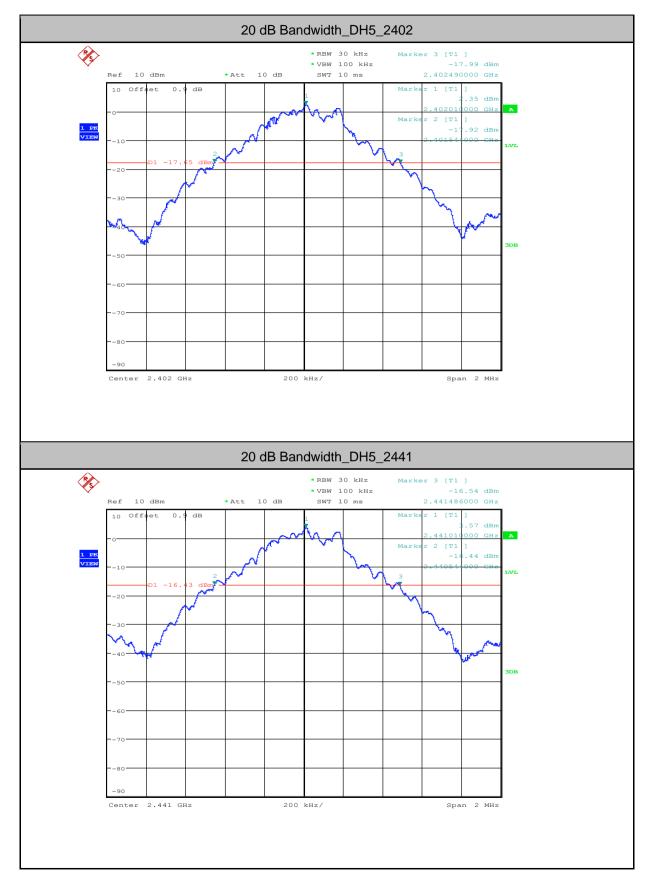

Mode:b; Polarization:Horizontal; Modulation:GFSK; Channel:High

Report No.: SZEM171101182702 Page: 42 of 89

Mode:b; Polarization:Vertical; Modulation:GFSK; Channel:High

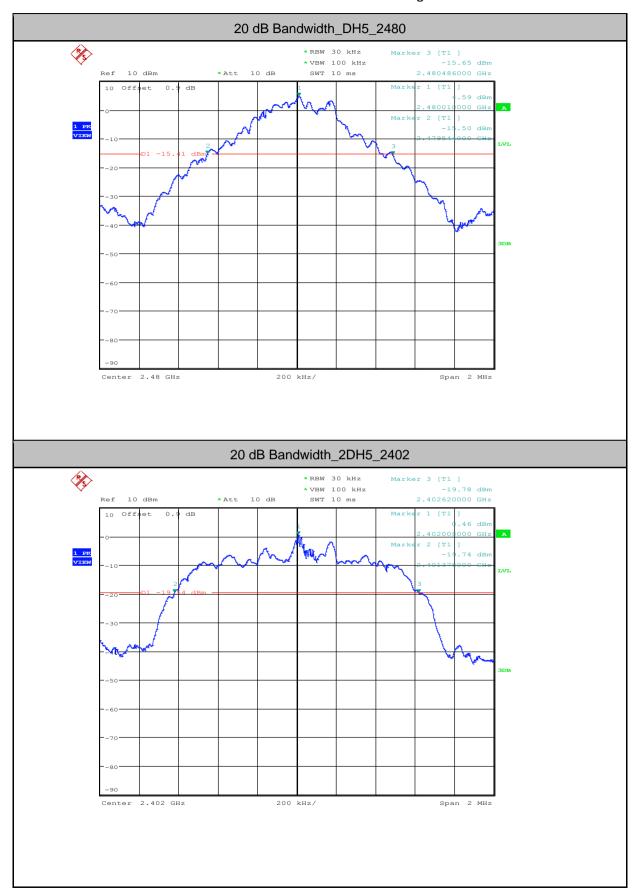
Report No.: SZEM171101182702 Page: 43 of 89

8 Appendix

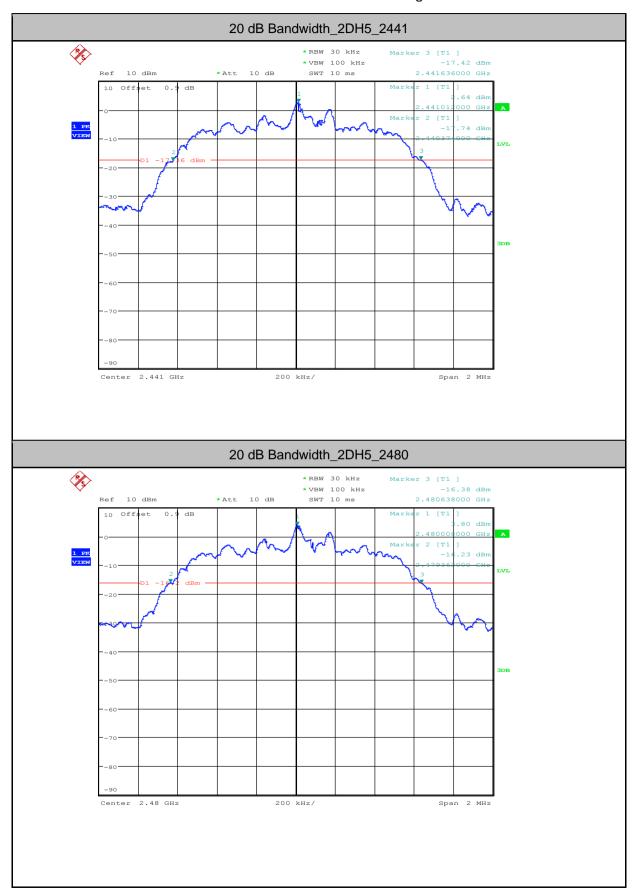

8.1 Appendix 15.247

1.20 dB Bandwidth

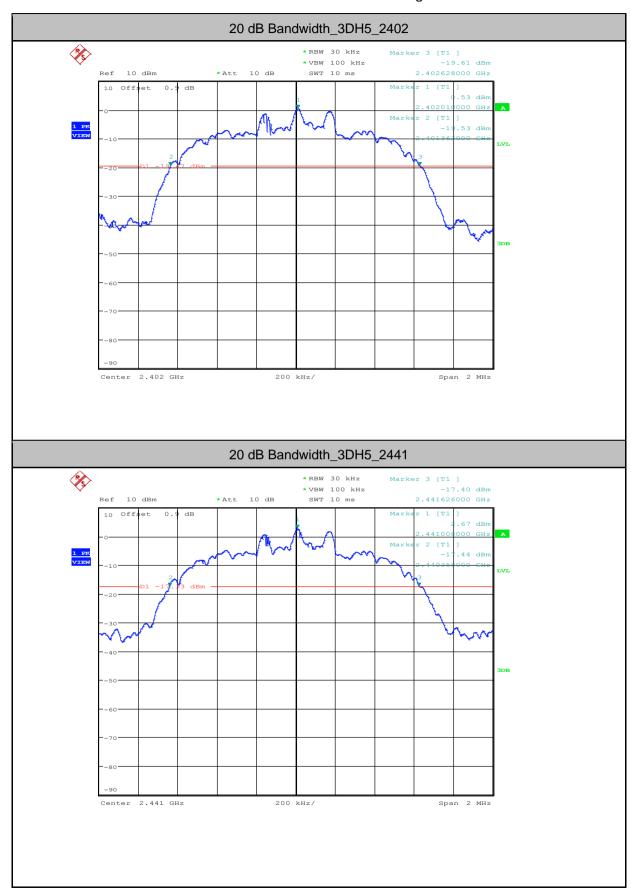
Test Mode	Test Channel	EBW[MHz]	Limit[MHz]	Verdict
DH5	2402	0.946		PASS
DH5	2441	0.942		PASS
DH5	2480	0.942		PASS
2DH5	2402	1.242		PASS
2DH5	2441	1.262		PASS
2DH5	2480	1.276		PASS
3DH5	2402	1.266		PASS
3DH5	2441	1.268		PASS
3DH5	2480	1.272		PASS



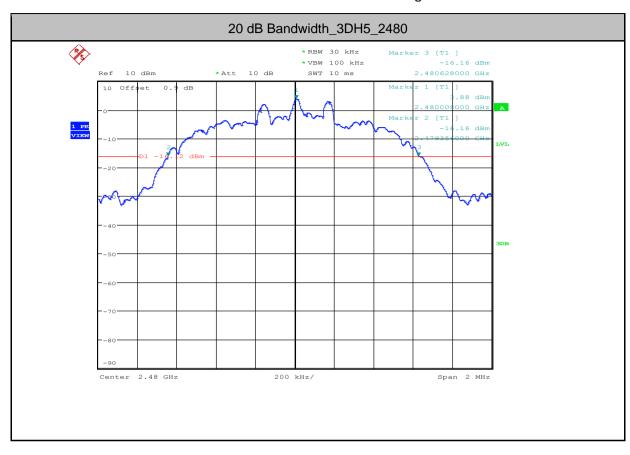
Report No.: SZEM171101182702 Page: 44 of 89



