

Global United Technology Services Co., Ltd.

Report No.: GTSL202107000249F01

TEST REPORT

Shenzhen Golden Vision Technology Development Co., Ltd. Applicant:

No.6 Bao Fu Road, Bao Lai industrial Park, Shang Mu Gu Address of Applicant:

Villiage, Pinghu Street, Longgang District, Shenzhen City,

Guangdong Province, 518000, China

Shenzhen Golden Vision Technology Development Co., Ltd Manufacturer/Factory:

No.6 Bao Fu Road, Bao Lai industrial Park, Shang Mu Gu Address of

Manufacturer/Factory: Villiage, Pinghu Street, Longgang District, Shenzhen City,

Guangdong Province, 518000, China

Equipment Under Test (EUT)

Product Name: Smart Pet Feeder

Model No.: **BL6-WIFI**

BL5-WIFI, BL4-WIFI, BL3-WIFI, BL7-WIFI Add. Model No.:

N/A Trade Mark:

2APD7-BL6-WIFI FCC ID:

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: July 26, 2021

Date of Test: July 26, 2021 to September 10, 2021

Date of report issued: September 13, 2021

PASS * **Test Result:**

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Luc **Laboratory Manager**

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

2 Version

Version No.	Date	Description
V1.0	September 13, 2021	Original

Prepared By:	Joseph Du	Date:	September 13, 2021
	Project Engineer		
Check By:	Labour ong Lund	Date:	September 13, 2021
	Reviewer		

3 Contents

	Pag
1 COVER PAGE	
2 VERSION	
4 TEST SUMMARY	
5.4 DEVIATION FROM STANDARDS	
5.5 ABNORMALITIES FROM STANDARD	CONDITIONS
5.6 TEST FACILITY	
5.7 TEST LOCATION	
5.8 Additional Instructions	
6 TEST INSTRUMENTS LIST	
7 TEST RESULTS AND MEASUREME	NT DATA1
7.1 ANTENNA REQUIREMENT	A A A A A A A A
	1
	4 4 4 4 4 4
7.5 POWER SPECTRAL DENSITY	1
7.6 BAND EDGES	
	2
7.6.2 Radiated Emission Method	2
7.7 Spurious Emission	2
	2
7.7.2 Radiated Emission Method	3
8 TEST SETUP PHOTO	3
9 FUT CONSTRUCTIONAL DETAILS	

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Remarks:

1. Pass: The EUT complies with the essential requirements in the standard.

2. Test according to ANSI C63.10:2013

Measurement Uncertainty

No.	ltem S	Measurement Uncertainty
1	Radio Frequency	1 x 10 ⁻⁷
2	Duty cycle	0.37%
3	Occupied Bandwidth	2.8dB
4	RF conducted power	0.75dB
5	RF power density	3dB
6	Conducted Spurious emissions	2.58dB
7	AC Power Line Conducted Emission	3.44dB (0.15MHz ~ 30MHz)
		3.1dB (9kHz-30MHz)
9		3.8039dB (30MHz-200MHz)
8	Radiated Spurious emission test	3.9679dB (200MHz-1GHz)
0	0 0 0 0 0	4.29dB (1GHz-18GHz)
		3.30dB (18GHz-40GHz)
9	Temperature test	1°C
10	Humidity test	3%
11	Time	3%

5 General Information

5.1 General Description of EUT

Product Name:	Smart Pet Feeder
Model No.:	BL6-WIFI
Add. Model No.:	BL5-WIFI, BL4-WIFI, BL3-WIFI, BL7-WIFI
Test sample(s) ID:	GTSL202107000249-1
Sample(s) Status:	Engineer sample
Serial No.:	N/A
Hardware Version:	V1.0
Software Version:	V1.0
Operation Frequency:	2402MHz~2480MHz
Channel Numbers:	40
Channel Separation:	2MHz
Modulation Type:	GFSK
Antenna Type:	PCB Antenna
Antenna Gain:	2.5dBi (declare by applicant)
Power Supply:	XED-UL050100CU

Operation I	Operation Frequency each of channel								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency		
1	2402 MHz	11	2422 MHz	21	2442 MHz	31	2462 MHz		
2	2404 MHz	12	2424 MHz	22	2444 MHz	32	2464 MHz		
3	2406 MHz	13	2426 MHz	23	2446 MHz	33	2466 MHz		
4	2408 MHz	14	2428 MHz	24	2448 MHz	34	2468 MHz		
5	2410 MHz	15	2430 MHz	25	2450 MHz	35	2470 MHz		
6	2412 MHz	16	2432 MHz	26	2452 MHz	36	2472 MHz		
7 /	2414 MHz	17	2434 MHz	27	2454 MHz	37	2474 MHz		
8	2416 MHz	18	2436 MHz	28	2456 MHz	38	2476 MHz		
9	2418 MHz	19	2438 MHz	29	2458 MHz	39	2478 MHz		
10	2420 MHz	20	2440 MHz	30	2460 MHz	40	2480 MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2442MHz
The Highest channel	2480MHz

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.3 Description of Support Units

None.

