	B U R E A U VERITAS			
	FCC Test Report			
Report No.:	RF190702C02-4			
FCC ID:	SWX-AF60			
Test Model:	AF60			
Received Date:	July 02, 2019			
Test Date:	July 30 to Aug. 12, 2019			
Issued Date:	Aug. 20, 2019			
Applicant:	Ubiquiti Inc.			
Address:	685 Third Avenue, 27th Floor New York, New York 10017 USA			
Issued By:	Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory			
Lab Address:	E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan R.O.C.			
Test Location:	E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan R.O.C.			
FCC Registration / Designation Number:	723255 / TW2022			
-				
	TAF			
	Nac-MRA			
	Testing Laboratory 2022			
only with our prior written permission. Th	copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted is report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this e of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product			
specifically and expressly noted. Our rep us. You have 60 days from date of issuan	ort includes all of the tests requested by you and the results thereof based upon the information that you provided to ce of this report to notify us of any material error or omission caused by our negligence, provided, however, that such			
unqualified acceptance of the complete uncertainty of measurement has been ex-	cally address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your ness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the plicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be cation, approval, or endorsement by TAF or any government agencies.			

Table of Contents

R	Release Control Record 4						
1	C	Certificate of Conformity	5				
2	S	Summary of Test Results	6				
	2.1 2.2	Measurement Uncertainty Modification Record					
3	Ģ	General Information	7				
	3.1	General Description of EUT					
	3.2	Description of Test Modes					
	3.2.1	Test Mode Applicability and Tested Channel Detail					
	3.3	Description of Support Units					
	3.3.1	Configuration of System under Test	12				
	3.4	General Description of Applied Standards					
4	Т	est Types and Results	15				
	4.1	Radiated Emission Measurement	15				
		Limits of Radiated Emission Measurement					
		Test Instruments					
		Test Procedures					
	4.1.4	Deviation from Test Standard	20				
		Test Setup					
	4.1.6	EUT Operating Conditions	22				
	4.1.7	Test Results					
	4.2	Conducted Emission Measurement					
		Limits of Conducted Emission Measurement					
		Test Instruments					
		Test Procedures					
		Deviation from Test Standard					
		Test Setup					
		EUT Operating Conditions.					
		Test Results					
	4.3	6dB Bandwidth Measurement					
		Limits of 6dB Bandwidth Measurement					
		Test Setup Test Instruments					
		Test Procedure					
		Deviation fromTest Standard					
		EUT Operating Conditions.					
		Test Result					
	4.4	Output Power Measurement					
	4.4.1						
	4.4.2	Test Setup					
		Test Instruments					
		Test Procedures					
	4.4.5	Deviation from Test Standard	59				
		EUT Operating Conditions					
		Test Results					
	4.5	Frequency Stability Measurement					
	4.5.1	Limits of Conducted Out of Band Emission Measurement					
		Test Setup					
		Test Instruments					
		Test Procedure					
		Deviation from Test Standard					
		EUT Operating Condition					
	4.5.7	Test Results	02				

5	Pictures of Test Arrangements	63
Арре	ndix – Information of the Testing Laboratories	64

Release Control Record							
Issue No.	Description	Date Issued					
RF190702C02-4	Original release.	Aug. 20, 2019					

1 Certificate of Conformity Product: airFiber 60 Brand: UBIQUITI

Test Model: AF60

Sample Status: ENGINEERING SAMPLE

Applicant: Ubiquiti Inc.

 Test Date:
 July 30 to Aug. 12, 2019

 Standards:
 47 CFR FCC Part 15, Subpart C (Section 15.255)

 ANSI C63.10: 2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by :	Phoerie Huang / Specialist	, Date:	Aug. 20, 2019	
Approved by :	May Chen / Manager	, Date:	Aug. 20, 2019	

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (Section 15.255)							
FCC Test Item Result Remarks							
15.207	AC Power Conducted Emission	Pass	Meet the requirement of limit. Minimum passing margin is -14.94dB at 0.16953MHz.				
15.255(e)	6dB Bandwidth	-	Reference only.				
15.255 (c) & (e)	Output Power	Pass	Meet the requirement of limit.				
15.255(d)	Spurious Emissions	Pass	Meet the requirement of limit. Minimum passing margin is -1.1dB at 62.47MHz.				
15.255(f)	Frequency Stability	Pass	Meet the requirement of limit.				

Note:

Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	1.8 dB
Radiated Emissions up to 1 GHz	30MHz ~ 1GHz	5.1 dB
	1GHz ~ 6GHz	5.1 dB
Radiated Emissions above 1 GHz	6GHz ~ 18GHz	5.0 dB
	18GHz ~ 40GHz	5.2 dB
	40GHz ~ 200GHz	5.4 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	airFiber 60
Brand	UBIQUITI
Test Model	AF60
Status of EUT	ENGINEERING SAMPLE
Power Supply Rating	24Vdc from PoE adapter
Modulation Type	π /2-BPSK, π /2-QPSK, π /2-16QAM
Modulation Technology	OFDM
Transfer Rate	4620Mb/s
Operating Frequency	57 ~ 66 GHz
Output Power (EIRP)	58.32 GHz: 55.66 dBm 60.48 GHz: 55.62 dBm 62.64 GHz: 55.68 dBm 64.80 GHz: 55.62 dBm
Antenna Type	Refer to Note
Antenna Connector	Refer to Note
Accessory Device	PoE adapter x 1

Note:

1. The antennas provided to the EUT, please refer to the following table:

With dish Antenna Gain (dBi)		Frequency Range (GHz)		Connector Type	
38 5		57 ~ 66	none		
2. The EUT must be supplied with a PoE		PoE adapter a	s following table:		
Brand Model No.			Spec.		
Ubiquiti Networks. Inc.	GP-A240-		Input: 100-240Vac, 5 Output: 24Vdc, 0.5A	0/60Hz, MAX 0.3A	

3. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.2 Description of Test Modes

4 channels are provided for EUT

Channel	Frequency (GHz)	Channel	Frequency (GHz)	Channel	Frequency (GHz)	Channel	Frequency (GHz)
1	58.32	2	60.48	3	62.64	4	64.80

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT CONFIGURE			DESCRIPTION				
MODE	PLC	BW	OP	FS	RE < 1G	RE≥1G	DESCRIPTION
-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-
Where PLC: Power Line Conducted Emission B					ndwidth		
OP: (FS: Frequen	cy Stability				

RE < 1G: Radiated Emission below 1GHz

RE \geq **1G**: Radiated Emission above 1GHz

Power Line Conducted Emission Test:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE	TESTED CHANNEL	MODULATION	MODULATION	DATA RATE
CHANNEL		TECHNOLOGY	TYPE	(Mbps)
1, 2, 3, 4	3	OFDM	π /2-BPSK	27.5Mbps

6dB Bandwidth Test:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE	TESTED CHANNEL		MODULATION	DATA RATE
CHANNEL			TYPE	(Mbps)
1, 2, 3, 4	1, 2, 3, 4	OFDM	π /2-BPSK	27.5Mbps

Output Power Measurement:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE	TESTED CHANNEL	MODULATION	MODULATION	DATA RATE
CHANNEL		TECHNOLOGY	TYPE	(Mbps)
1, 2, 3, 4	1, 2, 3, 4	OFDM	π /2-BPSK	27.5Mbps

Frequency Stability Test:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE (Mbps)
1, 2, 3, 4	3	OFDM	π /2-BPSK	27.5Mbps

Radiated Emission Test (Below 1GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE	TESTED CHANNEL	MODULATION	MODULATION	DATA RATE
CHANNEL		TECHNOLOGY	TYPE	(Mbps)
1, 2, 3, 4	1, 2, 3, 4	OFDM	π /2-BPSK	27.5Mbps

Radiated Emission Test (Above 1GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE (Mbps)	
1, 2, 3, 4	1, 2, 3, 4	OFDM	π /2-BPSK	27.5Mbps	

Test Condition:

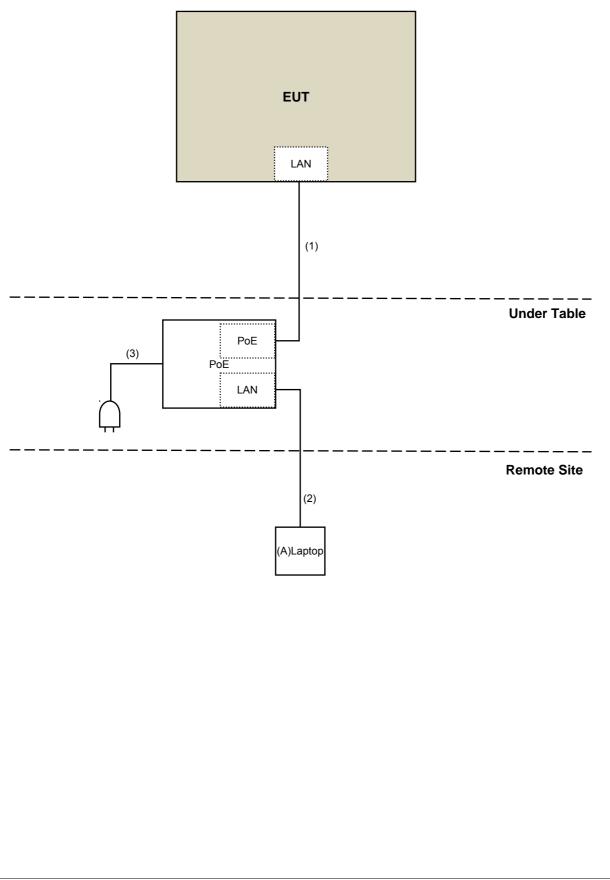
APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER (SYSTEM)	TESTED BY
PLC	23 deg. C, 76 %RH	120Vac, 60Hz	Andy Ho
BW	25 deg. C, 60 %RH	120Vac, 60Hz	Weiwei Liao
OP	25 deg. C, 60 %RH	120Vac, 60Hz	Weiwei Liao
FS	25 deg. C, 60 %RH	120Vac, 60Hz	Weiwei Liao
RE<1G	23 deg. C, 68 %RH	120Vac, 60Hz	Andy Ho
RE≥1G	23 deg. C, 68 %RH, 25 deg. C, 67 %RH, 23 deg. C, 62 %RH	120Vac, 60Hz	Andy Ho, Weiwei Liao

