FCC 47 CFR PART 15 SUBPART C & INDUSTRY CANADA RSS-210

Report No.: T140113W02-RP1

TEST REPORT

For

Tablet Computer

FCC Model: TP00064A IC Model: TP00064AFX

Trade Name: Lenovo

Issued to

COMPAL ELECTRONICS INC No.581, Ruiguang Rd., Neihu District, Taipei City 11492, Taiwan (R.O.C)

Issued by

Compliance Certification Services Inc.
No.11, Wugong 6th Rd., Wugu Dist.,
New Taipei City 24891, Taiwan. (R.O.C.)
http://www.ccsrf.com
service@ccsrf.com
Issued Date: February 10, 2014

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document.

Page 1 / 66 Rev.00

Revision History

Report No.: T140113W02-RP1

	Issue		Effect	
Rev.	Date	Revisions	Page	Revised By
00	February 10, 2014	Initial Issue	ALL	Kelly Cheng

Page 2 Rev.00

TABLE OF CONTENTS

1. T	EST RESULT CERTIFICATION	4
2. E	UT DESCRIPTION	5
3. T	EST METHODOLOGY	6
3.1	EUT CONFIGURATION	6
3.2	EUT EXERCISE	
3.3	GENERAL TEST PROCEDURES	
3.4	FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS	7
3.5	DESCRIPTION OF TEST MODES	8
4. IN	NSTRUMENT CALIBRATION	9
4.1	MEASURING INSTRUMENT CALIBRATION	9
4.2	MEASUREMENT EQUIPMENT USED	
4.3	MEASUREMENT UNCERTAINTY	10
5. F	ACILITIES AND ACCREDITATIONS	11
5.1	FACILITIES	11
5.2	EQUIPMENT	11
5.3	LABORATORY ACCREDITATIONS AND LISTING	
5.4	TABLE OF ACCREDITATIONS AND LISTINGS	12
6. SI	ETUP OF EQUIPMENT UNDER TEST	13
6.1	SETUP CONFIGURATION OF EUT	13
6.2	SUPPORT EQUIPMENT	13
7. A	PPLICABLE RULES FOR INDUSTRY CANADA RSS-210	14
7.1	PEAK POWER	23
7.2	AVERAGE POWER	
7.3	BAND EDGES MEASUREMENT	
7.4	RADIATED EMISSIONS	44
APPE	NDIX I PHOTOGRAPHS OF TEST SETUP	66
APPE	NDIX 1 - PHOTOGRAPHS OF EUT	

TEST RESULT CERTIFICATION

COMPAL ELECTRONICS INC **Applicant:**

No.581, Ruiguang Rd., Neihu District, Taipei City 11492, Taiwan

Report No.: T140113W02-RP1

(R.O.C)

Manufacturer: COMPAL ELECTRONICS INC

No.581, Ruiguang Rd., Neihu District, Taipei City 11492, Taiwan

(R.O.C)

Equipment Under Test: Tablet Computer

Trade Name: Lenovo

FCC Model Number: TP00064A

IC Model Number: TP00064AFX

Date of Test: January 13 ~ 25, 2014

APPLICABLE STANDARDS				
STANDARD	TEST RESULT			
FCC 47 CFR Part 15 Subpart C				
&	No non-compliance noted			
Industry Canada RSS-210 Issue 8 December, 2010				

We hereby certify that:

The above equipment was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4: 2003 and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 15.207, 15.209, 15.247 and Industry Canada RSS-210.

The test results of this report relate only to the tested sample EUT identified in this report.

Approved by:

Reviewed by:

Miller Lee

Section Manager

Compliance Certification Services Inc.

Willer Lee

Angel Cheng

Section Manager

Compliance Certification Services Inc.

Page 4 Rev.00

2. EUT DESCRIPTION

- ·	THE CO.
Product	Tablet Computer
Trade Name	Lenovo
FCC Model Number	TP00064A
IC Model Number	TP00064AFX
Received Date January 13, 2014	
Frequency Range	IEEE 802.11a/ IEEE 802.11n HT 20 MHz: 5.725~5.850 GHz IEEE 802.11n HT 40 mode: 5.755~5.795GHz IEEE 802.11b/g/ IEEE 802.11n HT 20 MHz: 2.412~2.462 GHz
Original Transmit Power	2412MHz – 2462MHz(11b/g/n20M): 0.578W 5745MHz – 5825MHz(11a/n20M-DTS): 0.587W 5755MHz – 5795MHz(11a/n40M-DTS): 0.562W
Modulation Technique	IEEE 802.11a: OFDM (54, 48, 36, 24, 18, 12, 9, 6 Mbps) IEEE 802.11n HT 20 mode: OFDM (6.5, 7.2, 13, 14.4, 14.44, 19.5, 21.7, 26, 28.89, 28.9, 39, 43.3, 43.33 52, 57.78, 57.8, 58.5, 65.0, 72.2, 78, 86.67, 104, 115.56, 117, 130, 144.44 Mbps) IEEE 802.11n HT 40 mode: OFDM (13.5, 15, 27, 30, 40.5, 45, 54, 60, 81, 90, 108, 120, 121.5, 135, 150, 162, 180, 216, 240, 243, 270, 300 Mbps) IEEE 802.11b mode: DSSS (1, 2, 5.5 and 11 Mpbs) IEEE 802.11g mode: OFDM (6, 9, 12, 18, 24, 36, 48 and 54 Mpbs) IEEE 802.11n HT 20 mode: OFDM (6.5, 7.2, 13, 14.4, 14.44, 19.5, 21.7, 26, 28.89, 28.9, 39, 43.3, 43.33 52, 57.78, 57.8, 58.5, 65.0, 72.2, 78, 86.67, 104, 115.56, 117, 130, 144.44 Mbps)
Number of Channels	IEEE 802.11a mode: 5 Channels IEEE 802.11n HT 20 mode: 5 Channels IEEE 802.11n HT 40 mode: 2 Channels IEEE 802.11b/g mode: 11 Channels IEEE 802.11n HT 20 mode: 11 Channels
Antenna Specification	Brand: High-Tek Electronics Co., Ltd Antenna Type: PIFA Antenna Antenna Gain: For 2.4G DC33001GB20 (Main) / -1.33 dBi DC33001GB30 (Aux) / -5.06 dBi For 5G DC33001GB20 (Main) / -0.50 dBi DC33001GB30 (Aux) / -1.27 dBi

Remark:

- 1. The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.
- 2. This submittal(s) (test report) is intended for FCC ID: <u>GKR-TP00064AFX</u>, IC ID: <u>2533B-TP00064AFX</u> filing to comply with Section 15.207, 15.209 and 15.247 of the FCC Part 15, Subpart C Rules.

Page 5 Rev.00

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4 and FCC CFR 47 2.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055, 2.1057, 15.207, 15.209 and 15.247.

Report No.: T140113W02-RP1

The tests documented in this report were performed in accordance with IC RSS-210, IC RSS-Gen, IC RSS-102, IC RSS-212, and ANSI C63.4.

This submittal(s) (test report) is intended for IC Certification with Industry Canada RSS-210.

3.1EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

3.2EUT EXERCISE

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

The tests documented in this report were performed in accordance with IC RSS-210, IC RSS-Gen, IC RSS-102, and ANSI C63.4.

3.3GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 13.1.4.1 of ANSI C63.4.

Page 6 Rev.00

3.4FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

Report No.: T140113W02-RP1

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 -	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.52525	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	156.7 - 156.9	3260 - 3267	23.6 - 24.0
12.29 - 12.293	162.0125 - 167.17	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	167.72 - 173.2	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	240 - 285	3600 - 4400	$\binom{2}{}$
13.36 - 13.41	322 - 335.4		

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

Page 7 Rev.00

² Above 38.6

⁽b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

3.5DESCRIPTION OF TEST MODES

The EUT (FCC model: TP00064A, IC model: TP00064AFX) had been tested under operating condition.

Report No.: T140113W02-RP1

The EUT is a 2x2 configuration spatial MIMO (2Tx & 2Rx) without beam forming function that operate in double TX chains and double RX chains. The 2x2 configuration is implemented with two outside TX & RX chains (Chain 1 and Chain 0).

Software used to control the EUT for staying in continuous transmitting mode was programmed. The worst case data rate is determined as the data rate with highest output power.

After verification, all tests were carried out with the worst case test modes as shown below except radiated spurious emission below 1GHz and power line conducted emissions below 30MHz, which worst case was in normal link mode only.