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC—Registration No.: 381383

Designation Number: CN5029

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files.

• IC —Registration No.: 9079A

CAB identifier: CN0091

The 3m Semi-

anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

5.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.8 Additional Instructions

Test Software	RTLBTAPP_20190517_V5.2.2.51	de de	100	4	1
Power level setup	Default				4

Global United Technology Services Co., Ltd.

No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

6 Test Instruments list

Rad	iated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 02 2021	July. 01 2022
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 24 2021	June. 23 2022
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 24 2021	June. 23 2022
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 24 2021	June. 23 2022
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 24 2021	June. 23 2022
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
8	Coaxial Cable	GTS	N/A	GTS213	June. 24 2021	June. 23 2022
9	Coaxial Cable	GTS	N/A	GTS211	June. 24 2021	June. 23 2022
10	Coaxial cable	GTS	N/A	GTS210	June. 24 2021	June. 23 2022
11	Coaxial Cable	GTS	N/A	GTS212	June. 24 2021	June. 23 2022
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 24 2021	June. 23 2022
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 24 2021	June. 23 2022
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 24 2021	June. 23 2022
15	Band filter	Amindeon	82346	GTS219	June. 24 2021	June. 23 2022
16	Power Meter	Anritsu	ML2495A	GTS540	June. 24 2021	June. 23 2022
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 24 2021	June. 23 2022
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 24 2021	June. 23 2022
19	Splitter	Agilent	11636B	GTS237	June. 24 2021	June. 23 2022
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 24 2021	June. 23 2022
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 18 2020	Oct. 17 2021
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 18 2020	Oct. 17 2021
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 18 2020	Oct. 17 2021
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 24 2021	June. 23 2022

Con	ducted Emission	49	9 9 9 9		9	49
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2021	May.14 2022
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 24 2021	June. 23 2022
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 24 2021	June. 23 2022
4	ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	GTS226	June. 24 2021	June. 23 2022
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
7	Thermo meter	KTJ	TA328	GTS233	June. 24 2021	June. 23 2022
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 24 2021	June. 23 2022
9	ISN	SCHWARZBECK	NTFM 8158	GTS565	June. 24 2021	June. 23 2022
10	High voltage probe	SCHWARZBECK	TK9420	GTS537	July. 09 2021	July. 08 2022

RF Conducted Test:							
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 24 2021	June. 23 2022	
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 24 2021	June. 23 2022	
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 24 2021	June. 23 2022	
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 24 2021	June. 23 2022	
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 24 2021	June. 23 2022	
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 24 2021	June. 23 2022	
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 24 2021	June. 23 2022	
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 24 2021	June. 23 2022	

Gene	General used equipment:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
_1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 24 2021	June. 23 2022	
2	Barometer	ChangChun	DYM3	GTS255	June. 24 2021	June. 23 2022	

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

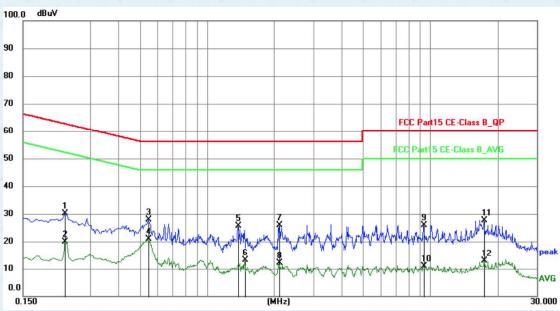
15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

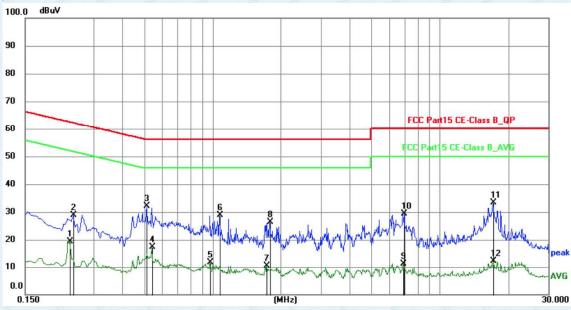
The antenna is PCB antenna, the best case gain of the is 2.5dBi, reference to the appendix III for details

