

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100201305

Page: 1 of 29

TEST REPORT

Application No.: KSCR2311002013AT

FCC ID: 2AH25T1720 **IC**: 22621-T1720

Applicant: Shanghai Sunmi Technology Co.,Ltd.

Address of Applicant: Room 505, No.388, Song Hu Road, Yang Pu District, Shanghai, China

Manufacturer: Shanghai Sunmi Technology Co.,Ltd.

Address of Manufacturer: Room 505, No.388, Song Hu Road, Yang Pu District, Shanghai, China

Equipment Under Test (EUT):

Test Result:

EUT Name: POS System

Model No.: T1720

HVIN: T1720, T1720(A), T1720(B), T1720(L)

Trade Mark: SUNMI

Standard(s): 47 CFR Part 15, Subpart C 15.225

RSS-210 issue 10 Amendment 1

RSS-Gen Issue 5 Amendment 2 (February 2021)

Date of Receipt: 2023-11-13

Date of Test: 2023-11-15 to 2023-11-17

Date of Issue: 2023-11-17

* In the configuration tested, the EUT complied with the standards specified above.

Pass*

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100201305

Page: 2 of 29

	Revision Record				
Version	Description	Date	Remark		
00	Original	2023-11-17	/		

Authorized for issue by:		
Tested By	Damon zhou	
	Damon_Zhou/Project Engineer	
Approved By	Verry Hou	
	Terry Hou /Reviewer	

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100201305

Page: 3 of 29

2 Test Summary

Radio Spectrum Technical Requirement					
Item	FCC Requirement	IC Requirement	Method	Result	
Antenna Requirement	47 CFR Part 15, Subpart C 15.225	N/A	RSS-210 Issue 10 Amendment (April 2020)	Customer Declaration	

Radio Spectrum Matter Part				
Item	FCC Requirement	IC Requirement	Method	Result
Conducted Emissions at AC Power Line (150kHz-30MHz)	47 CFR Part 15, Subpart C 15.225	RSS-210 Issue 10 Amendment (April 2020)	ANSI C63.10 (2013) Section 6.2	Pass
20dB Bandwidth	47 CFR Part 15, Subpart C 15.225	RSS-210 Issue 10 Amendment (April 2020)	ANSI C63.10 (2013) Section 6.9	Pass
Emission Mask	47 CFR Part 15, Subpart C 15.225	RSS-210 Issue 10 Amendment (April 2020)	ANSI C63.10 (2013) Section 6.4	Pass*
Frequency tolerance	47 CFR Part 15, Subpart C 15.225	RSS-210 Issue 10 Amendment (April 2020)	ANSI C63.10 (2013) Section 6.8	Pass
Radiated Emissions(9kHz- 30MHz)	47 CFR Part 15, Subpart C 15.225	RSS-210 Issue 10 Amendment (April 2020)	ANSI C63.10 (2013) Section 6.4&6.5	Pass
Radiated Emissions(30MHz- 1GHz)	47 CFR Part 15, Subpart C 15.225	RSS-210 Issue 10 Amendment (April 2020)	ANSI C63.10 (2013) Section 6.4&6.5	Pass
99% Bandwidth	-	RSS-210 Issue 10 Amendment (April 2020)	RSS-Gen Section 6.7	Pass

Note1*: The test level of the fundamental signal is below the limit of general spurious emission, so the test item doesn't be performed.

Note 2: The model T1720 is divided into four configurations, and they are identical in electrical and electronic characters. After Pre-scan all configurations, only the SKU1(HVIN: T1720) was the worst and recorded since their differences are as below:

Model	Segment code LCD panel	Scanning camera	Configuration	HVIN
	Y (2.4inch)	Y	SKU1	T1720
T.1=0.0	N	Υ	SKU2	T1720(A)
T1720	Y (2.4inch)	N	SKU3	T1720(B)
	N	N	SKU4	T1720(L)

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100201305

Page: 4 of 29

3 Contents

			Page
1	COV	/ER PAGE	1
2	Tosi	Summary	4
_	163	### April 19 ### Ap	
3	Con	tents	4
4	Gen	eral Information	5
	4.1	Details of E.U.T.	5
	4.2		
	4.3	Measurement Uncertainty	5
	4.4	Test Location	ε
	4.5		
	4.6		
	4.7	Abnormalities from Standard Conditions	6
5	Equ	ipment List	7
6	Rad	io Spectrum Technical Requirement	8
	6.1	Antenna Requirement	8
7	Rad	io Spectrum Matter Test Results	ç
	7.1	·	
	7.2		
	7.3		
	7.4		
	7.5		
	7.6		
	7.7	99% Bandwidth	21
8	Test	t Setup Photo	22
9	EUT	Constructional Details (EUT Photos)	22
1(0 Арр	endix	23
	10.1		
	10.1		
	10.2		
	10.4	·	
	10.5	Relow 1GHz	