IEEE 802.11b mode:

Channel Low (2412MHz), Channel Mid (2437MHz) and Channel High (2462MHz) with 1Mbps data rate were chosen for full testing.

IEEE 802.11g mode:

Channel Low (2412MHz), Channel Mid (2437MHz) and Channel High (2462MHz) with 6Mbps data rate were chosen for full testing.

IEEE 802.11n HT 20 mode:

Channel Low (2412MHz), Channel Mid (2437MHz) and Channel High (2462MHz) with 6.5Mbps data rate were chosen for full testing.

IEEE 802.11a mode:

Channel Low (5745MHz), Channel Mid (5785MHz) and Channel High (5825MHz) with 6Mbps data rate were chosen for full testing.

IEEE 802.11n HT 20 mode:

Channel Low(5745MHz), Channel Mid(5785MHz) and Channel High(5825MHz) with 6.5Mbps data rate were chosen for full testing.

IEEE 802.11n HT 40 mode:

Channel Low(5755MHz) and Channel High(5795MHz) with 13.5Mbps data rate were chosen for full testing.

The field strength of spurious emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in lie-down position (Y axis) and the worst case was recorded.

Test items for conducted and radiated emission were performed for report. Other testing data please refer to module (Brand: Lenovo, Model: Tablet Computer, FCC ID: MCLT77H506)

Page 8 Rev.00

4. INSTRUMENT CALIBRATION

4.1MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

Report No.: T140113W02-RP1

4.2MEASUREMENT EQUIPMENT USED

Equipment Used for Emissions Measurement

Remark: Each piece of equipment is scheduled for calibration once a year and Loop Antenna is scheduled for calibration once three years.

Conducted Emissions Test Site						
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due		
Spectrum Analyzer	Agilent	E4446A	MY43360131	03/20/2014		
Power Meter Anritsu		ML2495A	1012009	06/04/2014		
Power Sensor	Anritsu	MA2411A	0917072	06/04/2014		

3M Chamber Test Site					
Name of Equipment	Manufacturer	Manufacturer Model Serial Number		Calibration Due	
Spectrum Analyzer	Agilent	E4446A	US42510268	11/05/2014	
EMI Test Receiver	R&S	ESCI	100064	02/28/2014	
Pre-Amplifier	Mini-Circults	ZFL-1000LN	SF350700823	01/11/2015	
Pre-Amplifier	MITEQ	AFS44-00102650- 42-10P-44	1415367	11/18/2014	
Bilog Antenna	Sunol Sciences	JB3	A030105	10/01/2014	
Horn Antenna	EMCO	3117	00055165	02/12/2015	
Horn Antenna	EMCO	3116	2487	10/09/2014	
Loop Antenna	EMCO	6502	8905/2356	06/09/2014	
Turn Table	CCS	CC-T-1F	N/A	N.C.R	
Antenna Tower	CCS	CC-A-1F	N/A	N.C.R	
Controller	CCS	CC-C-1F	N/A	N.C.R	
Site NSA CCS		N/A	N/A	12/21/2014	
Test S/W	EZ-EMC (CCS-3A1RE)				

Page 9 Rev.00

4.3MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
3M Semi Anechoic Chamber / 30M~200M	+/- 4.0138
3M Semi Anechoic Chamber / 200M~1000M	+/- 3.9483
3M Semi Anechoic Chamber / 1G~8G	+/- 2.5975
3M Semi Anechoic Chamber / 8G~18G	+/- 2.6112
3M Semi Anechoic Chamber / 18G~26G	+/- 2.7389
3M Semi Anechoic Chamber / 26G~40G	+/- 2.9683

Remark: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Page 10 Rev.00

5. FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at
No.199, Chunghsen Road, Hsintien City, Taipei Hsien, Taiwan, R.O.C. Tel: 886-2-2217-0894 / Fax: 886-2-2217-1029
No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.) Tel: 886-2-2299-9720 / Fax: 886-2-2298-4045
No.81-1, Lane 210, Bade 2nd Rd., Luchu Hsiang, Taoyuan Hsien 338, TaiwanTel: 886-3-324-0332 / Fax: 886-3-324-5235
The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and

Report No.: T140113W02-RP1

5.2EQUIPMENT

CISPR Publication 22.

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.3LABORATORY ACCREDITATIONS AND LISTING

The test facilities used to perform radiated and conducted emissions tests are accredited by American Association for Laboratory Accreditation Program for the specific scope accreditation under Lab Code: 0824-01 to perform Electromagnetic Interference tests according to FCC Part 15 and CISPR 22 requirements. In addition, the test facilities are listed with Industry Canada, Certification and Engineering Bureau, IC 2324G-1 for 3M Semi Anechoic Chamber A, 2324G-2 for 3M Semi Anechoic Chamber B.

Page 11 Rev.00

5.4TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo
IIIXA IBCC I		3M Semi Anechoic Chamber (FCC MRA: TW1039) to perform FCC Part 15 measurements	FCC MRA: TW1039
Taiwan	LP0002, RTTE01, FCC Method-47 CFR Part 15 Subpart C, D, H RSS-210, RSS-310 IDA TS SRD, AS/NZS 4268, AS/NZS 4771, TS 12.1 & 12,2, ETSI EN 300 440-1, ETSI EN 300 440-2, ETSI EN 300 328, ETSI EN 300 220-1, ETSI EN 300 220-2, ETSI EN 301 893, ETSI EN 301 489-1/3/7/17 FCC OET Bulletin 65 + Supplement C, EN 50360, EN 50361, EN 50371, RSS 102, EN 50383, EN 5038 EN 50392, IEC 62209, CNS 14958-1, CNS 14959 FCC Method -47 CFR Part 15 Subpart B IEC / EN 61000-3-2, IEC / EN 61000-3-3, IEC / EN 61000-4-2/3/4/5/6/8/11		Testing Laboratory 1309
Canada Industry Canada 3M Semi Anechoic Chamber (IC 2324G-1 / IC 2324G-2) to		3M Semi Anechoic Chamber (IC 2324G-1 / IC 2324G-2) to perform	Canada IC 2324G-1 IC 2324G-2

Report No.: T140113W02-RP1

Page 12 Rev.00

^{*} No part of this report may be used to claim or imply product endorsement by A2LA or any agency of the US Government.

6. SETUP OF EQUIPMENT UNDER TEST

6.1SETUP CONFIGURATION OF EUT

See test photographs attached in Appendix II for the actual connections between EUT and support equipment.

6.2SUPPORT EQUIPMENT

No	Equipment	Brand	Model	Series No.	FCC ID	Data Cable	Power Cord
	N/A						

Report No.: T140113W02-RP1

Remark:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

Page 13 Rev.00

7. APPLICABLE RULES FOR INDUSTRY CANADA RSS-210

Report No.: T140113W02-RP1

RSS-210 §2 General Certification Requirements and Specifications

RSS-210 §2.1 RSS-Gen Compliance

In addition to RSS-210, the requirements in RSS-Gen, *General Requirements and Information for the Certification of Radio Apparatus*, must be met.

RSS-210 §2.2 Emissions Falling Within Restricted Frequency Bands

Category I licence-exempt equipment is required to comply with the provisions in RSS-Gen with respect to emissions falling within restricted frequency bands. These restricted frequency bands are listed in RSS-Gen.

RSS-210 §2.3 Receivers

Category I equipment receivers for use with transmitters subject to RSS-210 must comply with the applicable requirements set out in RSS-Gen and be certified under RSS-210. Category II equipment receivers for use with transmitters subject to RSS-210 are exempt from certification, but are subject to compliance with RSS-Gen and RSS-310.

RSS-210 §2.5 General Field Strength Limits

RSS-Gen includes the general field strength limits of unwanted emissions, where applicable, for transmitters and receivers operating in accordance with the provisions specified in this standard. Unwanted emissions of transmitters and receivers are permitted to fall within the restricted bands listed in RSS-Gen, and including the TV bands, but fundamental emissions are prohibited in the restricted bands.

RSS-210 §2.5.1 Transmitters with Wanted Emissions that are Within the General Field Strength Limits

Whether or not their operation is addressed by published RSS standards, transmitters whose wanted and unwanted emissions are within the general field strength limits shown in RSS-Gen, they may operate in any of the frequency bands, other than the restricted bands listed in RSS-Gen and including the TV bands, and shall be certified under RSS-210. Under no conditions may the level of any unwanted emissions exceed the level of the fundamental emission.

Note: Devices operating below 490 kHz in which all emissions are at least 40 dB below the limit listed in RSS-Gen (*General Field Strength Limits for Transmitters at Frequencies below 30 MHz*) are Category II devices and are subject to RSS-310.