7.2 Conducted Emissions


Test Requirement:	FCC Part15 C Section 15.207		
Test Method:	ANSI C63.10:2013		
Test Frequency Range:	150KHz to 30MHz		
Class / Severity:	Class B		
Receiver setup:	RBW=9KHz, VBW=30KHz, S	weep time=auto	9 9 9
Limit:	Frequency range (MHz)	Limi	t (dBuV)
		Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30 * Decreases with the logarithm	60	50
Test setup:	Reference Plane		
	AUX Equipment E.U.T	Filter — AC I	power
Test procedure:	Remark EUT: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators a line impedance stabilization 500hm/50uH coupling imped 2. The peripheral devices are LISN that provides a 500hm termination. (Please refer t photographs). 3. Both sides of A.C. line are interference. In order to fine	n network (L.I.S.N.). edance for the meas also connected to the m/50uH coupling imp o the block diagram checked for maximud the maximum emis	This provides a uring equipment. The main power through a pedance with 500hm of the test setup and the conducted ssion, the relative
	Remark E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators a line impedance stabilization 50ohm/50uH coupling imped 2. The peripheral devices are LISN that provides a 50ohr termination. (Please refer t photographs). 3. Both sides of A.C. line are interference. In order to fine positions of equipment and according to ANSI C63.10:	are connected to the n network (L.I.S.N.). edance for the meas also connected to the m/50uH coupling imported the block diagram checked for maximud the maximum emist all of the interface of 2009 on conducted in	This provides a uring equipment. The main power through a pedance with 500hm of the test setup and the conducted assion, the relative cables must be changed.
Test Instruments:	Remark EUT: Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators a line impedance stabilization 50ohm/50uH coupling impe 2. The peripheral devices are LISN that provides a 50ohr termination. (Please refer t photographs). 3. Both sides of A.C. line are interference. In order to fine positions of equipment and according to ANSI C63.10: Refer to section 6.0 for details	are connected to the network (L.I.S.N.). edance for the meas also connected to the m/50uH coupling importhe block diagram checked for maximud the maximum emist all of the interface of 2009 on conducted in the maximum emist all of the interface of the conducted in the maximum emist all of the interface of the conducted in the maximum emist all of the interface of the conducted in the maximum emist all of the interface of the conducted in the con	This provides a uring equipment. The main power through a pedance with 500hm of the test setup and the conducted assion, the relative cables must be changed.
	Remark E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators a line impedance stabilization 50ohm/50uH coupling imped 2. The peripheral devices are LISN that provides a 50ohr termination. (Please refer t photographs). 3. Both sides of A.C. line are interference. In order to fine positions of equipment and according to ANSI C63.10:	are connected to the network (L.I.S.N.). edance for the meas also connected to the m/50uH coupling importhe block diagram checked for maximud the maximum emist all of the interface of 2009 on conducted in the maximum emist all of the interface of the conducted in the maximum emist all of the interface of the conducted in the maximum emist all of the interface of the conducted in the maximum emist all of the interface of the conducted in the con	This provides a uring equipment. The main power through a pedance with 500hm of the test setup and the conducted assion, the relative cables must be changed.
Test Instruments:	Remark E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators a line impedance stabilization 50ohm/50uH coupling imped 2. The peripheral devices are LISN that provides a 50ohr termination. (Please refer to photographs). 3. Both sides of A.C. line are interference. In order to fine positions of equipment and according to ANSI C63.10: Refer to section 6.0 for details Refer to section 5.2 for details	are connected to the network (L.I.S.N.). edance for the meas also connected to the m/50uH coupling importhe block diagram checked for maximud the maximum emist all of the interface of 2009 on conducted in the maximum emist all of the interface of the conducted in the maximum emist all of the interface of the conducted in the maximum emist all of the interface of the conducted in the maximum emist all of the interface of the conducted in the con	This provides a uring equipment. The main power through a pedance with 500hm of the test setup and the conducted assion, the relative cables must be changed.
Test Instruments: Test mode:	Remark E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators a line impedance stabilization 50ohm/50uH coupling imped 2. The peripheral devices are LISN that provides a 50ohr termination. (Please refer to photographs). 3. Both sides of A.C. line are interference. In order to fine positions of equipment and according to ANSI C63.10: Refer to section 6.0 for details Refer to section 5.2 for details	are connected to the n network (L.I.S.N.). edance for the meas also connected to the m/50uH coupling imported the block diagram checked for maximud the maximum emist all of the interface of 2009 on conducted in the maximum emist all of the interface of 2009 on conducted in the maximum emist all of the interface of 2009 on conducted in the maximum emist all of the interface of 2009 on conducted in the interfac	This provides a uring equipment. ne main power through a pedance with 500hm of the test setup and a m conducted ssion, the relative cables must be changed measurement.