3.3 Description of Support Units

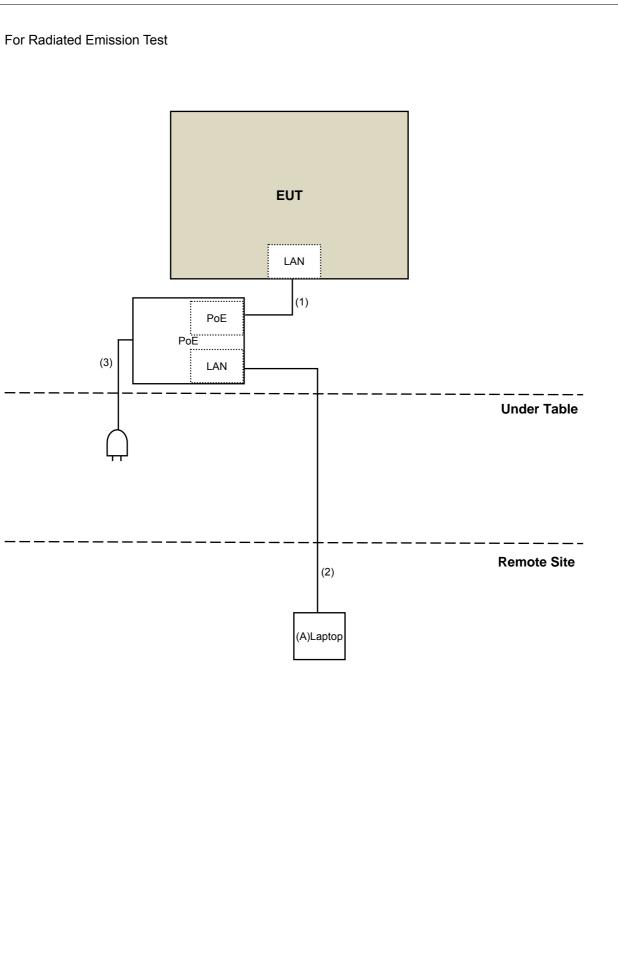
The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α.	Laptop	DELL	E5430	HYV4VY1	FCC DoC	Provided by Lab

Note:


1. All power cords of the above support units are non-shielded (1.8m).

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	RJ-45 Cable	1	3	No	0	Provided by Lab
2.	RJ-45 Cable	1	10	No	0	Provided by Lab
3.	AC Cable	1	0.6	No	0	Supplied by client



3.3.1 Configuration of System under Test

For Power Line Conducted Emission Test:

3.4 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.255) ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

4 Test Types and Results

4.1 Radiated Emission Measurement

4.1.1 Limits of Radiated Emission Measurement

Spurious Emission				
Frequency Range Limitation				
Radiated emissions below 40GHz	Part 15.209			
Between 40GHz and 200GHz 90pW/cm ² (at 3 meter)				
Nete	•			

Note:

The levels of the spurious emissions shall not exceed the level of the fundamental emission

Emissions radiated outside of the specified bands, shall be according to the general radiated limits in 15.209 as following:

Frequencies (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Note:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.
- 4. Section 15.205 restricted bands of operation shall compliance with the limits in Section 15.209.

4.1.2 Test Instruments

For Below 40GHz:						
DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL		
Test Receiver Agilent	N9038A	MY50010156	July 17, 2019	July 16, 2020		
Pre-Amplifier EMCI	EMC001340	980142	Jan. 25, 2019	Jan. 24, 2020		
Loop Antenna Electro-Metrics	EM-6879	269	Sep. 07, 2018	Sep. 06, 2019		
RF Cable	NA	LOOPCAB-001	Jan. 14, 2019	Jan. 13, 2020		
RF Cable	NA	LOOPCAB-002	Jan. 14, 2019	Jan. 13, 2020		
Pre-Amplifier Mini-Circuits	ZFL-1000VH2B	AMP-ZFL-05	Apr. 30, 2019	Apr. 29, 2020		
Trilog Broadband Antenna SCHWARZBECK	VULB 9168	9168-361	Nov. 22, 2018	Nov. 21, 2019		
RF Cable	8D	966-3-1	Mar. 18, 2019	Mar. 17, 2020		
RF Cable	8D	966-3-2	Mar. 18, 2019	Mar. 17, 2020		
RF Cable	8D	966-3-3	Mar. 18, 2019	Mar. 17, 2020		
Fixed attenuator Mini-Circuits	UNAT-5+	PAD-3m-3-01	Sep. 27, 2018	Sep. 26, 2019		
Horn_Antenna SCHWARZBECK	BBHA9120-D	9120D-406	Nov. 25, 2018	Nov. 24, 2019		
Pre-Amplifier EMCI	EMC12630SE	980384	Jan. 28, 2019	Jan. 27, 2020		
RF Cable	EMC104-SM-SM-1200	160922	Jan. 28, 2019	Jan. 27, 2020		
RF Cable	EMC104-SM-SM-2000	180601	June 10, 2019	June 09, 2020		
RF Cable	EMC104-SM-SM-6000	180602	June 10, 2019	June 09, 2020		
Spectrum Analyzer Keysight	N9030A	MY54490679	July 17, 2019	July 16, 2020		
Pre-Amplifier EMCI	EMC184045SE	980387	Jan. 28, 2019	Jan. 27, 2020		
Horn_Antenna SCHWARZBECK	BBHA 9170	BBHA9170519	Nov. 25, 2018	Nov. 24, 2019		
RF Cable	EMC102-KM-KM-1200	160924	Jan. 28, 2019	Jan. 27, 2020		
RF Cable	EMC102-KM-KM-1200	160925	Jan. 28, 2019	Jan. 27, 2020		
Software	ADT_Radiated_V8.7.08	NA	NA	NA		
Antenna Tower & Turn Table Max-Full	MF-7802	MF780208406	NA	NA		
Boresight Antenna Fixture	FBA-01	FBA-SIP01	NA	NA		
Spectrum Analyzer R&S	FSV40	100964	June 04, 2019	June 03, 2020		
Fixed Attenuator Mini-Circuits	MDCS18N-10	MDCS18N-10-01	Apr. 15, 2019	Apr. 14, 2020		
AC Power Source Extech Electronics	6205	1440452	NA	NA		
Temperature & Humidity Chamber Giant Force	GTH-150-40-SP-AR	MAA0812-008	Jan. 09, 2019	Jan. 08, 2020		
True RMS Clamp Meter FLUKE	325	31130711WS	May 21, 2019	May 20, 2020		

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in 966 Chamber No. 3.
- 3. Loop antenna was used for all emissions below 30 MHz.
- 4. Tested Date: Aug. 06 to 12, 2019