Page 14 Rev.00

RSS-210 §2.7 Tables

RSS-210 §Annex 8: Frequency Hopping and Digital Modulation Systems Operating in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz Bands

Report No.: T140113W02-RP1

This section applies to systems that employ frequency hopping (FH) and digital modulation technology in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands. Systems in these bands may employ frequency hopping, digital modulation and or a combination (hybrid) of both techniques.

A frequency hopping system that synchronizes with another or several other systems (to avoid frequency collision among them) via off-air sensing or via connecting cables is not hopping randomly and therefore is not in compliance with RSS-210.

RSS-210 §A8.1 Frequency Hopping Systems

Frequency hopping systems are spread spectrum systems in which the carrier is modulated with coded information in a conventional manner causing a conventional spreading of the RF energy about the carrier frequency. The frequency of the carrier is not fixed but changes at fixed intervals under the direction of a coded sequence.

Frequency hopping systems are not required to employ all available hopping frequencies during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream.

Incorporation of intelligence into a frequency hopping system that enables it to recognize other users of the band and to avoid occupied frequencies is permitted, provided that the frequency hopping system does it individually, and independently chooses or adapts its hopset. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

The following applies to frequency hopping systems in each of the three bands.

(a) The bandwidth of a frequency hopping channel is the 20 dB emission bandwidth, measured with the hopping stopped. The system RF bandwidth is equal to the channel bandwidth multiplied by the number of channels in the hopset. The hopset shall be such that the near term distribution of frequencies appears random, with sequential hops randomly distributed in both direction and magnitude of change in the hopset while the long term distribution appears evenly distributed.

Page 15 Rev.00

(b) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 0.125 W. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Report No.: T140113W02-RP1

(d) Frequency hopping systems operating in the 2400-2483.5 MHz band shall use at least 15 hopping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Transmissions on particular hopping frequencies may be avoided or suppressed provided that a minimum of 15 hopping channels are used.

RSS-210 §A8.2 Digital Modulation Systems

These include systems employing digital modulation techniques resulting in spectral characteristics similar to direct sequence systems. The following applies to all three bands.

RSS-210 §A8.4 Transmitter Output Power and e.i.r.p. Requirements

- (4) For systems employing digital modulation techniques operating in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands, the maximum peak conducted power shall not exceed 1 W. Except as provided in Section A8.4(5), the e.i.r.p. shall not exceed 4 W. As an alternative to a peak power measurement, compliance can be based on a measurement of the maximum conducted output power (see RSS-Gen)
- (5) Point-to-point systems in the bands 2400-2483.5 MHz and 5725-5850 MHz are permitted to have an e.i.r.p. higher than 4 W, provided that the higher e.i.r.p. is achieved by employing higher gain directional antennas and not higher transmitter output powers. Point-to-multipoint systems, omni-directional applications and multiple co-located transmitters transmitting the same information are prohibited from exceeding 4 W e.i.r.p. However, remote stations of point-to-multipoint systems shall be allowed to operate at greater than 4 W e.i.r.p, under the same conditions as for point-to-point systems.

Note: "Fixed, point-to-point operation", excludes point-to-multipoint systems, omnidirectional applications and multiple co-located transmitters transmitting the same information.

Page 16 Rev.00

RSS-210 §A8.5 Out-of-band Emissions

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the radio frequency power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under section A8.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Tables 2 and 3 is not required.

Report No.: T140113W02-RP1

RSS-Gen §2 General Information

RSS-Gen §2.1.2 Category II Equipment

Category II equipment comprises radio devices where a standard has been prescribed but for which a TAC is not required, that is, equipment certification by Industry Canada or a Certification Body (CB) is not required (certification exempt), pursuant to subsection 4(3) of the Radiocommunication Act. The manufacturer or importer shall nevertheless ensure that the standards are complied with. A test report shall be available on request and the device shall be properly labelled.

RSS-Gen §2.2 Receivers

Receivers that are used for radiocommunication other than broadcasting are defined as Category I equipment or Category II equipment, subject to compliance with applicable Industry Canada standards.

Receivers shall be capable of operation only with transmitters for which RSSs are published. Receivers are classified as described in sections 2.2.1 and 2.2.2.

RSS-Gen §2.2.1 Category I Equipment Receivers

A receiver is classified as Category I equipment if it meets one of the following conditions: (a) a stand-alone receiver (see Note 1, below), which operates on any frequency in the band 30-960 MHz, and is used for the reception of signals in that frequency band from a transmitter classified as Category I equipment;

- (b) a Citizen's Band (CB) receiver (26.96-27.410 MHz);
- (c) a scanner receiver.

Note 1: A *stand-alone receiver* is defined as any receiver that is not permanently combined together with a transmitter in a single case (transceiver), in which it functions as the receiver component of the transceiver.

Receivers classified as Category I equipment shall comply with the limits for receiver spurious emissions set out in RSS-Gen; however, equipment certification is granted under the applicable RSS standard along with the associated transmitter classified as Category I equipment. Scanner receivers are covered under their own specific RSS.

RSS-Gen §2.2.2 Category II Equipment Receivers

A receiver is classified as Category II equipment if it does not meet any of the conditions of Section 2.2.1.

Category II receivers shall comply with the applicable testing, labelling and user manual requirements in RSS-310.

Page 17 Rev.00

RSS-Gen §5.6 Exposure of Humans to RF Fields

Category I and Category II equipment shall comply with the applicable requirements of RSS-102.

RSS-Gen §6 Receiver Spurious Emission Standard

Receivers shall comply with the limits of spurious emissions set out in this section, measured over the frequency range determined in accordance with Section 4.10.

Report No.: T140113W02-RP1

RSS-Gen §6.1 Radiated Limits

Radiated spurious emission measurements shall be performed with the receiver antenna connected to the receiver antenna terminals.

Spurious emissions from receivers shall not exceed the radiated limits shown in the table below:

RSS-Gen Table 2 - Spurious Emission Limits for Receivers

Frequency (MHz)	Field Strength microvolts/m at 3 metres
30-88	100
88-216	150
216-960	200
Above 960	500

^{*}Measurements for compliance with limits in the above table may be performed at distances other than 3 metres, in accordance with Section 7.2.7.

Page 18 Rev.00

RSS- Gen Table 3: Restricted Frequency Bands (Note)

MHz	MHz	MHz	MHz	GHz
0.090-0.110	8.37625-8.38675		1718.8-1722.2	9.0-9.2
	8.41425-8.41475	156.52475-156.52525	2200-2300	9.3-9.5
2.1735-2.1905	12.29-12.293	156.7-156.9	2310-2390	10.6-12.7
3.020-3.026	12.51975-12.52025			13.25-13.4
4.125-4.128	12.57675-12.57725		2655-2900	14.47-14.5
4.17725-4.17775	13.36-13.41	240-285	3260-3267	15.35-16.2
4.20725-4.20775	16.42-16.423	322-335.4	3332-3339	17.7-21.4
5.677-5.683	16.69475-16.69525	399.9-410	3345.8-3358	22.01-23.12
6.215-6.218	16.80425-16.80475	608-614	3500-4400	23.6-24.0
6.26775-6.26825	25.5-25.67	960-1427	4500-5150	31.2-31.8
6.31175-6.31225	37.5-38.25	1435-1626.5	5350-5460	36.43-36.5
8.291-8.294	73-74.6; 74.8-75.2	1645.5-1646.5	7250-7750	Above 38.6
8.362-8.366	108-138	1660-1710	8025-8500	

Report No.: T140113W02-RP1

Note: Certain frequency bands listed in Table 2 and above 38.6 GHz are designated for low-power licence-exempt applications. These frequency bands and the requirements that apply to the devices are set out in this Standard as well as RSS-310.

RSS- Gen Table 5: General Field Strength Limits for Transmitters at Frequencies Above 30 MHz

Frequency (MHz)	Field Strength (microvolt/m at 3 metres)
30-88	100
88-216	150
216-960	200
Above 960	500

Note: Transmitting devices are not permitted in Table 1 bands or, unless stated otherwise, in TV bands (54-72 MHz, 76-88 MHz, 174-216 MHz, 470-608 MHz and 614-806 MHz).