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.

Measurement data


Pre-scan all test modes, found worst case at 2402MHz, and so only show the test result of 2402MHz, **Line:**

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F
1	0.2310	20.46	9.75	30.21	62.41	-32.20	QP	Р
2	0.2310	10.14	9.75	19.89	52.41	-32.52	AVG	Р
3	0.5460	18.23	9.71	27.94	56.00	-28.06	QP	Р
4	0.5460	11.14	9.71	20.85	46.00	-25.15	AVG	Р
5	1.3785	15.88	9.67	25.55	56.00	-30.45	QP	Р
6	1.4775	3.57	9.67	13.24	46.00	-32.76	AVG	Р
7	2.1075	16.13	9.72	25.85	56.00	-30.15	QP	Р
8	2.1075	2.47	9.72	12.19	46.00	-33.81	AVG	Р
9	9.3390	15.96	9.81	25.77	60.00	-34.23	QP	Р
10	9.3390	1.13	9.81	10.94	50.00	-39.06	AVG	Р
11	17.4075	17.77	9.93	27.70	60.00	-32.30	QP	Р
12	17.4075	3.03	9.93	12.96	50.00	-37.04	AVG	Р

Neutral:

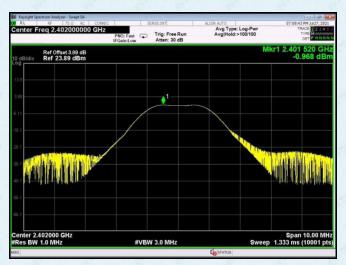
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F
1	0.2355	9.70	9.76	19.46	52.25	-32.79	AVG	Р
2	0.2445	19.05	9.75	28.80	61.94	-33.14	QP	Р
3	0.5144	22.54	9.71	32.25	56.00	-23.75	QP	Р
4	0.5415	7.69	9.71	17.40	46.00	-28.60	AVG	Р
5	0.9780	1.96	9.64	11.60	46.00	-34.40	AVG	Р
6	1.0725	19.24	9.65	28.89	56.00	-27.11	QP	Р
7	1.7340	0.59	9.70	10.29	46.00	-35.71	AVG	Р
8	1.7835	16.76	9.70	26.46	56.00	-29.54	QP	Р
9	6.8865	1.30	9.75	11.05	50.00	-38.95	AVG	Р
10	6.9810	19.75	9.75	29.50	60.00	-30.50	QP	Р
11	17.1240	23.55	9.94	33.49	60.00	-26.51	QP	Р
12	17.1240	2.16	9.94	12.10	50.00	-37.90	AVG	Р

Notes:

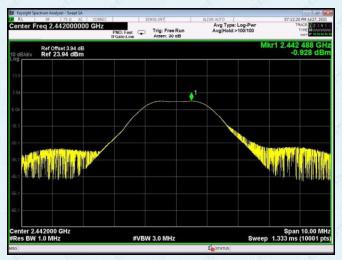
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

7.3 Conducted Output Power

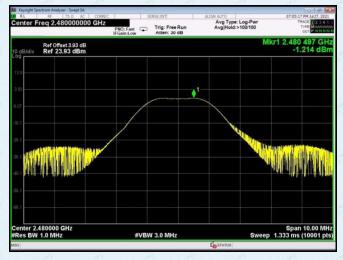
Test Requirement:	FCC Part15 C Section 15.247 (b)(3)				
Test Method:	ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02				
Limit:	30dBm				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				


Measurement Data

Test channel	Peak Output Power (dBm)	Limit(dBm)	Result
Lowest	-0.968		
Middle	-0.928	30.00	Pass
Highest	-1.214		2 8 9



Test plot as follows:


Report No.: GTSL202107000249F01

Lowest channel

Middle channel

Highest channel

7.4 Channel Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02
Limit:	>500KHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement Data

Test CH	Channel Bandwidth (MHz)	Limit(KHz)	Result
Lowest	0.6688		9 - 9 - 6
Middle	0.6608	>500	Pass
Highest	0.6611		9 9 6

Test plot as follows:

Report No.: GTSL202107000249F01

Lowest channel

Middle channel

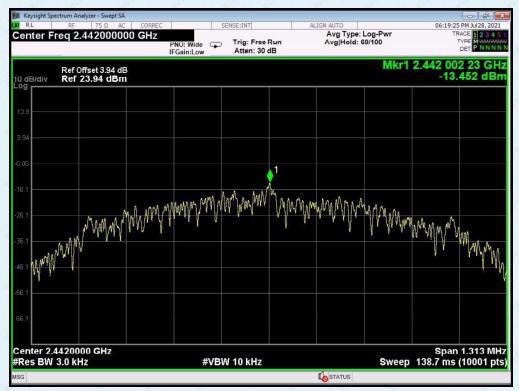
Highest channel

7.5 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)			
Test Method:	ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02			
Limit:	8dBm/3kHz			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass A A A A A A A A A A A A A A A A A A			