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100201305

Page: 5 of 29

4 General Information

4.1 Details of E.U.T.

Power supply:	Adapter Model: CYZS36-240150
	Input: 100-240V~50/60Hz 1.5A
	Output: 24V 1.5A 36W
Operation Frequency:	13.56MHz
Modulation Type:	ASK
Antenna Type:	Loop Antenna
Serial Number:	DE02D38140001
Firmware version:	D3mini_IO_V2.0

4.2 Description of Support Units

Description	Manufacturer	Model No.	Serial No.		
	-				
The EUT has been tested as an independent unit.					

4.3 Measurement Uncertainty

No.	Item	Measurement Uncertainty	
1	Radio Frequency	8.4 x 10 ⁻⁸	
2	Timeout	2s	
3	Duty Cycle	0.37%	
4	Occupied Bandwidth	3%	
5	RF Conducted Power	0.6dB	
6	RF Power Density	2.9dB	
7	Conducted Spurious Emissions	0.75dB	
0	DE Dedicted Device	5.2dB (Below 1GHz)	
8	RF Radiated Power	5.9dB (Above 1GHz)	
		4.2dB (Below 30MHz)	
0	Dadiated Churique Emission Test	4.5dB (30MHz-1GHz)	
9	Radiated Spurious Emission Test	5.1dB (1GHz-18GHz)	
		5.4dB (Above 18GHz)	
10	Temperature Test	1°C	
11	Humidity Test	3%	
12	Supply Voltages	1.5%	
13	Time	3%	
Note:	The measurement uncertainty represents	an expanded uncertainty expressed at	

Note: The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100201305

Page: 6 of 29

4.4 Test Location

All tests were performed at:

Compliance Certification Services (Kunshan) Inc.

No.10 Weiye Rd, Innovation park, Eco&Tec, Development Zone, Kunshan City, Jiangsu, China.

Tel: +86 512 5735 5888 Fax: +86 512 5737 0818

No tests were sub-contracted.

Note:

- 1. SGS is not responsible for wrong test results due to incorrect information (e.g., max. internal working frequency, antenna gain, cable loss, etc) is provided by the applicant. (If applicable).
- 2. SGS is not responsible for the authenticity, integrity and the validity of the conclusion based on results of the data provided by applicant. (If applicable).
- 3. Sample source: sent by customer.

4.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

A2LA

Compliance Certification Services (Kunshan) Inc. is accredited by the American Association for Laboratory Accreditation (A2LA). Certificate No. 2541.01.

• FCC

Compliance Certification Services (Kunshan) Inc. has been recognized as an accredited testing laboratory. Designation Number: CN1172.

• ISED

Compliance Certification Services (Kunshan) Inc. has been recognized by Innovation, Science and Economic Development Canada (ISED) as an accredited testing laboratory. Company Number: 2324E

VCCI

The 3m and 10m Semi-anechoic chamber and Shielded Room of Compliance Certification Services (Kunshan) Inc. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-20134, R-11600, C-11707, T-11499, G-10216 respectively.