Page 19 Rev.00

RSS- Gen Table 6: General Field Strength Limits for Transmitters at Frequencies Below 30 MHz (Transmit)

Report No.: T140113W02-RP1

Frequency (fundamental or spurious)	Field Strength (microvolts/m)	Magnetic H-Field (microamperes/m)	Measurement Distance (metres)
9-490 kHz	2,400/F (F in kHz)	2,400/377F (F in Hz)	300
490-1.705 kHz	24,000/F (F in kHz)	24,000/377F (F in kHz)	30
1.705-30 MHz	30	N/A	30

Note: The emission limits for the bands 9-90 kHz and 110-490 kHz are based on measurements employing an average detector.

Page 20 Rev.00

RSS-Gen §7.1.2 Transmitter Antenna

A transmitter can only be sold or operated with antennas with which it was approved. Transmitter may be approved with multiple antenna types. An antenna type comprises antennas having similar in-band and out-of-band radiation patterns. Testing shall be performed using the highest gain antenna of each combination of transmitter and antenna type for which approval is being sought, with the transmitter output power set at the maximum level. Any antenna of the same type having equal or lesser gain as an antenna that had been successfully tested with the transmitter, will also be considered approved with the transmitter, and may be used and marketed with the transmitter. For Category I transmitters, the manufacturer shall include with the application for certification a list of acceptable antenna types to be used with the transmitter.

Report No.: T140113W02-RP1

When a measurement at the antenna connector is used to determine RF output power, the effective gain of the device's antenna shall be stated, based on measurement or on data from the antenna manufacturer.

For transmitters of RF output power of 10 milliwatts or less, only the portion of the antenna gain that is in excess of 6 dBi (6 dB above isotropic gain) shall be added to the measured RF output power to demonstrate compliance with the radiated power limits specified in the applicable standard. For transmitters of output power greater than 10 milliwatts, the total antenna gain shall be added to the measured RF output power to demonstrate compliance to the specified radiated power limits. User manuals for transmitters shall display the following notice in a conspicuous location:

Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication.

The above notice may be affixed to the device instead of displayed in the user manual.

User manuals for transmitters equipped with detachable antennas shall also contain the following notice in a conspicuous location:

This radio transmitter (identify the device by certification number, or model number if Category II) has been approved by Industry Canada to operate with the antenna types listed below with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.

Immediately following the above notice, the manufacturer shall provide a list of all antenna types approved for use with the transmitter, indicating the maximum permissible antenna gain (in dBi) and required impedance for each.

Page 21 Rev.00

RSS-Gen §7.2.4 Transmitter and Receiver AC Power Lines Conducted Emission Limits

Report No.: T140113W02-RP1

Except when the requirements applicable to a given device state otherwise, for any radio apparatus equipped to operate from the public utility AC power supply, either directly or indirectly (such as with a battery charger), the radio frequency voltage of emissions conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in the table below. The more stringent limit applies at the frequency range boundaries.

The conducted emissions shall be measured with a 50 ohm/50 microhenry line impedance stabilization network (LISN).

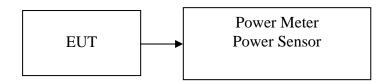
RSS-Gen Table 4 – AC Power Line Conducted Emission Limits

Frequency Range	Conducted limit (dBµV)			
(MHz)	Quasi-peak	Average		
0.15 to 0.5	66 to 56*	56 to 46*		
0.5 to 5	56	46		
5 to 30	60	50		

^{*}Decreases with the logarithm of the frequency.

Page 22 Rev.00

7.1 PEAK POWER


LIMIT

The maximum peak output power of the intentional radiator shall not exceed the following:

Report No.: T140113W02-RP1

- 1. According to \$15.247(b)(3), for systems using digital modulation in the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz: 1 Watt.
- 2. According to §15.247(b)(4), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Test Configuration

TEST PROCEDURE

The transmitter output is connected to the Power Meter. The Power Meter is set to the peak power detection.

TEST RESULTS

No non-compliance noted.

Page 23 Rev.00

Test Data

Test mode: IEEE 802.11b mode

Channel	Frequency (MHz)	Output Power (dBm)	Output Power (W)	Limit (W)	Result
Low	2412	18.59	0.0723		PASS
Mid	2437	18.61	0.0726	1.00	PASS
High	2462	18.65	0.0733		PASS

Report No.: T140113W02-RP1

Test mode: IEEE 802.11g mode

Channel	Frequency (MHz)	Output Power (dBm)	Output Power (W)	Limit (W)	Result
Low	2412	22.50	0.1778		PASS
Mid	2437	22.95	0.1972	1.00	PASS
High	2462	22.68	0.1854		PASS

Test mode: IEEE 802.11n HT 20 mode

Channel	Frequency (MHz)	Chain 0 Output Power (dBm)	Chain 1 Output Power (dBm)	Total Output Power (dBm)	Output Power (W)	Limit (W)	Result
Low	2412	21.94	22.91	25.46	0.3516		PASS
Mid	2437	22.61	23.50	26.09	0.4064	0.95	PASS
High	2462	22.07	22.81	25.47	0.3524		PASS

Remark:

- 1. Total Output Power (w) = Chain 0 (10° (Output Power /10)/1000)+ Chain 1 (10° (Output Power /10)/1000)
- 2. The maximum antenna gain is 6.18dBi; therefore the reduction due to antenna gain is 0.18dBi, so the limit is 29.82dBm.

Page 24 Rev.00

Test mode: IEEE 802.11a mode

Channel	Frequency (MHz)	Output Power (dBm)	Output Power (W)	Limit (W)	Result
Low	5745	22.27	0.1687		PASS
Mid	5785	22.30	0.1698	1.00	PASS
High	5825	22.04	0.1600		PASS

Report No.: T140113W02-RP1

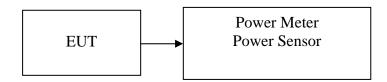
Test mode: IEEE 802.11n HT 20 mode

1est mode: IEEE ooz.iiii iii zo mode							
Channel	Frequency (MHz)	Chain 0 Output Power (dBm)	Chain 1 Output Power (dBm)	Total Output Power (dBm)	Output Power (W)	Limit (W)	Result
Low	5745	21.75	22.16	24.97	0.3141		PASS
Mid	5785	22.01	22.03	25.03	0.3184	1.00	PASS
High	5825	21.74	22.02	24.89	0.3083		PASS

Test mode: IEEE 802.11n HT 40 mode

Channel	Frequency (MHz)	Chain 0 Output Power (dBm)	Chain 1 Output Power (dBm)	Total Output Power (dBm)	Output Power (W)	Limit (W)	Result
Low	5755	21.86	21.78	24.83	0.3041	1.00	PASS
High	5795	21.87	22.28	25.09	0.3228	1.00	PASS

Remark: Total Output Power $(w) = Chain \ 0 \ (10^{\circ}(Output \ Power \ /10)/1000) + Chain \ 1 \ (10^{\circ}(Output \ Power \ /10)/1000)$


Page 25 Rev.00

7.2 AVERAGE POWER

LIMIT

None; for reporting purposes only.

Test Configuration

TEST PROCEDURE

The transmitter output is connected to the Power Meter. The Power Meter is set to the avg power detection.

TEST RESULTS

No non-compliance noted.

Page 26 Rev.00

Test Data

Test mode: IEEE 802.11b mode

Channel	Frequency (MHz)	Output Power (dBm)	Output Power (W)	
Low	2412	15.30	0.0339	
Mid	2437	15.33	0.0341	
High	2462	15.37	0.0344	

Test mode: IEEE 802.11g mode

1000 110000 11111 002011 5 111000							
Channel	Frequency (MHz)	Output Power (dBm)	Output Power (W)				
Low	2412	16.60	0.0457				
Mid	2437	16.77	0.0475				
High	2462	16.02	0.0400				

Test mode: IEEE 802.11n HT 20 mode

1000 model IEEE COZVIII III Zo mode					
Channel	Frequency (MHz)	Chain 0 Output Power (dBm)	Chain 1 Output Power (dBm)	Total Output Power (dBm)	Output Power (W)
Low	2412	14.89	15.68	18.31	0.3516
Mid	2437	15.85	16.50	19.20	0.4064
High	2462	13.97	14.59	17.30	0.3524

Remark: Total Output Power $(w) = Chain \ 0 \ (10^{\circ}(Output \ Power \ /10)/1000) + Chain \ 1 \ (10^{\circ}(Output \ Power \ /10)/1000)$

Page 27 Rev.00

Test mode: IEEE 802.11a mode

Channel	Frequency (MHz)	Output Power (dBm)	Output Power (W)
Low	5745	14.65	0.0292
Mid	5785	14.71	0.0296
High	5825	14.68	0.0294