Measurement Data

Test channel	Power Spectral Density (dBm/3kHz)	Limit(dBm/3kHz)	Result
Lowest	-13.488		
Middle	-13.452	8.00	Pass
Highest	-13.749		



Test plot as follows:

Report No.: GTSL202107000249F01

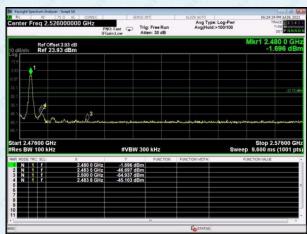
Lowest channel

Middle channel

Highest channel



7.6 Band edges

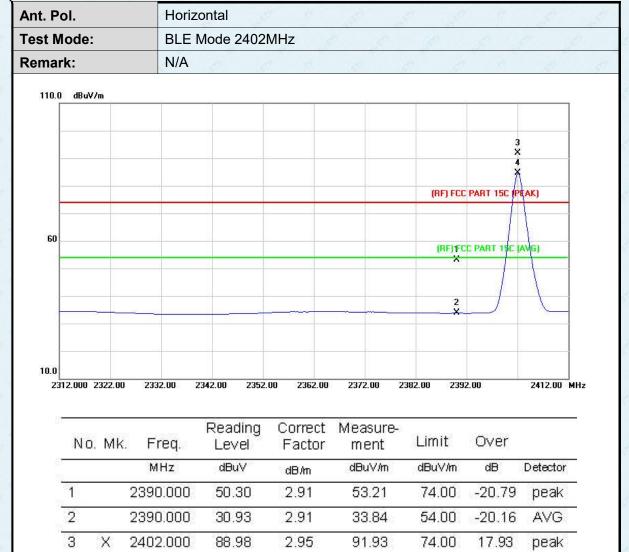

7.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Test plot as follows:

Lowest channel

Highest channel


7.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C S	Section 15.209	and 15.205		
Test Method:	ANSI C63.10:20)13	6		6
Test Frequency Range:	2500MHz) data	was showed.	tested, only	the worst ba	and's (2310MHz to
Test site:	Measurement D	istance: 3m		6 6	
Receiver setup:	Frequency Detector RBW VBW Value				
	Above 1GHz	Peak	1MHz	3MHz	Peak
		RMS	1MHz	3MHz	Average
Limit:	Freque	ncy	Limit (dBuV		Value
	Above 1	GHz	54.0 74.0		Average Peak
	Tum Table < 150cm > 1	EUT-	Test Antenna- < lm 4m >- Receiver- Pre-	amplifier	
	determine the 2. The EUT was antenna, whi tower.	e position of the set 3 meters	ne highest rac away from th	liation. ne interferenc	ed 360 degrees to ce-receiving e-height antenna
	ground to de horizontal an measuremer 4. For each sus and then the and the rotathe maximum 5. The test-recesspecified Ba 6. If the emissic limit specified the EUT wou 10dB margin average met 7. The radiation And found th	termine the mad vertical polarit. pected emission antenna was trable was turner reading. ever system would be reported would be reported would be rectance of a system exister opensities.	aximum value rizations of the rizations of the ion, the EUT tuned to height as set to Peak aximum Hold EUT in peak could be stop and then ruts are performoning which its	e of the field are antenna are was arranged into from 1 magrees to 360 at Detect Furd Mode. In mode was 10 peed and the he emissions one using peeported in a med in X, Y, X t is worse care	d to its worst case eter to 4 meters degrees to find nction and OdB lower than the peak values of a that did not have eak, quasi-peak or data sheet.
Test Instruments:	ground to de horizontal an measuremer 4. For each sus and then the and the rotathe the maximum 5. The test-recesspecified Ba 6. If the emissic limit specified the EUT wou 10dB margin average meti 7. The radiation And found the worst case measurement	termine the mad vertical polarit. pected emission antenna was trable was turner reading. Server system would with Mon level of the dynamical would be reported would be restroned as specifical measurement of X axis positioned is recorded.	aximum value rizations of the rizations of the ion, the EUT valued to height as set to Peadaximum Hole EUT in peak could be stoped. Otherwise the sted one by ed and then rooting which is ed in the reportant in	e of the field are antenna are was arranged into from 1 magrees to 360 at Detect Furd Mode. In mode was 10 peed and the he emissions one using peeported in a med in X, Y, X t is worse care	strength. Both re set to make the d to its worst case eter to 4 meters degrees to find nction and OdB lower than the peak values of s that did not have eak, quasi-peak or data sheet. Z axis positioning.
Test Instruments: Test mode:	ground to de horizontal an measuremer 4. For each sus and then the and the rotathe maximum 5. The test-recesspecified Ba 6. If the emissic limit specified the EUT wou 10dB margin average met 7. The radiation And found th	termine the mad vertical polarit. pected emission antenna was trable was turner reading. Every system was did be reported would be reported would be resulted as specification as specification as recorded 6.0 for details	aximum value rizations of the rizations of the rizations of the rizations, the EUT of tuned to height as set to Pearlaximum Hole EUT in peak could be stoped. Otherwise the sted one by the rization or the rization of the reposition of the rization of the reposition	e of the field are antenna are was arranged into from 1 magrees to 360 at Detect Furd Mode. In mode was 10 peed and the he emissions one using peeported in a med in X, Y, X t is worse care	strength. Both re set to make the d to its worst case eter to 4 meters degrees to find nction and OdB lower than the peak values of s that did not have eak, quasi-peak or data sheet. Z axis positioning.