For Above 40GHz:						
DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL		
Spectrum Analyzer Agilent	E4446A	MY48250253	July 24, 2019	July 23, 2020		
*Harmonic Mixer (33~55GHz) OML	M22HWD	110215-1	Oct. 17, 2017	Oct. 16, 2019		
*Horn Antenna (33~55GHz) OML	M22RH	110215-1	Oct. 17, 2017	Oct. 16, 2019		
*Harmonic Mixer (50~75GHz) OML	M15RH	110215-1	Oct. 17, 2017	Oct. 16, 2019		
*Horn Antenna (50~75GHz) OML	M15HWD	110215-1	Oct. 17, 2017	Oct. 16, 2019		
*Harmonic Mixer (75~110GHz) OML	M10HWD	110215-1	Oct. 17, 2017	Oct. 16, 2019		
*Horn Antenna (75~110GHz) OML	M10RH	110215-1	Oct. 17, 2017	Oct. 16, 2019		
*Harmonic Mixer (110~170GHz) OML	M06RH	110215-1	Oct. 17, 2017	Oct. 16, 2019		
*Horn Antenna(110~170GHz) OML	M06HWD	110215-1	Oct. 17, 2017	Oct. 16, 2019		
*Harmonic Mixer (140~220GHz) OML	M05HWD	110215-1	Oct. 17, 2017	Oct. 16, 2019		
*Horn Antenna (140~220GHz) OML	M05RH	110215-1	Oct. 17, 2017	Oct. 16, 2019		
*Diplexer EMCI	DPL26	DPL26_01	Oct. 17, 2017	Oct. 16, 2019		
*Diplexer EMCI	DPL26	DPL26_02	Oct. 17, 2017	Oct. 16, 2019		
*Precision 30dB Attenuator Keysight	11708A	MY55260015	Oct. 17, 2017	Oct. 16, 2019		
*Zero-Bias Detector (50~75GHz) Vdi	WR15ZBD	WR15R5 1-30	Oct. 17, 2017	Oct. 16, 2019		
4CH Infiniivision Oscilloscope Keysight	DSOX6004A	MY55190202	July 12, 2019	July 11, 2020		
*WR15CH Conical Horn Keysight	WR15CH	WR15CH-01	Oct. 17, 2017	Oct. 16, 2019		
*WR10CH Conical Horn Keysight	WR10CH	WR10CH-01	Oct. 17, 2017	Oct. 16, 2019		
*Millimeter-Wave Signal Generator Frequency Extension Module (50~75 GHz) Keysight	E8257DV15	US54250106	Oct. 17, 2017	Oct. 16, 2019		
*Millimeter-Wave Signal Generator Frequency Extension Module (75~110 GHz) Keysight	E8257DV10	US53250009	Oct. 17, 2017	Oct. 16, 2019		
PSG analog signal generator Keysight	E8257D	MY53401987	June 21, 2019	June 20, 2020		
Antenna Tower & Turn Table CT	NA	NA	NA	NA		
*Preselected Millimeter Mixer (50~75GHz) Agilent	11974V	MY30012030	Oct. 17, 2017	Oct. 16, 2019		
*Millimeter wave Pre_Amplifier (57~66GHz) Space Labs	SL629-29-5W	1F29	Oct. 17, 2017	Oct. 16, 2019		
*SWV-1 waveguide (50~75GHz) Space Labs	WV-1 waveguide	SWV-1_01	Oct. 17, 2017	Oct. 16, 2019		

Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. *The calibration interval of the above test instruments is 24 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. The test was performed in 966 Chamber No. 3
- 4 Test Date: July 30 to Aug. 02, 2019

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

Note:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission 30MHz to 40GHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters (30MHz-18GHz) / 1 meters (18GHz-40GHz) away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

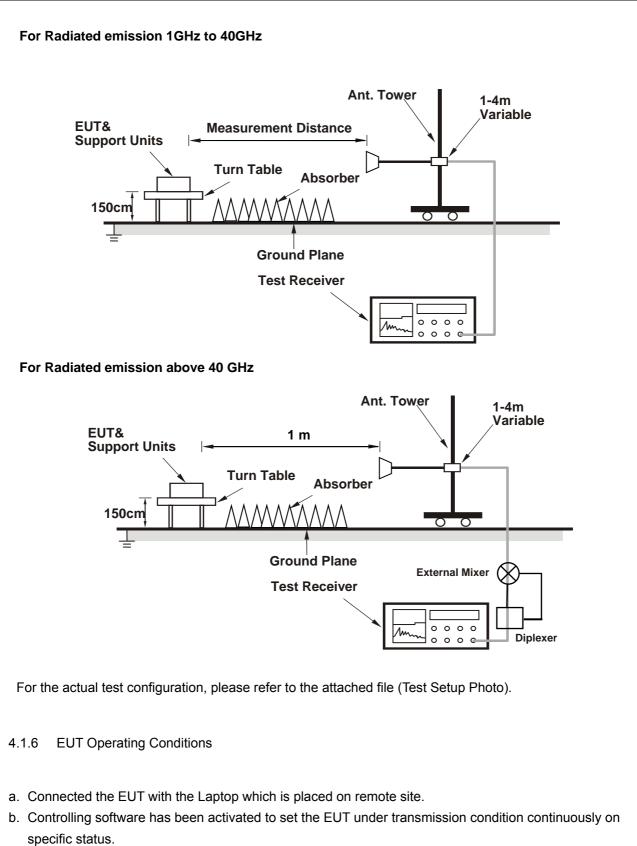
Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) and Average detection (AV) at frequency above 1GHz.
- 3. All modes of operation were investigated and the worst-case emissions are reported.

For Radiated emission above 40GHz

- a. Connect the test antenna covering the appropriate frequency range to a spectrum analyzer via an external mixer to the spectrum analyzer.
- b. Set spectrum analyzer RBW = 1 MHz, VBW = 3 MHz, average detector.
- c. Calculate the distance to the far field boundary and determine the maximum measurement distance.
- d. Perform an exploratory search for emissions and determine the approximate direction at which each observed emission emanates from the EUT.
- e. Exploratory measurements be made at a closer distance than the validated maximum measurement distance.
- f. Perform a final measurement; begin with the test antenna at the approximate position where the maximum level occurred during the exploratory scan.
- g. Slowly scan the test antenna around this position, slowly vary the test antenna polarization by rotating through at least 0° to 180°, and slowly vary the orientation of the test antenna to find the final position, polarization, and orientation at which the maximum level of the emission is observed.
- h. Record the measured reading with the test antenna fixed at this maximized position, polarization, and orientation. Record the measurement distance.
- i. Calculate the maximum field strength of the emission at the measurement distance and the adjusted/corrected power at the output of the test antenna.
- j. Calculate the EIRP from the measured field strength and then convert to the linear.
- k. Calculate the power density at the distance specified by the limit from the field strength at the distance specified by the limit.
- I. Repeat the preceding sequence for every emission observed in the frequency band under investigation.

4.1.4 Deviation from Test Standard


No deviation.

4.1.5 Test Setup

For Radiated emission below 30MHz 1, m EUT& 3 m Support Units **Turn Table** 80cm 0 0 **Ground Plane Test Receiver** 0 0 0 0 M 000 G For Radiated emission 30MHz to 1GHz Ant. Tower 1-4m Variable 3 m EUT& Support Units Turn Table 80cm 0 0 \perp **Ground Plane Test Receiver** 0 0 0 0 Λ., 000 G

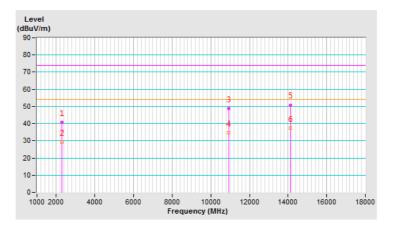
4.1.7 Test Results

Above 1GHz Data:

For 1~18 GHz

CHANNEL	TX Channel 1	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 18GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	2295.35	40.9 PK	74.0	-33.1	2.00 H	0	42.7	-1.8	
2	2295.35	29.4 AV	54.0	-24.6	2.00 H	0	31.2	-1.8	
3	10930.07	48.9 PK	74.0	-25.1	1.50 H	179	35.7	13.2	
4	10930.07	34.6 AV	54.0	-19.4	1.50 H	179	21.4	13.2	
5	14121.22	50.9 PK	74.0	-23.1	2.50 H	108	35.3	15.6	
6	14121.22	37.2 AV	54.0	-16.8	2.50 H	108	21.6	15.6	

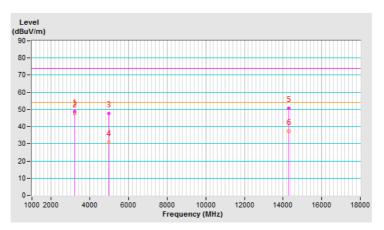

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

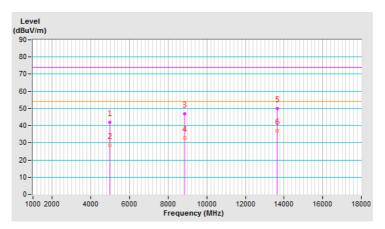


CHANNEL	TX Channel 1	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 18GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	3215.05	48.7 PK	74.0	-25.3	1.00 V	358	49.5	-0.8	
2	3215.05	47.7 AV	54.0	-6.3	1.00 V	358	48.5	-0.8	
3	4990.82	47.7 PK	74.0	-26.3	1.00 V	4	45.0	2.7	
4	4990.82	30.8 AV	54.0	-23.2	1.00 V	4	28.1	2.7	
5	14290.81	50.8 PK	74.0	-23.2	2.00 V	245	34.7	16.1	
6	14290.81	37.4 AV	54.0	-16.6	2.00 V	245	21.3	16.1	

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.

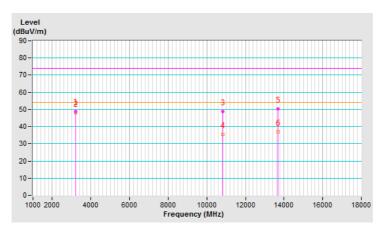


CHANNEL	TX Channel 2	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 18GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	4985.16	41.8 PK	74.0	-32.2	1.50 H	8	39.2	2.6	
2	4985.16	28.4 AV	54.0	-25.6	1.50 H	8	25.8	2.6	
3	8839.32	46.9 PK	74.0	-27.1	1.50 H	243	37.0	9.9	
4	8839.32	32.7 AV	54.0	-21.3	1.50 H	243	22.8	9.9	
5	13643.62	49.8 PK	74.0	-24.2	1.50 H	260	34.8	15.0	
6	13643.62	37.0 AV	54.0	-17.0	1.50 H	260	22.0	15.0	

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.