4.6 Deviation from Standards

None

4.7 Abnormalities from Standard Conditions

None

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100201305

Page: 7 of 29

5 Equipment List

Item	Equipment			Cal Date	Cal. Due Date			
Conduc	Conducted Emission at Mains Terminals (150kHz-30MHz)							
1	EMI Test Receive	R&S	ESCI	KS301101	02/03/2023	02/02/2024		
2	LISN	R&S	ENV216	KS301197	01/17/2023	01/16/2024		
3	LISN	Schwarzbeck	NNLK 8129	KS301091	01/17/2023	01/16/2024		
4	Pulse Limiter	R&S	ESH3-Z2	KUS1902E001	01/17/2023	01/16/2024		
5	CE test Cable	Thermax	/	CZ301102	01/17/2023	01/16/2024		
6	Test Software	Farad	EZ-EMC	1	N.C.R	N.C.R		
RF Con	ducted Test							
1	Spectrum Analyzer	Keysight	N9020A	KUS1911E004-2	08/24/2023	08/23/2024		
2	Spectrum Analyzer	Keysight	N9020A	KUS2001M001-2	08/24/2023	08/23/2024		
3	Spectrum Analyzer	Keysight	N9030B	KSEM021-1	02/03/2023	02/02/2024		
4	Signal Generator	R&S	SMBV100B	KSEM032	03/16/2023	03/15/2024		
5	Signal Generator	R&S	SMW200A	KSEM020-1	08/24/2023	08/23/2024		
6	Signal Generator	Agilent	N5182A	KUS2001M001-1	08/24/2023	08/23/2024		
7	Radio Communication Test Station	Anritsu	MT8000A	KSEM001-1	08/24/2023	08/23/2024		
8	Radio Communication Analyzer	Anritsu	MT8821C	KSEM002-1	03/16/2023	03/15/2024		
9	Universal Radio Communication Tester	R&S	CMW500	KUS1911E004-1	08/24/2023	08/23/2024		
10	Switcher	CCSRF	FY562	KUS2001M001-3	08/24/2023	08/23/2024		
11	AC Power Source	EXTECH	6605	KS301178	N.C.R	N.C.R		
12	DC Power Supply	Aglient	E3632A	KS301180	N.C.R	N.C.R		
13	Conducted Test Cable	Thermax	RF01-RF04	CZ301111- CZ301120	02/03/2023	02/02/2024		
14	Temp. / Humidity Chamber	TERCHY	MHK-120AK	KS301190	08/24/2023	08/23/2024		
15	Temperature & Humidity Recorder	Renke Control	RS-WS-N01-6J	KSEM024-5	03/22/2023	03/21/2024		
16	Software	BST	TST-PASS	1	N/A	N/A		
RF Rad	liated Test							
1	Spectrum Analyzer	R&S	FSV40	KUS1806E003	08/24/2023	08/23/2024		
2	Universal Radio Communication Tester	R&S	CMW500	KSEM009-1	03/16/2023	03/15/2024		
3	Signal Generator	Agilent	E8257C	KS301066	08/24/2023	08/23/2024		
4	Loop Antenna	COM-POWER	AL-130R	KUS1806E001	03/18/2023	03/17/2025		
5	Bilog Antenna	TESEQ	CBL 6112D	KUS1806E005	06/29/2023	06/28/2025		
6	Bilog Antenna	SCHWARZBECK	VULB9160	CZ301016	04/13/2021	04/12/2024		
7	Horn-antenna(1-18GHz)	Schwarzbeck	BBHA9120D	KS301079	08/24/2023	08/23/2024		
8	Horn-antenna(1-18GHz)	ETS-LINDGREN	3117	KS301186	02/21/2023	02/20/2024		
9	Horn Antenna(18-40GHz)	Schwarzbeck	BBHA9170	CZ301058	02/26/2023	02/25/2024		
10	Amplifier(30MHz~18GHz)	PANSHAN TECHNOLOGY	LNA:1~18G	KSEM010-1	01/17/2023	01/16/2024		
11	Amplifier(18~40GHz)	COM-POWER	PAM-840A	KUS1710E001	01/21/2023	01/20/2024		
12	RE Test Cable	REBES MICROWAVE	1	CZ301097	08/24/2023	08/23/2024		
13	Temperature & Humidity Recorder	Renke Control	RS-WS-N01-6J	KSEM024-4	03/22/2023	03/21/2024		
14	Software	Faratronic	EZ_EMC-v 3A1	/	N/A	N/A		

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100201305

Page: 8 of 29

6 Radio Spectrum Technical Requirement

6.1 Antenna Requirement

6.1.1 Test Requirement:

47 CFR Part 15, Subpart C 15.203

6.1.2 Conclusion

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is Loop antenna and no consideration of replacement.

Antenna location: Refer to Internal photos

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100201305

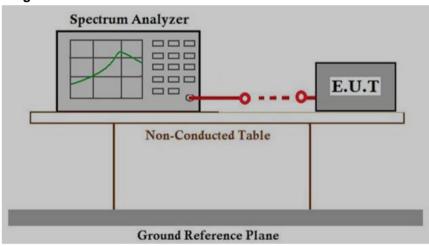
Page: 9 of 29

7 Radio Spectrum Matter Test Results

7.1 20dB Bandwidth

Test Requirement 47 CFR Part 15, Subpart C 15.215
Test Method: ANSI C63.10 (2013) Section 6.9

7.1.1 E.U.T. Operation


Operating Environment:

Temperature: 20.5 °C Humidity: 50.5 % RH Atmospheric Pressure: 1010 mbar

7.1.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	09	TX mode with modulation

7.1.3 Test Setup Diagram

7.1.4 Measurement Procedure and Data

The useful radiated emission from the EUT was detected by the spectrum analyser with peak detector.