Test mode: IEEE 802.11n HT 20 mode

Channel	Frequency (MHz)	Chain 0 Output Power (dBm)	Chain 1 Output Power (dBm)	Total Output Power (dBm)	Output Power (W)
Low	5745	14.22	14.56	17.40	0.0550
Mid	5785	14.21	14.29	17.26	0.0532
High	5825	13.87	14.65	17.29	0.0536

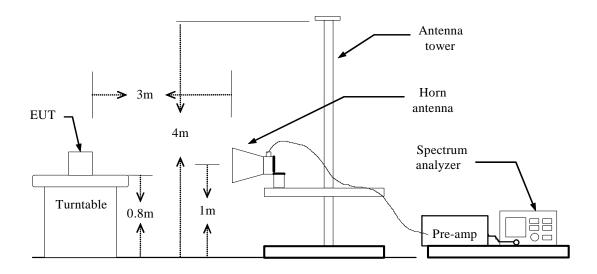
Test mode: IEEE 802.11n HT 40 mode

Channel	Frequency (MHz)	Chain 0 Output Power (dBm)	Chain 1 Output Power (dBm)	Total Output Power (dBm)	Output Power (W)
Low	5755	14.31	14.50	17.42	0.0552
High	5795	13.60	14.60	17.14	0.0518

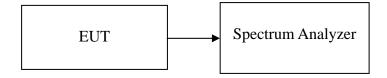
Remark: Total Output Power $(w) = Chain \ 0 \ (10^{\circ}(Output \ Power \ /10)/1000) + Chain \ 1 \ (10^{\circ}(Output \ Power \ /10)/1000)$

Page 28 Rev.00

7.3 BAND EDGES MEASUREMENT


LIMIT

According to §15.247(d), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see Section 15.205(c)).


Report No.: T140113W02-RP1

Test Configuration

For Radiated

For Conducted

Page 29 Rev.00

TEST PROCEDURE

For Radiated

- 1. The EUT is placed on a turntable, which is 0.8m above the ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.

Report No.: T140113W02-RP1

- 4. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
- (a) PEAK: RBW=1MHz / VBW=3MHz / Sweep=AUTO
- (b) AVERAGE: RBW=1MHz / VBW= 300Hz / Sweep=AUTO
- 5. Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are measured.

For Conducted

Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

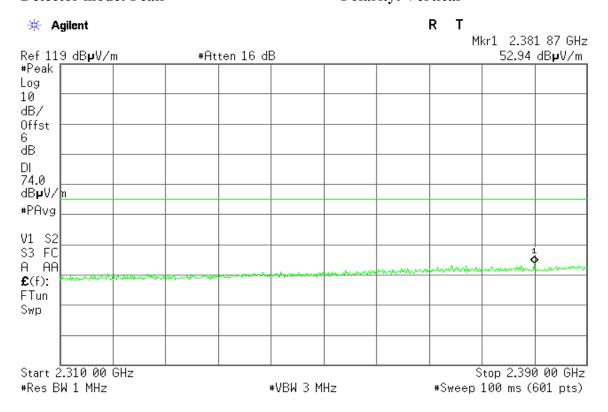
The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 100 kHz.

TEST RESULTS

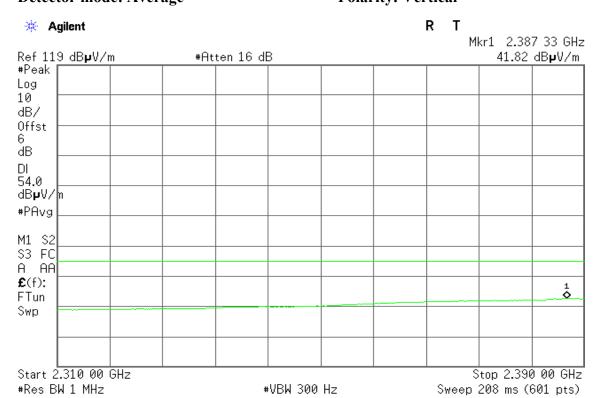
Refer to attach spectrum analyzer data chart.

Page 30 Rev.00

IEEE 802.11a Mode

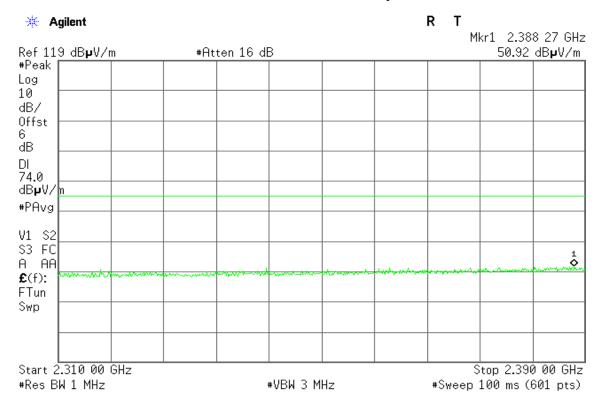

Operating Frequency: 5725-5850MHz
 CH Low: 5745MHz, CH High: 5825MHz

Because the mentioned conditions, the test is not applicable.

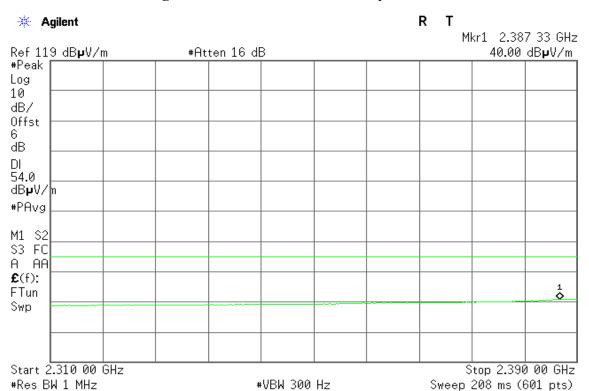

Page 31 Rev.00

Band Edges (IEEE 802.11b mode / CH Low)

Detector mode: Peak Polarity: Vertical

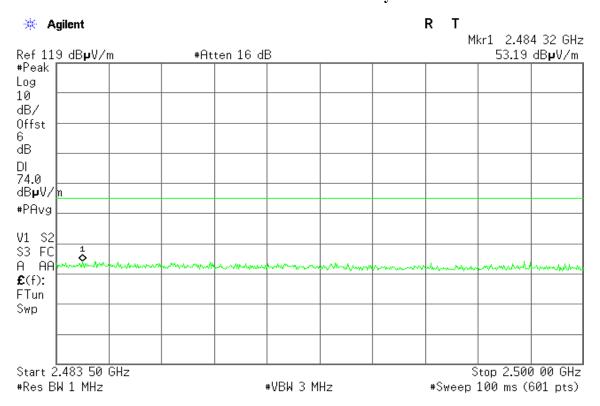


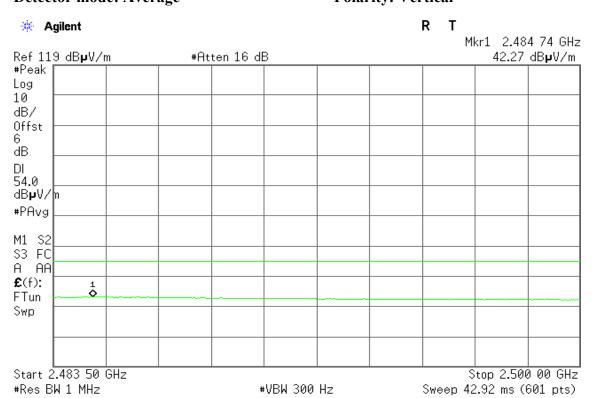
Detector mode: Average Polarity: Vertical



Page 32 Rev.00

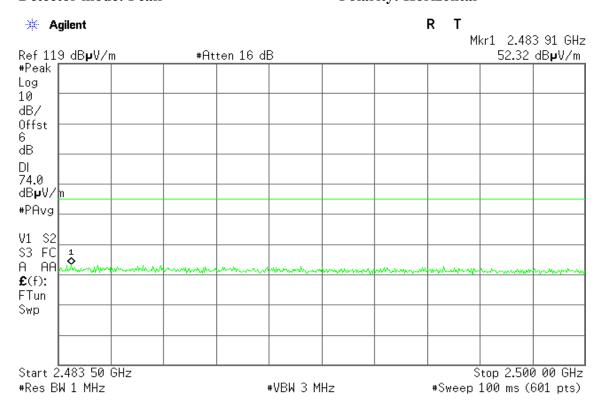
Detector mode: Peak Polarity: Horizontal


Detector mode: Average Polarity: Horizontal


Page 33 Rev.00

Band Edges (IEEE 802.11b mode / CH High)