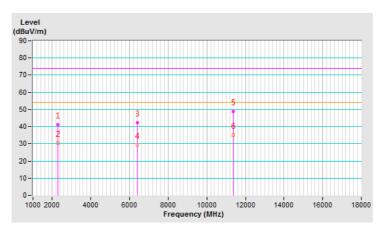


CHANNEL	TX Channel 2	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 18GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	3218.40	49.0 PK	74.0	-25.0	1.00 V	354	49.8	-0.8	
2	3218.40	47.9 AV	54.0	-6.1	1.00 V	354	48.7	-0.8	
3	10837.13	48.7 PK	74.0	-25.3	1.00 V	207	35.5	13.2	
4	10837.13	35.5 AV	54.0	-18.5	1.00 V	207	22.3	13.2	
5	13693.71	50.2 PK	74.0	-23.8	1.00 V	340	35.0	15.2	
6	13693.71	37.0 AV	54.0	-17.0	1.00 V	340	21.8	15.2	

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.

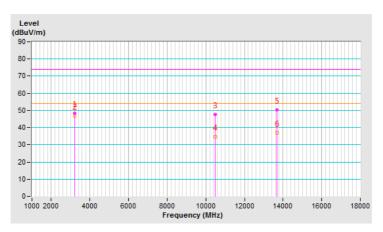


CHANNEL	TX Channel 3	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 18GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	2290.97	41.1 PK	74.0	-32.9	1.49 H	20	42.9	-1.8	
2	2290.97	30.6 AV	54.0	-23.4	1.49 H	20	32.4	-1.8	
3	6417.43	42.3 PK	74.0	-31.7	2.00 H	342	36.7	5.6	
4	6417.43	29.4 AV	54.0	-24.6	2.00 H	342	23.8	5.6	
5	11357.69	48.9 PK	74.0	-25.1	1.00 H	236	35.5	13.4	
6	11357.69	35.0 AV	54.0	-19.0	1.00 H	236	21.6	13.4	

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.

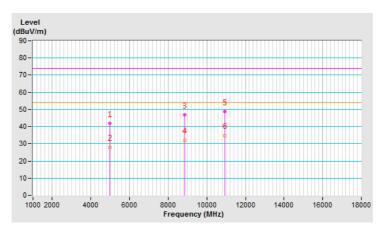


CHANNEL	TX Channel 3	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 18GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	3212.70	48.3 PK	74.0	-25.7	1.00 V	351	49.0	-0.7	
2	3212.70	46.9 AV	54.0	-7.1	1.00 V	351	47.6	-0.7	
3	10471.88	47.7 PK	74.0	-26.3	1.50 V	93	35.2	12.5	
4	10471.88	34.7 AV	54.0	-19.3	1.50 V	93	22.2	12.5	
5	13695.25	50.2 PK	74.0	-23.8	1.00 V	340	35.0	15.2	
6	13695.25	37.1 AV	54.0	-16.9	1.00 V	340	21.9	15.2	

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.

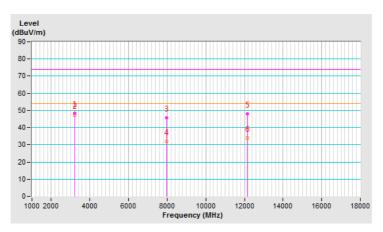


CHANNEL	TX Channel 4	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 18GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	4983.40	41.8 PK	74.0	-32.2	1.50 H	8	39.2	2.6	
2	4983.40	28.0 AV	54.0	-26.0	1.50 H	8	25.4	2.6	
3	8840.45	46.9 PK	74.0	-27.1	1.50 H	243	37.0	9.9	
4	8840.45	32.2 AV	54.0	-21.8	1.50 H	243	22.3	9.9	
5	10930.29	48.9 PK	74.0	-25.1	1.50 H	179	35.7	13.2	
6	10930.29	34.9 AV	54.0	-19.1	1.50 H	179	21.7	13.2	

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.



CHANNEL	TX Channel 4	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 18GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	3214.66	48.5 PK	74.0	-25.5	1.00 V	355	49.3	-0.8		
2	3214.66	47.2 AV	54.0	-6.8	1.00 V	355	48.0	-0.8		
3	7967.35	45.7 PK	74.0	-28.3	1.50 V	13	36.6	9.1		
4	7967.35	31.9 AV	54.0	-22.1	1.50 V	13	22.8	9.1		
5	12154.34	48.0 PK	74.0	-26.0	1.00 V	13	35.5	12.5		
6	12154.34	34.0 AV	54.0	-20.0	1.00 V	13	21.5	12.5		

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.

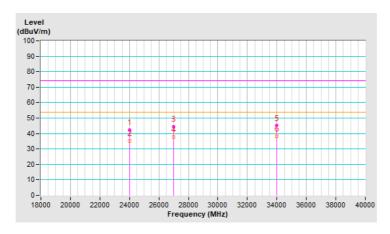
For 18~40 GHz

CHANNEL	TX Channel 1	DETECTOR	Peak (PK)
FREQUENCY RANGE	18GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY: HORIZONTAL								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	24002.00	42.5 PK	74.0	-31.5	1.15 H	110	60.2	-17.7	
2	24002.00	35.1 AV	54.0	-18.9	1.15 H	110	52.8	-17.7	
3	27003.00	44.5 PK	74.0	-29.5	1.26 H	245	60.7	-16.2	
4	27003.00	37.8 AV	54.0	-16.2	1.26 H	245	54.0	-16.2	
5	34003.00	45.2 PK	74.0	-28.8	1.59 H	115	61.7	-16.5	
6	34003.00	38.2 AV	54.0	-15.8	1.59 H	115	54.7	-16.5	

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)


2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.

 Shorter measurement distances was used to improve the measurement system's noise floor. As standard description is based on the measurement in distance of 3 meters, the data obtained at 1-meter distance was extrapolate results to the 3-m distance:

Test value at 3-meter distance (dBuV)

- = Test value at 1 meter distance (dBuV) -20log(3/1)(dB)
- = Test value at 1 meter distance (dBuV) -9.54(dB).

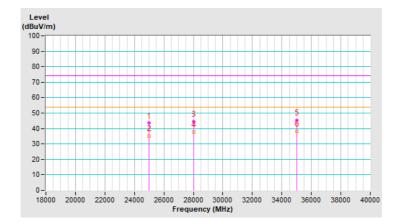
CHANNEL	TX Channel 1	DETECTOR	Peak (PK)
FREQUENCY RANGE	18GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY: VERTICAL								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	25002.00	43.5 PK	74.0	-30.5	1.25 V	100	60.3	-16.8	
2	25002.00	35.2 AV	54.0	-18.8	1.25 V	100	52.0	-16.8	
3	28003.00	44.6 PK	74.0	-29.4	1.36 V	255	61.9	-17.3	
4	28003.00	37.9 AV	54.0	-16.1	1.36 V	255	55.2	-17.3	
5	35003.00	45.3 PK	74.0	-28.7	1.69 V	125	62.7	-17.4	
6	35003.00	38.3 AV	54.0	-15.7	1.69 V	125	55.7	-17.4	

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value


4. The other emission levels were very low against the limit.

 Shorter measurement distances was used to improve the measurement system's noise floor. As standard description is based on the measurement in distance of 3 meters, the data obtained at 1-meter distance was extrapolate results to the 3-m distance:

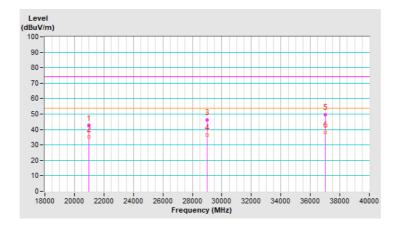
Test value at 3-meter distance (dBuV)

= Test value at 1 meter distance (dBuV) -20log(3/1)(dB)

= Test value at 1 meter distance (dBuV) -9.54(dB).

CHANNEL	TX Channel 2	DETECTOR	Peak (PK)
FREQUENCY RANGE	18GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY: HORIZONTAL								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	21005.00	42.6 PK	74.0	-31.4	1.22 H	100	61.6	-19.0	
2	21005.00	35.2 AV	54.0	-18.8	1.22 H	100	54.2	-19.0	
3	29003.00	46.3 PK	74.0	-27.7	1.68 H	12	63.9	-17.6	
4	29003.00	36.6 AV	54.0	-17.4	1.68 H	12	54.2	-17.6	
5	37003.00	49.5 PK	74.0	-24.5	1.66 H	200	65.0	-15.5	
6	37003.00	38.3 AV	54.0	-15.7	1.66 H	200	53.8	-15.5	


1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. Shorter measurement distances was used to improve the measurement system's noise floor. As standard description is based on the measurement in distance of 3 meters, the data obtained at 1-meter distance was extrapolate results to the 3-m distance:

Test value at 3-meter distance (dBuV)

- = Test value at 1 meter distance (dBuV) -20log(3/1)(dB)
- = Test value at 1 meter distance (dBuV) -9.54(dB).