Report No.: SZEM171101182702 Page: 45 of 89

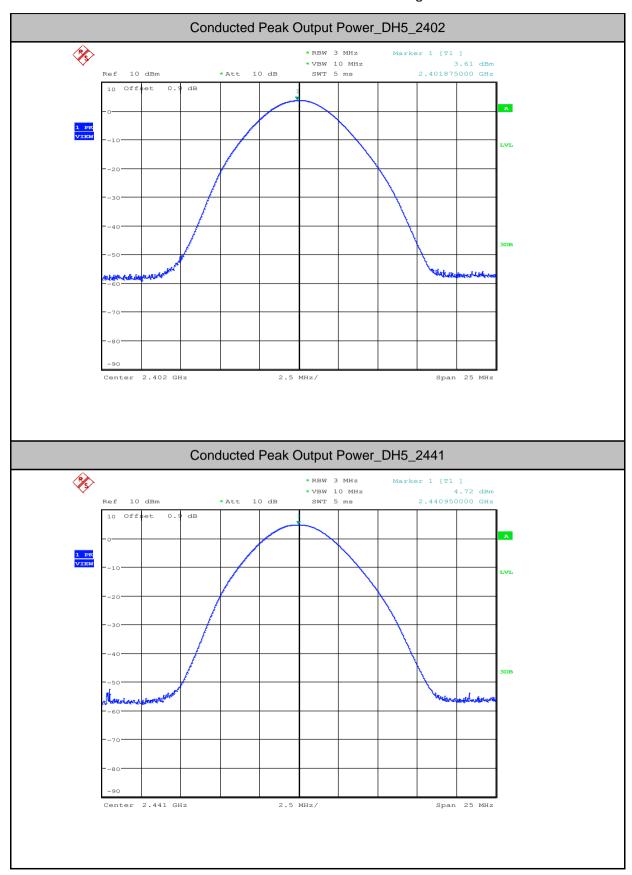


Report No.: SZEM171101182702 Page: 46 of 89



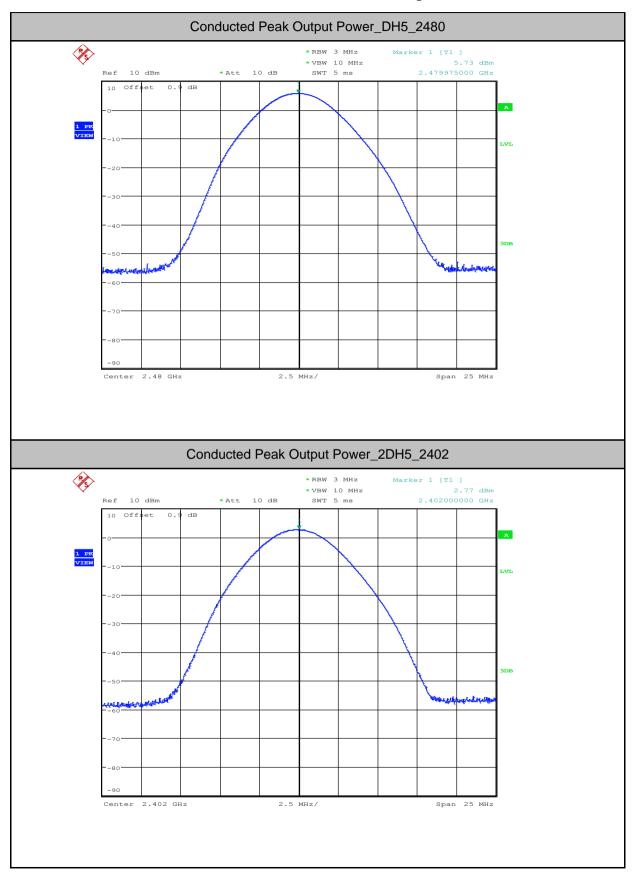
Report No.: SZEM171101182702 Page: 47 of 89

Report No.: SZEM171101182702 Page: 48 of 89

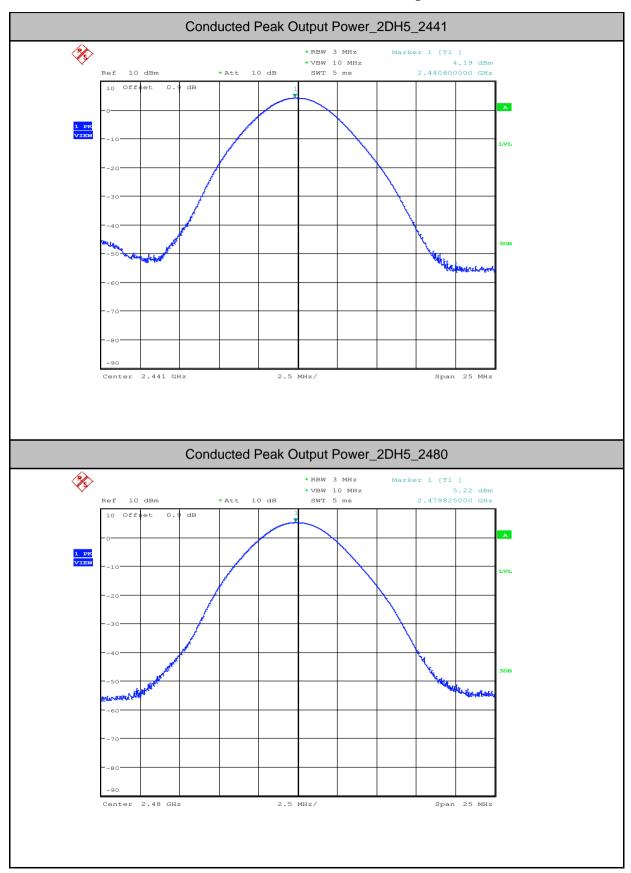

Report No.: SZEM171101182702 Page: 49 of 89

Test Mode	Test Channel	Power[dBm]	Limit[dBm]	Verdict
DH5	2402	3.61	<=20.97	PASS
DH5	2441	4.72	<=20.97	PASS
DH5	2480	5.73	<=20.97	PASS
2DH5	2402	2.77	<=20.97	PASS
2DH5	2441	4.19	<=20.97	PASS
2DH5	2480	5.22	<=20.97	PASS
3DH5	2402	2.93	<=20.97	PASS
3DH5	2441	4.28	<=20.97	PASS
3DH5	2480	5.32	<=20.97	PASS

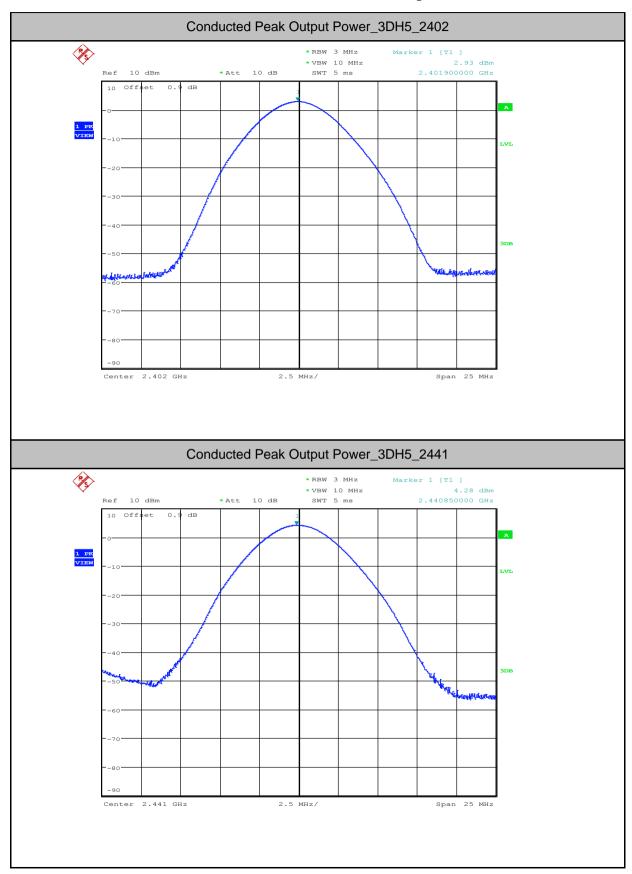
3.Conducted Peak Output Power



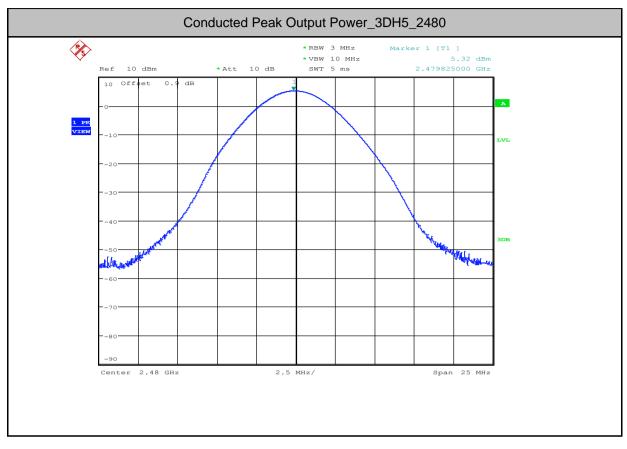
Report No.: SZEM171101182702 Page: 50 of 89



Report No.: SZEM171101182702 Page: 51 of 89

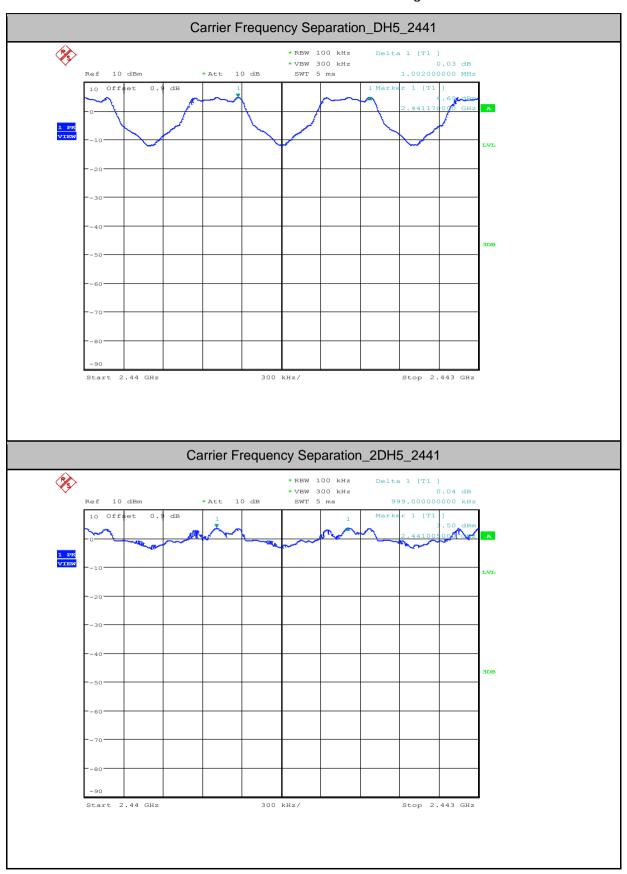


Report No.: SZEM171101182702 Page: 52 of 89



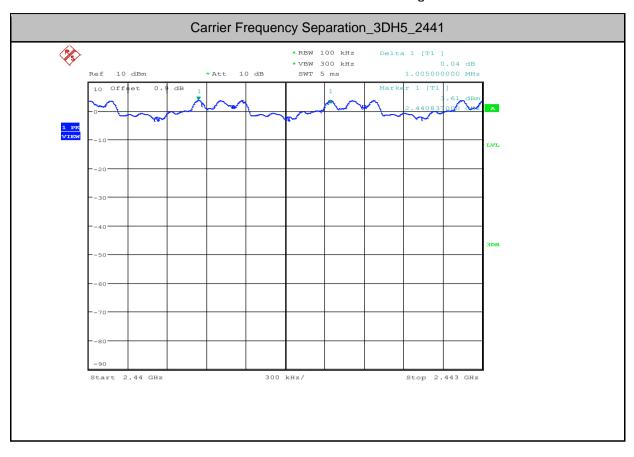
Report No.: SZEM171101182702 Page: 53 of 89