GTS

(1) Radiation Test

Report No.: GTSL202107000249F01

Emission Level= Read Level+ Correct Factor

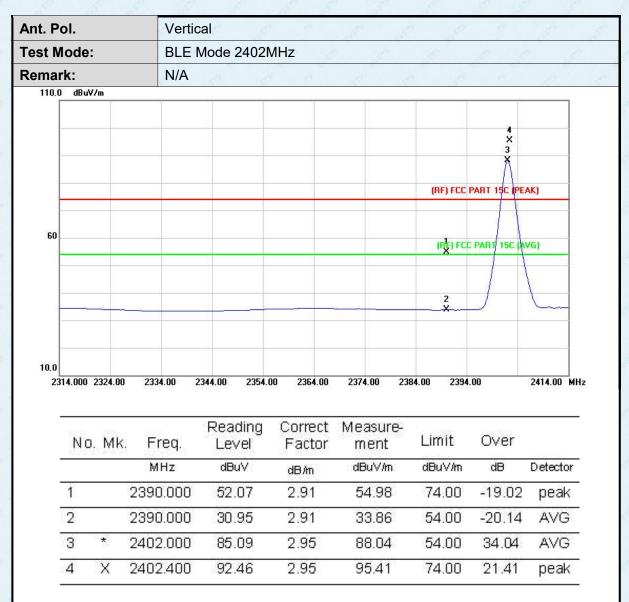
2402.000

81.57

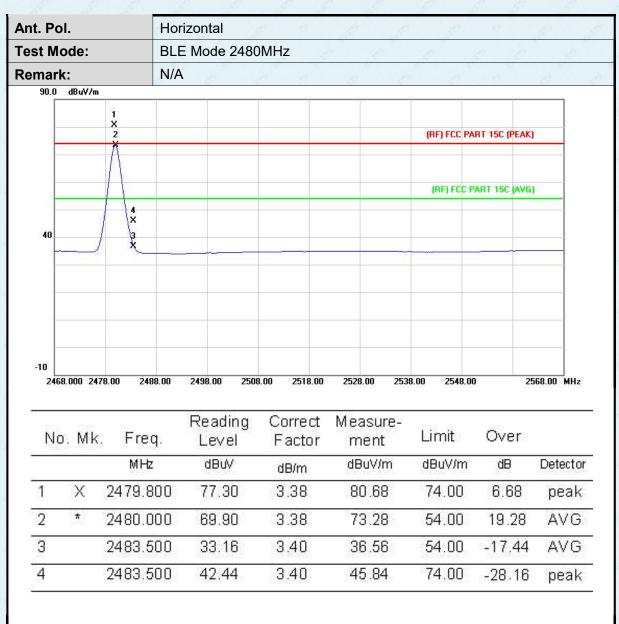
2.95

84.52

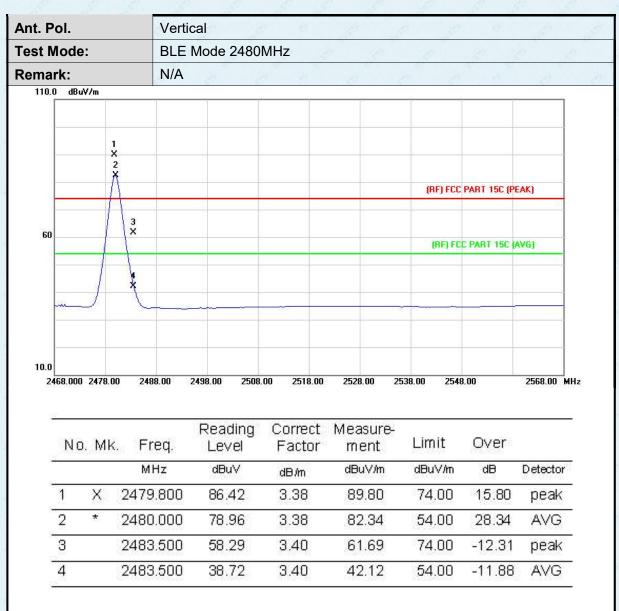
54.00


30.52

AVG.