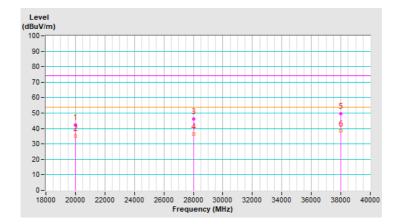
CHANNEL	TX Channel 2	DETECTOR	Peak (PK)
FREQUENCY RANGE	18GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY: VERTICAL								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	20005.00	42.5 PK	74.0	-31.5	1.12 V	90	62.6	-20.1	
2	20005.00	35.1 AV	54.0	-18.9	1.12 V	90	55.2	-20.1	
3	28003.00	46.2 PK	74.0	-27.8	1.58 V	11	63.5	-17.3	
4	28003.00	36.5 AV	54.0	-17.5	1.58 V	11	53.8	-17.3	
5	38003.00	49.6 PK	74.0	-24.4	1.76 V	210	62.8	-13.2	
6	38003.00	38.4 AV	54.0	-15.6	1.76 V	210	51.6	-13.2	

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value


4. The other emission levels were very low against the limit.

5. Shorter measurement distances was used to improve the measurement system's noise floor. As standard description is based on the measurement in distance of 3 meters, the data obtained at 1-meter distance was extrapolate results to the 3-m distance:

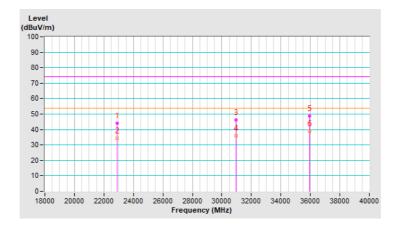
Test value at 3-meter distance (dBuV)

= Test value at 1 meter distance (dBuV) -20log(3/1)(dB)

= Test value at 1 meter distance (dBuV) -9.54(dB).

CHANNEL	TX Channel 3	DETECTOR	Peak (PK)	
FREQUENCY RANGE	18GHz ~ 40GHz	FUNCTION	Average (AV)	

	ANTENNA POLARITY: HORIZONTAL							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	22908.00	44.1 PK	74.0	-29.9	1.13 H	299	61.9	-17.8
2	22908.00	34.2 AV	54.0	-19.8	1.13 H	290	52.0	-17.8
3	30952.00	46.2 PK	74.0	-27.8	1.97 H	210	62.9	-16.7
4	30952.00	36.1 AV	54.0	-17.9	1.97 H	210	52.8	-16.7
5	35953.00	48.9 PK	74.0	-25.1	2.01 H	115	65.1	-16.2
6	35953.00	39.1 AV	54.0	-14.9	2.01 H	115	55.3	-16.2


1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. Shorter measurement distances was used to improve the measurement system's noise floor. As standard description is based on the measurement in distance of 3 meters, the data obtained at 1-meter distance was extrapolate results to the 3-m distance:

Test value at 3-meter distance (dBuV)

- = Test value at 1 meter distance (dBuV) -20log(3/1)(dB)
- = Test value at 1 meter distance (dBuV) -9.54(dB).

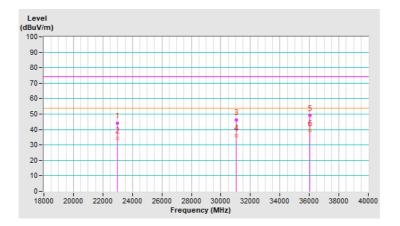
CHANNEL	TX Channel 3	DETECTOR	Peak (PK)	
FREQUENCY RANGE	18GHz ~ 40GHz	FUNCTION	Average (AV)	

ANTENNA POLARITY: VERTICAL								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	23008.00	44.2 PK	74.0	-29.8	1.23 V	300	62.2	-18.0
2	23008.00	34.3 AV	54.0	-19.7	1.23 V	300	52.3	-18.0
3	31052.00	46.3 PK	74.0	-27.7	1.98 V	211	63.4	-17.1
4	31052.00	36.2 AV	54.0	-17.8	1.98 V	211	53.3	-17.1
5	36053.00	49.0 PK	74.0	-25.0	2.11 V	125	65.2	-16.2
6	36053.00	39.2 AV	54.0	-14.8	2.11 V	125	55.4	-16.2

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value


4. The other emission levels were very low against the limit.

5. Shorter measurement distances was used to improve the measurement system's noise floor. As standard description is based on the measurement in distance of 3 meters, the data obtained at 1-meter distance was extrapolate results to the 3-m distance:

Test value at 3-meter distance (dBuV)

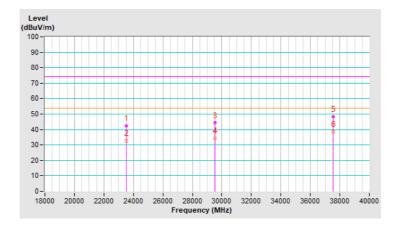
= Test value at 1 meter distance (dBuV) -20log(3/1)(dB)

= Test value at 1 meter distance (dBuV) -9.54(dB).

CHANNEL	TX Channel 4	DETECTOR	Peak (PK)
FREQUENCY RANGE	18GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY: HORIZONTAL								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	23500.00	42.3 PK	74.0	-31.7	1.05 H	32	60.7	-18.4	
2	23500.00	32.6 AV	54.0	-21.4	1.05 H	32	51.0	-18.4	
3	29530.00	44.3 PK	74.0	-29.7	1.66 H	211	61.4	-17.1	
4	29530.00	34.2 AV	54.0	-19.8	1.66 H	211	51.3	-17.1	
5	37560.00	48.3 PK	74.0	-25.7	1.00 H	21	63.4	-15.1	
6	37560.00	38.6 AV	54.0	-15.4	1.00 H	21	53.7	-15.1	

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)


2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. Shorter measurement distances was used to improve the measurement system's noise floor. As standard description is based on the measurement in distance of 3 meters, the data obtained at 1-meter distance was extrapolate results to the 3-m distance:

Test value at 3-meter distance (dBuV)

- = Test value at 1 meter distance (dBuV) -20log(3/1)(dB)
- = Test value at 1 meter distance (dBuV) -9.54(dB).

*Measurements made at 1 meter distance. Test value converted to account for 3-meter measurement distance.

CHANNEL	TX Channel 4	DETECTOR	Peak (PK)
FREQUENCY RANGE	18GHz ~ 40GHz	FUNCTION	Average (AV)

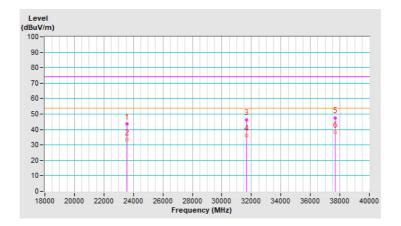
	ANTENNA POLARITY: VERTICAL								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	23562.00	43.5 PK	74.0	-30.5	1.20 V	211	61.8	-18.3	
2	23562.00	33.3 AV	54.0	-20.7	1.20 V	211	51.6	-18.3	
3	31682.00	46.3 PK	74.0	-27.7	1.00 V	215	62.6	-16.3	
4	31682.00	36.2 AV	54.0	-17.8	1.00 V	215	52.5	-16.3	
5	37688.00	47.6 PK	74.0	-26.4	2.10 V	300	61.9	-14.3	
6	37688.00	38.2 AV	54.0	-15.8	2.10 V	300	52.5	-14.3	

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.


5. Shorter measurement distances was used to improve the measurement system's noise floor. As standard description is based on the measurement in distance of 3 meters, the data obtained at 1-meter distance was extrapolate results to the 3-m distance:

Test value at 3-meter distance (dBuV)

= Test value at 1 meter distance (dBuV) -20log(3/1)(dB)

= Test value at 1 meter distance (dBuV) -9.54(dB).

*Measurements made at 1 meter distance. Test value converted to account for 3-meter measurement distance.

For above 40 GHz

CHANNEL	TX Channel 1	DETECTOR	
FREQUENCY RANGE	40GHz ~ 200GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY: HORIZONTAL							
NO.	Frequency (GHz)	EIRP Level (dBm)	Reading Value (dBm)	Receiver Antenna Gain (dBi)	Power Density (pW/cm²)	Power Density Limit (pW/cm²)		
1	116.64	-17.2	-67.8	23.2	16.805	90		
2	200	-20.4	-75.6	23.3	7.976	90		
		AN	FENNA POLARI	TY: VERTICAL				
NO.	Frequency (GHz)	EIRP Level (dBm)	Reading Value (dBm)	Receiver Antenna Gain (dBi)	Power Density (pW/cm²)	Power Density Limit (pW/cm²)		
1	116.64	-16.5	-67.1	23.2	19.699	90		
2	200	-17.5	-72.7	23.3	15.66	90		

Note:

1. The measured power level is converted to EIRP using the equation:

EIRP = Raw Value - Receiver Antenna Gain + $20^{\circ}\log(4^{\circ}3.1416^{\circ}D/\lambda)$

where:

D is the measurement distance

 λ is the wavelength

*Measurements made at 1 meter distance.