Detector mode: Peak Polarity: Vertical

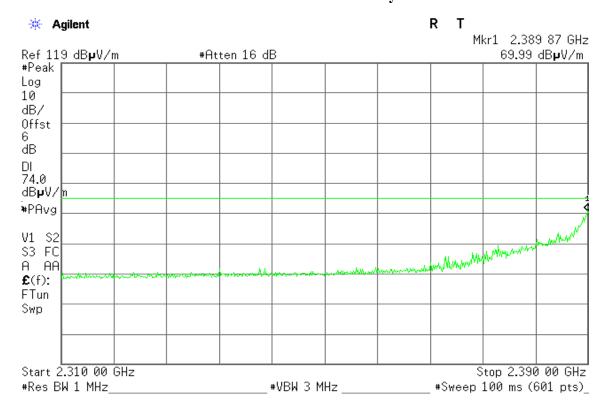


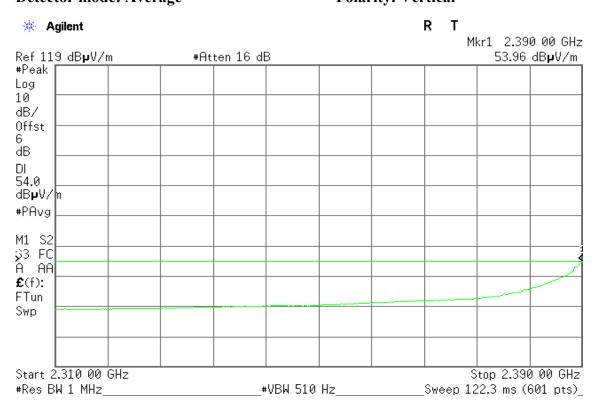
Detector mode: Average Polarity: Vertical



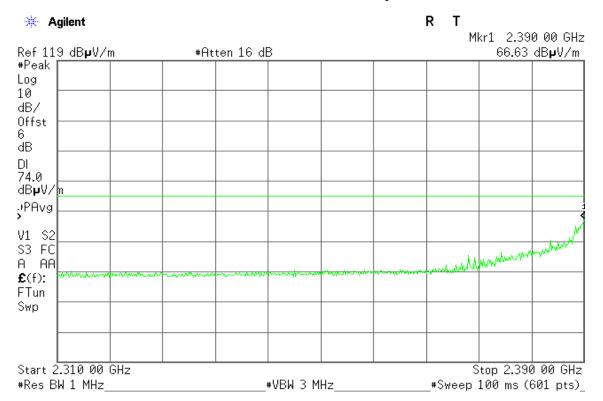
Page 34 Rev.00

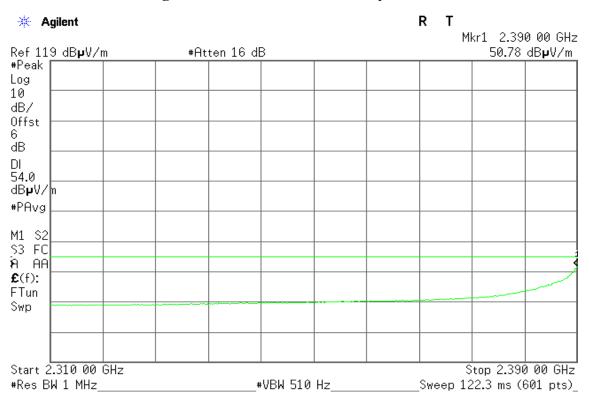
Detector mode: Peak Polarity: Horizontal


Detector mode: Average Polarity: Horizontal

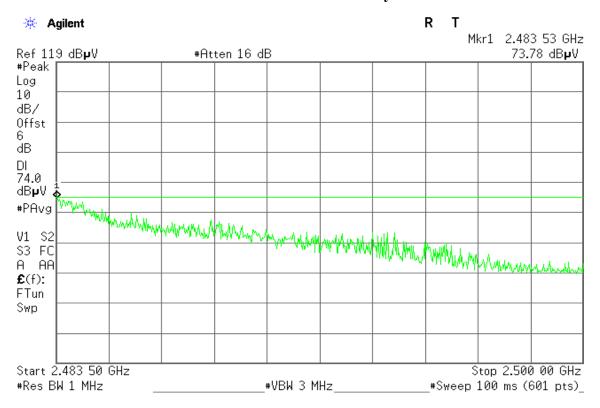

Page 35 Rev.00

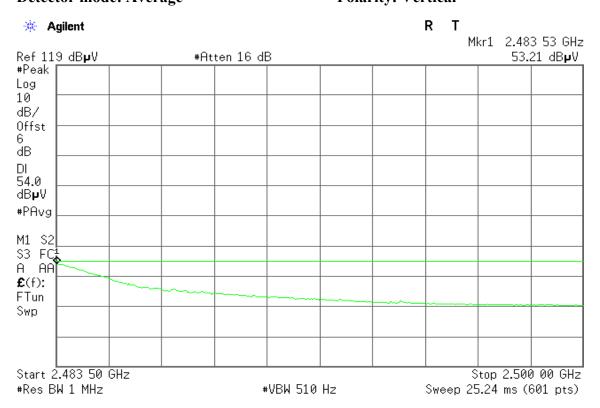
Band Edges (IEEE 802.11g mode / CH Low)


Detector mode: Peak Polarity: Vertical

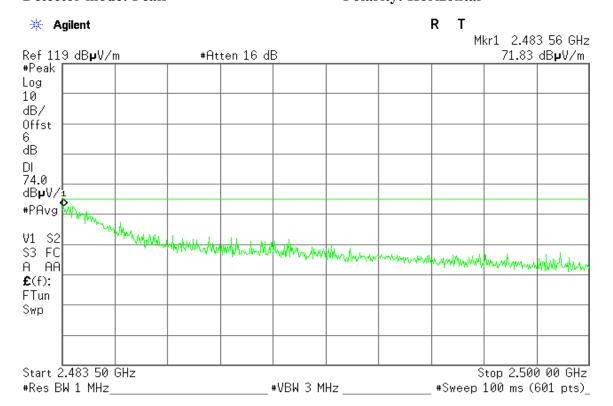

Detector mode: Average Polarity: Vertical

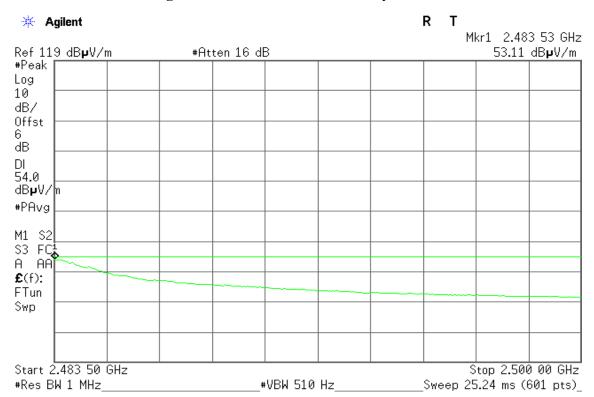
Page 36 Rev.00


Detector mode: Average Polarity: Horizontal

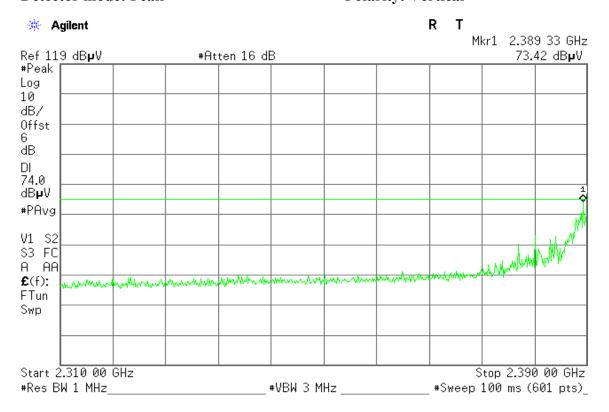

Page 37 Rev.00

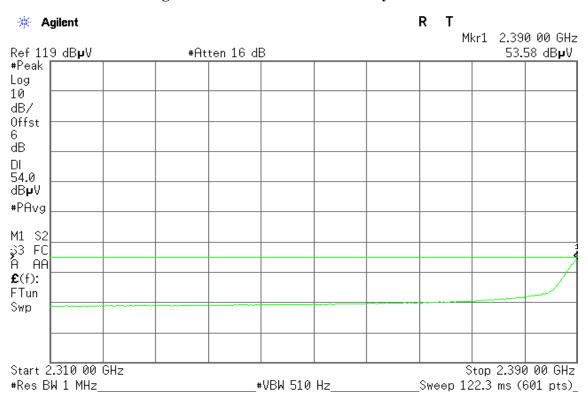
Band Edges (IEEE 802.11g mode / CH High)


Detector mode: Peak Polarity: Vertical

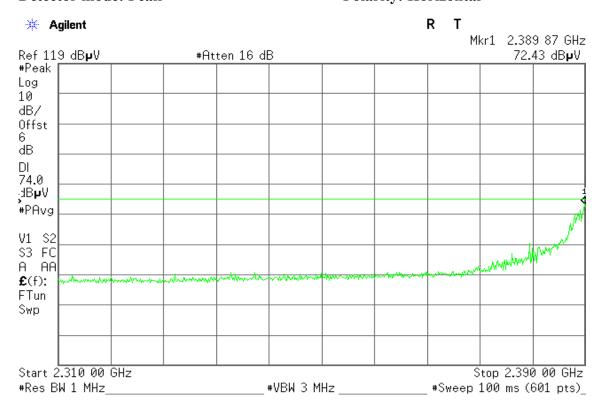

Detector mode: Average Polarity: Vertical

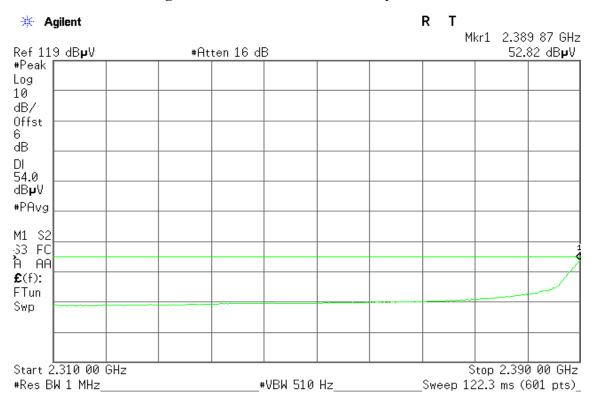
Page 38 Rev.00


Detector mode: Average Polarity: Horizontal

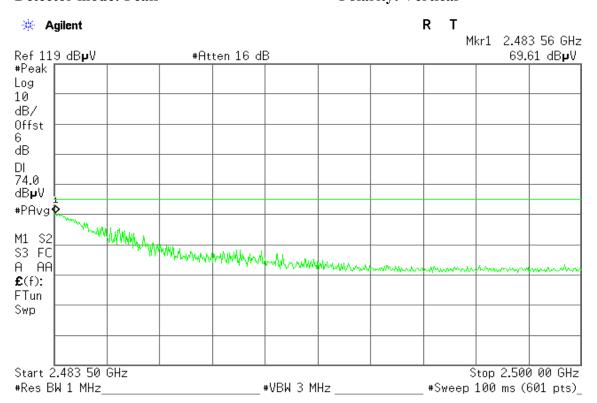

Page 39 Rev.00

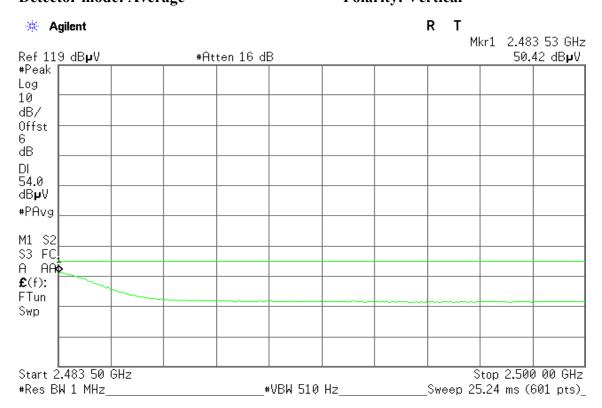
Band Edges (IEEE 802.11n HT 20 mode / CH Low)


Detector mode: Peak Polarity: Vertical

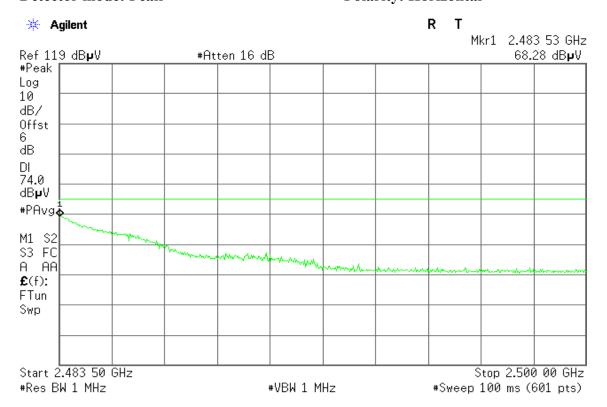

Detector mode: Average Polarity: Vertical

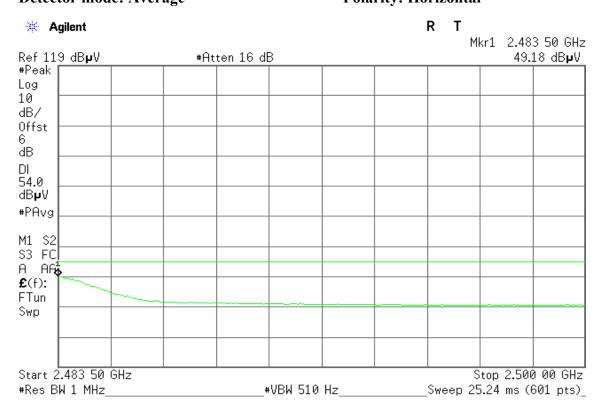
Page 40 Rev.00


Detector mode: Average Polarity: Horizontal


Page 41 Rev.00

Band Edges (IEEE 802.11n HT 20 mode / CH High)


Detector mode: Peak Polarity: Vertical


Detector mode: Average Polarity: Vertical

Page 42 Rev.00

Detector mode: Average Polarity: Horizontal

Page 43 Rev.00

7.4RADIATED EMISSIONS

LIMIT

All spurious emissions shall comply with the limits of §15.209(a) and RSS-Gen Table 2 & Table 5.

Report No.: T140113W02-RP1

RSS-Gen Table 2 & Table 5: General Field Strength Limits for Transmitters and Receivers at Frequencies Above 30 MHz (Note)

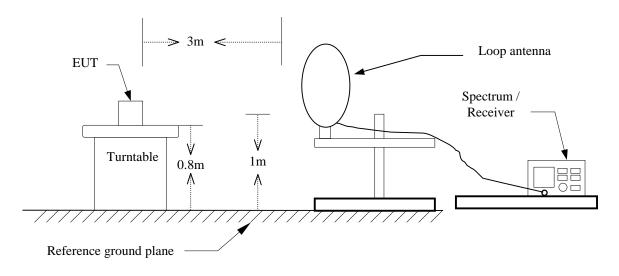
Frequency	Field Strength microvolts/m at 3 metres (watts, e.i.r.p.)						
(MHz)	Transmitters	Receivers					
30-88	100 (3 nW)	100 (3 nW)					
88-216	150 (6.8 nW)	150 (6.8 nW)					
216-960	200 (12 nW)	200 (12 nW)					
Above 960	500 (75 nW)	500 (75 nW)					

Note: *Measurements for compliance with limits in the above table may be performed at distances other than 3 metres, in accordance with Section 7.2.7.

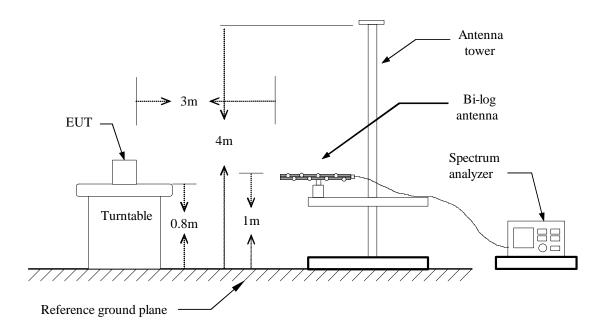
Transmitting devices are not permitted in Table 1 bands or, unless stated otherwise, in TV bands (54-72 MHz, 76-88 MHz, 174-216 MHz, 470-608 MHz and 614-806 MHz).

RSS-Gen Table 6: General Field Strength Limits for Transmitters at Frequencies Below 30 MHz (Transmit)

Frequency	Frequency Field Strength (microvolts/m)		Measurement Distance (metres)
9-490 kHz	2,400/F (F in kHz)	2,400/377F (F in kHz)	3000
490-1,705 kHz	24,000/F (F in kHz)	24,000/377F (F in kHz)	30
1.705-30 MHz	30	N/A	30

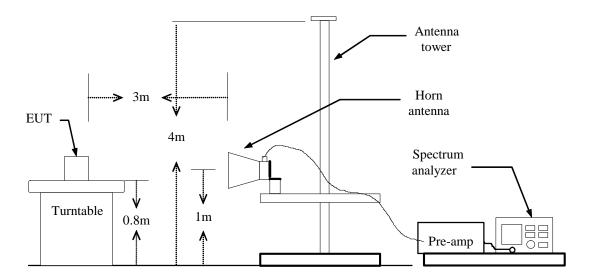

Note: The emission limits for the bands 9-90 kHz and 110-490 kHz are based on measurements employing an average detector.

Page 44 Rev.00


Report No.: T140113W02-RP1

Test Configuration

$9kHz \sim 30MHz$


$30MHz \sim 1GHz$

Page 45 Rev.00

Report No.: T140113W02-RP1

Above 1 GHz

Page 46 Rev.00

TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.

Report No.: T140113W02-RP1

- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Set the spectrum analyzer in the following setting as:

Below 1GHz:

RBW=100kHz / VBW=300kHz / Sweep=AUTO

Above 1GHz:

(a) PEAK: RBW=VBW=1MHz / Sweep=AUTO

(b) AVERAGE: RBW=1MHz / VBW=300Hz / Sweep=AUTO

7. Repeat above procedures until the measurements for all frequencies are complete.

Page 47 Rev.00

Below 1GHz

Operation Mode: Normal Link **Test Date:** January 13, 2014

Report No.: T140113W02-RP1

Temperature: 27°C **Tested by:** Rex Huang

Humidity: 53% RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant. Pol. (H/V)
42.9333	54.85	-18.87	35.98	40.00	-4.02	QP	V
175.5000	49.51	-19.11	30.40	43.50	-13.10	Peak	V
253.1000	52.49	-18.18	34.31	46.00	-11.69	Peak	V
288.6667	47.86	-16.61	31.25	46.00	-14.75	Peak	V
424.4667	40.91	-13.35	27.56	46.00	-18.44	Peak	V
924.0167	32.31	-5.83	26.48	46.00	-19.52	Peak	V
42.9333	42.24	-18.87	23.37	40.00	-16.63	Peak	Н
123.7667	42.77	-17.43	25.34	43.50	-18.16	Peak	Н
222.3833	49.34	-18.95	30.39	46.00	-15.61	Peak	Н
264.4167	51.53	-17.35	34.18	46.00	-11.82	Peak	Н
416.3833	43.84	-13.57	30.27	46.00	-15.73	Peak	Н
566.7333	37.03	-10.84	26.19	46.00	-19.81	Peak	Н

Remark:

- 1. Measuring frequencies from 30 MHz to the 1GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using peak/quasi-peak detector mode.
- 3. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit or as required by the applicant.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. Margin(dB) = Result(dBuV/m) Limit(dBuV/m).

Page 48 Rev.00

Above 1 GHz

Operation Mode: TX / IEEE 802.11b / CH Low **Test Date:** January 13, 2014

Report No.: T140113W02-RP1

Temperature:27°CTested by: Rex HuangHumidity:53 % RHPolarity: Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
2616.667	53.31	-3.23	50.08	74.00	-23.92	peak	V
4825.000	50.92	2.91	53.83	74.00	-20.17	peak	V
4825.000	50.11	2.91	53.02	54.00	-0.98	AVG	V
N/A							
2610.000	55.19	-3.24	51.95	74.00	-22.05	peak	Н
4825.000	50.26	2.91	53.17	74.00	-20.83	peak	Н
4825.000	47.84	2.91	50.75	54.00	-3.25	AVG	Н
N/A							

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin(dB) = Remark result(dBuV/m) Average limit(dBuV/m).

Page 49 Rev.00

Operation Mode: TX / IEEE 802.11b / CH Mid Test Date: January 13, 2014

Report No.: T140113W02-RP1

Temperature: 27°C **Tested by:** Rex Huang

Humidity: 53 % RH Polarity: Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
4875.000	48.07	2.93	51.00	74.00	-23.00	peak	V
N/A							
2640.000	54.76	-3.17	51.59	74.00	-22.41	peak	Н
4875.000	48.58	2.93	51.51	74.00	-22.49	peak	Н
N/A							

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin(dB) = Remark result(dBuV/m) Average limit(dBuV/m).

Page 50 Rev.00

Operation Mode: TX / IEEE 802.11b / CH High Test Date: January 13, 2014

Report No.: T140113W02-RP1

Temperature: 27°C **Tested by:** Rex Huang

Humidity: 53 % RH Polarity: Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
2646.667	53.14	-3.16	49.98	74.00	-24.02	peak	V
4925.000	46.89	3.02	49.91	74.00	-24.09	peak	V
7383.333	42.38	9.53	51.91	74.00	-22.09	peak	V
N/A							
2583.333	52.93	-3.30	49.63	74.00	-24.37	peak	Н
4925.000	47.87	3.02	50.89	74.00	-23.11	peak	Н
N/A							

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin(dB) = Remark result(dBuV/m) Average limit(dBuV/m).

Page 51 Rev.00

Operation Mode: TX / IEEE 802.11g / CH Low Test Date: January 13, 2014

Report No.: T140113W02-RP1

Temperature: 27°C **Tested by:** Rex Huang

Humidity: 53 % RH Polarity: Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
2843.333	53.08	-2.73	50.35	74.00	-23.65	peak	V
4816.667	46.16	2.91	49.07	74.00	-24.93	peak	V
N/A							
2986.667	53.67	-2.42	51.25	74.00	-22.75	peak	Н
4816.667	46.77	2.91	49.68	74.00	-24.32	peak	Н
N/A							

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin(dB) = Remark result(dBuV/m) Average limit(dBuV/m).

Page 52 Rev.00

Operation Mode: TX / IEEE 802.11g / CH Mid Test Date: January 13, 2014

Report No.: T140113W02-RP1

Temperature: 27°C **Tested by:** Rex Huang

Humidity: 53 % RH Polarity: Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
2780.000	53.40	-2.87	50.53	74.00	-23.47	peak	V
4866.667	44.33	2.93	47.26	74.00	-26.74	peak	V
N/A							
2646.667	53.62	-3.16	50.46	74.00	-23.54	peak	Н
4875.000	46.24	2.93	49.17	74.00	-24.83	peak	Н
N/A							

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin(dB) = Remark result(dBuV/m) Average limit(dBuV/m).

Page 53 Rev.00

Operation Mode: TX / IEEE 802.11g / CH High Test Date: January 13, 2014

Report No.: T140113W02-RP1

Temperature: 27°C **Tested by:** Rex Huang

Humidity: 53 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
2653.333	53.41	-3.15	50.26	74.00	-23.74	peak	V
4925.000	43.98	3.02	47.00	74.00	-27.00	peak	V
N/A							
2953.333	53.06	-2.49	50.57	74.00	-23.43	peak	Н
4916.667	44.73	3.00	47.73	74.00	-26.27	peak	Н
N/A							

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin(dB) = Remark result(dBuV/m) Average limit(dBuV/m).

Page 54 Rev.00

Operation Mode: TX / IEEE 802.11n HT 20 MHz mode / CH Low Test Date: January 25, 2014

Report No.: T140113W02-RP1

Temperature: 25°C **Tested by:** Rex Huang

Humidity: 53 % RH Polarity: Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
2610.000	56.83	-3.24	53.59	74.00	-20.41	peak	V
2610.000	45.72	-3.24	42.48	54.00	-11.52	AVG	V
2806.667	58.05	-2.81	55.24	74.00	-18.76	peak	V
2806.667	47.67	-2.81	44.86	54.00	-9.14	AVG	V
4825.000	46.55	2.91	49.46	74.00	-24.54	peak	V
7233.333	41.57	9.63	51.20	74.00	-22.80	peak	V
2612.000	57.62	-3.24	54.38	74.00	-19.62	peak	Н
2612.000	45.48	-3.24	42.24	54.00	-11.76	AVG	Н
2816.000	57.86	-2.79	55.07	74.00	-18.93	peak	Н
2816.000	46.51	-2.79	43.72	54.00	-10.28	AVG	Н
4825.000	44.07	2.91	46.98	74.00	-27.02	peak	Н
N/A							

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin(dB) = Remark result(dBuV/m) Average limit(dBuV/m).

Page 55 Rev.00