4

*

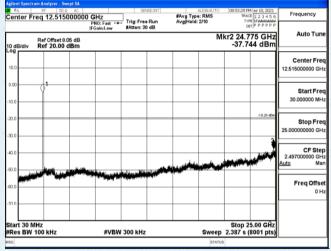


7.7 Spurious Emission

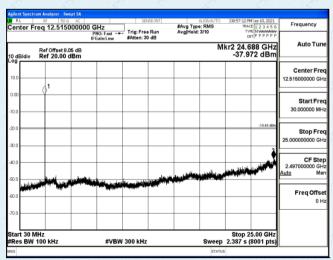
7.7.1 Conducted Emission Method


Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Test plot as follows:


Lowest channel

Report No.: GTSL202107000249F01

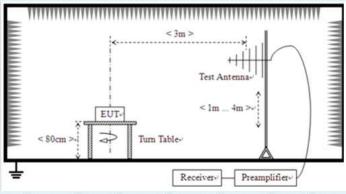

30MHz~25GHz

Middle channel

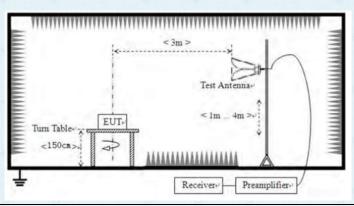
30MHz~25GHz

Highest channel

30MHz~25GHz



7.7.2 Radiated Emission Method


Test Requirement:	FCC Part15 C Section	on 15.20	09	19	Z	2		10 10	
Test Method:	ANSI C63.10:2013		e ja	8		9		0	
Test Frequency Range:	9kHz to 25GHz	4	-	4			6	-	
Test site:	Measurement Distar	nce: 3m	4	48	6	4			
Receiver setup:	Frequency	Det	ector	RBV	٧	VBW	GE.	Value	
	9KHz-150KHz	Quas	si-peak	200H	lz	600Hz	Z	Quasi-peak	
	150KHz-30MHz	Quas	si-peak	9KH	z	30KHz	Z	Quasi-peak	
	30MHz-1GHz	Quas	si-peak	120K	Hz	300KH	lz	Quasi-peal	
	Above 1GHz	Pe	eak	1MH	lz	3MHz	7	Peak	
	Above 1G112	Pe	eak	1MH	lz	10Hz	60	Average	
Limit:	Frequency		Limit (u\	//m)	٧	alue	Me	easurement Distance	
	0.009MHz-0.490M	Hz	2400/F(F	(Hz)	2	QP		300m	
	0.490MHz-1.705M	Hz 2	24000/F(KHz)		QP		30m	
	1.705MHz-30MH	Iz	30			QP	6	30m	
	30MHz-88MHz		100			QP			
	88MHz-216MHz	2	150			QP			
	216MHz-960MH	z	200	100	, gi	QP		3m	
	960MHz-1GHz		500			QP		OIII	
	Above 1GHz	0	500	4	Av	erage			
	715575 75712		5000)	P	eak		6	
Test setup:	For radiated emiss		< 3m >	······································	MH:	z			
	Ī ; ,		[Receiver-					
	F - 6 6								

For radiated emissions from 30MHz to1GHz

For radiated emissions above 1GHz

Test Procedure:

- 1. The EUT was placed on the top of a rotating table (0.8m for below 1G and 1.5m for above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Test Instruments:	Refer to se	ection 6.0 for o	details	£ - £					
Test mode:	Refer to se	Refer to section 5.2 for details							
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar			
Test voltage:	AC 120V,	60Hz	0 0		9 8	2			
Test results:	Pass								