2. The far-field boundary is given in ANSI 63.10 as:

R far field = $(2 * L^2) / \lambda$

L is the Largest Antenna Dimension, including the reflector

 λ is the wavelength

Frequency (GHz)	L (m)	Lambda (m)	R (Far Field) (m)
58.32	0.03	0.00514	0.35

CHANNEL	TX Channel 2	DETECTOR	
FREQUENCY RANGE	40GHz ~ 200GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY: HORIZONTAL							
NO.	Frequency (GHz)	EIRP Level (dBm)	Reading Value (dBm)	Receiver Antenna Gain (dBi)	Power Density (pW/cm²)	Power Density Limit (pW/cm ²)		
1	120.96	-17.4	-68.2	23.3	15.996	90		
2	200	-20.8	-76.0	23.3	7.308	90		
		AN	FENNA POLARI	TY: VERTICAL				
NO.	Frequency (GHz)	EIRP Level (dBm)	Reading Value (dBm)	Receiver Antenna Gain (dBi)	Power Density (pW/cm²)	Power Density Limit (pW/cm ²)		

23.3

23.3

19.365

14.151

90

90

-67.4

-73.1

2 Note:

1

1. The measured power level is converted to EIRP using the equation:

EIRP = Raw Value - Receiver Antenna Gain + $20^{1}\log(4^{3.1416*D/\lambda})$

where:

D is the measurement distance

120.96

200

 λ is the wavelength

*Measurements made at 1 meter distance.

2. The far-field boundary is given in ANSI 63.10 as:

R far field = $(2 * L^2) / \lambda$

L is the Largest Antenna Dimension, including the reflector

-16.6

-18.0

 λ is the wavelength

Frequency (GHz)	L (m)	Lambda (m)	R (Far Field) (m)	
60.48	0.03	0.00496	0.363	

CHANNEL	TX Channel 3	DETECTOR	
FREQUENCY RANGE	40GHz ~ 200GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY: HORIZONTAL							
NO.	Frequency (GHz)	EIRP Level (dBm)	Reading Value (dBm)	Receiver Antenna Gain (dBi)	Power Density (pW/cm²)	Power Density Limit (pW/cm²)		
1	125.28	-16.8	-67.9	23.3	18.429	90		
2	200	-20.9	-76.0	23.3	7.224	90		
	ANTENNA POLARITY: VERTICAL							
NO.	Frequency (GHz)	EIRP Level (dBm)	Reading Value (dBm)	Receiver Antenna Gain	Power Density (pW/cm²)	Power Density Limit		

(dBi)

23.3

23.3

21.553

14.119

(dBm)

-67.2

-73.1

2 Note:

1

1. The measured power level is converted to EIRP using the equation:

EIRP = Raw Value - Receiver Antenna Gain + $20^{\circ}\log(4^{\circ}3.1416^{\circ}D/\lambda)$

where:

D is the measurement distance

125.28

200

 λ is the wavelength

*Measurements made at 1 meter distance.

2. The far-field boundary is given in ANSI 63.10 as:

R far field = $(2 * L^2) / \lambda$

L is the Largest Antenna Dimension, including the reflector

-16.1

-18.0

 λ is the wavelength

Frequency (GHz)	L (m)	Lambda (m)	R (Far Field) (m)
62.64	0.03	0.00479	0.376

(pW/cm²)

90

90

CHANNEL	TX Channel 4	DETECTOR	
FREQUENCY RANGE	40GHz ~ 200GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY: HORIZONTAL											
NO.	Frequency (GHz)	EIRP Level (dBm)	Reading Value (dBm)	Receiver Antenna Gain (dBi)	Power Density (pW/cm²)	Power Density Limit (pW/cm ²)						
1	129.6	-16.5	-67.8	23.4	19.795	90						
2	200	-20.5	-75.7	23.3	7.881	90						
		AN	FENNA POLARI	TY: VERTICAL								
NO.	Frequency (GHz)	EIRP Level (dBm)	Reading Value (dBm)	Receiver Antenna Gain (dBi)	Power Density (pW/cm²)	Power Density Limit (pW/cm ²)						

23.4

23.3

21.211

15.016

90

90

-67.5

-72.8

2 Note:

1

1. The measured power level is converted to EIRP using the equation:

EIRP = Raw Value - Receiver Antenna Gain + $20^{1}\log(4^{3.1416*D/\lambda})$

where:

D is the measurement distance

129.6

200

 $\boldsymbol{\lambda}$ is the wavelength

*Measurements made at 1 meter distance.

2. The far-field boundary is given in ANSI 63.10 as:

R far field = $(2 * L^2) / \lambda$

L is the Largest Antenna Dimension, including the reflector

-16.2

-17.7

 λ is the wavelength

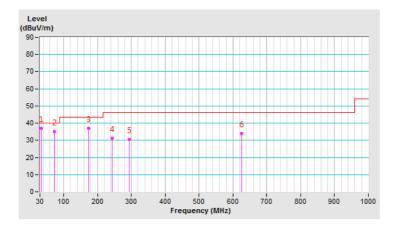
Frequency (GHz)	L (m)	Lambda (m)	R (Far Field) (m)
64.8	0.03	0.00463	0.389

For below 1GHz

CHANNEL	TX Channel 1	DETECTOR	Quasi Bask (QD)
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M										
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	33.49	36.9 QP	40.0	-3.1	1.00 H	44	46.3	-9.4			
2	73.12	35.0 QP	40.0	-5.0	2.50 H	52	46.4	-11.4			
3	174.41	36.8 QP	43.5	-6.7	2.00 H	1	45.6	-8.8			
4	243.96	31.4 QP	46.0	-14.6	1.00 H	336	40.1	-8.7			
5	293.16	30.6 QP	46.0	-15.4	1.00 H	5	37.4	-6.8			
6	625.00	34.0 QP	46.0	-12.0	2.00 H	0	32.7	1.3			

REMARKS:

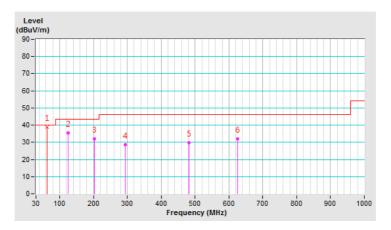

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.

5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

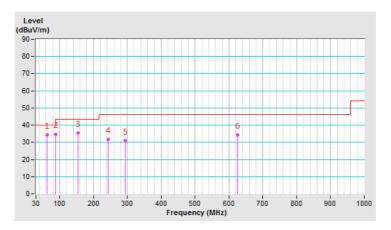


CHANNEL	TX Channel 1	DETECTOR	Outeri Desk (OD)
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	62.47	38.9 QP	40.0	-1.1	1.00 V	306	47.8	-8.9		
2	125.01	35.6 QP	43.5	-7.9	1.00 V	153	45.2	-9.6		
3	202.13	31.9 QP	43.5	-11.6	1.50 V	360	41.9	-10.0		
4	292.94	28.6 QP	46.0	-17.4	1.50 V	360	35.4	-6.8		
5	481.83	29.6 QP	46.0	-16.4	1.50 V	351	31.7	-2.1		
6	625.02	31.9 QP	46.0	-14.1	2.00 V	0	30.6	1.3		

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

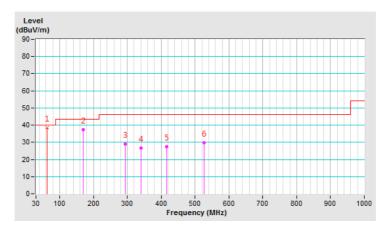


CHANNEL	TX Channel 2	DETECTOR	Outeri Desk (OD)
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M										
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	63.56	34.4 QP	40.0	-5.6	2.00 H	80	43.5	-9.1			
2	88.42	34.7 QP	43.5	-8.8	2.00 H	74	48.1	-13.4			
3	154.60	35.5 QP	43.5	-8.0	2.00 H	302	43.1	-7.6			
4	243.20	31.8 QP	46.0	-14.2	1.00 H	299	40.5	-8.7			
5	293.29	30.8 QP	46.0	-15.2	1.00 H	33	37.6	-6.8			
6	624.84	34.2 QP	46.0	-11.8	2.00 H	30	32.9	1.3			

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

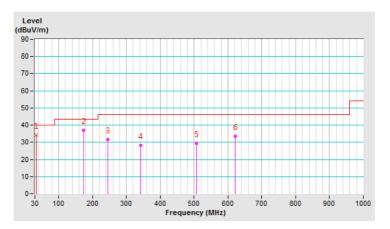


CHANNEL	TX Channel 2	DETECTOR	Outeri Desk (OD)
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M										
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	62.10	38.5 QP	40.0	-1.5	1.00 V	289	47.5	-9.0			
2	170.04	37.5 QP	43.5	-6.0	1.00 V	66	46.1	-8.6			
3	293.33	28.9 QP	46.0	-17.1	1.50 V	304	35.7	-6.8			
4	339.72	26.8 QP	46.0	-19.2	1.50 V	335	32.3	-5.5			
5	415.55	27.4 QP	46.0	-18.6	1.50 V	4	31.2	-3.8			
6	526.86	29.7 QP	46.0	-16.3	2.00 V	360	30.7	-1.0			

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

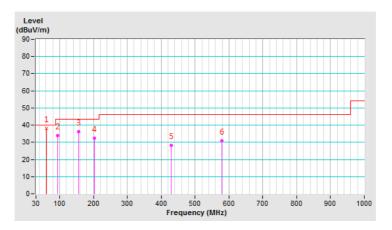


CHANNEL	TX Channel 3	DETECTOR	Outeri Desk (OD)
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M										
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	33.78	34.2 QP	40.0	-5.8	1.00 H	44	43.5	-9.3			
2	174.22	37.0 QP	43.5	-6.5	2.00 H	21	45.8	-8.8			
3	244.50	31.8 QP	46.0	-14.2	1.00 H	360	40.3	-8.5			
4	342.82	28.2 QP	46.0	-17.8	1.00 H	360	33.7	-5.5			
5	507.65	29.4 QP	46.0	-16.6	2.50 H	208	30.5	-1.1			
6	621.10	33.5 QP	46.0	-12.5	1.50 H	70	32.2	1.3			