Report No.: SZEM171101182702 Page: 54 of 89



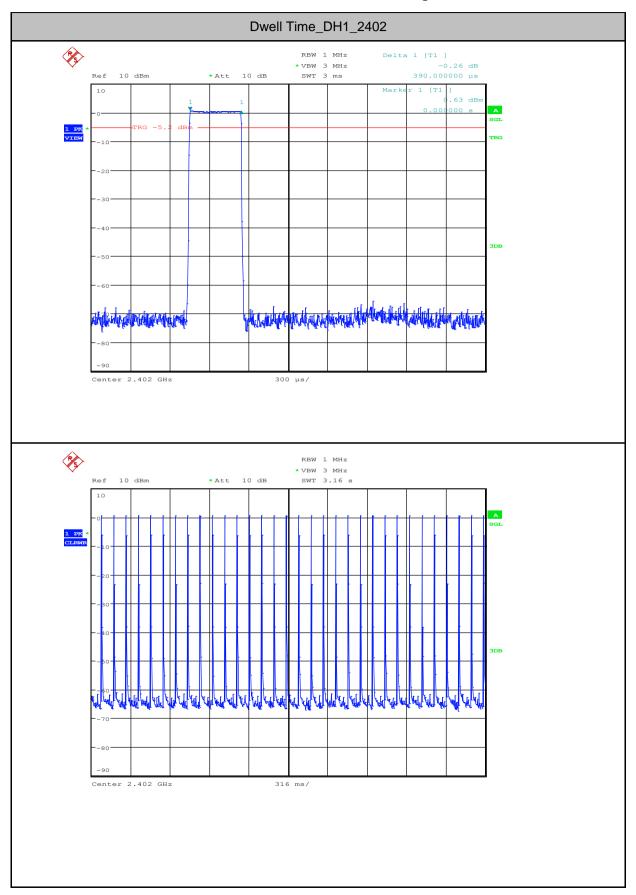
4. Carrier Frequency Separation

Test Mode	Test Channel	Result[MHz]	Limit[MHz]	Verdict
DH5	2441	1.002	>=0.63	PASS
2DH5	2441	0.999	>=0.85	PASS
3DH5	2441	1.005	>=0.85	PASS



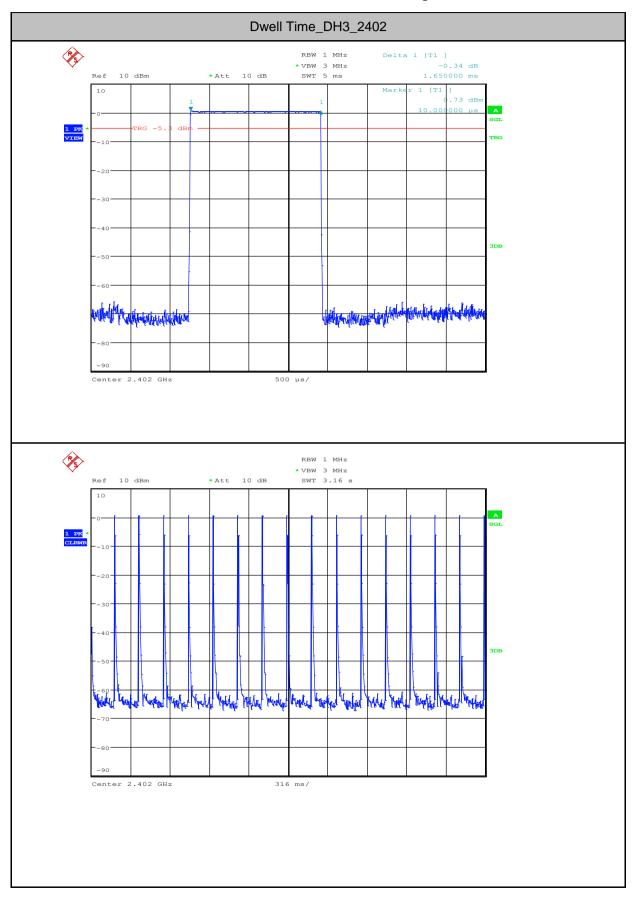
Report No.: SZEM171101182702 Page: 55 of 89

Report No.: SZEM171101182702 Page: 56 of 89

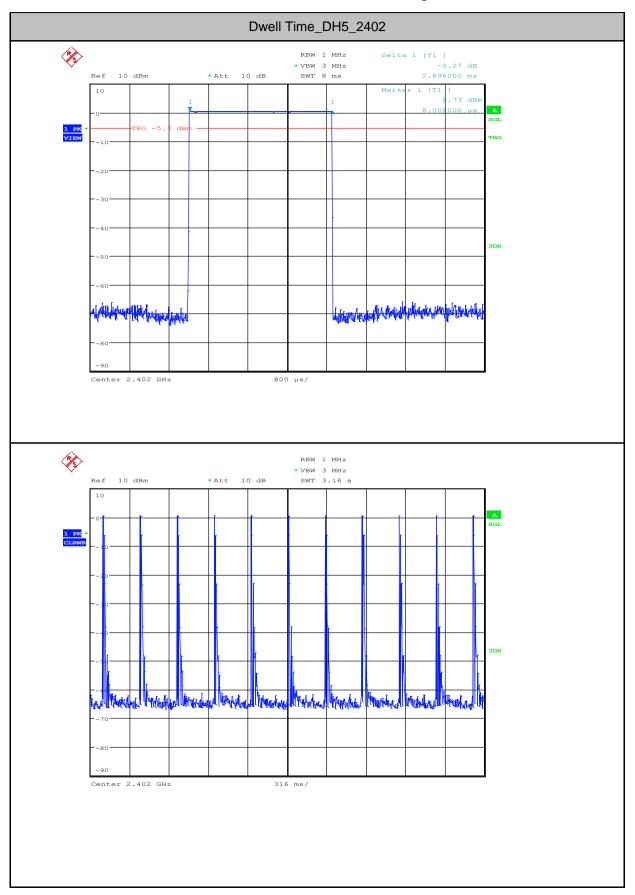


5.Dwell Time

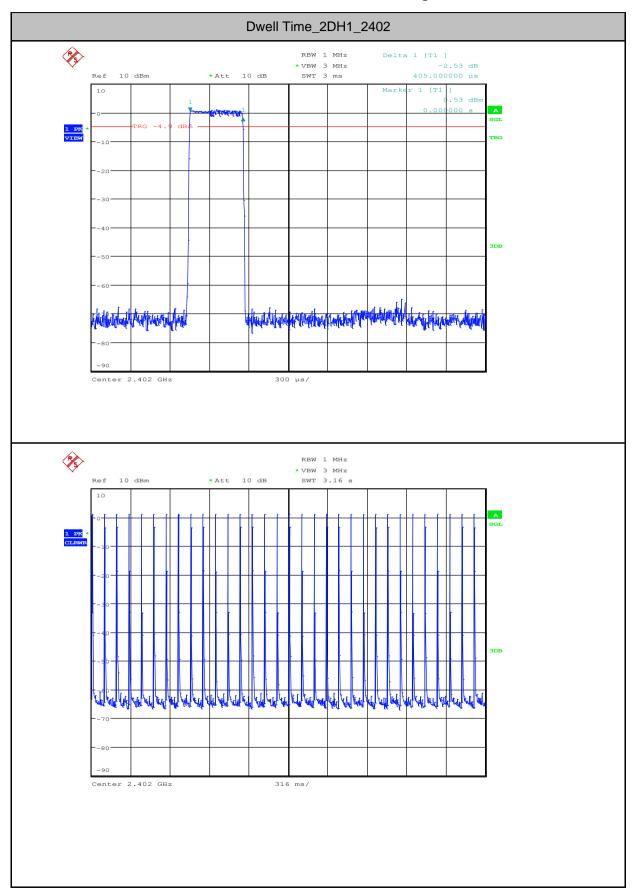
Test Mode	Test Channel	Burst Width[ms/hop/ch]	Total Hops[hop*ch]	Dwell Time[s]	Limit[s]	Verdict
DH1	2402	0.39	320	0.125	<0.4	PASS
DH3	2402	1.65	160	0.264	<0.4	PASS
DH5	2402	2.9	110	0.319	<0.4	PASS
2DH1	2402	0.41	320	0.131	<0.4	PASS
2DH3	2402	1.66	160	0.266	<0.4	PASS
2DH5	2402	2.9	110	0.319	<0.4	PASS
3DH1	2402	0.41	320	0.131	<0.4	PASS
3DH3	2402	1.66	160	0.266	<0.4	PASS
3DH5	2402	2.9	110	0.319	<0.4	PASS



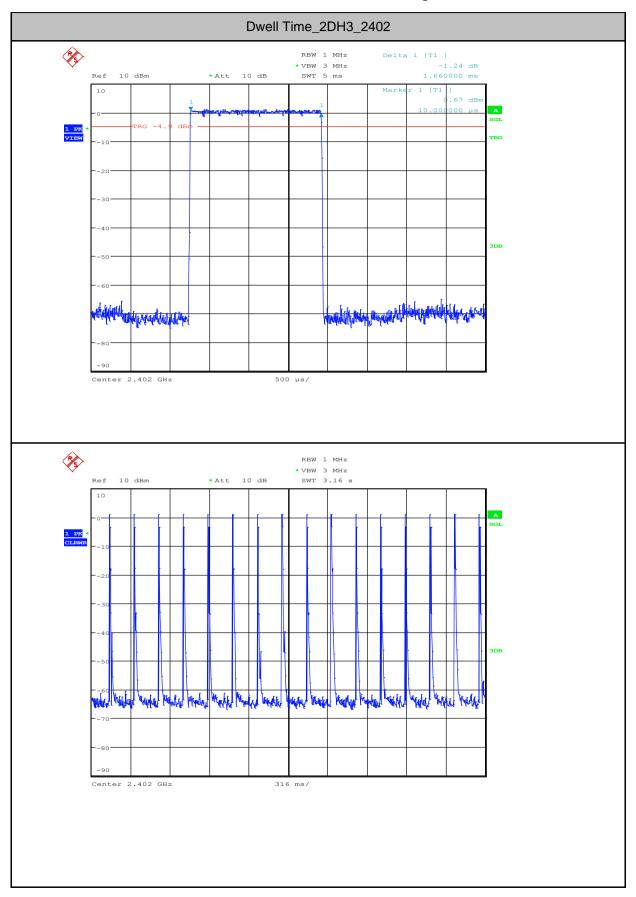
Report No.: SZEM171101182702 Page: 57 of 89



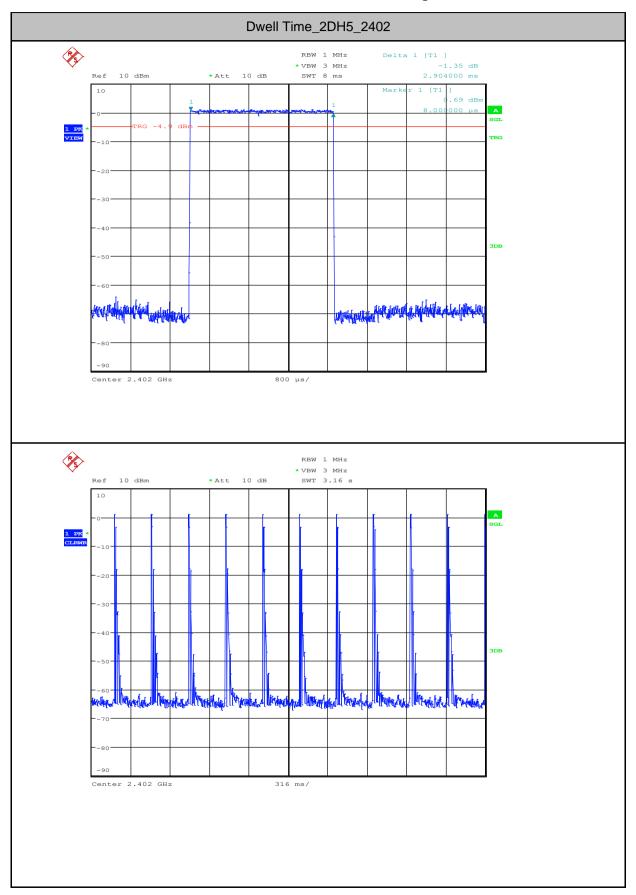
Report No.: SZEM171101182702 Page: 58 of 89



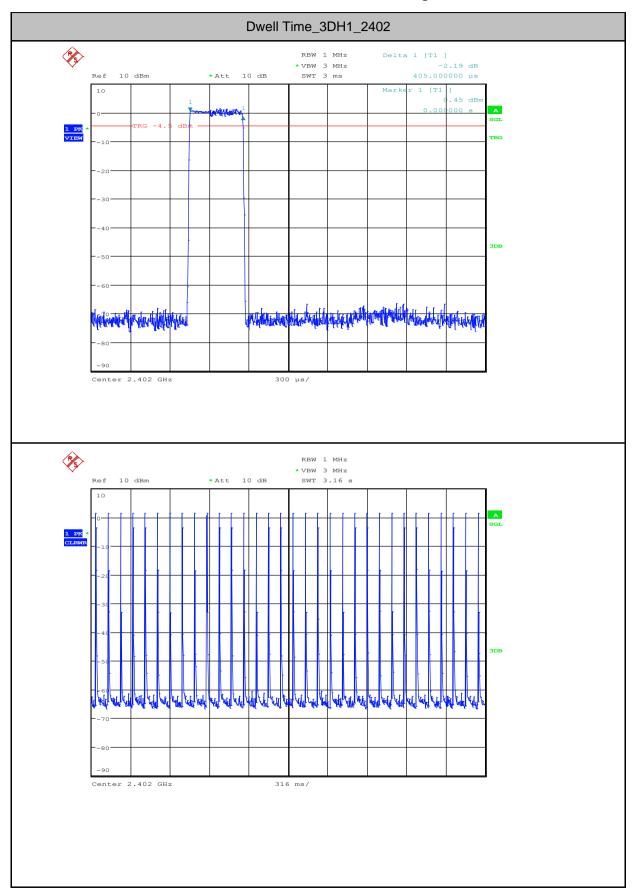
Report No.: SZEM171101182702 Page: 59 of 89



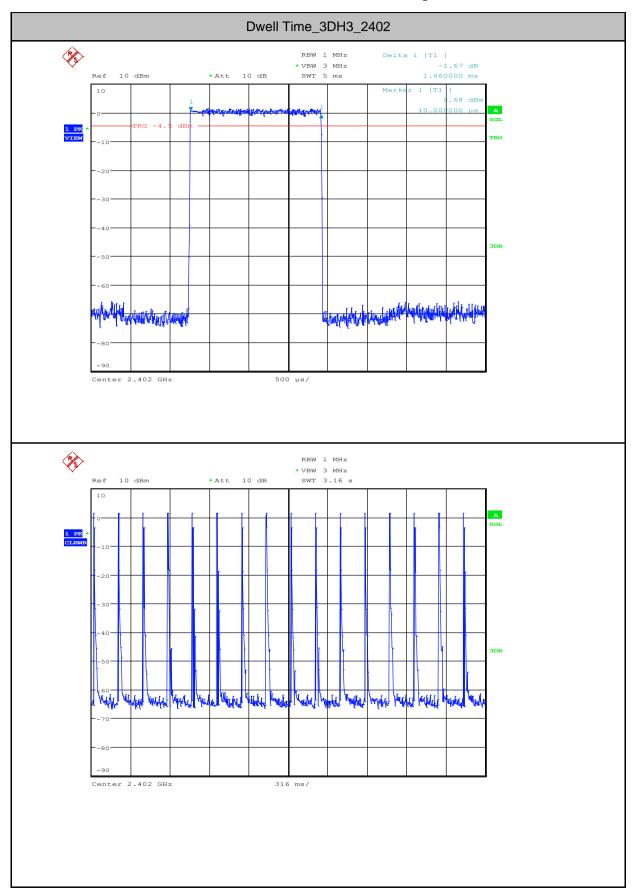
Report No.: SZEM171101182702 Page: 60 of 89



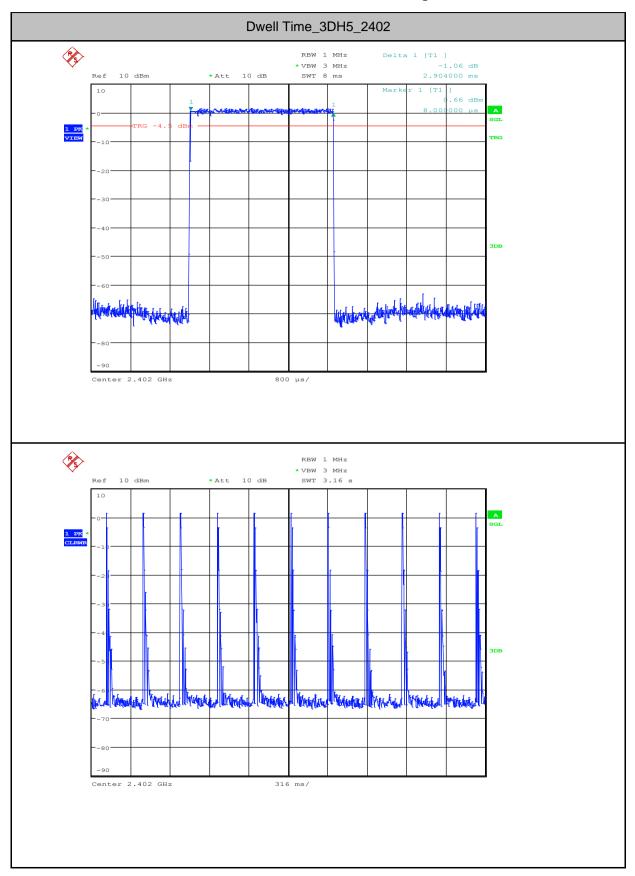
Report No.: SZEM171101182702 Page: 61 of 89



Report No.: SZEM171101182702 Page: 62 of 89

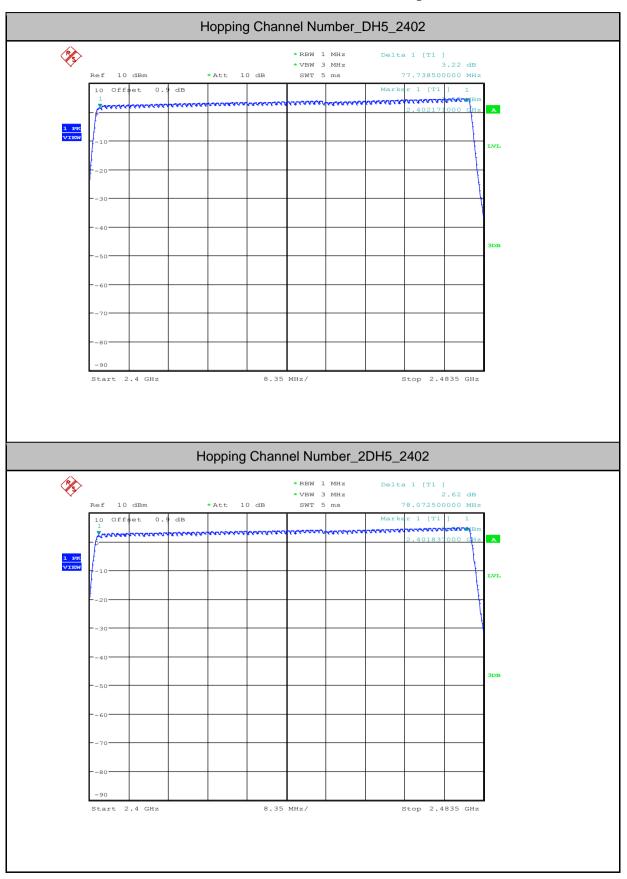


Report No.: SZEM171101182702 Page: 63 of 89



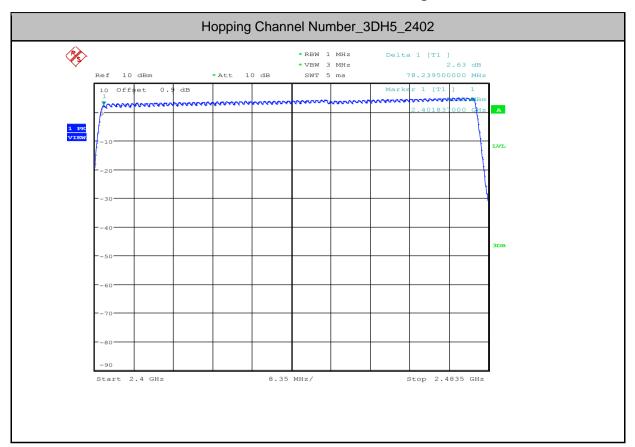
Report No.: SZEM171101182702 Page: 64 of 89

Report No.: SZEM171101182702 Page: 65 of 89


Report No.: SZEM171101182702 Page: 66 of 89

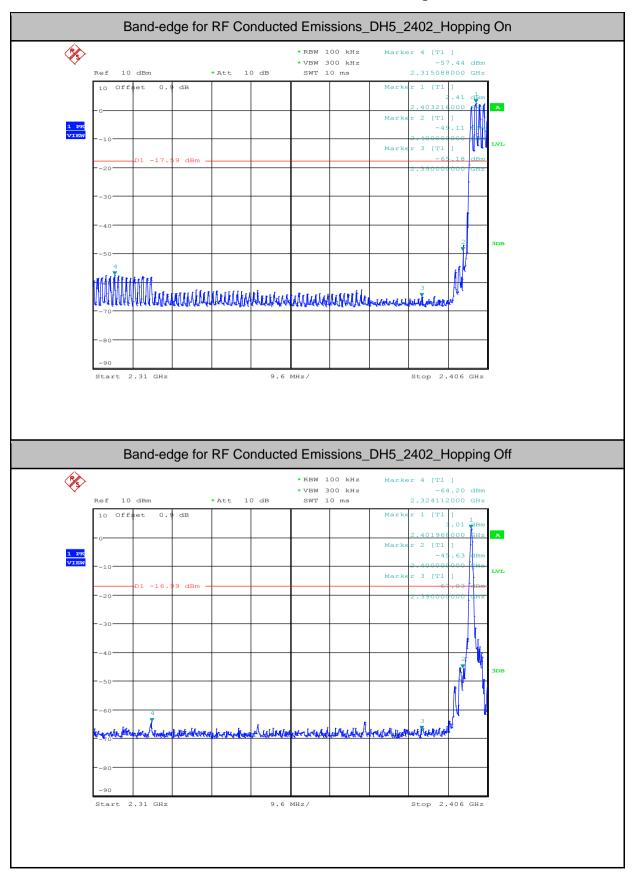
6.Hopping Channel Number

Test Mode	Test Channel	Number of Hopping Channel[N]	Limit[N]	Verdict
DH5	2402	79	>=15	PASS
2DH5	2402	79	>=15	PASS
3DH5	2402	79	>=15	PASS



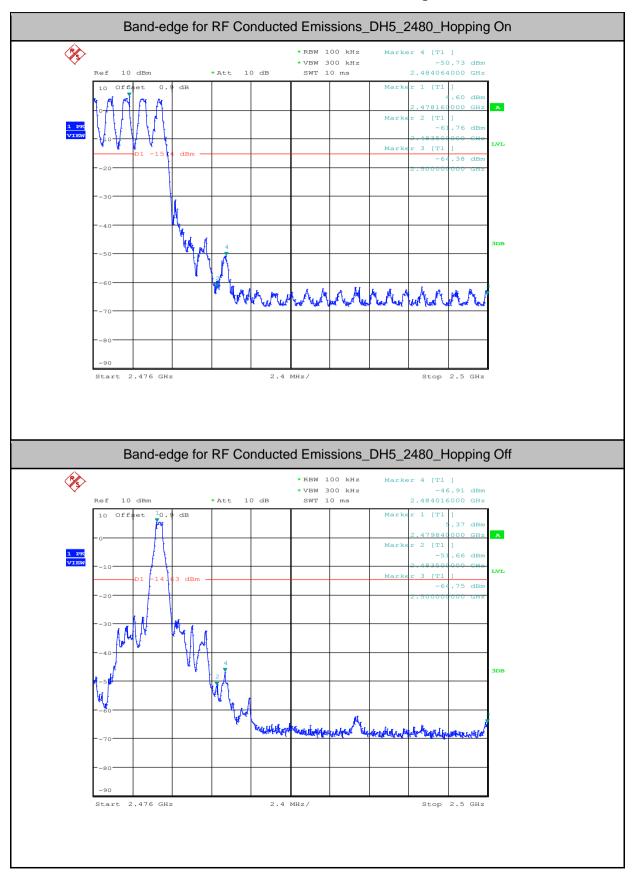
Report No.: SZEM171101182702 Page: 67 of 89

Report No.: SZEM171101182702 Page: 68 of 89

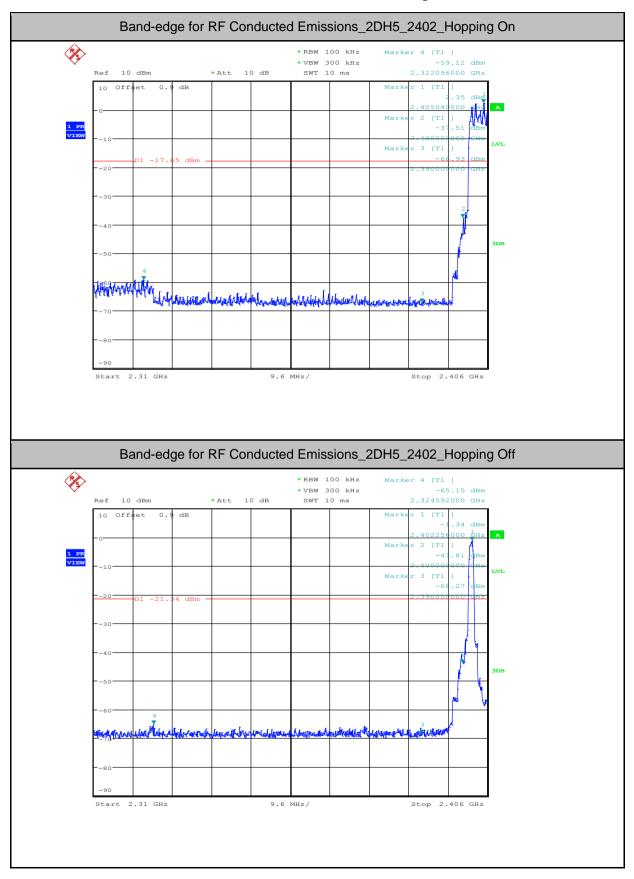


7.Band-edge for RF Conducted Emissions

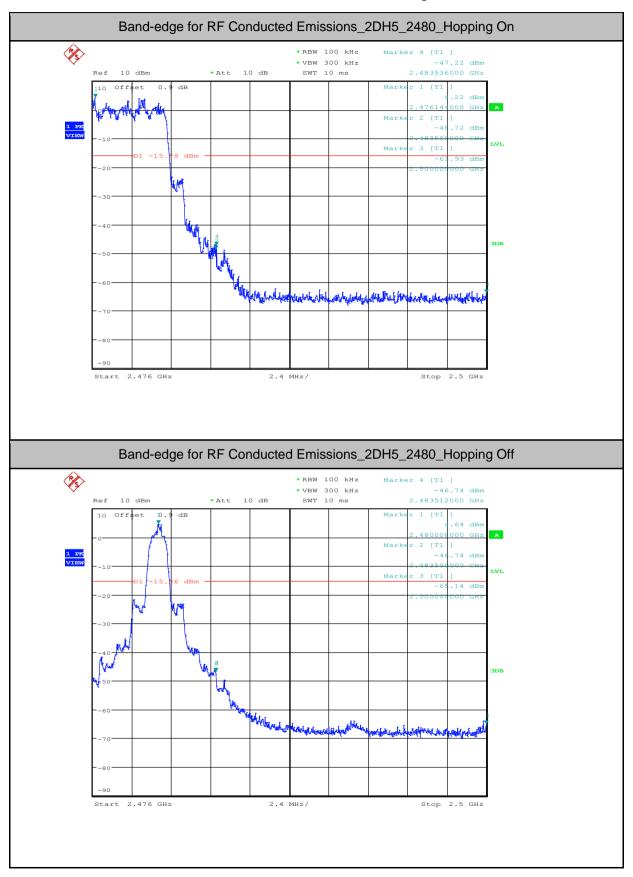
Test Mode	Test Channel	Hopping	Carrier Power[dBm]	Max. Spurious Level [dBm]	Limit[dBm]	Verdict
DH5	2402	On	2.410	-57.437	<-17.59	PASS
DH5	2402	Off	3.010	-64.196	<-16.99	PASS
DH5	2480	On	4.600	-50.730	<-15.4	PASS
DH5	2480	Off	5.370	-46.908	<-14.63	PASS
2DH5	2402	On	2.350	-59.123	<-17.65	PASS
2DH5	2402	Off	-1.340	-65.154	<-21.34	PASS
2DH5	2480	On	4.220	-47.217	<-15.78	PASS
2DH5	2480	Off	4.640	-46.741	<-15.36	PASS
3DH5	2402	On	2.380	-57.974	<-17.62	PASS
3DH5	2402	Off	-0.260	-66.376	<-20.26	PASS
3DH5	2480	On	3.690	-50.577	<-16.31	PASS
3DH5	2480	Off	4.680	-47.992	<-15.32	PASS



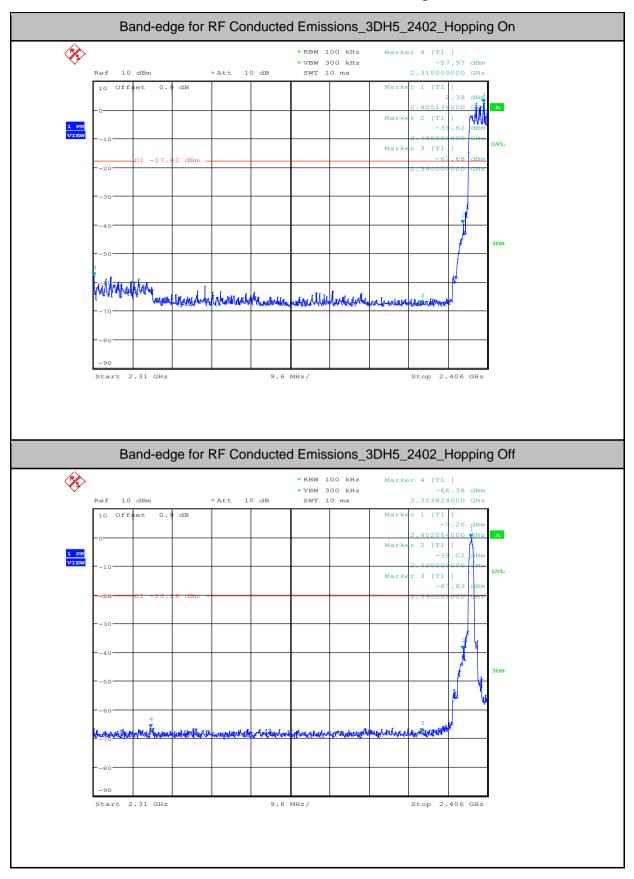
Report No.: SZEM171101182702 Page: 69 of 89



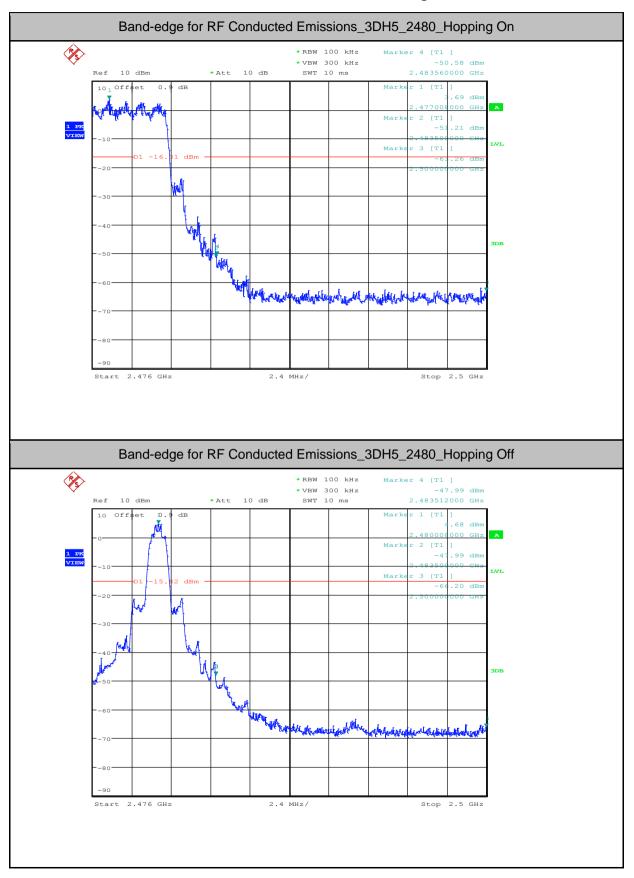
Report No.: SZEM171101182702 Page: 70 of 89



Report No.: SZEM171101182702 Page: 71 of 89

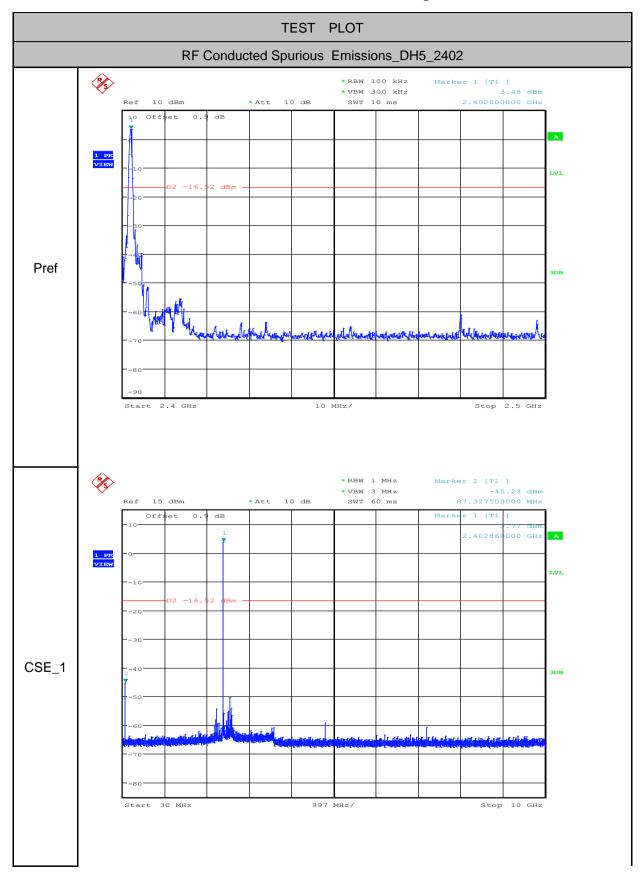


Report No.: SZEM171101182702 Page: 72 of 89



Report No.: SZEM171101182702 Page: 73 of 89

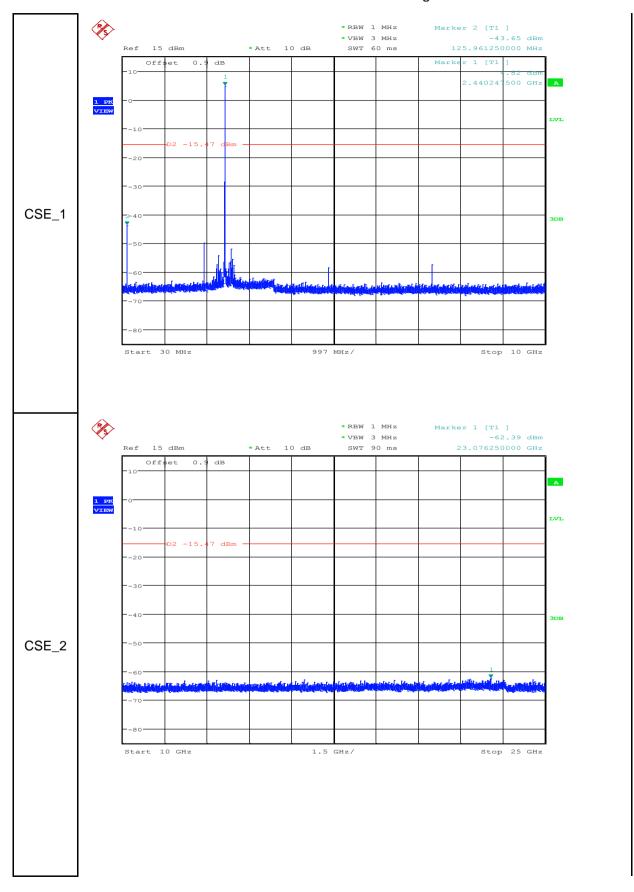
Report No.: SZEM171101182702 Page: 74 of 89


Report No.: SZEM171101182702 Page: 75 of 89

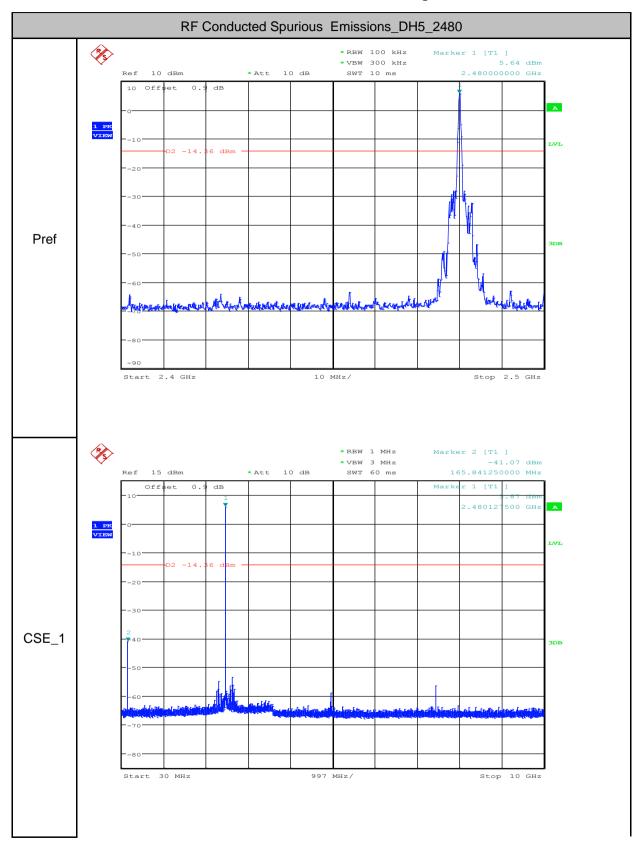
8.RF Conducted Spurious Emissions

Test Mode	Test Channel	StartFre [MHz]	StopFre [MHz]	RBW [kHz]	VBW [kHz]	Pref[dBm]	Max. Level [dBm]	Limit [dBm]	Verdict
DH5	2402	30	10000	1000	3000	3.48	-45.230	<- 16.52	PASS
DH5	2402	10000	25000	1000	3000	3.48	-62.270	<- 16.52	PASS
DH5	2441	30	10000	1000	3000	4.53	-43.650	<- 15.47	PASS
DH5	2441	10000	25000	1000	3000	4.53	-62.390	<- 15.47	PASS
DH5	2480	30	10000	1000	3000	5.64	-41.070	<- 14.36	PASS
DH5	2480	10000	25000	1000	3000	5.64	-62.190	<- 14.36	PASS
2DH5	2402	30	10000	1000	3000	1.36	-48.370	<- 18.64	PASS
2DH5	2402	10000	25000	1000	3000	1.36	-62.750	<- 18.64	PASS
2DH5	2441	30	10000	1000	3000	3.6	-45.710	<-16.4	PASS
2DH5	2441	10000	25000	1000	3000	3.6	-62.380	<-16.4	PASS
2DH5	2480	30	10000	1000	3000	4.74	-42.440	<- 15.26	PASS
2DH5	2480	10000	25000	1000	3000	4.74	-62.360	<- 15.26	PASS
3DH5	2402	30	10000	1000	3000	1.48	-47.770	<- 18.52	PASS
3DH5	2402	10000	25000	1000	3000	1.48	-62.080	<- 18.52	PASS
3DH5	2441	30	10000	1000	3000	3.7	-45.730	<-16.3	PASS
3DH5	2441	10000	25000	1000	3000	3.7	-62.590	<-16.3	PASS
3DH5	2480	30	10000	1000	3000	4.87	-42.510	<- 15.13	PASS
3DH5	2480	10000	25000	1000	3000	4.87	-62.090	<- 15.13	PASS

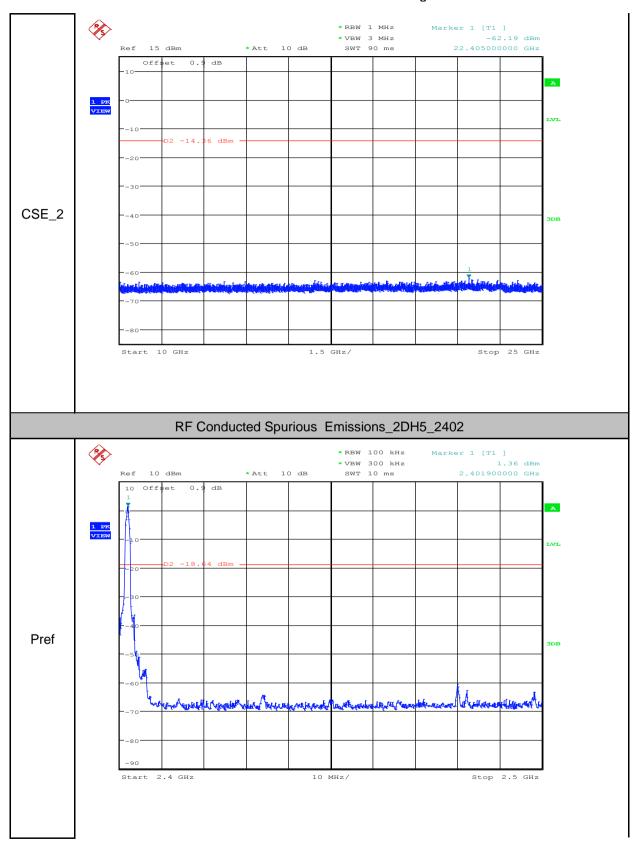
Report No.: SZEM171101182702 Page: 76 of 89



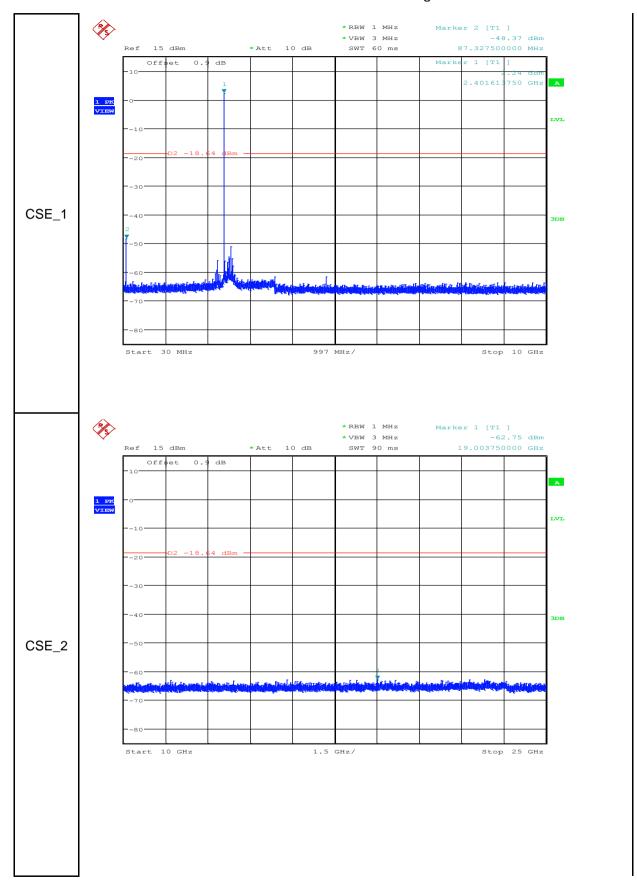
Report No.: SZEM171101182702 Page: 77 of 89 Ś * BBW 1 MHz Marker 1 [T1] -62.27 dBm * VBW 3 MHz 15 dBm 10 dB 90 ms 22.943125000 GHz Ref * Att SWT Offset 0.9 dB 1 PK VIEW vi -16 2 dBm CSE 2 Ţ a la la Line Start 10 GHz 1.5 GHz/ Stop 25 GHz RF Conducted Spurious Emissions_DH5_2441 ×, *RBW 100 kHz Marker 1 [T1] *VBW 300 kHz 4.53 dBm Ref 10 dBm * Att 10 dB SWT 10 ms 2.441000000 GHz 10 Offset 0.9 dB 1 PK VIEW LVL -15 7 dBm -20 Pref cal to deliver an shallow long Start 2.4 GHz 10 MHz/ Stop 2.5 GHz



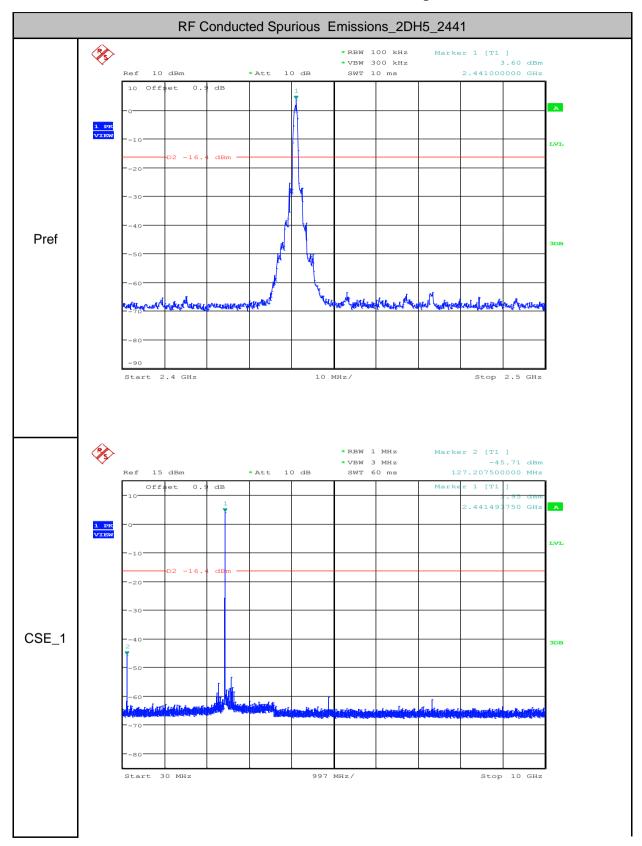
Report No.: SZEM171101182702 Page: 78 of 89



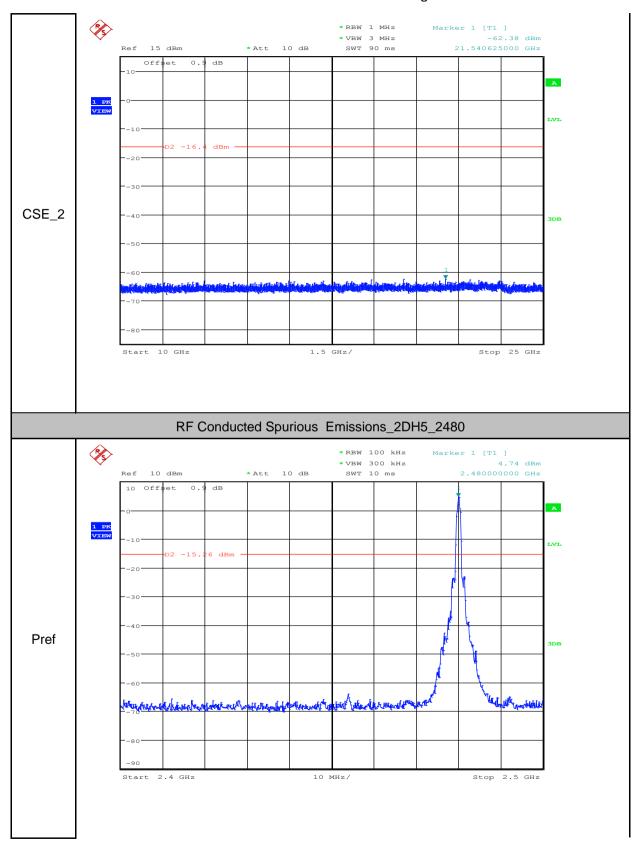
Report No.: SZEM171101182702 Page: 79 of 89



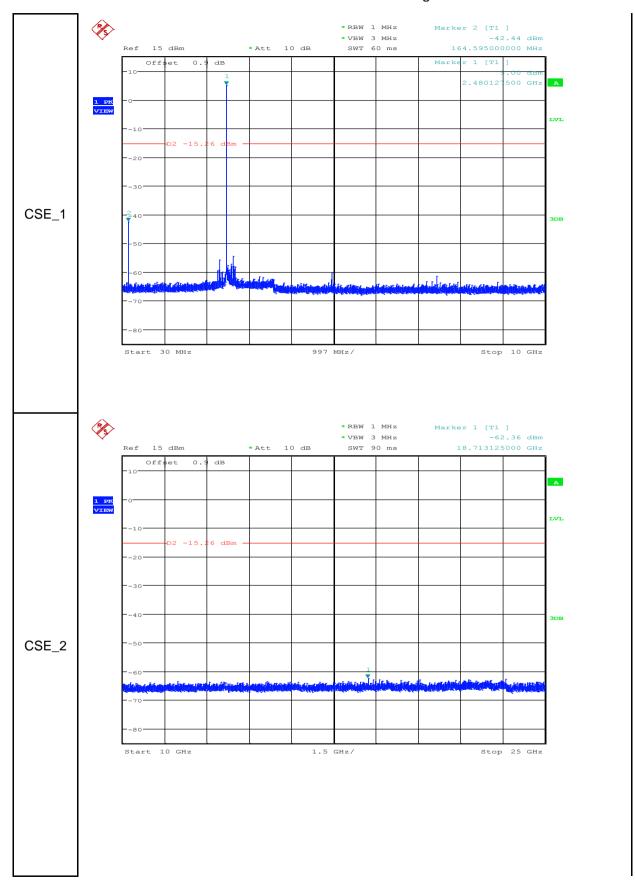
Report No.: SZEM171101182702 Page: 80 of 89



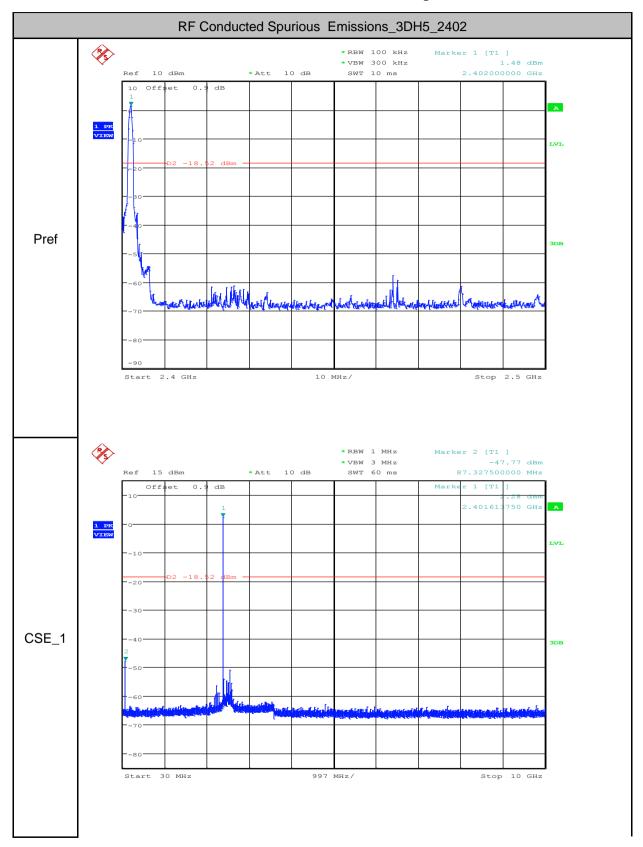
Report No.: SZEM171101182702 Page: 81 of 89



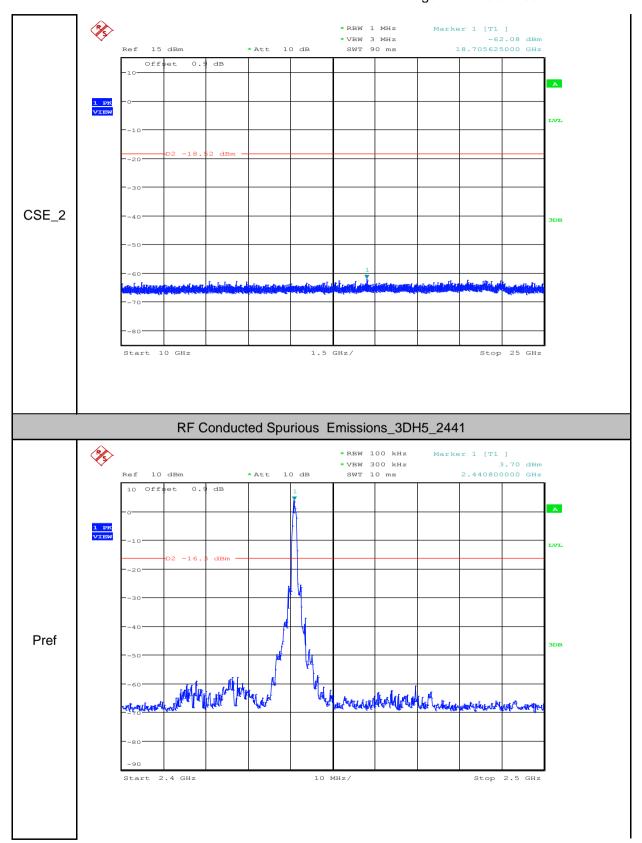
Report No.: SZEM171101182702 Page: 82 of 89



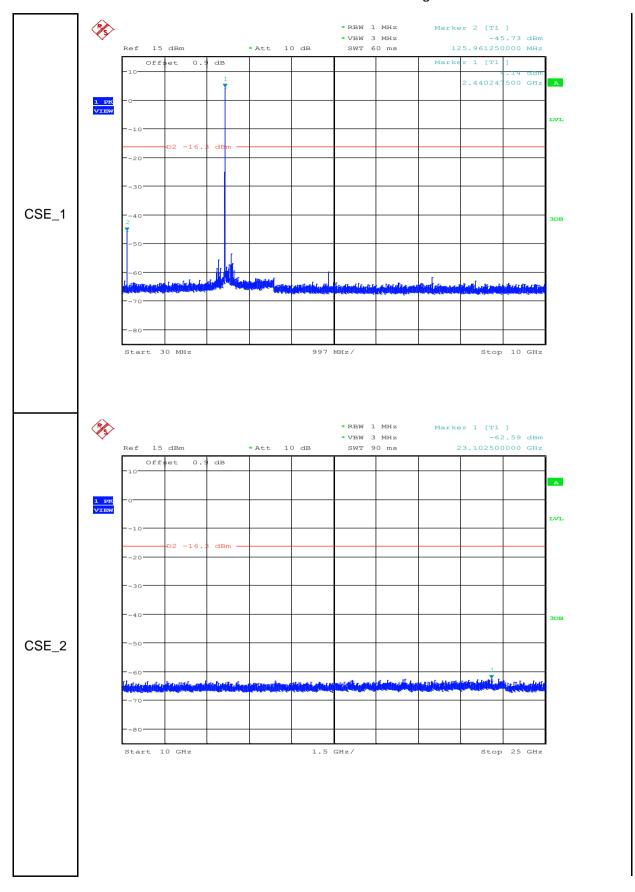
Report No.: SZEM171101182702 Page: 83 of 89



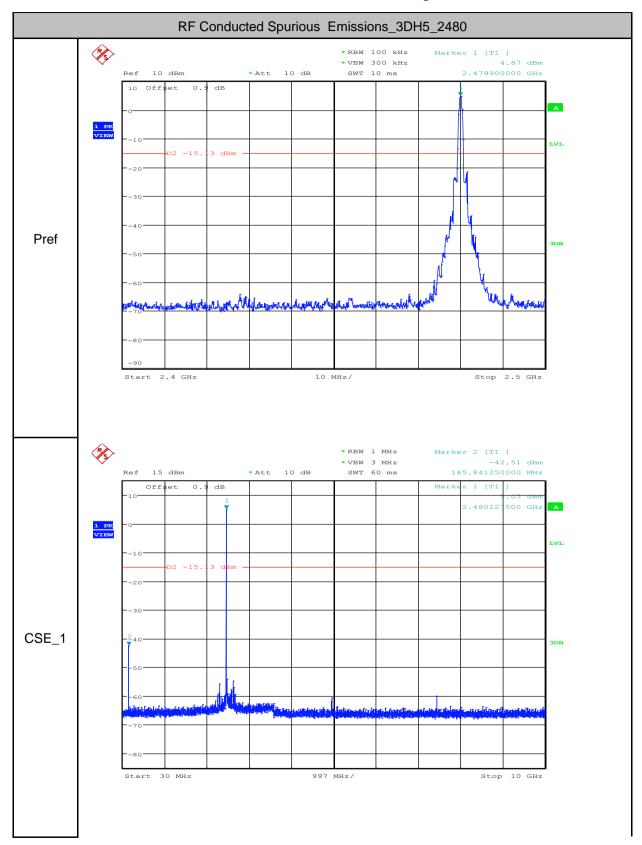
Report No.: SZEM171101182702 Page: 84 of 89



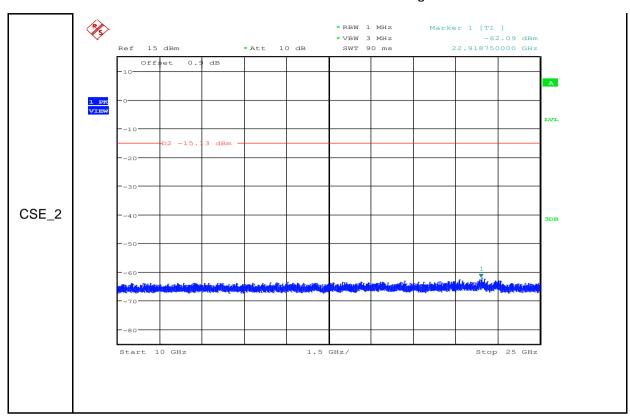
Report No.: SZEM171101182702 Page: 85 of 89



Report No.: SZEM171101182702 Page: 86 of 89



Report No.: SZEM171101182702 Page: 87 of 89



Report No.: SZEM171101182702 Page: 88 of 89

Report No.: SZEM171101182702 Page: 89 of 89

- End of the Report -