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100201305

Page: 10 of 29

7.2 Conducted Emissions at Mains Terminals (150kHz-30MHz)

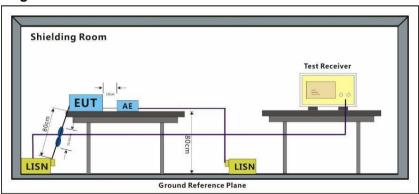
Test Requirement 47 CFR Part 15, Subpart C 15.207 Test Method: ANSI C63.10 (2013) Section 6.2

Limit:

Frequency range (MHz)	Limit (dBuV)		
	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

^{*} Decreases with the logarithm of the frequency.

7.2.1 E.U.T. Operation


Operating Environment:

Temperature: 20.5 °C Humidity: 50.5 % RH Atmospheric Pressure: 1010 mbar

7.2.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	09	TX mode with modulation

7.2.3 Test Setup Diagram

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100201305

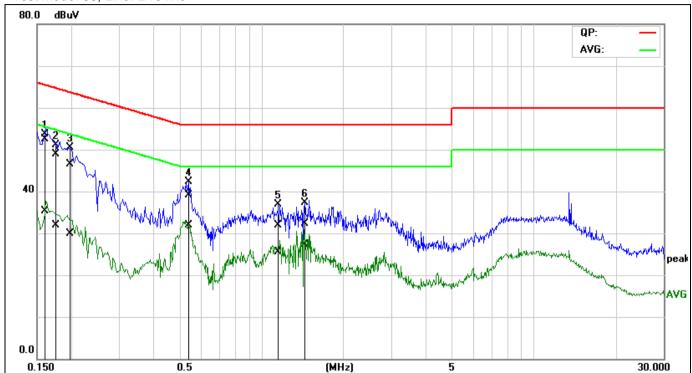
Page: 11 of 29

7.2.4 Measurement Procedure and Data

1) The mains terminal disturbance voltage test was conducted in a shielded room.

- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50 \text{ohm}/50 \mu\text{H} + 5 \text{ohm}$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Remark: Level=Read Level+ Cable Loss+ LISN Factor



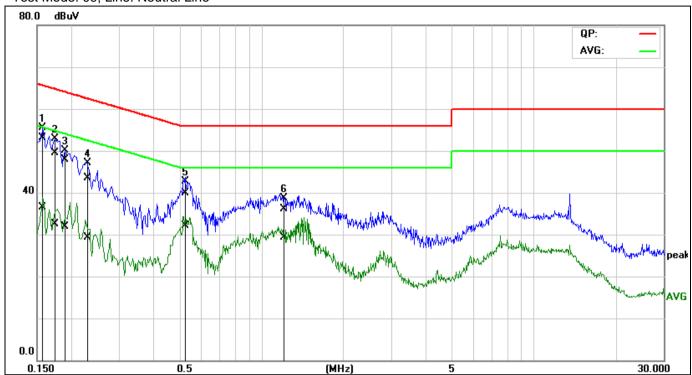
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100201305

Page: 12 of 29

Test Mode: 09; Line: Live line

No.	Frequency	QuasiPeak reading	Average reading	Correction factor	QuasiPeak result	Average result	QuasiPeak limit	Average limit	QuasiPeak margin	Average margin	Remark
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1*	0.1577	32.40	15.14	20.17	52.57	35.31	65.58	55.58	-13.01	-20.27	Pass
2	0.1774	28.71	11.78	20.10	48.81	31.88	64.60	54.61	-15.79	-22.73	Pass
3	0.1985	26.45	9.93	20.03	46.48	29.96	63.67	53.67	-17.19	-23.71	Pass
4	0.5341	19.09	11.92	20.03	39.12	31.95	56.00	46.00	-16.88	-14.05	Pass
5	1.1546	12.00	5.59	19.94	31.94	25.53	56.00	46.00	-24.06	-20.47	Pass
6	1.4358	12.39	7.38	19.99	32.38	27.37	56.00	46.00	-23.62	-18.63	Pass



CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100201305

Page: 13 of 29

Test Mode: 09; Line: Neutral Line

No.	Frequency	QuasiPeak	Average	Correction	QuasiPeak	Average	QuasiPeak	Average	QuasiPeak	Average	Remark
		reading	reading	factor	result	result	limit	limit	margin	margin	
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1*	0.1558	32.77	16.23	20.25	53.02	36.48	65.68	55.68	-12.66	-19.20	Pass
2	0.1757	29.21	12.23	20.20	49.41	32.43	64.68	54.69	-15.27	-22.26	Pass
3	0.1904	27.78	11.77	20.16	47.94	31.93	64.01	54.02	-16.07	-22.09	Pass
4	0.2301	23.38	9.15	20.15	43.53	29.30	62.44	52.45	-18.91	-23.15	Pass
5	0.5299	19.80	12.01	20.04	39.84	32.05	56.00	46.00	-16.16	-13.95	Pass
6	1.2051	16.20	9.24	20.00	36.20	29.24	56.00	46.00	-19.80	-16.76	Pass

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100201305

Page: 14 of 29

7.3 Emission Mask

Test Requirement 47 CFR Part 15, Subpart C 15.225(a)&(b)&(C)

Test Method: ANSI C63.10 (2013) Section 6.4

Limit:

- (a) The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.
- (b) Within the bands 13.410-13.553 MHz and 13.567-13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.
- (c) Within the bands 13.110-13.410 MHz and 13.710-14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.
- (d) The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in § 15.209.