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

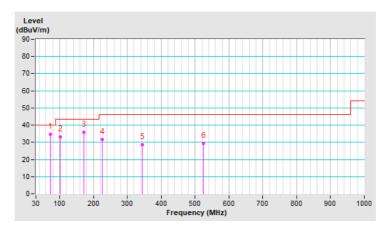


CHANNEL	TX Channel 3	DETECTOR	Outeri Desk (OD)
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M										
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	61.90	38.2 QP	40.0	-1.8	1.00 V	255	47.2	-9.0			
2	93.78	34.0 QP	43.5	-9.5	1.50 V	76	47.0	-13.0			
3	155.45	36.2 QP	43.5	-7.3	1.50 V	360	43.9	-7.7			
4	202.43	32.4 QP	43.5	-11.1	1.50 V	333	42.4	-10.0			
5	429.25	28.2 QP	46.0	-17.8	1.50 V	26	31.5	-3.3			
6	578.92	30.8 QP	46.0	-15.2	2.00 V	96	30.6	0.2			

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

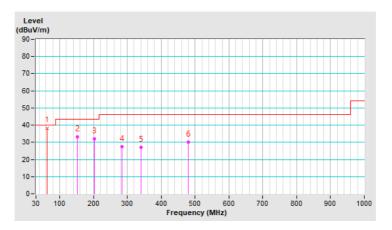


CHANNEL	TX Channel 4	DETECTOR	Outeri Desk (OD)
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M										
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	73.39	34.7 QP	40.0	-5.3	2.50 H	77	46.2	-11.5			
2	101.37	33.2 QP	43.5	-10.3	2.50 H	294	45.1	-11.9			
3	171.38	35.9 QP	43.5	-7.6	2.00 H	21	44.5	-8.6			
4	225.16	31.6 QP	46.0	-14.4	2.00 H	360	41.3	-9.7			
5	343.60	28.6 QP	46.0	-17.4	1.50 H	320	34.1	-5.5			
6	524.09	29.5 QP	46.0	-16.5	2.50 H	360	30.5	-1.0			

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.



CHANNEL	TX Channel 4	DETECTOR	Outeri Desk (OD)
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M										
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	62.06	38.3 QP	40.0	-1.7	1.00 V	279	47.3	-9.0			
2	153.09	33.0 QP	43.5	-10.5	1.00 V	213	40.7	-7.7			
3	201.95	31.9 QP	43.5	-11.6	1.50 V	360	41.9	-10.0			
4	284.04	27.6 QP	46.0	-18.4	1.50 V	360	34.6	-7.0			
5	340.21	27.2 QP	46.0	-18.8	1.50 V	300	32.7	-5.5			
6	480.77	30.1 QP	46.0	-15.9	2.00 V	360	32.2	-2.1			

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

	Conducted I	Limit (dBuV)
Frequency (MHz)	Quasi-peak	Average
0.15 - 0.5	66 - 56	56 - 46
0.50 - 5.0	56	46
5.0 - 30.0	60	50

Note: 1. The lower limit shall apply at the transition frequencies.

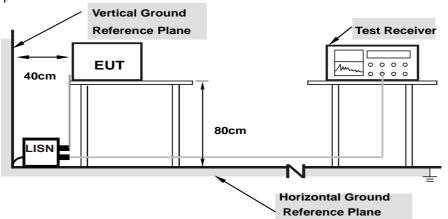
2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver R&S	ESCS 30	847124/029	Oct. 24, 2018	Oct. 23, 2019
Line-Impedance Stabilization Network (for EUT) R&S	ESH3-Z5	848773/004	Oct. 22, 2018	Oct. 21, 2019
Line-Impedance Stabilization Network (for Peripheral) R&S	ESH3-Z5	835239/001	Mar. 17, 2019	Mar. 16, 2020
50 ohms Terminator	N/A	3	Oct. 22, 2018	Oct. 21, 2019
RF Cable	5D-FB	COCCAB-001	Sep. 28, 2018	Sep. 27, 2019
Fixed attenuator EMCI	STI02-2200-10	003	Mar. 14, 2019	Mar. 13, 2020
Software BVADT	BVADT_Cond_ V7.3.7.4	NA	NA	NA

Note:

- 1. The calibration interval of the above test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in Conduction 1.
- 3 Tested Date: Aug. 02, 2019



4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.
- **Note:** The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.
- 4.2.4 Deviation from Test Standard

No deviation.

4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

Same as 4.1.6.

4.2.7 Test Results

Channel	TX Channel 3		
Phase	Line (L)	LIPETECTOL FUNCTION	Quasi-Peak (QP) / Average (AV)

	Phase Of Power : Line (L)										
	Frequency	Correction	Readin	Reading Value		Emission Level		nit	Margin		
No		Factor	(dB	uV)	(dB	uV)	(dB	uV)	(d	B)	
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.16172	9.95	40.26	19.14	50.21	29.09	65.38	55.38	-15.17	-26.29	
2	0.16953	9.95	40.09	24.06	50.04	34.01	64.98	54.98	-14.94	-20.97	
3	0.18125	9.95	38.14	21.89	48.09	31.84	64.43	54.43	-16.34	-22.59	
4	0.48594	9.97	25.34	12.43	35.31	22.40	56.24	46.24	-20.93	-23.84	
5	5.89844	10.26	24.73	15.79	34.99	26.05	60.00	50.00	-25.01	-23.95	
6	17.00000	10.87	25.79	19.40	36.66	30.27	60.00	50.00	-23.34	-19.73	

Remarks:

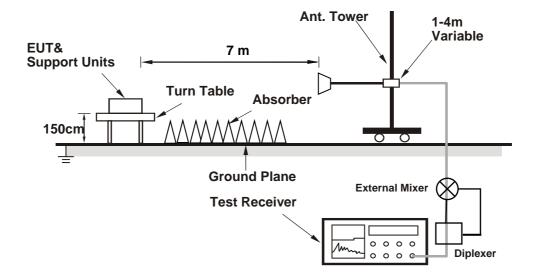
- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

Channel	TX Channel 3		
Phase	Neutral (N)	Detector Function	Quasi-Peak (QP) / Average (AV)

	Phase Of Power : Neutral (N)														
	Frequency	Correction	Reading Value		Emission Level		Lir	nit	Margin						
No		Factor	(dB	uV)	(dB	(dBuV)		uV)	(dB)						
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.					
1	0.16172	9.93	40.18	20.05	50.11	29.98	65.38	55.38	-15.27	-25.40					
2	0.20859	9.93	34.33	17.53	44.26	27.46	63.26	53.26	-19.00	-25.80					
3	0.48984	9.95	27.90	16.09	37.85	26.04	56.17	46.17	-18.32	-20.13					
4	3.75000	10.10	20.09	8.62	30.19	18.72	56.00	46.00	-25.81	-27.28					
5	5.93750	10.19	28.12	18.75	38.31	28.94	60.00	50.00	-21.69	-21.06					
6	16.98047	10.65	28.89	22.74	39.54	33.39	60.00	50.00	-20.46	-16.61					

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



4.3 6dB Bandwidth Measurement

4.3.1 Limits of 6dB Bandwidth Measurement

None: For reporting purposes only.

4.3.2 Test Setup

4.3.3 Test Instruments

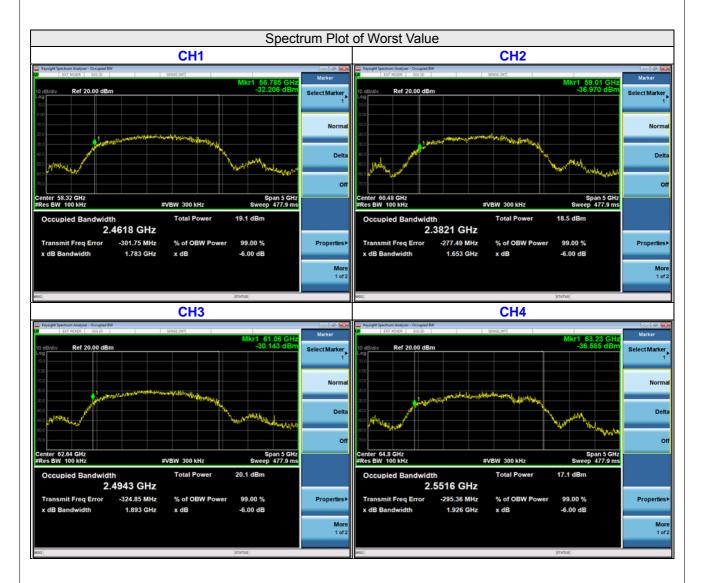
Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure

The spectrum analyzer and external mixer are set up to measure the radiated output of the transmitter.

4.3.5 Deviation fromTest Standard

No deviation.


4.3.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at specific channel frequencies individually.