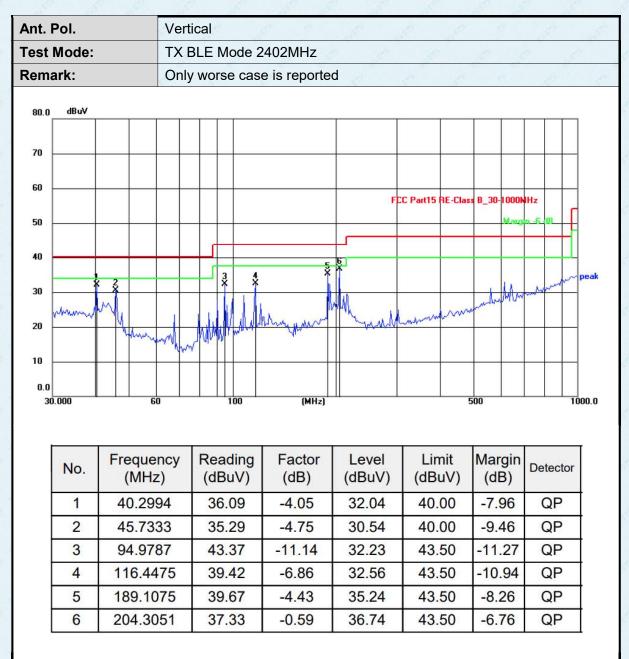
Measurement data:

Remark:

Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.


■ 30MHz ~1GHz

Pre-scan all test modes, found worst case at 2402MHz, and so only show the test result of 2402MHz.

Ant. Pol.		Hori	izontal								
Test Mode):	TXI	BLE Mode 2	2402MHz		10		9 9			
Remark:		Only	Only worse case is reported								
80.0 dBu	v										
70											
60		- I				C Part15 RE-Clas	D 30 10001				
50						C Partio HE-Clas	Margi	n.e. AR			
40				3	*			Š.			
30				*	***		mula	M. M. pe.			
20	many him	m	mounded	Marin Marin	"VVIIIANIUI"	had market man					
10		1									
0.0 30.000		60	100	(MHz)			500	1000			
No.	Freque		Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector			
1	32.4		28.55	-2.38	26.17	40.00	-13.83	QP			
2	165.4		38.27	-6.90	31.37	43.50	-12.13	QP			
3	177.5	2	46.26	-6.13	40.13	43.50	-3.37	QP			
4	227.0		40.93	-2.61	38.32	46.00	-7.68	QP			
5	276.3	818	35.37	-4.89	30.48	46.00	-15.52	QP			
				1							

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

GTS

■ Above 1GHz

Report No.: GTSL202107000249F01

Ant. P	ol.		Horiz	ontal					
est N	est Mode:			TX BLE Mode 2402MHz			g.		9
	No.	Mk	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	-		MHz	dBư√	dB/m	dBuV/m	dBuV/m	dB	Detector
	1		4803.712	46.64	15.56	62.20	74.00	-11,80	peak
	2	*	4803.922	32.94	15.56	48.50	54.00	-5.50	AVG

nt. Pol	l.		Verti	cal						
est Mo	st Mode:			BLE Mode 24	402MHz	7			S.	
-	۷o.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dΒ	Detector	
1			4803.874	45.79	15.56	61.35	74.00	-12.65	peak	
2		*	4803.922	31.46	15.56	47.02	54.00	-6.98	AVG	

Ant.	Pol.			Hori	zontal	9	0 0	0	9	0
Test	t Mod	e:		TX E	BLE Mode 24	442MHz		10	0 0	
8	No	. Mk	Fre	q.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MH	Z	dBuV	dB/m	dBuV/m	dBuV/m	dΒ	Detector
	1	*	4883.9	322	30.52	15.93	46.45	54.00	-7.55	AVG
	2		4884.4	144	45.29	15.93	61.22	74.00	-12.78	peak

Ant. Po	ol.		Vertic	al						
Test M	est Mode:			E Mode 24	9	29	.6	- 40° _		
	No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	V .		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dΒ	Detector	
	1	*	4883.922	31.44	15.93	47.37	54.00	-6.63	AVG	
	2		4884.336	45.61	15.94	61.55	74.00	-12.45	peak	

Ant.	Pol.		Hor	izontal					
Test	Mode) :	TX	BLE Mode 2		0			
	No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
	1		4959.406	45.73	16.26	61.99	74.00	-12.01	peak
	2	*	4959.922	31.48	16.26	47.74	54.00	-6.26	AVG

Ant.	Pol.		Vert	ical					
Test	Test Mode:			BLE Mode 2	480MHz		20 2		
	No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	\$H		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
	1		4959.256	45.49	16.27	61.76	74.00	-12.24	peak
	2	*	4959.922	31.03	16.26	47.29	54.00	-6.71	AVG

Remark:

^{1.}No report for the emission which more than 20 dB below the prescribed limit.

^{2.}Emission Level= Read Level+ Correct Factor.

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II & III for details.

-----End-----