Below 30MHz

The limit at 30m test distance is below:

$$FS_{\text{limit}} = FS_{\text{max}} - 40 \log \left(\frac{d_{\text{limit}}}{d_{\text{measure}}} \right)$$

where

 FS_{limit} is the calculation of field strength at the limit distance, expressed in $dB\mu V/m$

 $FS_{\rm max}$ is the measured field strength, expressed in dBμV/m $d_{\rm measure}$ is the distance of the measurement point from the EUT $d_{\rm limit}$ is the reference distance or the distance of the $\lambda/2\pi$ point

The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 84dBuV/m at 30 meters.

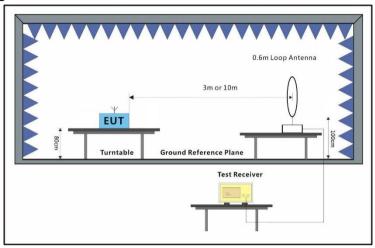
7.3.1 E.U.T. Operation

Operating Environment:

Temperature: 20.5 °C Humidity: 50.5 % RH Atmospheric Pressure: 1010 mbar

7.3.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	09	TX mode with modulation



CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100201305

Page: 15 of 29

7.3.3 Test Setup Diagram

7.3.4 Measurement Procedure and Data

For testing performed with the loop antenna, the center of the loop was positioned 1 m above the ground and positioned with its plane vertical at the specified distance from the EUT. During testing the loop was rotated about its vertical axis for maximum response at each azimuth and also investigated with the loop positioned in the horizontal plane. Only the worst position of vertical was shown in the report.

Remark: The test level of the fundamental signal is below the limit of general spurious emission, so the test item doesn't be performed.

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100201305

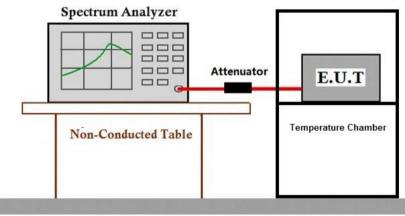
Page: 16 of 29

7.4 Frequency tolerance

Test Requirement 47 CFR Part 15, Subpart C 15.225(e)
Test Method: ANSI C63.10 (2013) Section 6.8

Limit: ±0.01

7.4.1 E.U.T. Operation


Operating Environment:

Temperature: 20.5 °C Humidity: 50.5 % RH Atmospheric Pressure: 1010 mbar

7.4.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	09	TX mode with modulation

7.4.3 Test Setup Diagram

Ground Reference Plane

7.4.4 Measurement Procedure and Data

The EUT was placed in an environmental test chamber and powered such that control element received normal voltage and the transmitter provided maximum RF output.

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100201305

Page: 17 of 29

7.5 Radiated Emissions (30MHz-1GHz)

Test Requirement 47 CFR Part 15, Subpart C 15.225(d) & 15.209

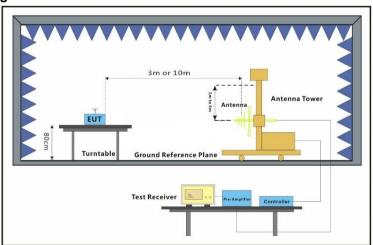
Test Method: ANSI C63.10 (2013) Section 6.4&6.5

Limit:

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands above 1000 MHz. Radiated emission limits in these three bands (9-90kHz,110-490kHz and Above 1GHz) are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

7.5.1 E.U.T. Operation


Operating Environment:

Temperature: 20.5 °C Humidity: 50.5 % RH Atmospheric Pressure: 1010 mbar

7.5.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	09	TX mode with modulation

7.5.3 Test Setup Diagram

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100201305

Page: 18 of 29

7.5.4 Measurement Procedure and Data

a. The EUT was placed on the top of a rotating table 0.8 meters above the ground for below 1GHz at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading, e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. g. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report. Remark: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100201305

Page: 19 of 29

7.6 Radiated Emissions (9kHz-30MHz)

Test Requirement 47 CFR Part 15, Subpart C 15.225(d) & 15.209

Test Method: ANSI C63.10 (2013) Section 6.4&6.5

Limit:

Frequency(MHz)	Field strength (microvolts/meter)	Limit (dBuV/m)	Detector	Measurement Distance (meters)
0.009-0.490	2400/F(kHz)	-	-	300
0.490-1.705	24000/F(kHz)	-	-	30
1.705-30	30	-	-	30

Below 30MHz

If field strength is measured at only a single point, then that point shall be at the radial from the EUT that produces the maximum emission at the frequency being measured, as described in 5.4. If that point is closer to the EUT than $\lambda/2\pi$ and the limit distance is greater than $\lambda/2\pi$, the measurement shall be extrapolated to the limit distance by conservatively presuming that the field strength decreases at a 40 dB/decade of distance rate to the $\lambda/2\pi$ distance, and at a 20 dB/decade of distance rate beyond $\lambda/2\pi$. This shall be accomplished using Equation (2):

$$FS_{(10m)} = FS_{(30/300m)} + 40log\{d_{(near field)}/d_{(10m)}\} + 20log\{d_{(30/300m)}/d_{(near field)}\}$$
(2)

If the single point measured is at a distance greater than $\lambda/2\pi$, then extrapolation to the limit distance shall be calculated using Equation (3):

$$FS_{(10m)} = FS_{(30/300m)} + 20log\{d_{(30/300m)}/d_{(10m)}\}$$
(3)

If both the single point and the limit distance are equal to or closer to the EUT than $\lambda/2\pi$, then extrapolation to the limit distance shall be calculated using Equation (4):

$$FS_{(10m)} = FS_{(30/300m)} + 40log\{d_{(30/300m)}/d_{(10m)}\}$$
(4)

Remark:

 $d_{\text{near field}} = 47.77 / f_{\text{MHz}}$

where f_{MHz} is the frequency of the emission being measured in MHz.

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100201305

Page: 20 of 29

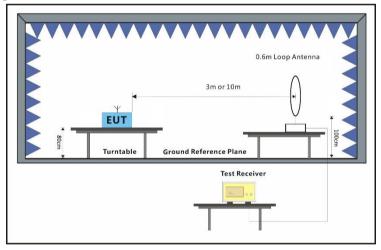
$$FS_{\text{limit}} = FS_{\text{max}} - 40 \log \left(\frac{d_{\text{limit}}}{d_{\text{measure}}} \right)$$

where

 FS_{limit} is the calculation of field strength at the limit distance, expressed in dB μ V/m

FS_{max} is the measured field strength, expressed in dBμV/m d_{measure} is the distance of the measurement point from the EUT is the reference distance of the $\lambda 2\pi$ point

7.6.1 E.U.T. Operation


Operating Environment:

Temperature: 20.5 °C Humidity: 50.5 % RH Atmospheric Pressure: 1010 mbar

7.6.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	09	TX mode with modulation

7.6.3 Test Setup Diagram

7.6.4 Measurement Procedure and Data

For testing performed with the loop antenna, the center of the loop was positioned 1 m above the ground and positioned with its plane vertical at the specified distance from the EUT. During testing the loop was rotated about its vertical axis for maximum response at each azimuth and also investigated with the loop positioned in the horizontal plane. Only the worst position of vertical was shown in the report.

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100201305

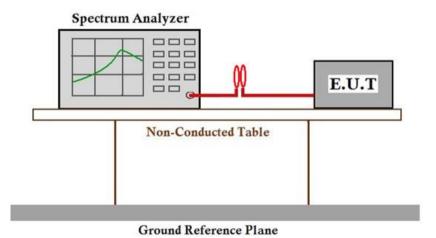
Page: 21 of 29

7.7 99% Bandwidth

Test Requirement RSS-Gen Section 6.7

Test Method: RSS-Gen March 2019 Amendment 1 Section 6.7

7.7.1 E.U.T. Operation


Operating Environment:

Temperature: 20.5 °C Humidity: 50.5 % RH Atmospheric Pressure: 1010 mbar

7.7.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	09	TX mode with modulation

7.7.3 Test Setup Diagram

7.7.4 Measurement Procedure and Data

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100201305

Page: 22 of 29

8 Test Setup Photo

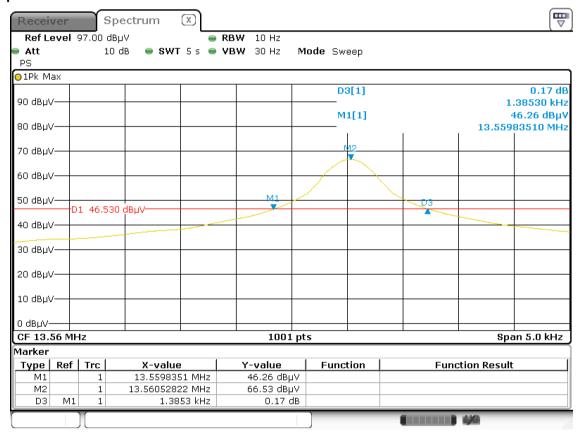
Refer to Appendix - Test Setup Photo for KSCR2311002013AT

9 EUT Constructional Details (EUT Photos)

Refer to Appendix - Photographs of EUT Constructional Details for KSCR2311002013AT

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100201305


Page: 23 of 29

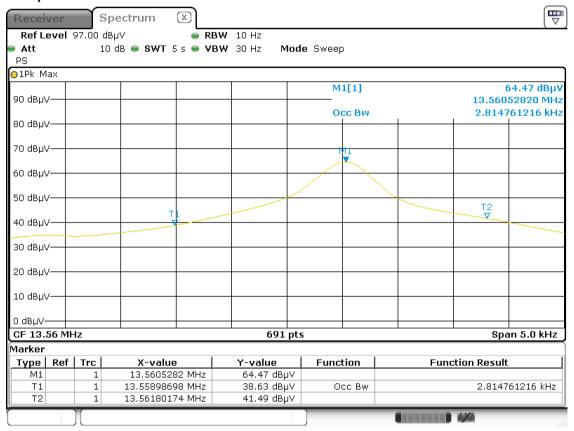
10 Appendix

10.1 20dB Bandwidth

20dB bandwidth (kHz)	F _L (MHz)	F _H (MHz)	Limit(MHz)	Result
1.3853	13.5598	13.5611	13.110 – 14.010	Pass

Test plot as follows:

CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR231100201305

Page: 24 of 29

10.2 99% Bandwidth

99% bandwidth (kHz)	F _L (MHz)	F _H (MHz)	Limit(MHz)	Result
2.8148	13.5590	13.5618	13.110 – 14.010	Pass

Test plot as follows:

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100201305

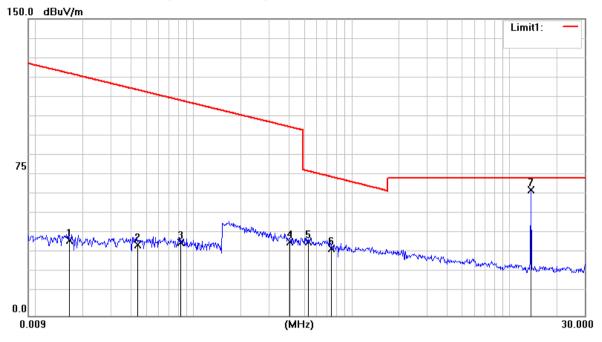
Page: 25 of 29

10.3 Frequency tolerance

Nominal Operation Frequency: 13.56MHz

Test Conditions		Test Result	Deviation	Limit	Daguit	
Temp (°C)	Volt (V DC)	(MHz)	(kHz)	(kHz)	Result	
Tnom (-20)	Vnom (24)	13.56041	0.41		Pass	
Tnom (-10)	Vnom (24)	13.56047	0.47		Pass	
Tnom (0)	Vnom (24)	13.56040	0.40		Pass	
Tnom (10)	Vnom (24)	13.56045	0.45		Pass	
Tnom (20)	Vnom (24)	13.56051	0.51	±0.01%	Pass	
Tnom (30)	Vnom (24)	13.56058	0.58	(1.3560kHz)	Pass	
Tnom (40)	Tnom (40) Vnom (24)		0.54		Pass	
Tnom (50)	Vnom (24)	13.56056	0.56		Pass	
Tnom (20)	Vmin (20.4)	13.56042	0.42		Pass	
	Vmax (27.6)	13.56048	0.48		Pass	

Note: Deviation (kHz) = (Test Result-13.56MHz)*1000

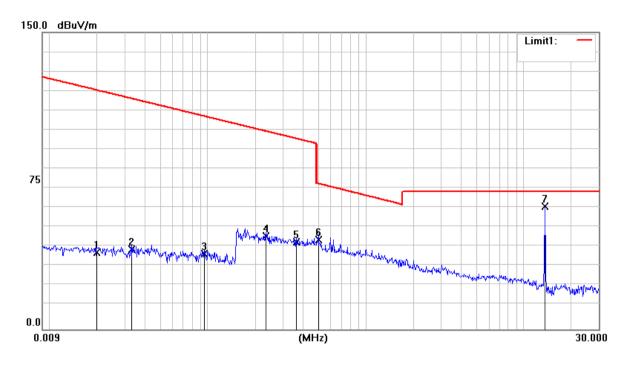


CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100201305

Page: 26 of 29

10.4 Radiated Emissions(9kHz-30MHz)

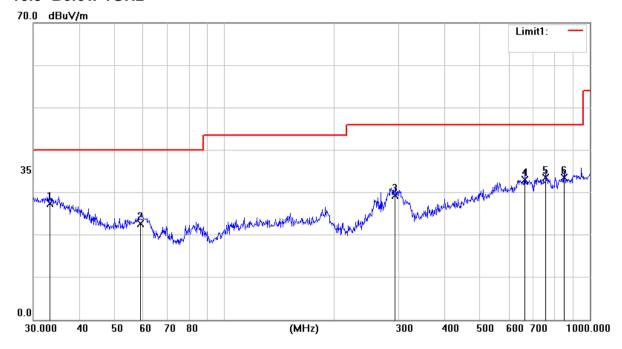

Item	Freq.	Read Level	Correct Factor	Result Level@3	Result Level@S	Limit Line@SP	Over Limit	Detector	Polarity
		LCVCI	1 actor	m	PEC	EC	Liiiiii		
(Mark)	(MHz)	(dBµV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)		
1	0.0164	21.96	15.93	37.89	-42.11	42.45	-84.56	QP	Coaxial
2	0.0444	20.33	15.62	35.95	-44.05	34.05	-78.10	QP	Coaxial
3	0.0830	21.68	15.19	36.87	-43.13	28.77	-71.90	QP	Coaxial
4	0.4061	23.01	14.44	37.45	-42.55	15.38	-57.93	QP	Coaxial
5	0.5322	22.71	14.44	37.15	-2.85	33.08	-35.93	QP	Coaxial
6	0.7430	19.40	14.43	33.83	-6.17	30.19	-36.36	QP	Coaxial
7	13.6227	49.46	13.95	63.41	23.41	29.50	-6.09	peak	Coaxial

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100201305

Page: 27 of 29

Item	Freq.	Read Level	Correct Factor	Result Level@3 m	Result Level@S PEC	Limit Line@SP EC	Over Limit	Detector	Polarity
(Mark)	(MHz)	(dBµV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)		
1	0.0200	22.76	15.89	38.65	-41.35	40.77	-82.12	QP	Coplanar
2	0.0330	24.52	15.74	40.26	-39.74	36.55	-76.29	QP	Coplanar
3	0.0947	22.96	15.06	38.02	-41.98	27.66	-69.64	QP	Coplanar
4	0.2341	32.46	14.45	46.91	-33.09	20.03	-53.12	QP	Coplanar
5	0.3613	29.71	14.44	44.15	-35.85	16.37	-52.22	QP	Coplanar
6	0.4994	30.87	14.44	45.31	5.31	33.64	-28.33	QP	Coplanar
7	13.6227	48.21	13.95	62.16	22.16	29.50	-7.34	peak	Coplanar

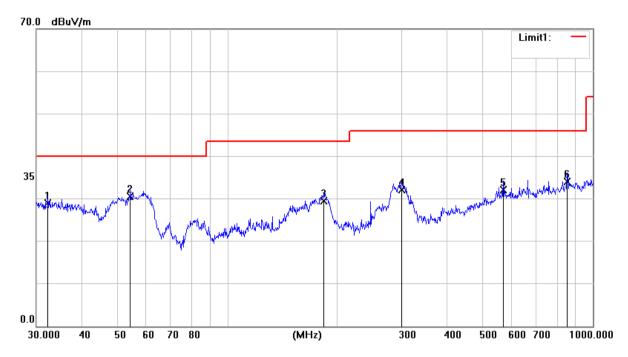


CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100201305

Page: 28 of 29

10.5 Below 1GHz


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	33.3278	2.39	25.03	27.42	40.00	-12.58	QP
2	59.0251	7.56	15.13	22.69	40.00	-17.31	QP
3	293.0842	8.82	20.50	29.32	46.00	-16.68	QP
4	663.4728	5.69	27.28	32.97	46.00	-13.03	QP
5	758.0407	2.37	31.11	33.48	46.00	-12.52	QP
6	851.0353	2.14	31.37	33.51	46.00	-12.49	QP

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100201305

Page: 29 of 29

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	32.2924	3.73	25.18	28.91	40.00	-11.09	QP
2	54.2610	14.22	16.36	30.58	40.00	-9.42	QP
3	183.8440	12.92	16.52	29.44	43.50	-14.06	QP
4	299.3158	11.44	20.67	32.11	46.00	-13.89	QP
5	568.6127	4.71	27.34	32.05	46.00	-13.95	QP
6	851.0353	2.14	31.91	34.05	46.00	-11.95	QP

⁻ End of the Report -