4.3.7 Test Result

Channel	Frequency (GHz)	6dB Bandwidth (GHz)
1	58.32	1.783
2	60.48	1.653
3	62.64	1.893
4	64.80	1.926

4.4 Output Power Measurement

4.4.1 Limits of Output Power Measurement

15.255 (c) & (e)

	Output Power (EIRP)											
Applicaple	Т	уре	Peak Power	Average Power								
	Within the 57-71 GHz band (Other than fixed field disturbance	Other than fixed point to point transmitters located outdoors	43dBm	40dBm								
V	sensors and short-range devices)	Fixed point-to-point transmitters located outdoors	85dBm (*Note 1)	82dBm (*Note 2)								
	Fixed field disturbance sensors (61-61.5GHz)	Occupy 500 MHz or less of bandwidth	43dBm (*Note 3)	40dBm (*Note 3)								
	Fixed field disturbance sensors	Other than occupy 500 MHz or less of bandwidth and that are contained wholly within the frequency band 61.0-61.5 GHz	10dBm	-								
Note:	short-range devices for interactive motion sensing	-										

Note:

1. The average power of any emission shall not exceed 82 dBm, and shall be reduced by 2 dB for every dB that the antenna gain is less than 51 dBi.

2. The peak power of any emission shall not exceed 85 dBm, and shall be reduced by 2 dB for every dB that the antenna gain is less than 51 dBi.

3. In addition, the average power of any emission outside of the 61.0-61.5 GHz band, measured during the transmit interval, but still within the 57-71 GHz band, shall not exceed 10 dBm,and the peak power of any emission shall not exceed 13 dBm.

Peak Output Power (Conducted Power)											
Applicaple	Туре	6dB Bandwidth	Maximum Conducted Power								
	Fixed field disturbance sensors (Exclude 61-61.5GHz)	-	\leq 0.1mW								
V	Other	Other	500mW								
	Other	Less than 100MHz	500mW x (B/100)								

Note:

1. B is 6dB Bandwidth (measured with a 100kHz resolution bandwidth)

 Peak transmitter output power shall be measured with an RF detector that has a detection bandwidth that encompasses the 57-64 GHz band and the has a video bandwidth of at least 10 MHz, or using an equivalent measurement method.

3. For purposes of demonstrating complained with this paragraph (e), corrections to the transmitter output power may be made due to the antenna and circuit loss.

4.4.2 Test Setup

4.4.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedures

- a. Place the EUT in a continuous transmission mode.
- b. For radiated emission measurements, attach a test receive antenna for the fundamental frequency band to the RF input of an RF detector or a downconverter with an RF detector at the output.
- c. Connect the video output of the detector to the 50 ohm input of the DSO.
- d. Place the test receive antenna in the main beam of the EUT at a distance which will provide a signal within the operating range of the RF detector.
- e. Set the sampling rate of the DSO to the required value. Adjust the memory depth, the triggering and the sweep speed to obtain a display which is representative of the signal considering the type of modulation.
- f. For radiated emission measurements, calculate the distance to the far field boundary of the fundamental emission using following equation

$$d_{\text{farfield}} = \frac{2D^2}{\lambda}$$

where:

D = largest dimension of the transmit antenna $\lambda = wavelength$

 $\lambda =$ wavelength

Frequency (GHz)	L (m)	Lambda (m)	R (Far Field) (m)
58.32	0.41	0.00514	65.409
60.48	0.41	0.00496	67.782
62.64	0.41	0.00479	70.188
64.80	0.41	0.00463	72.613

- g. Perform radiated emission measurements to keep maximize the received signal from the EUT in the far field.
- h. Record the average and peak from the DSO and the measurement distance.
- i. Disconnect the EUT from the RF input port of the instrumentation system.
- j. Connect a mm-wave source to the RF input port of the instrumentation system via a waveguide variable attenuator. The mm-wave source is unmodulated.
- k. Using substitution measurement.
- I. Measure and note the power.
- m. For conducted power measurements, calculate the conducted power using following equation

 $P_{cond} = EIRP-G_{dBi}$

4.4.5 Deviation from Test Standard

No deviation.

4.4.6 EUT Operating Conditions

Same as Item 4.3.6.

4.4.7 Test Results

For Peak Power

Channel	Frequency (GHz)	Transmitt Antenna	S.G Output Value (dBm)	EIRP (dBm)	EIRP Limit (dBm)	Pass /Fail
1	58.32	23.7	31.96	55.66	59	Pass
2	60.48	23.7	31.92	55.62	59	Pass
3	62.64	24	31.68	55.68	59	Pass
4	64.80	24	31.62	55.62	59	Pass

Channel	Frequency (GHz)	EIRP (dBm)	Max. Antenna Gain (dBi)	Conducted Output Power (dBm)	Conducted Output Power (mW)	Conducted Output Power limit (mW)	Pass /Fail
1	58.32	55.66	38.00	17.66	58.3	500	Pass
2	60.48	55.62	38.00	17.62	57.8	500	Pass
3	62.64	55.68	38.00	17.68	58.6	500	Pass
4	64.80	55.62	38.00	17.62	57.8	500	Pass

Note:

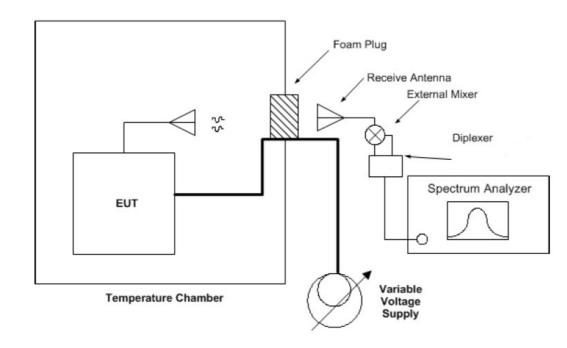
1. The EIRP was evaluated on vertical and horizontal polarization, the worst case is Vertical polarization.

For Average Power

Channel	Frequency (GHz)	Transmitt Antenna	S.G Output Value (dBm)	EIRP (dBm)	EIRP Limit (dBm)	Pass /Fail
1	58.32	23.7	18.91	42.61	56	Pass
2	60.48	23.7	18.90	42.60	56	Pass
3	62.64	24	18.65	42.65	56	Pass
4	64.80	24	18.63	42.63	56	Pass

Note:

1. The EIRP was evaluated on vertical and horizontal polarization, the worst case is Vertical polarization.



4.5 Frequency Stability Measurement

4.5.1 Limits of Conducted Out of Band Emission Measurement

15.255(f) Fundamental emissions must be contained within the frequency bands specified in this section during all conditions of operation. Equipment is presumed to operate over the temperature range -20 to +50 degrees Celsius with an input voltage variation of 85% to 115% of rated input voltage, unless justification is presented to demonstrate otherwise.

4.5.2 Test Setup

4.5.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.5.4 Test Procedure

- a. Arrange EUT and test equipment as above setup configuration.
- b. With the EUT at ambient temperature and voltage source set to the EUT nominal operating voltage (100%), record the spectrum mask of the EUT emission on the spectrum analyzer.
- c. Vary EUT power supply between 85% and 115% of nominal, and record the frequency excursion of the EUT emission mask.
- d. Set the power supply to 100% nominal setting, and raise EUT operating temperature to 50 °C. Record the frequency excursion of the EUT emission mask.
- e. Repeat step d) at each 10 °C increment down to -20 °C
- 4.5.5 Deviation from Test Standard

No deviation.

4.5.6 EUT Operating Condition

Same as Item 4.3.6

4.5.7 Test Results

	Frequency Stability Versus Temp.														
	Operating Frequency: 62640 MHz														
	Power	0 Mir	nute	2 Mir	nutes	5 Mir	utes	10 Mii	nutes						
ТЕМР. (°C)	Supply (Vdc)	Measured Frequency (MHz)	Pass/Fail	Measured Frequency (MHz)	Pass/Fail	Measured Frequency (MHz)	Pass/Fail	Measured Frequency (MHz)	Pass/Fail						
50	24	62639.6938	Pass	62639.679	Pass	62639.6686	PASS	62639.7193	Pass						
40	24	62639.9908	Pass	62639.9677	Pass	62639.9681	PASS	62639.9818	Pass						
30	24	62640.01	Pass	62640.064	Pass	62640.0362	PASS	62640.0415	Pass						
20	24	62640.0642	Pass	62640.0214	Pass	62640.0102	PASS	62640.0514	Pass						
10	24	62639.7101	Pass	62639.7394	Pass	62639.7526	PASS	62639.766	Pass						
0	24	62640.0983	Pass	62640.1064	Pass	62640.1125	PASS	62640.1246	Pass						
-10	24	62640.3281	Pass	62640.3079	Pass	62640.3057	PASS	62640.3243	Pass						
-20	24	62640.1346	Pass	62640.0869	Pass	62640.113	PASS	62640.1003	Pass						

Frequency Stability Versus Voltage

Operating Frequency: 62640 MHz

TEMP Power	0 Minute		2 Minutes		5 Minutes		10 Minutes		
темр. (°С)	Supply (Vdc)	ipply Measured	Pass/Fail	Measured Frequency (MHz)	Pass/Fail	Measured Frequency (MHz)	Pass/Fail	Measured Frequency (MHz)	Pass/Fail
	27.6	62640.0626	Pass	62640.0106	Pass	62640.0207	Pass	62640.0524	Pass
20	24	62640.0642	Pass	62640.0214	Pass	62640.0102	Pass	62640.0514	Pass
	20.4	62640.0585	Pass	62640.014	Pass	62640.0063	Pass	62640.0637	Pass

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ----