

TESTING CENTRE TEC	TEST REPOR	T		
FCC ID:	2BLTA-CW2503C	•		
Test Report No::	TCT241022E029			
Date of issue::	Nov. 12, 2024	(0)		
Testing laboratory:	SHENZHEN TONGCE TESTING	G LAB		
Testing location/ address:	2101 & 2201, Zhenchang Factor Fuhai Subdistrict, Bao'an District 518103, People's Republic of Ch	t, Shenzhen, Guangdong,		
Applicant's name::	EWIC PHILIPPINES INC.			
Address::	BLDG NOS 7&8 S BLK 2 LOT 2 TECHNOPARK ANNEX, BARAN Philippines			
Manufacturer's name:	EWIC PHILIPPINES INC.			
Address::	BLDG NOS 7&8 S BLK 2 LOT 2 EZP WAREHOUSE, LAGUNA TECHNOPARK ANNEX, BARANGAY BO BINAN, BINAN, Philippines			
Standard(s)::	FCC CFR Title 47 Part 15 Subpart E Section 15.407 KDB 662911 D01 Multiple Transmitter Output v02r01 KDB 789033 D02 General U-NII Test Procedures New Rules v02r01			
Product Name::	Home Security WiFi Camera			
Trade Mark:	N/A			
Model/Type reference:	S-CW2503C-H, S-CW2503C, C	W2503C		
Rating(s)::	Refer to 1.1.EUT description			
Date of receipt of test item	Oct. 22, 2024			
Date (s) of performance of test:	Oct. 22, 2024 ~ Nov. 12, 2024			
Tested by (+signature):	Ronaldo LUO	Porald Charge		
Check by (+signature):	Beryl ZHAO Boy(2 TCT)			
Approved by (+signature):	Tomsin	Joms in s		

General disclaimer:

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

1. General Product Information	
1.1. EUT description	3
1.2. Model(s) list	
1.3. Test Frequency	4
2. Test Result Summary	5
3. General Information	
3.1. Test environment and mode	
3.2. Description of Support Units	7
4. Facilities and Accreditations	8
4.1. Facilities	8
4.2. Location	8
4.3. Measurement Uncertainty	
5. Test Results and Measurement Data	9
5.1. Antenna requirement	9
5.2. Conducted Emission	
5.3. Maximum Conducted Output Power	14
5.4. 6dB Emission Bandwidth	16
5.5. 26dB Bandwidth and 99% Occupied Bandwidth	17
5.6. Power Spectral Density	18
5.7. Band edge	
5.8. Unwanted Emissions	30
5.9. Frequency Stability Measurement	45
Appendix A: Test Result of Conducted Test	
Appendix B: Photographs of Test Setup	
Appendix C: Photographs of EUT	

1. General Product Information

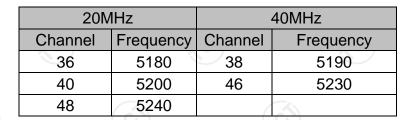
1.1. EUT description

Product Name:	Home Security WiFi Camera	(3)
Model/Type reference:	S-CW2503C-H	
Sample Number:	TCT241022E006-0101	
Operation Frequency:	Band 1: 5180 MHz ~ 5240 MHz Band 3: 5745 MHz ~ 5825 MHz	
Channel Bandwidth::	802.11a: 20MHz 802.11n: 20MHz, 40MHz 802.11ac: 20MHz, 40MHz 802.11ax: 20MHz, 40MHz	
Modulation Technology:	Orthogonal Frequency Division Multiplexing(OFDM)	
Modulation Type:	256QAM, 64QAM, 16QAM, BPSK, QPSK	
Antenna Type:	FPC Antenna	
Antenna Gain:	2.28dBi	
Rating(s):	Adapter Information 1: Model: CS-0501000 Input: AC 100-240V, 50/60Hz, 0.5A Max Output: DC 5V, 1.0A Adapter Information 2: MODEL: BS05A-0501000US INPUT: AC 100-240V, 50/60Hz, 0.25A Max OUTPUT: DC 5V, 1000mA	

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

No.	Model No.	Tested with
1	S-CW2503C-H	
Other models	S-CW2503C, CW2503C	


Note: S-CW2503C-H is tested model, other models are derivative models. The models are identical in circuit and PCB layout, only different on the model names, Image Sensor Pixel or Product appearance color. So the test data of S-CW2503C-H can represent the remaining models.

Page 3 of 146

1.3. Test Frequency

Band 1

Band 3

20MHz		40MHz		
Channel Frequency		Channel	Frequency	
149	5745	151	5755	
157	5785	159	5795	
165	5825			

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Page 4 of 146

Report No.: TCT241022E029

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203	PASS
AC Power Line Conducted Emission	§15.207	PASS
Maximum Conducted Output Power	§15.407(a)	PASS
6dB Emission Bandwidth	§15.407(a)	PASS
26dB Emission Bandwidth& 99% Occupied Bandwidth	§15.407(a)	PASS
Power Spectral Density	§15.407(a)	PASS
Restricted Bands around fundamental frequency	§15.407(b)	PASS
Radiated Emission	§15.407(b)	PASS
Frequency Stability	§15.407(g)	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.
- 5. For the band 5.15-5.25GHz, EUT meet the requirements of 15.407(a)(ii).

Page 5 of 146

3. General Information

3.1. Test environment and mode

Operating Environment:				
Condition	Conducted Emission	Radiated Emission		
Temperature:	23.6 °C	23.5 °C		
Humidity:	52 % RH	51 % RH		
Atmospheric Pressure:	1010 mbar	1010 mbar		
Test Software:				
Software Information:	putty			
Power Level:	Band 1: 7 Band 3: 10			
Test Mode:				
Engineer mode: Keep the EUT in continuous transmitting by select channel and modulations with max duty cycle.				

The sample was placed 0.8m/1.5m for blow/above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate	
802.11a	6 Mbps	
802.11n(HT20)	6.5 Mbps	
802.11n(HT40)	13.5 Mbps	
802.11ac(VHT20)	6.5 Mbps	
802.11ac(VHT40)	13.5 Mbps	(V)
802.11ax(HE20)	6.5Mbps	(
802.11ax(HE40)	13.5Mbps	

Report No.: TCT241022E029

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
1	1	1		

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

Page 7 of 146

Report No.: TCT241022E029

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC - Registration No.: 10668A

SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

The testing lab has been registered by Innovation, Science and Economic Development Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China

TEL: +86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

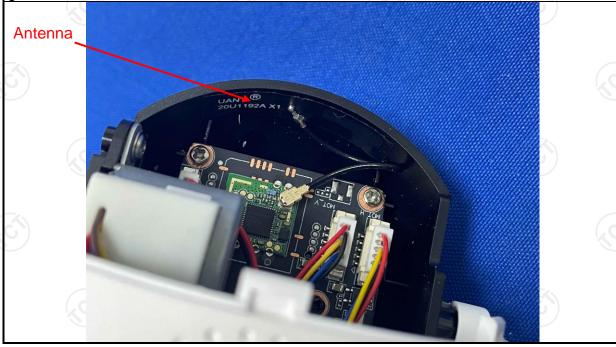
No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

Report No.: TCT241022E029

5. Test Results and Measurement Data

5.1. Antenna requirement

Standard requirement:


FCC Part15 C Section 15.203 /247(c)

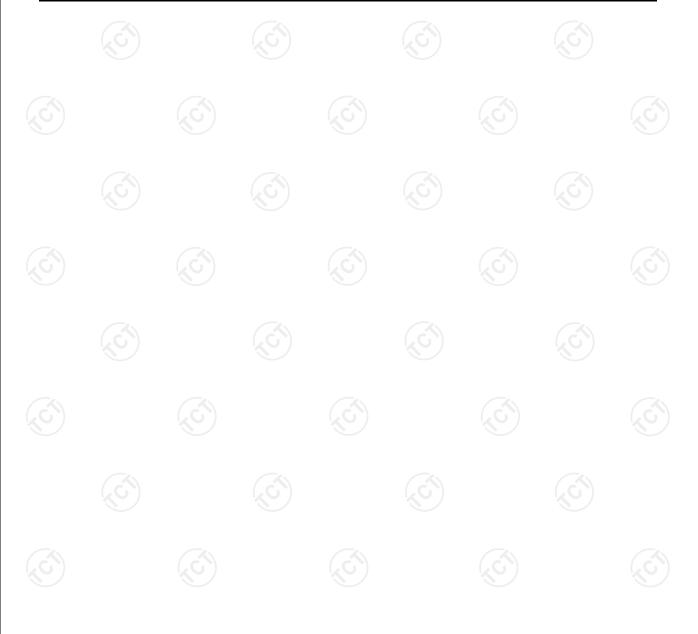
15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The WIFI antenna is FPC antenna which permanently attached, and the best case gain of the antenna is 2.28dBi of Band 3.

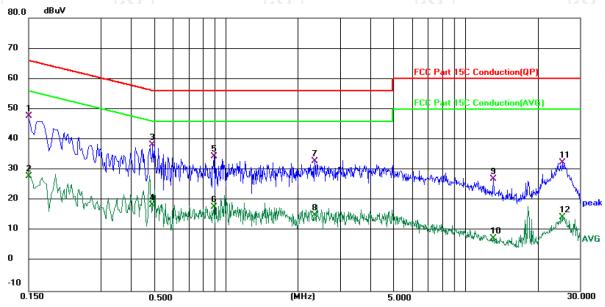
5.2. Conducted Emission


5.2.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.207			
Test Method:	ANSI C63.10:2020			
Frequency Range:	150 kHz to 30 MHz	(5)	(C^{\prime})	
Receiver setup:	RBW=9 kHz, VBW=30	kHz, Sweep time	=auto	
Limits:	Frequency range (MHz) 0.15-0.5 0.5-5 5-30	Limit (Quasi-peak 66 to 56* 56 60	dBuV) Average 56 to 46* 46 50	
Test Setup:	Reference 40cm E.U.T AC power Test table/Insulation plane Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization No. Test table height=0.8m	80cm LISN Filter	AC power	
Test Mode:	Transmitting Mode			
Test Procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2020 on conducted measurement. 			
Test Result:	PASS			

5.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)				
Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESCI3	100898	Jun. 26, 2025
LISN	Schwarzbeck	NSLK 8126	8126453	Jan. 31, 2025
Attenuator	N/A	10dB	164080	Jun. 26, 2025
Line-5	тст	CE-05	1 (3)	Jun. 26, 2025
EMI Test Software	EZ_EMC	EMEC-3A1	1.1.4.2	1



5.2.3. Test data

Please refer to following diagram for individual

Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)

Site 844 Shielding Room

Phase: L1

Temperature: 23.6 (°C)

Humidity: 52 %

Report No.: TCT241022E029

Limit: FCC Part 15C Conduction(QP)

Power: AC 120 V/60 Hz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∀	dB	dBu∀	dBu∀	dB	Detector	Comment
1		0.1500	38.10	9.67	47.77	66.00	-18.23	QP	
2		0.1500	18.26	9.67	27.93	56.00	-28.07	AVG	
3	*	0.4939	28.18	10.16	38.34	56.10	-17.76	QP	
4		0.4939	8.39	10.16	18.55	46.10	-27.55	AVG	
5		0.8900	23.85	10.62	34.47	56.00	-21.53	QP	
6		0.8900	7.10	10.62	17.72	46.00	-28.28	AVG	
7		2.3580	22.99	9.89	32.88	56.00	-23.12	QP	
8		2.3580	5.15	9.89	15.04	46.00	-30.96	AVG	
9		13.0700	16.67	10.29	26.96	60.00	-33.04	QP	
10		13.0700	-2.85	10.29	7.44	50.00	-42.56	AVG	
11		25.4900	21.80	10.62	32.42	60.00	-27.58	QP	
12		25.4900	3.83	10.62	14.45	50.00	-35.55	AVG	

Note:

Freq. = Emission frequency in MHz

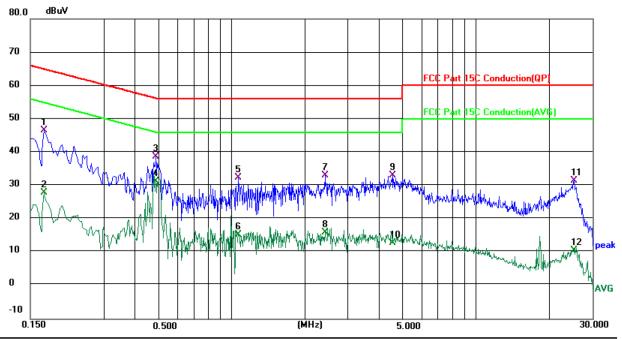
Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)

 $Limit (dB\mu V) = Limit stated in standard$

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$


Q.P. =Quasi-Peak

AVG =average

^{*} is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Site 844 Shielding Room Phase: N Temperature: 23.6 (℃) Humidity: 52 %

Power: AC 120 V/60 Hz

Limit: FCC Part 15C Conduction(QP)

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBu∀	dB	dBu∀	dBu∀	dB	Detector	Comment
1	0.1700	36.93	9.64	46.57	64.96	-18.39	QP	
2	0.1700	18.38	9.64	28.02	54.96	-26.94	AVG	
3	0.4900	28.63	10.14	38.77	56.17	-17.40	QP	
4 *	0.4900	21.24	10.14	31.38	46.17	-14.79	AVG	
5	1.0700	22.79	9.71	32.50	56.00	-23.50	QP	
6	1.0700	5.52	9.71	15.23	46.00	-30.77	AVG	
7	2.4140	23.18	9.84	33.02	56.00	-22.98	QP	
8	2.4140	6.10	9.84	15.94	46.00	-30.06	AVG	
9	4.5540	22.97	10.06	33.03	56.00	-22.97	QP	
10	4.5540	2.72	10.06	12.78	46.00	-33.22	AVG	
11	25.2740	21.04	10.55	31.59	60.00	-28.41	QP	
12	25.2740	-0.03	10.55	10.52	50.00	-39.48	AVG	

Note:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)

Limit $(dB\mu V)$ = Limit stated in standard

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$

Q.P. =Quasi-Peak

AVG =average

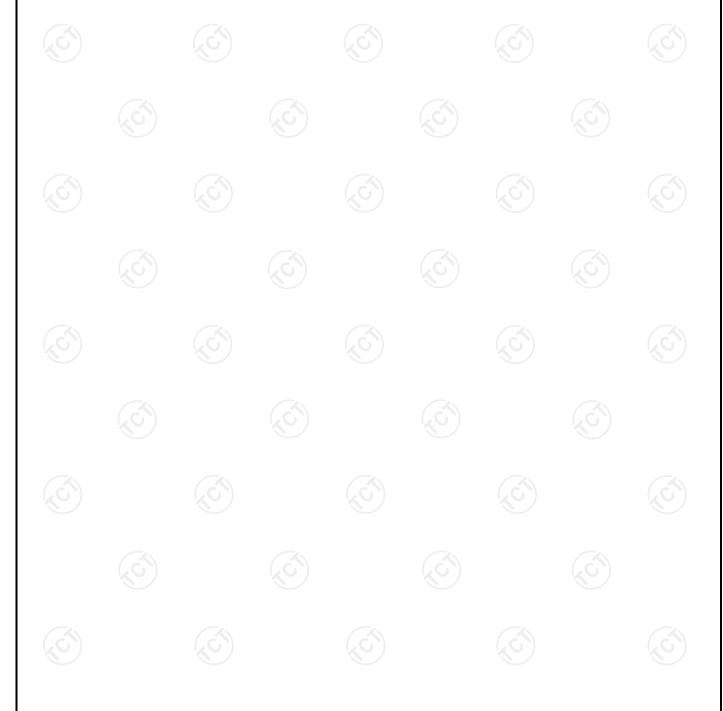
* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Measurements were conducted in all three channels (high, middle, low) and all modulation (802.11a, 802.11n(HT20), 802.11n(HT40), 802.11ac(VHT20), 802.11ac(VHT40), 802.11ax(HE20), 802.11ax(HE40) and the worst case Mode (Highest channel and 802.11ax(HE20)) was submitted only.

Page 13 of 146

5.3. Maximum Conducted Output Power

5.3.1. Test Specification


Test Requirement:	FCC Part15 E Section 15.407(a)& Part 2 J Section 2.1046						
Test Method:		ultiple Transmitter Output v02r01 eneral UNII Test Procedures New n E					
	Frequency Band (MHz)	Limit					
	5180 - 5240	24dBm(250mW) for client device					
Limit:	5260 - 5320 5470 - 5725	24dBm(250mW) or 11 dBm + 10 log B, B is the 26 dB emission bandwidth in megahertz 24dBm(250mW) or 11 dBm + 10 log B, B is the 26 dB emission bandwidth in megahertz					
	5745 - 5825	30dBm(1W)					
Test Setup:	Power meter	EUT					
Test Mode:	Transmitting mode v	vith modulation					
Test Procedure:	 The testing follows the Measurement Procedure of KDB789033 D02 General UNII Test Procedures Not Rules v02r01 Section E, 3, a The RF output of EUT was connected to the power meter by RF cable. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Measure the conducted output power and record the 						
Test Result:	results in the test report. PASS						
Remark:	Conducted output power= measurement power +10log(1/x) X is duty cycle=1, so 10log(1/1)=0 Conducted output power= measurement power						

Page 14 of 146

5.3.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Power Meter	Agilent	E4418B	MY45100357	Jun. 26, 2025
Power Sensor	Agilent	8184A	MY41096530	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB		

5.4. 6dB Emission Bandwidth

5.4.1. Test Specification

FCC CFR47 Part 15 Section 15.407(e)& Part 2 J Section 2.1049
KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C
>500kHz
Spectrum Analyzer EUT
Transmitting mode with modulation
 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
PASS (3)

5.4.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due	
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025	
Combiner Box	Ascentest	AT890-RFB	1 (0)	1 (3	

Page 16 of 146

5.5. 26dB Bandwidth and 99% Occupied Bandwidth

5.5.1. Test Specification

Test Requirement:	47 CFR Part 15C Section 15.407 (a)& Part 2 J Section 2.1049				
Test Method:	KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D				
Limit:	No restriction limits				
Test Setup:	Spectrum Analyzer EUT				
	Speculin Analyzer				
Test Mode:	Transmitting mode with modulation				
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 1% to 5% of the OBW. Set the Video bandwidth (VBW) = 3 *RBW. In order to make an accurate measurement. Measure and record the results in the test report. 				
Test Result: PASS					

5.5.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB	1	1

Page 17 of 146

5.6. Power Spectral Density

5.6.1. Test Specification

Test Requirement:	FCC Part15 E Section 15.407 (a)				
Test Method:	KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section F				
Limit:	≤11.00dBm/MHz for Band 1 5150MHz-5250MHz(client device) ≤11.00dBm/MHz for Band 2A&2C 5250-5350&5470-5725 ≤30.00dBm/500KHz for Band 3 5725MHz-5850MHz The e.i,r,p spectral density for Band 1 5150MHz – 5250 MHz should not exceed 10dBm/MHz				
Test Setup:	Spectrum Analyzer EUT				
Test Mode:	Transmitting mode with modulation				
Test Procedure:	 Set the spectrum analyzer or EMI receiver span to view the entire emission bandwidth. Set RBW = 510 kHz/1 MHz, VBW ≥ 3*RBW, Sweep time = Auto, Detector = RMS. Allow the sweeps to continue until the trace stabilizes. Use the peak marker function to determine the maximum amplitude level. The E.I.R.P spectral density used radiated test method. At a test site that has been validated using the procedures of ANSI C63.4 or the latest CISPR 16-1-4 for measurements above 1 GHz, so as to simulate a near free-space environment. 				
Test Result: PASS					

5.6.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due	
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025	
Combiner Box	Ascentest	AT890-RFB		7	

Page 18 of 146

5.7. Band edge

5.7.1. Test Specification

Test Requirement:	FCC CFR47 Part 15E Section 15.407							
Test Method:	ANSI C63.10:2020							
		In un-restricted band: For Band 1&2A&2C: -27dBm/MHz For Band 3:						
	Frequency (MHz)	Limit (dBm/MHz)	Frequency (MHz)	Limit (dBm/MHz)				
	< 5650	-27	5850~5855	27~15.6				
Limit:	5650~5700	-27~10	5855~5875	15.6~10				
Emilic.	5700~5720	10~15.6	5875~5925	10~-27				
	5720~5725	15.6~27	> 5925	-27				
	E[dBµV/m] = EIR In restricted band		/					
	Detec		Limit@					
	Peal		74dBµ					
	AVG	j	54dBµ	IV/m				
Test Setup:	Ground Reference Plate Test Receiver In 11 Agrange Combosor							
Test Mode:	Transmitting mo	de with modu	ulation					
Test Procedure:	1. The EUT was meters above the was rotated 360 highest radiation 2. The EUT was interference-received the top of a vari 3. The antennameters above the value of the field polarizations of measurement. 4. For each sus to its worst case heights from 1 returned from 0 demaximum readi 5. The test-received from and Signature of the sus to its worst case heights from 1 returned from 0 demaximum readi 5. The test-received from and Signature of the sus to its worst case heights from 1 returned from 0 demaximum readi 5. The test-received from and Signature of the sus to its worst case heights from 1 returned from 0 demaximum readi 5. The test-received from and Signature of the sus to its worst case heights from 1 returned from 0 demaximum readi 5. The test-received from and Signature of the sus to its worst case heights from 1 returned from 0 demaximum readi 5. The test-received from and Signature of the sus to its worst case heights from 1 returned from 0 demaximum readi 5. The test-received from 3 demaximum readi 5.	ne ground at a degrees to de n. It is set 3 meters eviving antenrable-height a height is various to degree and then the egrees to 360 ng.	a 3 meter cambetermine the particle and from the material are set to make antenna was ters and the roll degrees to Peak are set to Peak was set to Peak are set to Peak are set to Peak was set to Peak are se	per. The table position of the mounted on eter to four maximum and vertical ethe was arranged tuned to tatable was at table was at the contact of the contac				

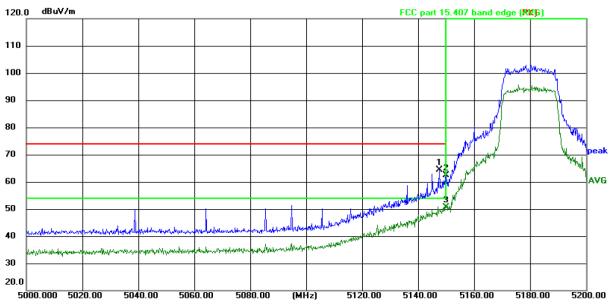
Report No.: TCT241022E029

Mode.

Report No.: TCT241022E029

6. If the emission level of the EUT in peak mode was

	10dB lo stopped reported 10dB m quasipe	wer than the part of the part	ne limit spe eak values se the emis d be re-tes age metho	cified, ther of the EU sions that ted one by	n testing co Γ would be did not hav one using	uld be e peak,
Result:	PASS		(c')		(c ¹)	
		10dB lo stopped reported 10dB m quasipe reported 10dB	and the preported. Otherwis 10dB margin woul quasipeak or aver reported in a data. Result: PASS Application of the preported of the preported in a data. PASS	10dB lower than the limit spe stopped and the peak values reported. Otherwise the emis 10dB margin would be re-tes quasipeak or average metho reported in a data sheet. PASS Result: PASS	10dB lower than the limit specified, ther stopped and the peak values of the EU reported. Otherwise the emissions that 10dB margin would be re-tested one by quasipeak or average method as specif reported in a data sheet. PASS PASS O O O O O O O O O O O O	PASS

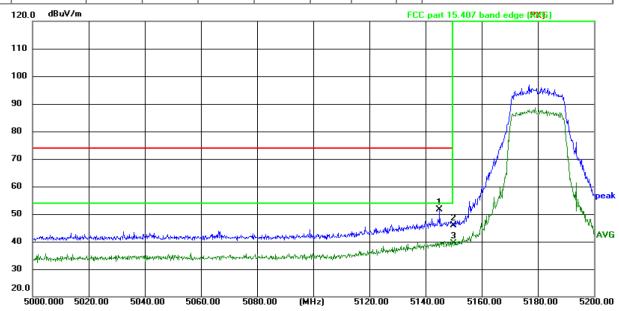


5.7.2. Test Instruments

Radiated Emission Test Site (966)										
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due						
EMI Test Receiver	R&S	ESCI7	100529	Jan. 31, 2025						
Spectrum Analyzer	R&S	FSQ40	200061	Jun. 26, 2025						
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025						
Pre-amplifier	SKET	LNPA_0118G- 45	SK202101210 2	Jan. 31, 2025						
Pre-amplifier	SKET	LNPA_1840G- 50	SK202109203 500	Jan. 31, 2025						
Pre-amplifier	HP	8447D	2727A05017	Jun. 26, 2025						
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jun. 26, 2025						
Broadband Antenna	Schwarzbeck	VULB9163	340	Jun. 28, 2025						
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jun. 28, 2025						
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Feb. 02, 2025						
Coaxial cable	SKET	RE-03-D	/	Jun. 26, 2025						
Coaxial cable	SKET	RE-03-M	1	Jun. 26, 2025						
Coaxial cable	SKET	RE-03-L	1	Jun. 26, 2025						
Coaxial cable	SKET	RE-04-D	(0)	Jun. 26, 2025						
Coaxial cable	SKET	RE-04-M	/	Jun. 26, 2025						
Coaxial cable	SKET	RE-04-L	1	Jun. 26, 2025						
Antenna Mast	Keleto	RE-AM) 1	1						
EMI Test Software	EZ_EMC	FA-03A2 RE+	1.1.4.2	/						

5.7.3. Test Data AX20-5180

Polarization: *Horizontal* Limit: FCC part 15.407 band edge (PK)

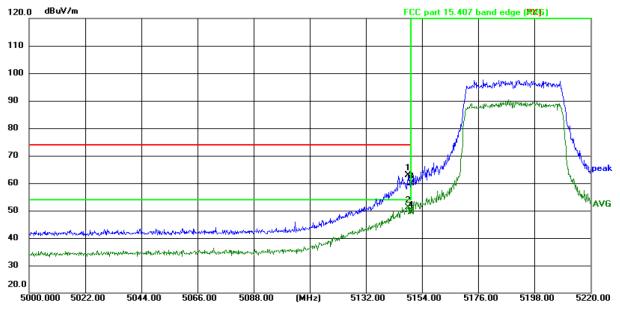

Site: 3m Anechoic Chamber

Power: AC 120V/60Hz

Temperature: 23.1(℃) Humidity: 44 %

Report No.: TCT241022E029

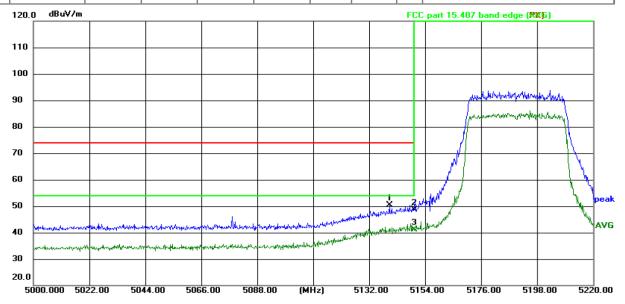
	-		- , ,						
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	5147.800	73.02	-8.60	64.42	74.00	-9.58	peak	Р	
2	5150.000	70.92	-8.59	62.33	74.00	-11.67	peak	Р	
3 *	5150.000	59.11	-8.59	50.52	54.00	-3.48	AVG	Р	


Site: 3m Anechoic Chamber Polarization: Vertical Temperature: 23.1(°C) Humidity: 44 %

Limit: FCC part 15.407 band edge (PK)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	5145.200	60.21	-8.61	51.60	74.00	-22.40	peak	Р	
2	5150.000	54.35	-8.59	45.76	74.00	-28.24	peak	Р	
3 *	5150.000	48.01	-8.59	39.42	54.00	-14.58	AVG	Р	

AX40-5190

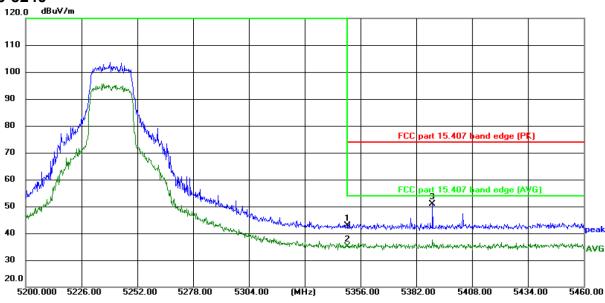


Site: 3m Anechoic Chamber Polarization: *Horizontal* Temperature: 23.1(°C) Humidity: 44 %

Limit: FCC part 15.407 band edge (PK)

Power:AC 120V/60Hz

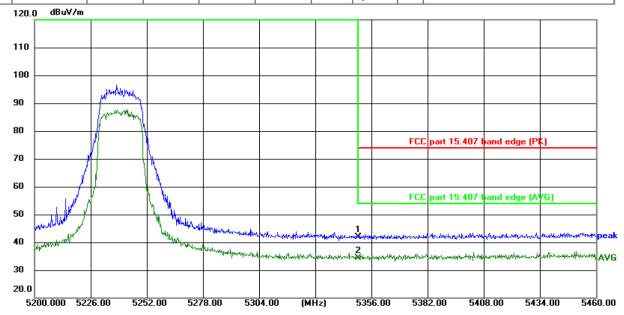
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	5148.720	71.52	-8.60	62.92	74.00	-11.08	peak	Р	
2 *	5148.720	59.78	-8.60	51.18	54.00	-2.82	AVG	Р	
3	5150.000	68.41	-8.59	59.82	74.00	-14.18	peak	Р	
4	5150.000	57.89	-8.59	49.30	54.00	-4.70	AVG	Р	


Site: 3m Anechoic Chamber Polarization: Vertical Temperature: 23.1(°C) Humidity: 44 %

Limit: FCC part 15.407 band edge (PK)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	5140.140	58.96	-8.62	50.34	74.00	-23.66	peak	Р	
2	5150.000	57.12	-8.59	48.53	74.00	-25.47	peak	Р	
3 *	5150.000	49.82	-8.59	41.23	54.00	-12.77	AVG	Р	

AX20-5240

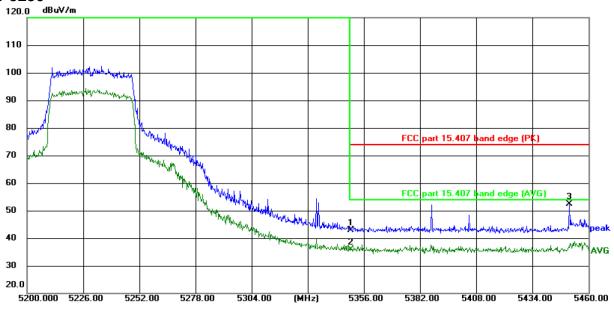


Site: 3m Anechoic Chamber Polarization: *Horizontal* Temperature: 23.1(°C) Humidity: 44 %

Limit: FCC part 15.407 band edge (PK)

Power:AC 120V/60Hz

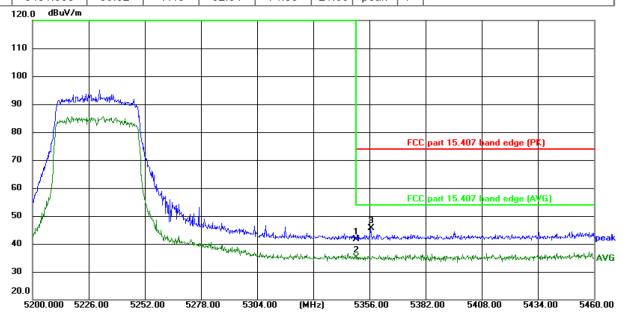
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	5350.000	50.95	-7.95	43.00	74.00	-31.00	peak	Р	
2 *	5350.000	43.16	-7.95	35.21	54.00	-18.79	AVG	Р	
3	5389.774	58.64	-7.78	50.86	74.00	-23.14	peak	Р	


Site: 3m Anechoic Chamber Polarization: Vertical Temperature: 23.1(℃) Humidity: 44 %

Limit: FCC part 15.407 band edge (PK)

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	5350.000	49.72	-7.95	41.77	74.00	-32.23	peak	Р	
2 *	5350.000	42.27	-7.95	34.32	54.00	-19.68	AVG	Р	

AX40-5230

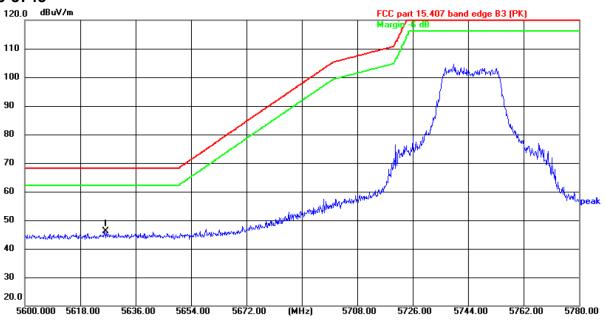


Site: 3m Anechoic Chamber Polarization: *Horizontal* Temperature: 23.1(℃) Humidity: 44 %

Limit: FCC part 15.407 band edge (PK)

Power: AC 120V/60Hz

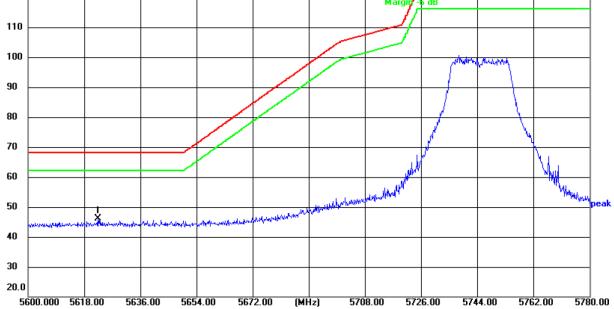
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	5350.000	50.71	-7.95	42.76	74.00	-31.24	peak	Р	
2 *	5350.000	43.87	-7.95	35.92	54.00	-18.08	AVG	Р	
3	5451.368	59.82	-7.48	52.34	74.00	-21.66	peak	Р	


Site: 3m Anechoic Chamber Polarization: Vertical Temperature: 23.1(°C) Humidity: 44 %

Limit: FCC part 15.407 band edge (PK)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	5350.000	49.61	-7.95	41.66	74.00	-32.34	peak	Р	
2 *	5350.000	42.97	-7.95	35.02	54.00	-18.98	AVG	Р	
3	5356.754	53.65	-7.93	45.72	74.00	-28.28	peak	Р	

AX20-5745

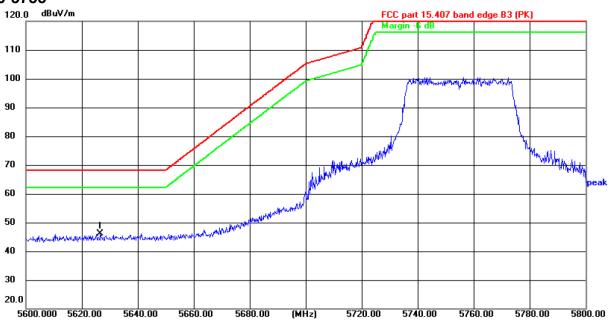

Temperature: 23.1(°C) Humidity: 44 % Site: 3m Anechoic Chamber Polarization: Horizontal

Limit: FCC part 15.407 band edge B3 (PK)

Limit Margin Detector P/F Remark

Frequency Reading Factor Level No. (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 1 * 5626.172 52.82 46.01 68.20 -22.19 -6.81peak Ρ FCC part 15.407 band edge B3 (PK) 120.0 dBuV/m 110

Power: AC 120V/60Hz


Polarization: Vertical Temperature: 23.1(°C) Humidity: 44 % Site: 3m Anechoic Chamber

Limit: FCC part 15.407 band edge B3 (PK)

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5622.320	52.86	-6.83	46.03	68.20	-22.17	peak	Р	

AX40-5755

Temperature: 23.1(°C) Humidity: 44 % Site: 3m Anechoic Chamber Polarization: Horizontal

Power:AC 120V/60Hz

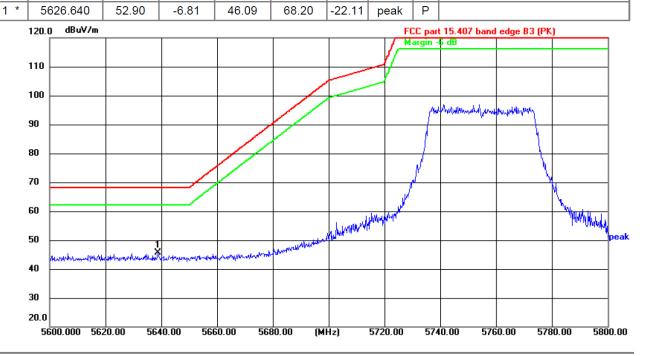
Limit: FCC part 15.407 band edge B3 (PK)

Reading

(dBuV)

Factor

(dB/m)

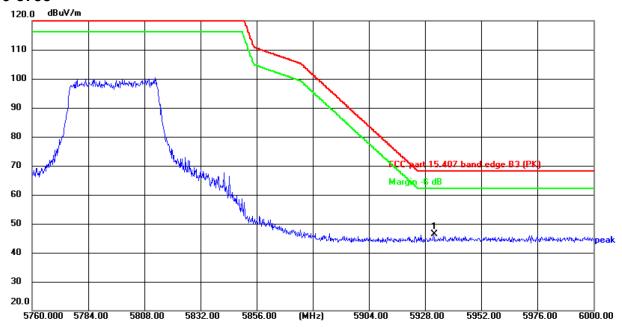

Level

Frequency

(MHz)

No.

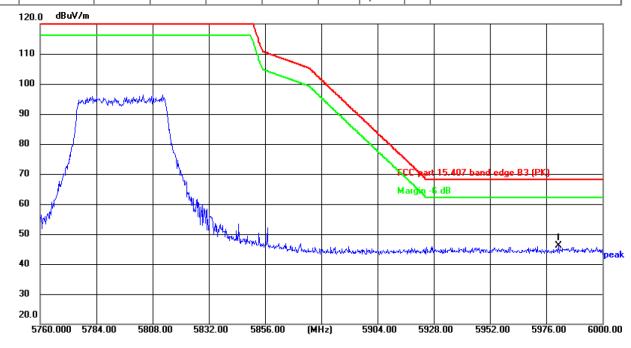
Limit Margin Detector P/F Remark (dBuV/m) (dBuV/m) (dB)


Site: 3m Anechoic Chamber Polarization: Vertical Temperature: 23.1(℃) Humidity: 44 %

Limit: FCC part 15.407 band edge B3 (PK)

Frequency Reading Factor Level Limit Margin Detector P/F No. Remark (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 52.32 5638.880 45.54 1 * -6.78 68.20 -22.66 peak Ρ

AX40-5795

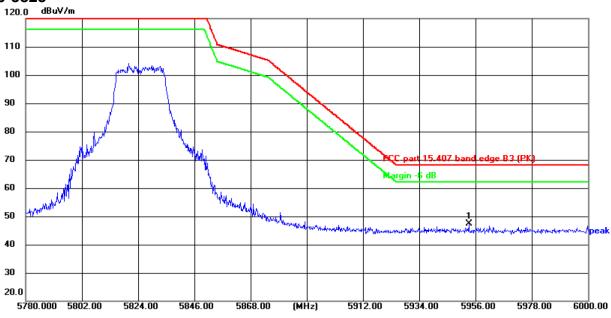


Site: 3m Anechoic Chamber Polarization: *Horizontal* Temperature: 23.1(°C) Humidity: 44 %

Limit: FCC part 15.407 band edge B3 (PK)

Power: AC 120V/60Hz

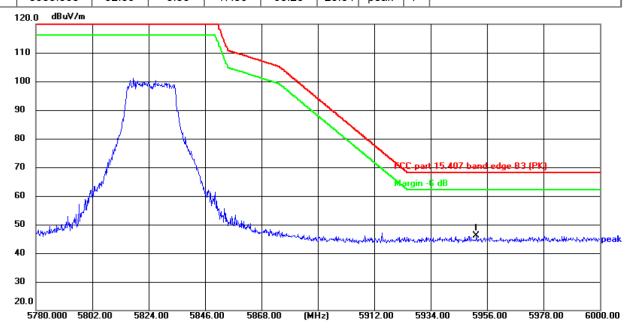
No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5931.624	52.12	-5.63	46.49	68.20	-21.71	peak	Р	


Site: 3m Anechoic Chamber Polarization: Vertical Temperature: 23.1(°C) Humidity: 44 %

Limit: FCC part 15.407 band edge B3 (PK)

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5981.328	51.55	-5.40	46.15	68.20	-22.05	peak	Р	

AX20-5825



Site: 3m Anechoic Chamber Polarization: *Horizontal* Temperature: 23.1(℃) Humidity: 44 %

Limit: FCC part 15.407 band edge B3 (PK)

Power:AC 120V/60Hz

	No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	1 *	5953 360	52 89	-5.53	47.36	68 20	-20 84	neak	Р	

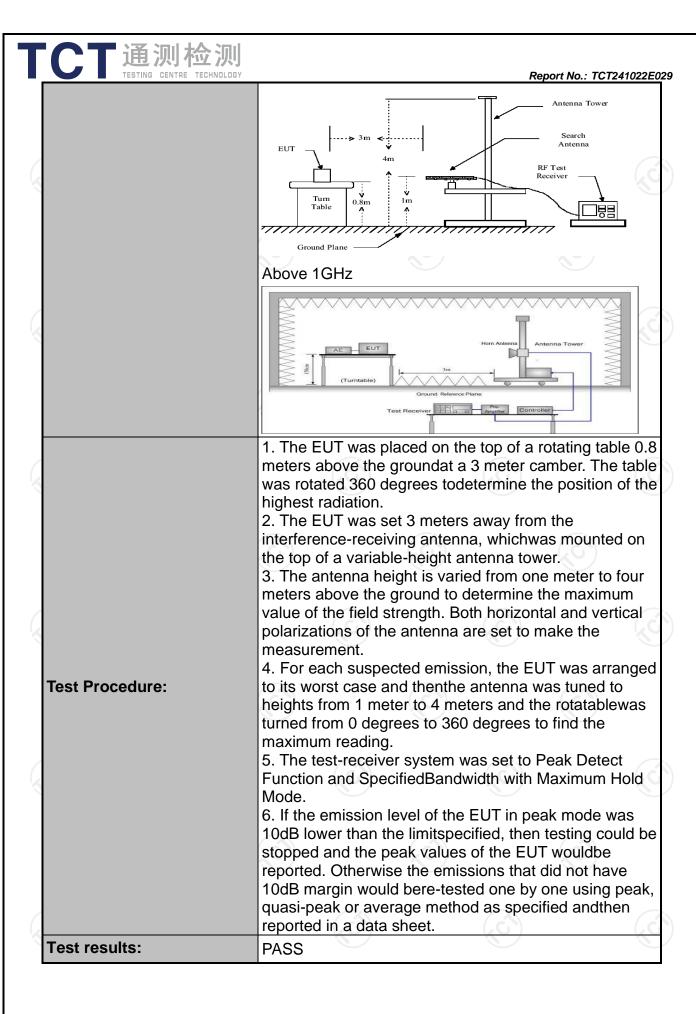
Site: 3m Anechoic Chamber Polarization: Vertical Temperature: 23.1(°C) Humidity: 44 %

Limit: FCC part 15.407 band edge B3 (PK)

Power:AC 120V/60Hz

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5951.886	51.55	-5.54	46.01	68.20	-22.19	peak	Р	

Note: All modulation (802.11a, 802.11a, 802.11ac, 802.11ax) have been tested, only the worst case in 802.11ax be reported.



5.8. Unwanted Emissions

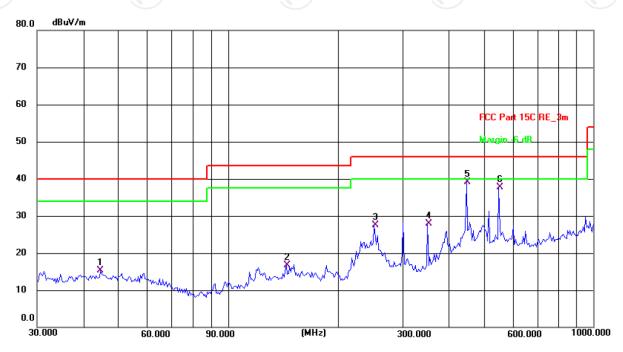
5.8.1. Test Specification

Test Requirement:	FCC CFR47 F	Part 15 S	ection 15.	407 & 1	5.209 & 15.205							
Test Method:	KDB 789033 I	KDB 789033 D02 v02r01										
Frequency Range:	9kHz to 40GH	lz										
Measurement Distance:	3 m											
Antenna Polarization:	Horizontal & V	/ertical										
Operation mode:	Transmitting n	node with	n modulat	ion								
Receiver Setup:	150kHz- 30MHz	Detector Quasi-peak Quasi-peak Quasi-peak Peak Peak	9kHz	VBW 1kHz 30kHz 300KHz 3MHz 10Hz	Remark Quasi-peak Value Quasi-peak Value Quasi-peak Value Peak Value Average Value							
Limit:	per FCC Part	15.205 sh strength ands:	Detection Peal AVG Field Strengtl (microvolts/m) 24000/F(KHz) 24000/F(KHz) 30 100 150 200	y with the torks	Limit@3m 74dBµV/m 54dBµV/m Measurement Distance (meters) 300 3 30 3 3 3							
Test setup:	EUT	ourn table	lm	Pre -/	Computer							

Report No.: TCT241022E029

5.8.2. Test Instruments

	Radiated Er	nission Test Sit	e (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESCI7	100529	Jan. 31, 2025
Spectrum Analyzer	R&S	FSQ40	200061	Jun. 26, 2025
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Pre-amplifier	SKET	LNPA_0118G- 45	SK202101210 2	Jan. 31, 2025
Pre-amplifier	SKET	LNPA_1840G- 50	SK202109203 500	Jan. 31, 2025
Pre-amplifier	HP	8447D	2727A05017	Jun. 26, 2025
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jun. 26, 2025
Broadband Antenna	Schwarzbeck	VULB9163	340	Jun. 28, 2025
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jun. 28, 2025
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Feb. 02, 2025
Coaxial cable	SKET	RE-03-D	/	Jun. 26, 2025
Coaxial cable	SKET	RE-03-M	/	Jun. 26, 2025
Coaxial cable	SKET	RE-03-L	1	Jun. 26, 2025
Coaxial cable	SKET	RE-04-D	(0)	Jun. 26, 2025
Coaxial cable	SKET	RE-04-M	/	Jun. 26, 2025
Coaxial cable	SKET	RE-04-L	6 1	Jun. 26, 2025
Antenna Mast	Keleto	RE-AM) 1	3)/
EMI Test Software	EZ_EMC	FA-03A2 RE+	1.1.4.2	/



5.8.3. Test Data

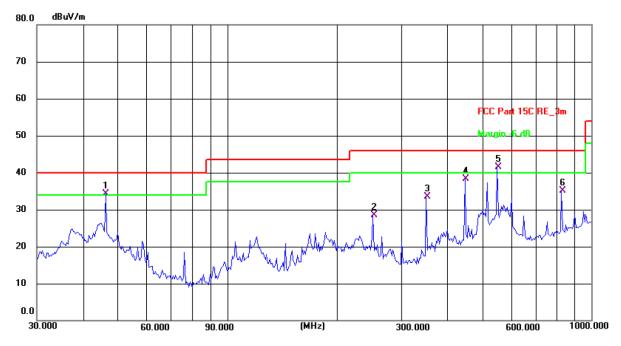
Please refer to following diagram for individual

Below 1GHz

Horizontal:

Site: 3m Anechoic Chamber1 Polarization: Horizontal Temperature: 23.5(C) Humidity: 51 %

Power: AC 120 V/ 60 Hz


Limit: FCC Part 15C RE_3m

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	44.7433	27.56	-12.17	15.39	40.00	-24.61	QP	Р	
2	144.3347	28.58	-11.92	16.66	43.50	-26.84	QP	Р	
3	251.1804	40.59	-13.10	27.49	46.00	-18.51	QP	Р	
4	351.7079	37.91	-10.02	27.89	46.00	-18.11	QP	Р	
5 *	449.5558	47.34	-8.20	39.14	46.00	-6.86	QP	Р	
6	550.9480	44.11	-6.43	37.68	46.00	-8.32	QP	Р	

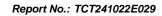
Vertical:

Site: 3m Anechoic Chamber1 Polarization: Vertical Temperature: 23.5(C) Humidity: 51 %

Limit: FCC Part 15C RE_3m Power: AC 120 V/ 60 Hz

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1!	46.3402	46.55	-12.19	34.36	40.00	-5.64	QP	Р	
2	251.1804	41.60	-13.10	28.50	46.00	-17.50	QP	Р	
3	351.7079	43.57	-10.02	33.55	46.00	-12.45	QP	Р	
4	449.5558	46.57	-8.20	38.37	46.00	-7.63	QP	Р	
5 *	550.9480	48.02	-6.43	41.59	46.00	-4.41	QP	Р	
6	827.4934	37.33	-2.24	35.09	46.00	-10.91	QP	Р	

Note: 1.The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

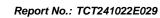

- 2. Measurements were conducted in all three channels (high, middle, low) and all modulation (802.11a, 802.11n(HT20), 802.11n(HT40), 802.11ac(VHT20), 802.11ac(VHT40), 802.11ax(HE20), 802.11ax(HE40) and the worst case Mode (Highest channel and 802.11ax(HE20)) was submitted only. And the test data in this project is powered by adapter 2 which is in the worse case.
- 3.Measurement ($dB\mu V$) = Reading level + Correction Factor, correction Factor= Antenna Factor + Cable loss Pre-amplifier.

			N	Modulation Ty	pe: Band 1					
				11a CH36: 5	5180MHz					
Frequency	Ant. Pol. H/V	Peak reading	AV reading	Correction Factor	Emissi	on Level	Peak limit (dBµV/m)	AV limit	Margin	
(MHz)	⊓/ V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(ασμν/ιιι)	m) (dBµV/m)	(dB)	
10360	Н	52.22		1.78	54		68.2		-14.2	
15540	Н	39.05		5.21	44.26	·	74	54	-9.74	
	(CH		[_ 0		(20			(2G-2)		
10360	V	50.55		1.78	52.33		68.2		-15.87	
15540	V	40.98		5.21	46.19		74	54	-7.81	
.C .	V			7.6		(G +-		(::0)	
				11a CH40: 9	5200MHz					
Frequency (MHz)	Ant. Pol. H/V	Peak reading	AV reading	Correction Factor		n Level	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)	
(1711 12)	1 1/ V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(αΒμν/ιιι)	(αΒμ ۷/111)	(ub)	
10400	Н	51.88		1.83	53.71		68.2		-14.49	
15600	Н	38.65		5.23	43.88		74	54	-10.12	
(\	Н			()					<i></i> X	
		(0)		KO					NO.	
10400	V	52.88		1.83	54.71		68.2		-13.49	
15600	V	39.71		5.23	44.94		74	54	-9.06	
	V		- 			X		7		
				11a CH48:	5240MHz					
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	n Level	Peak limit	AV limit		
(MHz)	□	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(ub)	
10480	Н	52.22		1.85	54.07		68.2		-14.13	
15720	Н	39.66		5.25	44.91		74	54	-9.09	
	Н									
			(c)	-)		-1)				
10480	V	51.55		1.85	53.4		68.2	\\\\\	-14.8	
15720	V	39.66		5.25	44.91		74	54	-9.09	
	V									
			111	n(HT20) CH3	36: 5180MH	łz				
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emission Level		Peak limit	AV limit	Margir	
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	
10360	(H)	50.66	-420	1.78	52.44	(``ن	68.2	(¿C+-`)	-15.76	
15540	H	39.53		5.21	44.74	/ <u></u>	74	54	-9.26	
	Н									
40000	,, 1		ı	1 = 6	1	,		ı		
10360	V	51.11		1.78	52.89	(68.2		-15.31	
15540	V	37.57		5.21	42.78		74	54	-11.22	
	V									

			11	n(HT20) CH	40: 5200MF	-lz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading	AV reading	Correction Factor	Emissio		Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
(1411 12)	1 1/ V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(αΒμ ۷/ΙΙΙ)	(αδμ ν/ιιι)	(ub)
10400	Н	52.66		1.83	54.49		68.2		-13.71
15600	Н	39.22		5.23	44.45		74	54	-9.55
	Н								
	(.c)		(.6)					(G)	
10400	V	49.12	-	1.83	50.95	<i></i>	68.2		-17.25
15600	V	37.85		5.23	43.08		74	54	-10.92
	V								
			11	n(HT20) CH	48: 5240MI	Ηz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	ΑV (dBμV/m)	(dBµV/m)	(dBµV/m)	(dB)
10480	(H)	51.03	760	1.85	52.88	U)	68.2	(0-)	-15.32
15720	Н	39.32		5.25	44.57		74	54	-9.43
	Н								
	•	CAN	•		()				
10480	V	50.11		1.85	51.96		68.2		-16.24
15720	V	38.96		5.25	44.21		74	54	-9.79
	V								
			11	n(HT40) CH	38: 5190MI	-lz			
F	A . (D .)	Peak	AV	Correction			Deal Feet	A) / I' '(N4 ' -
Frequency	Ant. Pol. H/V	reading	reading	Factor	EIIIISSI	on Level	Peak limit		Margin
(MHz)	П/ V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10380	Н	52.66		1.80	54.46		68.2		-13.74
15570	Н	41.25		5.22	46.47		74	54	-7.53
	Н								
				l.	•				
10380	V	52.86	(^	1.80	54.66		68.2		-13.54
15570	V	39.55	-70	5.22	44.77	٧)	74	54	-9.23
	V								
			11	n(HT40) CH	46: 5230MF	-lz			
	Ant Dal	Peak	AV	Correction		on Level	Dools limit	۸ \ / انمه ند	Marain
Frequency (MHz)	Ant. Pol. H/V	reading (dBµV)	reading (dBµV)	Factor (dB/m)	Peak	AV	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
		(αΒμν)	(αΒμν)	(45/111)	(dBµV/m)				
10460	Н,	52.33		1.85	54.18	-/	68.2		-14.02
15690	(H)	37.37	(, G	5.08	42.45	(5)	74	54	-11.55
	Н								
<u>_</u>	<u> </u>	<u> </u>					•		
10460	V	50.99		1.85	52.84		68.2		-15.36
15690	V	38.28		5.08	43.36		74	54	-10.64
2.2	V	77							77

			11a	c(VHT20) CH	136: 5180M	lHz			
Fraguanay	Ant Dol	Peak	AV	Correction		on Level	Dook limit	AV limit	Morgin
Frequency (MHz)	Ant. Pol. H/V	reading	reading	Factor			Peak limit (dBµV/m)	(dBµV/m)	Margin (dB)
(1711 12)	1 1/ V	(dBµV)	(dBµV)	(dB/m)	Peak	AV	(αΒμ ۷/ιιι)	(αΒμ ۷/111)	(ub)
40000	11	F4 00		4.70	(dBµV/m)	, ,	CO O		45.0/
10360	H	51.22		1.78	53		68.2		-15.2
15540	Н	37.97		5.21	43.18		74	54	-10.82
				.\					
10360	V	50.13		1.78	51.91) <u></u>	68.2		-16.29
15540	V	38.51		5.21	43.72		74	54	-10.28
	V								
			11a	c(VHT20) CH	140: 5200M	lHz			
F	A . (D .)	Peak	AV	Correction			Deal Park	A	N4
Frequency (MHz)	Ant. Pol. H/V	reading	reading	Factor		n Level	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
(IVII IZ)	1 1/ V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	ΑV (dBμV/m)	(ασμ ν/ιιι)	(αΒμ ۷/111)	(ub)
10400	KH)	51.64	7/0	1.83	53.47)	68.2	(2.)	-14.73
15600	Н	38.27		5.23	43.5		74	54	-10.5
	Н								
	1		T			/			
10400	V	52.58		1.83	54.41	\	68.2		-13.79
15600	V	39.66		5.23	44.89		74	54	-9.11
	V								
		Deal		1ac(VHT20)	CH48:5240				
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	n Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak	AV	(dBµV/m)	(dBµV/m)	(dB)
		(- 1- /	((* ')	(dBµV/m)	(dBµV/m)			
10480	Н	50.85		1.85	52.7	(68.2		-15.5
15720	Н	38.66		5.25	43.91		74	54	-10.09
	Н								
10480	V	50.33		1.85	52.18		68.2		-16.02
15720	V	39.11		5.25	44.36	<i>)</i>	74	54	-9.64
	V								
				1ac(VHT40)	CH38:5190				
						Emission Level			Margin
Frequency	Ant. Pol.	Peak	AV	Correction	Emissio	on Level	Peak limit	AV limit	Margin
Frequency (MHz)	Ant. Pol. H/V	reading	reading	Factor			Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
					Emission Peak (dBµV/m)	AV			•
		reading	reading	Factor	Peak (dBµV/m)	AV			(dB)
(MHz)	H/V	reading (dBµV)	reading (dBµV)	Factor (dB/m)	Peak	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	•
(MHz) 10380	H/V H	reading (dBµV) 50.33	reading (dBµV)	Factor (dB/m)	Peak (dBµV/m) 52.13	AV (dBµV/m)	(dBµV/m) 68.2	(dBµV/m)	(dB)
10380 15570	H/V H H	reading (dBµV) 50.33 38.82	reading (dBµV)	Factor (dB/m) 1.80 5.22	Peak (dBµV/m) 52.13 44.04	AV (dBµV/m)	(dBµV/m) 68.2 74	(dBµV/m)	-16.07 -9.96
10380 15570	H/V H H	reading (dBµV) 50.33 38.82	reading (dBµV)	Factor (dB/m) 1.80 5.22	Peak (dBµV/m) 52.13 44.04	AV (dBµV/m)	(dBµV/m) 68.2 74	(dBµV/m)	-16.07 -9.96
10380 15570	H/V H H	reading (dBµV) 50.33 38.82	reading (dBµV)	Factor (dB/m) 1.80 5.22	Peak (dBµV/m) 52.13 44.04	ΑV (dBμV/m) 	(dBµV/m) 68.2 74 	(dBµV/m) 54	-16.07 -9.96

(MHz)	AV limit (dBµV/m) 54 AV limit dBµV/m) 54	Margin (dB) -13.69 -11.48 -13.37 -9.44 Margin (dB) -13.43 -9.28
Frequency (MHz)	 54 54 AV limit dBμV/m)	-13.69 -11.4813.37 -9.44 Margin (dB) -13.43 -9.28
10460	54 54 AV limit dBµV/m)	-11.48 -13.37 -9.44 Margin (dB) -13.43 -9.28
15690	54 54 AV limit dBµV/m)	-11.48 -13.37 -9.44 Margin (dB) -13.43 -9.28
10460	 54 AV limit dBμV/m)	 -13.37 -9.44 Margin (dB) -13.43 -9.28
10460 V 52.98 1.85 54.83 68.2 15690 V 39.48 5.08 44.56 74 V 11ax(HE20) CH36: 5180MHz Frequency (MHz) Ant. Pol. H/V reading (dBμV) reading (dBμV) (dBμV/m) (dB	 54 AV limit dBμV/m)	-13.37 -9.44 Margin (dB) -13.43 -9.28
15690	54 AV limit dBµV/m)	-9.44 Margin (dB) -13.43 -9.28
15690	54 AV limit dBµV/m)	-9.44 Margin (dB) -13.43 -9.28
Trequency (MHz)	AV limit dBµV/m)	Margin (dB) -13.43 -9.28
Trequency (MHz)	AV limit dBµV/m)	Margin (dB) -13.43 -9.28
Frequency (MHz)	 54	-13.43 -9.28
Frequency (MHz)	 54	-13.43 -9.28
(MHz) H/V (dBμV) (dBμV) (dBμV) Peak (dBμV/m) AV (dBμV/m) AV (dBμV/m) (dBμV/m) AV (dBμV/m) Peak (dBμV/m) AV (dBμV/m) Peak (dBμV/m) AV (dBμV/m)	54	-13.43 -9.28
15540 H 39.51 5.21 44.72 74 10360 V 52.33 1.78 54.11 68.2 15540 V 38.09 5.21 43.3 74 V 11ax(HE20) CH40: 5200MHz Frequency (MHz) Ant. Pol. H/V Peak reading (dBμV) Reading (dBμV/m) Reading (dB	54	-9.28
H		
10360 V 52.33 1.78 54.11 68.2 15540 V 38.09 5.21 43.3 74 V 11ax(HE20) CH40: 5200MHz Frequency (MHz) Ant. Pol. H/V reading (dBμV) Reading (dBμV) (dBμV/m) Factor (dBμV/m)		
15540 V 38.09 5.21 43.3 74 V 11ax(HE20) CH40: 5200MHz Frequency (MHz) Ant. Pol. H/V reading (dBμV) reading (dBμV) (dBμV/m) Factor (dB/m) Peak (dBμV/m) (dBμV		
15540 V 38.09 5.21 43.3 74 V 11ax(HE20) CH40: 5200MHz Frequency (MHz) Ant. Pol. H/V Reading (dBμV) Reading (dBμV/m) Readi	-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-14.09
Tax(HE20) CH40: 5200MHz Frequency (MHz)	54	-10.7
Frequency (MHz) Ant. Pol. H/V Peak reading (dB μ V) Reading (dB μ V) Factor (dB/m) Peak (dB μ V/m) Reading (dB μ V/m) R		
Frequency (MHz)		
(MHz) H/V reading (dBμV) reading (dBμV) Factor (dB/m) Peak (dBμV/m) AV (dBμV/m) (dBμV/m) (dBμV/m) 10400 H 51.66 1.83 53.49 68.2	AV limit	Margin
(авµV) (авµV) (авиV) (авиV) (авиV/m) (dBµV/m)	(dB)
15600 📙 39.47 5.22 42.7 74		-14.71
15600 H 38.47 5.23 43.7 74	54	-10.3
С Н S С		77
10400 V 52.11 1.83 53.94 68.2		-14.26
15600 V 38.59 5.23 43.82 74	54	-10.18
V		
11ax(HE20) CH48:5240		
' 'I I reading I reading I Factor I I I	AV limit	Margin
(MHz) H/V (dB μ V) (dB μ V) (dB μ V) (dB/m) Peak AV (dB μ V/m) (dB	dBµV/m)	(dB)
(dBμV/m) (dBμV/m)		
10480 H 53.29 1.85 55.14 68.2		-13.06
15720 H 38.73 5.25 43.98 74		-10.02
(,CH) (,C) (,	 54	
10480 V 52.96 1.85 54.81 68.2	54	
15720 V 37.36 5.25 42.61 74	54	-13.39
O V (() ()	54	-13.39 -11.39



	TESTING (CENTRE TECHNOL	.OGY	Report No.: TCT241022E029								
			<i>'</i>	11ax(HE40) (CH38:5190							
Frequency	Ant. Pol. H/V	Peak reading	AV reading	Correction Factor	Emissio	on Level	Peak limit		Margin			
(MHz)	□/ V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)			
10380	Н	54.22		1.80	56.02		68.2		-12.18			
15570	Н	38.99		5.22	44.21		74	54	-9.79			
	Н											
						7						
10380	V	54.55	40	1.80	56.35)	68.2	(G^{-1})	-11.85			
15570	V	37.21		5.22	42.43		74	54	-11.57			
	V											
				11ax(HE40) (CH46:5230							
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissi	on Level	Peak limit		Margin			
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)			
10460	Ĥ	53.99	(^	1.85	55.84		68.2	(4)	-12.36			
15690	H	37.15	-40	5.08	42.23	7	74	54	-11.77			
	Н											
	· · · · · · · · · · · · · · · · · · ·					_		1				
10460	V	50.66		1.85	52.51	/	68.2		-15.69			
15690	V	37.22		5.08	42.3	/	74	54	-11.7			
	V											

Note:

- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. $Margin (dB) = Emission Level (Peak) (dB\mu V/m)-Average limit (dB\mu V/m)$
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

			N	Modulation T	vpe: Band 3	3			
				11a CH149:	-				
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor		on Level	Peak limit	-	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11490	Н	42.14		2.48	44.62		74	54	-9.38
17235	H	51.35	,	6.50	57.85		68.2		-10.35
	(CH)		40		(,((-62)	
				7					
11490	V	42.82		2.48	45.3		74	54	-8.7
17235	V	51.93		6.50	58.43		68.2		-9.77
	V	((ĉ.		/			(
				11a CH157:	5785MHz				
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emission Level		Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11570	Œ	41.58		2.42	44		74	54	-10
17355	Н	52.66		7.03	59.69		68.2		-8.51
	Н								/X
(C)		((0)		120			(O')		YO.
11570	V	40.64		2.42	43.06		74	54	-10.94
17355	V	52.99		7.03	60.02		68.2		-8.18
	V							7	
				11a CH165:	5825MHz				
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11650	Н	40.69		2.41	43.1		74	54	-10.9
17475	Н	50.15		7.41	57.56		68.2		-10.64
	Н								
						~~			
11650	V	41.97	(2.41	44.38	9)	74	54	-9.62
17475	V	50.96		7.41	58.37		68.2		-9.83
	V								
			11r	n(HT20) CH1	49: 5745M	Hz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor		on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	ΑV (dBμV/m)	(dBµV/m)	(dBµV/m)	(dB)
11490	(,CH)	41.02	- (- ,G)	2.48	43.5	3)	74	54	-10.5
17235	Н	52.66		6.50	59.16	<u> </u>	68.2		-9.04
	Н								
11490	V	41.07		2.48	43.55		74	54	-10.45
17235	V	51.55		6.50	58.05		68.2		-10.15
	V								

			11r	n(HT20) CH1	57: 5785M	Hz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBμV/m)	(dBµV/m)	(dBµV/m)	(dB)
11570	Н	41.55		2.42	43.97		74	54	-10.03
17355	Н	51.62		7.03	58.65		68.2		-9.55
	H							<u></u>	
	(G)		(.G)	•]	(.0			(.G)	
11570	V	41.01		2.42	43.43	J	74	54	-10.57
17355	V	50.39		7.03	57.42		68.2		-10.78
	V								
			11r	n(HT20) CH1	65: 5825M	Hz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction	Emissio	mission Level Peak limi		AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11650	A H	41.25	-1/0	2.41	43.66	7)	74	54	-10.34
17475	Н	50.12		7.41	57.53		68.2		-10.67
	Н								
								<u>.</u>	
11650	V	41.86		2.41	44.27		74	54	-9.73
17475	V	52.31		7.41	59.72		68.2		-8.48
	V								
			11r	n(HT40) CH1	51: 5755M	Hz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor		n Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	ΑV (dBμV/m)	(dBµV/m)	(dBµV/m)	(dB)
11510	Н	41.33		2.47	43.8	/	74	54	-10.2
17265	Н	51.55		6.62	58.17		68.2		-10.03
	Н								
				!			l		
11510	V	41.05	((2.47	43.52	<u> </u>	74	54	-10.48
17265	V	52.33	- <u>- </u>	6.62	58.95	5)	68.2	<u> </u>	-9.25
	V								-9.25
	•			n(HT40) CH1	59· 5795M				
		Peak	AV	Correction			l		
Frequency (MHz)	Ant. Pol. H/V	reading	reading	Factor		on Level AV	Peak limit (dBµV/m)		Margin (dB)
,		(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	(dBµV/m)	, ,	, ,	, ,
11590	Н	41.06		2.40	43.46		74	54	-10.54
17385	(H)	50.74	- 1 20	7.15	57.89	5`)	68.2	(G-)	-10.31
	H					<u> </u>			
11590	V	41.06		2.40	43.46		74	54	-10.54
17385	V	52.99		7.15	60.14		68.2		-8.06
	V								1053

			11ac	<u>, , , , , , , , , , , , , , , , , , , </u>					
Frequency (MHz)	Ant. Pol. H/V	Peak reading	AV reading	Correction Factor		n Level	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
(IVII IZ)	1 1/ V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(ασμν/ιιι)	(αΒμ ۷/111)	(ub)
11490	Н	40.96		2.48	43.44		74	54	-10.56
17235	Н	52.76		6.50	59.26		68.2		-8.94
	Н							<u></u>	
	(.G)		(,C)		(.0			(.G)	
11490	V	41.55		2.48	44.03	J	74	54	-9.97
17235	V	50.69		6.50	57.19		68.2		-11.01
	V								
			11ac	(VHT20) CH	1157: 5785N	ИНz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor			Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11570	K H	41.22	70	2.42	43.64	J)	74	54	-10.36
17355	Н	52.98		7.03	60.01		68.2		-8.19
	Н								
11570	V	40.52		2.42	42.94		74	54	-11.06
17355	V	51.26		7.03	58.29		68.2		-9.91
	V								
			11ac	(VHT20) CH	1165: 5825N	ИHz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	n Level	Peak limit AV limit		Margin (dB)
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	ΑV (dBμV/m)	(dBµV/m)	(dBµV/m)	
11650	Н	41.85		2.41	44.26	/	74	54	-9.74
17475	Н	51.04		7.41	58.45		68.2		-9.75
	Н								
11650	V	40.39		2.41	42.8		74	54	-11.2
	V	52.35	-120)	68.2	(0)	-8.44
1/475		02.00		V 7.41	I 59.76	/			
17475 				7.41	59.76				
	V								
	V		 11ac	 (VHT40) CH	 151: 5755 	 ИНz			
		Peak reading	 11ad AV reading	 c(VHT40) CF Correction Factor	 1151: 5755N Emissio	 MHz on Level		AV limit	
Frequency	V Ant. Pol.	 Peak	 11ac	 c(VHT40) CH Correction	 151: 5755 	 ИНz	Peak limit	AV limit	 Margin
Frequency	V Ant. Pol.	Peak reading	 11ad AV reading	 c(VHT40) CF Correction Factor	 I151: 5755N Emissic Peak	MHz on Level	Peak limit	AV limit	Margin (dB)
Frequency (MHz)	V Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	C(VHT40) CH Correction Factor (dB/m)	 1151: 5755M Emissic Peak (dBµV/m)	 MHz on Level AV (dBµV/m)	Peak limit	AV limit (dBµV/m)	Margin (dB)
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	 C(VHT40) CF Correction Factor (dB/m)	 151: 5755M Emissio Peak (dBµV/m) 43.43	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	 Margin
Frequency (MHz) 11510 17265	V Ant. Pol. H/V H H	Peak reading (dBµV) 40.96 50.76	AV reading (dBµV)	C(VHT40) CH Correction Factor (dB/m) 2.47 6.62	 I151: 5755M Emissio Peak (dBµV/m) 43.43 57.38	AV (dBµV/m)	Peak limit (dBµV/m) 74 68.2	AV limit (dBµV/m)	 Margir (dB) -10.57 -10.82
Frequency (MHz) 11510 17265	V Ant. Pol. H/V	Peak reading (dBµV) 40.96 50.76	AV reading (dBµV)	C(VHT40) CH Correction Factor (dB/m) 2.47 6.62	 1151: 5755M Emissic Peak (dBµV/m) 43.43 57.38	AV (dBµV/m)	Peak limit (dBµV/m) 74 68.2	AV limit (dBµV/m)	 Margin (dB) -10.57


				(VHT40) CH	1159: 57951	ИНz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11590	Н	41.24		2.40	43.64		74	54	-10.36
17385	Н	51.88		7.15	59.03		68.2		-9.17
	H								
	(G)		(.G)	•)	(.0			(.c)	
11590	V	40.76		2.40	43.16	J	74	54	-10.84
17385	V	52.21		7.15	59.36		68.2		-8.84
	V								
			11a	x(HE20) CH	149: 5745N	1Hz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor		Emission Level Peak lim			Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11490	H	41.52	<u> </u>	2.48	44	J)	74	54	-10
17235	Н	52.3		6.50	58.8		68.2		-9.4
	Н								
						•		·	
11490	V	40.41		2.48	42.89		74	54	-11.11
17235	V	51.66		6.50	58.16		68.2		-10.04
	V								
			11a	x(HE20) CH	157: 5785N	1Hz	•		
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor		on Level	Peak limit AV limit	Margin	
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	ΑV (dBμV/m)	(dBµV/m)	(dBµV/m)	(dB)
11570	Н	41.22		2.42	43.64	/	74	54	-10.36
17355	Н	50.98		7.03	58.01		68.2		-10.19
	Н								
11570	V	42.01	-4-5	2.42	44.43		74	54	-9.57
17355	V	51.77		7.03	58.8	5)	68.2		-9.4
	V								
	V			x(HE20) CH					
		Peak	AV	Correction					
Frequency (MHz)	Ant. Pol. H/V	reading	reading	Factor		n Level	Peak limit (dBµV/m)		Margin (dB)
(. ,, .	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	((р	()
11650	Ш	40.98		2.41	43.39	Z\	74	54	-10.61
17475	(H)	50.78	- 1 20	7.41	58.19	5`)	68.2	(¿G-`)	-10.01
	H					<u> </u>			
		-		1	1		1	•	
11650	V	41.08		2.41	43.49		74	54	-10.51
17475	V	50.86		7.41	58.27		68.2		-9.93
	V								44

	TESTING CENTRE TECHNOLOGY Report No.: TCT241022E02										
			11a:	x(HE40) CH	151: 5755N	1Hz					
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emission Level		Peak limit		Margin		
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)		
11510	Н	41.05		2.47	43.52		74	54	-10.48		
17265	Н	52.06		6.62	58.68		68.2		-9.52		
	Н										
11510	V	41.09	+-0	2.47	43.56	(`رُ	74	54	-10.44		
17265	V	51.88		6.62	58.5	/	68.2		-9.7		
	V										
			11a:	x(HE40) CH	159: 5795N	1Hz					
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	on Level	Peak limit		Margin (dB)		
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)			
11590	(A)	40.25	+.0	2.40	42.65		74	54	-11.35		
17385	H	50.33		7.15	57.48	J	68.2	 /	-10.72		
	Н										
						-					
11590	V	40.41		2.40	42.81		74	54	-11.19		
17385	V	50.11		7.15	57.26		68.2		-10.94		
	V										

Note:

- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

5.9. Frequency Stability Measurement

5.9.1. Test Specification

FCC Part15 Section 15.407(g) &Part2 J Section 2.1055 ANSI C63.10:2020						
The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 45 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.						
Spectrum Analyzer EUT AC/DC Power supply						
The EUT was placed inside the environmental test chamber and powered by nominal AC/DC voltage. b. Turn the EUT on and couple its output to a spectrum analyzer. c. Turn the EUT off and set the chamber to the highest temperature specified. d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. e. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature. f. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.						
PASS						
Pre-scan was performed at all models(11a,11n,11ac, 11ax), the worst case (11ax) was found and test data was shown in this report.						

Test plots as follows:

	TESTING CENTRE TECHNOLOGY	Report No.: TCT241022E029
4 1 . 4	(. 11	

Test mode:	802.11ax	(HE20)	Frequency(MHz):			5180	
Temperature (°C)	Voltage(V _{AC})	Measur	Measurement			Result	
remperature (C)	voltage(vac)	Frequenc	Frequency(MHz)		Hz)	Nesuit	
45		518	30	0		PASS	
35		5180	0.02	20000		PASS	
25	120V	518	30	0		PASS	
15	1200	518	30	0		PASS	
5		518	30	0		PASS	
0		518	30	0		PASS	
	102V	5180	0.02	20000	,	PASS	
25	120V	5180	0.02	20000		PASS	
	138V	518	30	0		PASS	

Test mode:	802.1	l1ax(HE20)	Freque	ency(MHz):		5200
Temperature (°C)	emperature (°C) Voltage(V _{AC})		Measurement Frequency(MHz)		Delta Frequency(Hz)		Result
45			52	00	0		PASS
35			52	5200		-31	PASS
25	120\/	120V		5200		3)	PASS
15	1200		52	5200			PASS
5				5200			PASS
0		(ch		5200.02)	PASS
	102V		52	00	0		PASS
25	120V		52	00	0		PASS
	138V		52	00	0	-,.	PASS

Test mode:	802.11ax(HE20)	Freque	ency(MHz): 5240			
Temperature (°C)	Voltage(VAC)	Measurement Frequency(MHz)					
45	/C	5240		5240		(C) 0	PASS
35		5240	0	0	PASS		
25	120V	5240.02		20000	PASS		
15	1200	5240		0	PASS		
5		5240	0	0	PASS		
0		5240	0	0	PASS		
	102V	5240		5240		0	PASS
25	120V	5240	0 /	0	PASS		
	138V	5240	0	0	PASS		

Test mode:	802.11ax	(HE20)	Frequency(MHz):		5745		
Temperature (°C)	Voltage(V _{AC})	Measu	rement	Delta		Result	
remperature (C)	voltage(vac)	Frequen	cy(MHz)	Frequency(Hz)	Nesuit	
45		57	45	0		PASS	
35		574	4.98	-20000		PASS	
25	120V	57	45	0		PASS	
15	1200	574	4.98	-20000		PASS	
5		574	4.98	-20000		PASS	
0		57	45	0		PASS	
	102V	574	4.98	-20000		PASS	
25	120V	574	4.98	-20000		PASS	
(C, C)	138V	574	4.98	-20000	*)	PASS	(C, J)

Test mode:	802.11ax(HE20) Freque	ency(MHz):	5785
Temperature (°C)	Voltage(V _{AC})	Measurement	Delta	Result
· · · · · · · · · · · · · · · · · · ·		Frequency(MHz)	Frequency(Hz)	
45		5784.98	-20000	PASS
35		5784.98	-20000	PASS
25	4201/	5784.98	-20000	PASS
15	120V	5784.98	-20000	PASS
5		5784.98	-20000	PASS
0		5784.98	-20000	PASS
(, (, ')	102V	5784.98	-20000	PASS
25	120V	5784.98	-20000	PASS
	138V	5785	0	PASS

Test mode:	802.11ax(HE20) Freque	ency(MHz):	5825
Temperature (°C)	Voltage(VAC)	Measurement Frequency(MHz)	Delta Frequency(Hz)	Result
45		5825	0	PASS
35		5824.96	-40000	PASS
25	120V	5824.98	-20000	PASS
15	1200	5824.98	-20000	PASS
5		5824.98	-20000	PASS
0		5824.98	-20000	PASS
	102V	5824.98	-20000	PASS
25	120V	5824.98	-20000	PASS
	138V	5824.98	-20000	PASS

Test mode:	802.11ax(HE40)	Frequency(MHz):		5190		
Temperature (°C)	Voltage(V _{AC})	Measurement		Delta		Dogult	
Temperature (C)	voitage(vac)	Frequen	cy(MHz)	Frequency(H	Hz)	Result	
45	(c)	5190.04		40000		PASS	
35		5190	0.04	40000		PASS	
25	120V	51	90	0		PASS	
15	1200	5190	0.04	40000		PASS	
5		51	90	0		PASS	
0		5190	0.04	40000		PASS	
	102V	51	90	0		PASS	
25	120V	51	90	0		PASS	X
(C)	138V	5190	0.04	40000)	PASS)

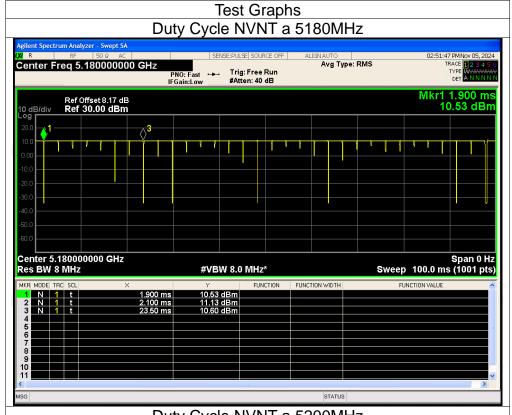
Test mode:	802.11ax(HE40) Freque	ency(MHz):	5230
Temperature (°C)	Voltage(VAC)	Measurement Frequency(MHz)	Delta Frequency(Hz)	Result
45		5230	0	PASS
35		5230.04	40000	PASS
25	120V	5230.04	40000	PASS
15	1200	5230.04	40000	PASS
5		5230.04	40000	PASS
0		5230.04	40000	PASS
(,c)	102V	5230	0	PASS
25	120V	5230.04	40000	PASS
	138V	5230.04	40000	PASS

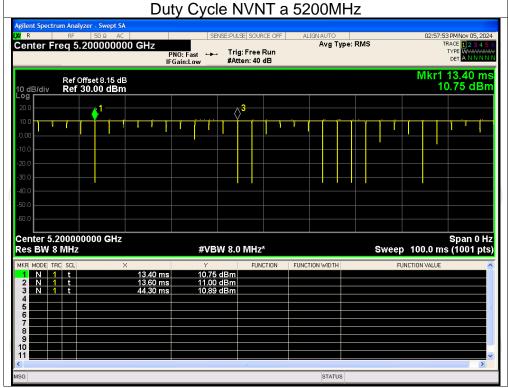
Test mode:	802.11ax(HE40) Frequency(MHz):		.11ax(HE40) Frequency(MHz): 575		5755
Temperature (°C)	Voltage(VAC)	Measurement Frequency(MHz)	Delta Frequency(Hz)	Result		
45		5755	0	PASS		
35		5755	0	PASS		
25	120V	5755	0	PASS		
15	1200	5755	0	PASS		
5		5754.96	-40000	PASS		
0		5755	0	PASS		
	102V	5755	0	PASS		
25	120V	5755	0	PASS		
	138V	5755	0	PASS		

Test mode:	802.11ax(HE40) Freque		ency(MHz):		5795	
Temperature (°C)	Voltage(V _{AC})	Measurement Frequency(MHz)		Delta Frequency(Hz)		Result	
45	(6)	57		0		PASS	
35		57	95	0		PASS	
25	400\/	5795		0		PASS	
15	120V	57	95	0		PASS	
5 (0)		57	95	0		PASS	
0		57	95	0		PASS	
	102V	57	95	0		PASS	
25	120V	57	95	0		PASS	7
(² C ₃)	138V	57	95	0.0)	PASS	(C_i)

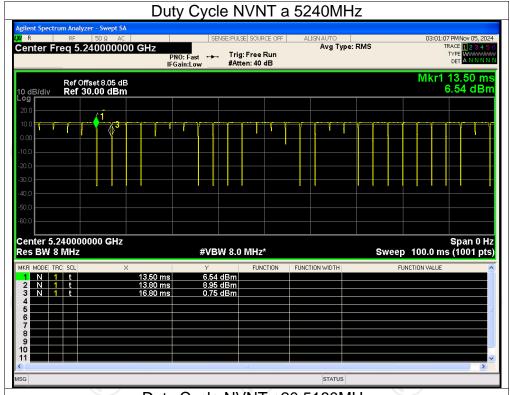
Appendix A: Test Result of Conducted Test

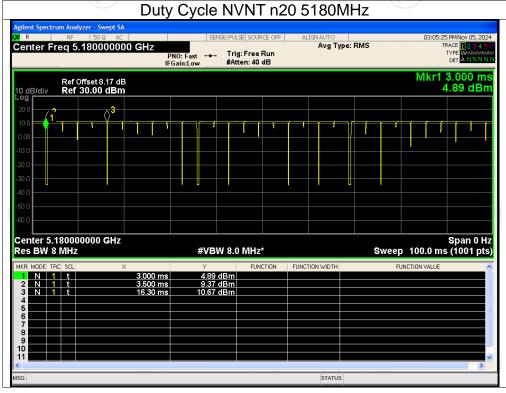
Duty Cycle

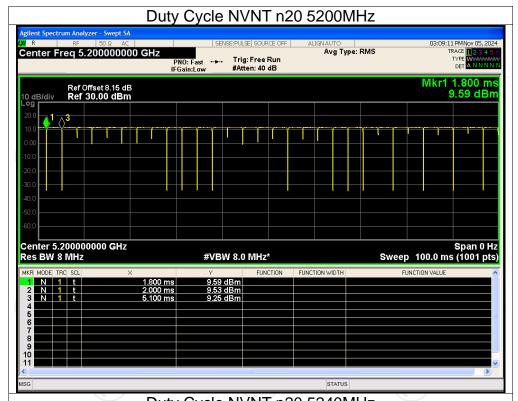

	Duty Cycle						
Condition	Mode	Frequency (MHz)	Duty Cycle (%)	Correction Factor (dB)			
NVNT	а	5180	99.0	0			
NVNT	а	5200	99.2	0			
NVNT	а	5240	97.5	0.11			
NVNT	n20	5180	98.1	0			
NVNT	n20	5200	98.6	0			
NVNT	n20	5240	97.8	0.10			
NVNT	n40	5190	98.5	0			
NVNT	n40	5230	98.1	0			
NVNT	ac20	5180	98.4	0			
NVNT	ac20	5200	97.0	0.13			
NVNT	ac20	5240	99.2	0			
NVNT	ac40	5190	98.4	0			
NVNT	ac40	5230	98.4	0			
NVNT	ax20	5180	98.7	0			
NVNT	ax20	5200	98.4	0			
NVNT	ax20	5240	97.9	0.09			
NVNT	ax40	5190	99.1	0			
NVNT	ax40	5230	98.0	0			
NVNT	а	5745	98.5	0			
NVNT	а	5785	98.4	0			
NVNT	а	5825	97.0	0.13			
NVNT	n20	5745	99.0	0			
NVNT	n20	5785	97.8	0.10			
NVNT	n20	5825	98.1	0			
NVNT	n40	5755	99.3	0			
NVNT	n40	5795	99.2	0			
NVNT	ac20	5745	99.1	0			
NVNT	ac20	5785	97.4	0.11			
NVNT	ac20	5825	98.0	0			
NVNT	ac40	5755	98.0	0			
NVNT	ac40	5795	99.5	0			
NVNT	ax20	5745	98.4	0			
NVNT	ax20	5785	97.9	0.09			
NVNT	ax20	5825	98.4	0			
NVNT	ax40	5755	99.1	0			
NVNT	ax40	5795	98.1	0			

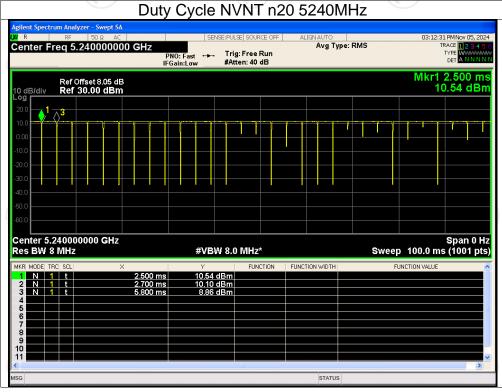

Page 50 of 146

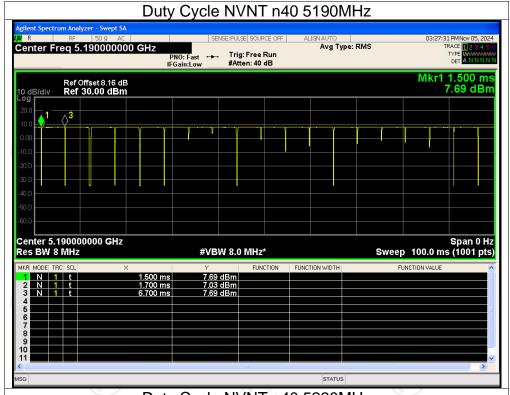
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

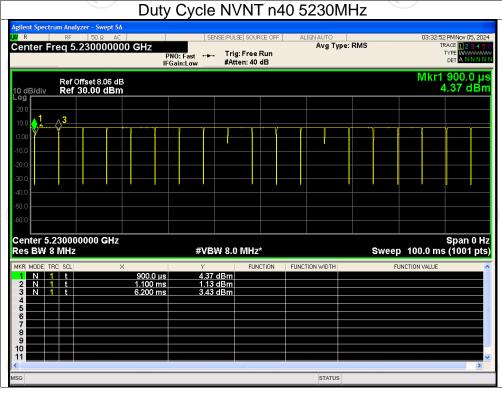


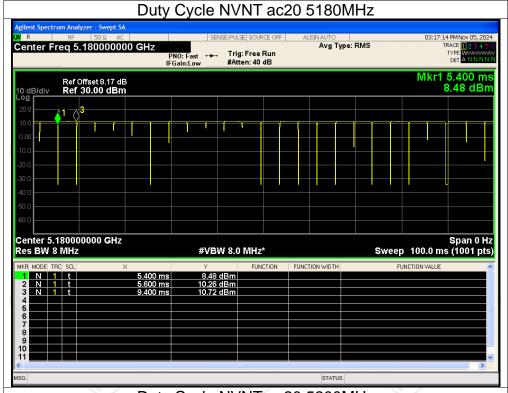


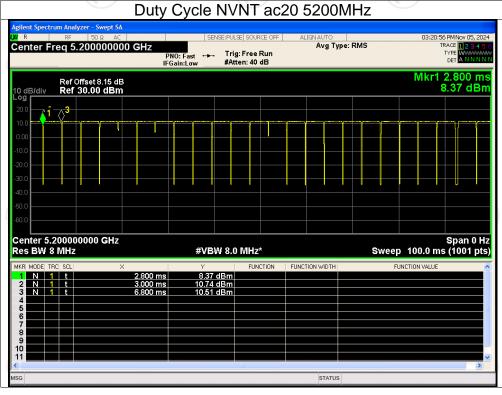


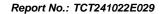


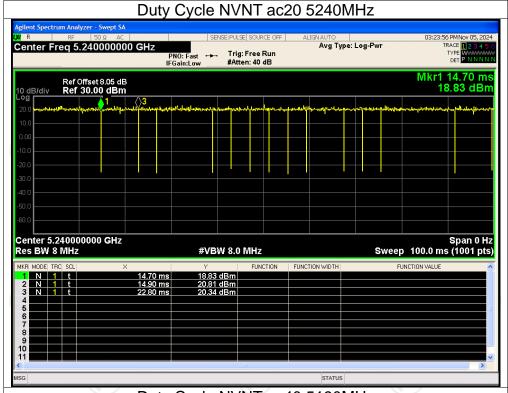


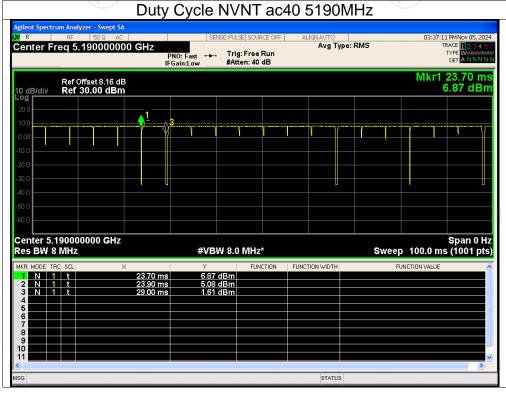


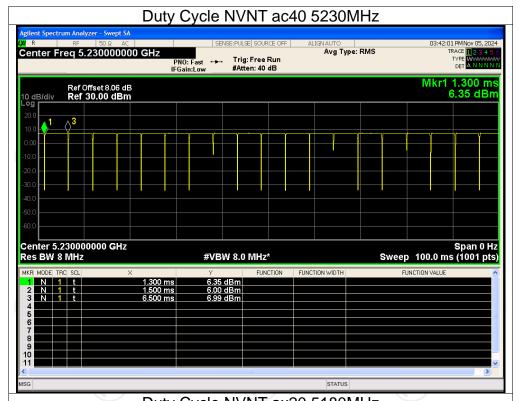


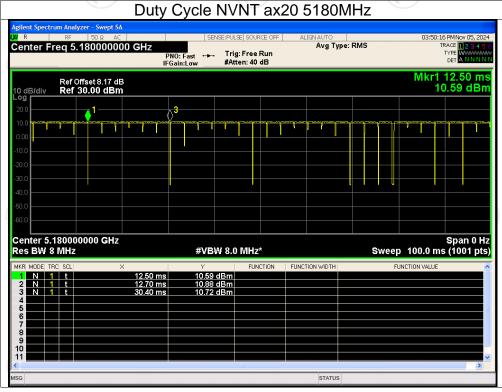




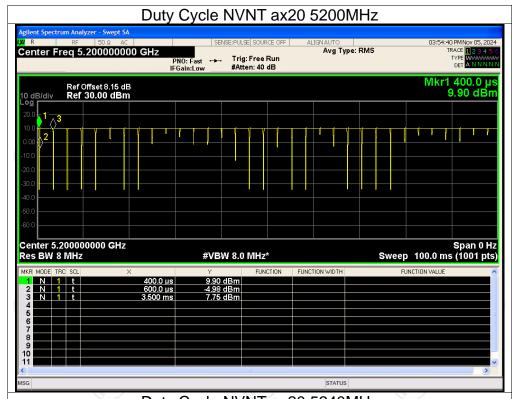


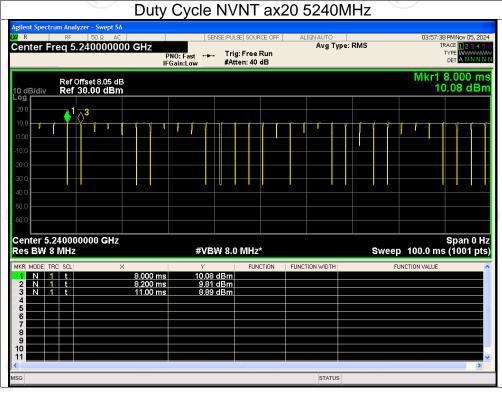


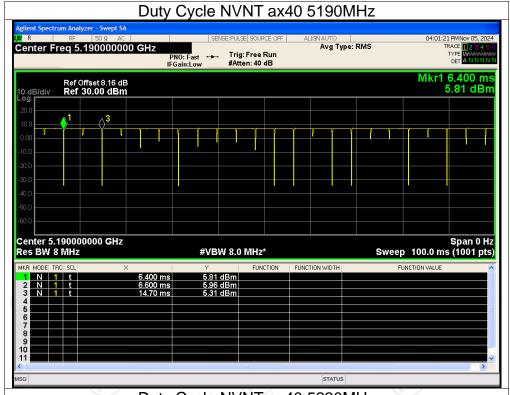


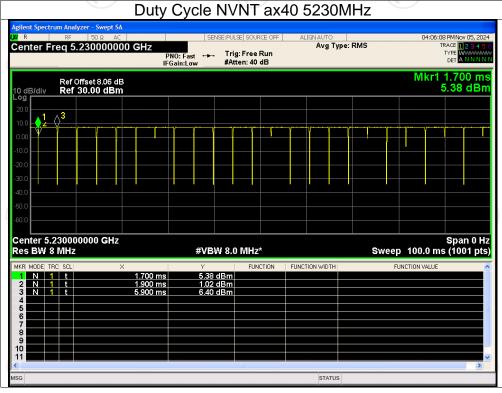


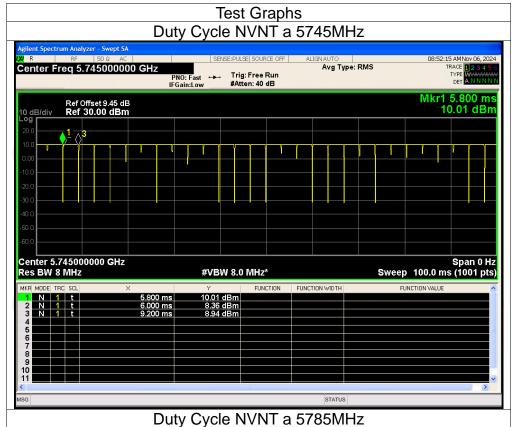


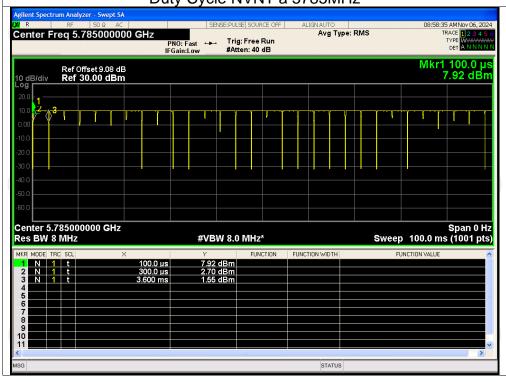


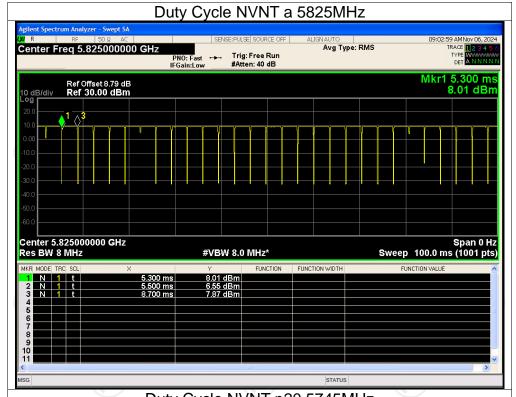


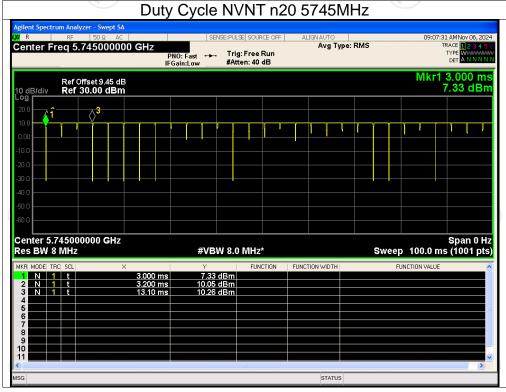


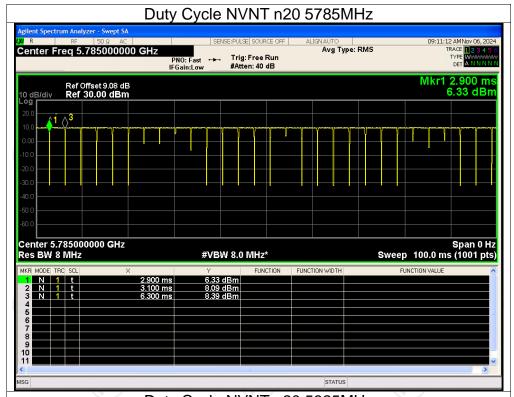


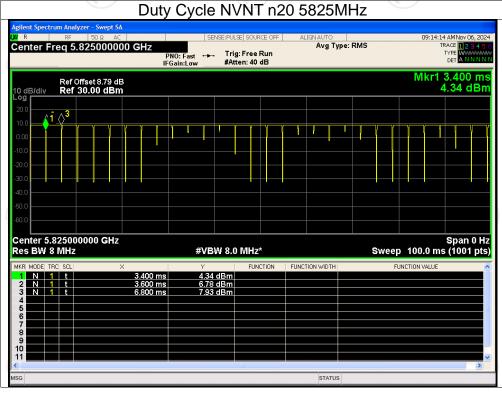


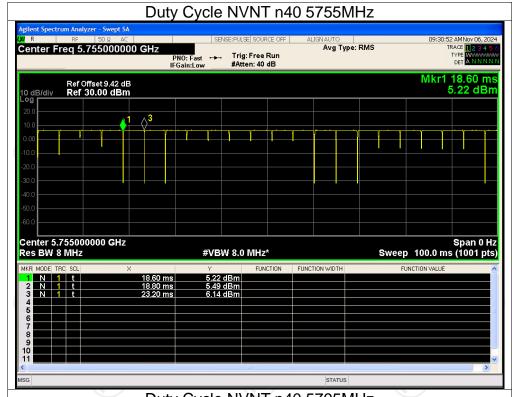


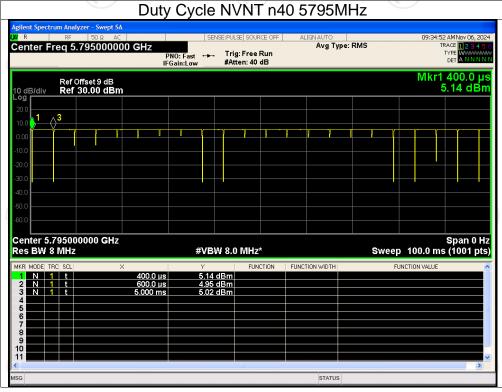


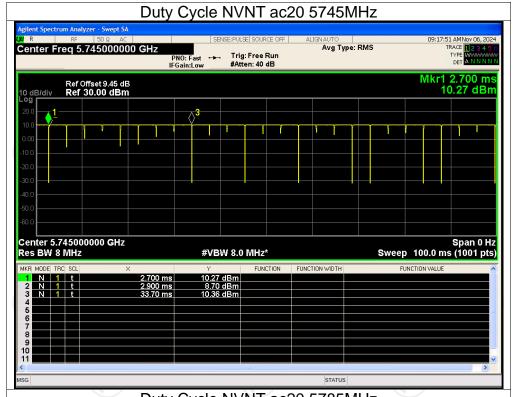


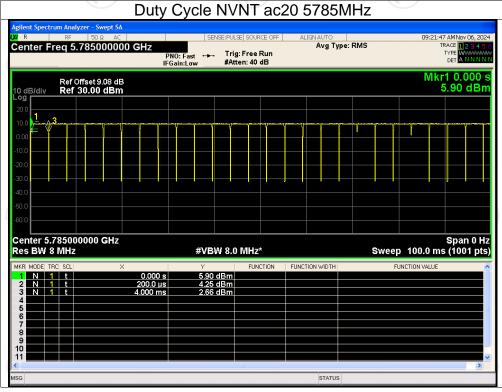


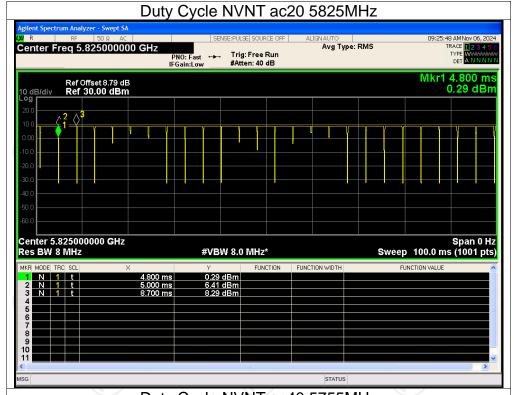


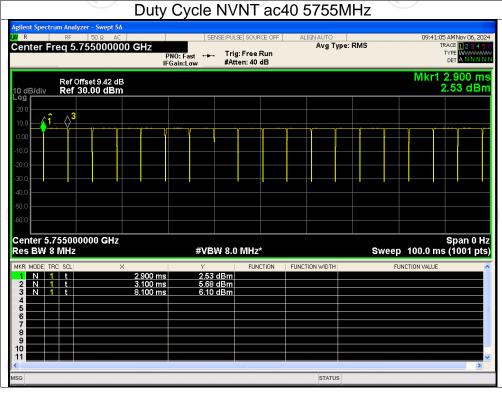


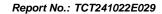


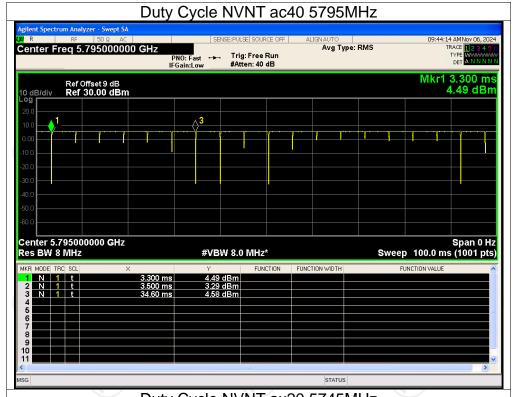


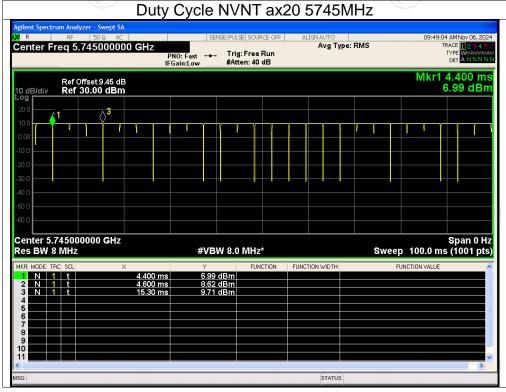


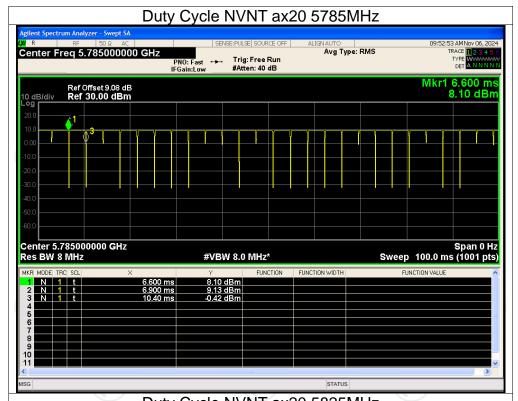


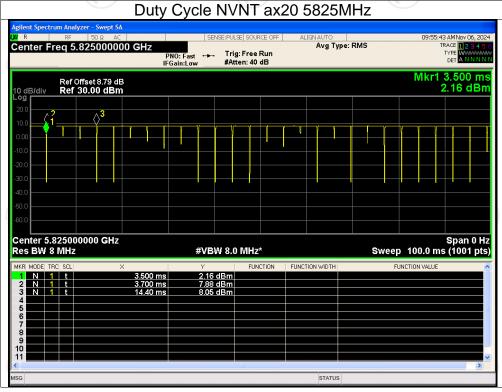


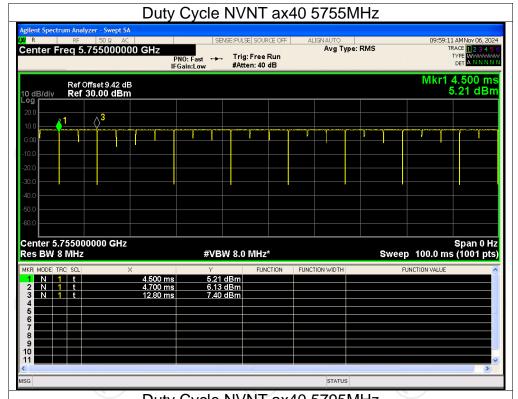


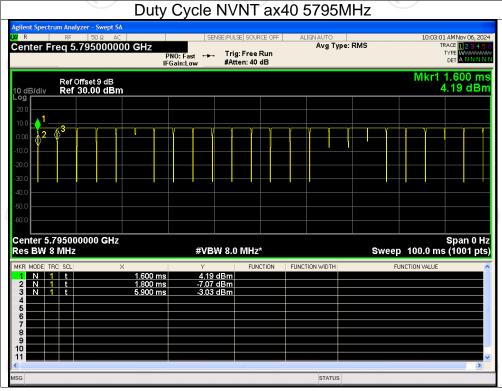


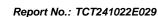


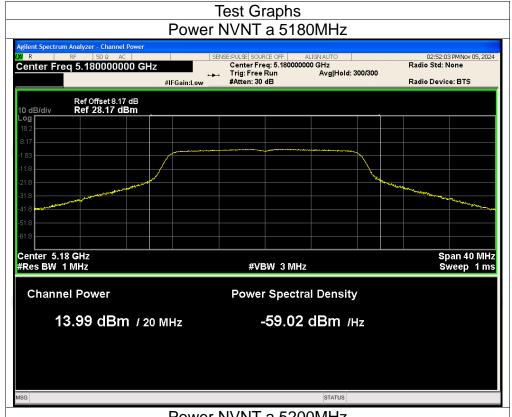


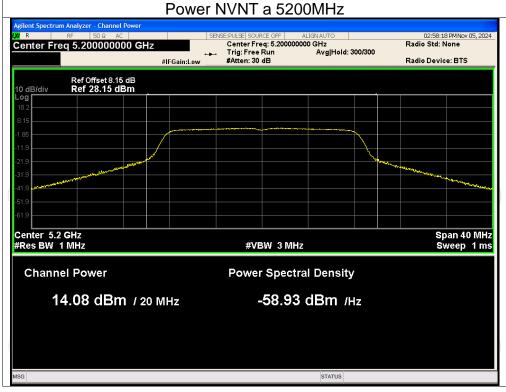


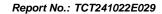









Maximum Conducted Output Power


Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Duty Factor (dB)	Total Power (dBm)	Limit (dBm)	Verdict
NVNT	а	5180	13.99	0	13.99	24	Pass
NVNT	а	5200	14.08	0	14.08	24	Pass
NVNT	а	5240	14.09	0.11	14.20	24	Pass
NVNT	n20	5180	14.07	0	14.07	24	Pass
NVNT	n20	5200	14.38	0	14.38	24	Pass
NVNT	n20	5240	14.46	0.10	14.56	24	Pass
NVNT	n40	5190	14.46	0	14.46	24	Pass
NVNT	n40	5230	13.46	0	13.46	24	Pass
NVNT	ac20	5180	14.29	0	14.29	24	Pass
NVNT	ac20	5200	14.40	0.13	14.53	24	Pass
NVNT	ac20	5240	14.52	0	14.52	24	Pass
NVNT	ac40	5190	14.36	0	14.36	24	Pass
NVNT	ac40	5230	13.50	0	13.50	24	Pass
NVNT	ax20	5180	14.28	0	14.28	24	Pass
NVNT	ax20	5200	13.40	0	13.40	24	Pass
NVNT	ax20	5240	13.46	0.09	13.55	24	Pass
NVNT	ax40	5190	13.45	0	13.45	24	Pass
NVNT	ax40	5230	13.44	0	13.44	24	Pass
NVNT	а	5745	13.84	0	13.84	30	Pass
NVNT	а	5785	13.36	0	13.36	30	Pass
NVNT	а	5825	12.31	0.13	12.44	30	Pass
NVNT	n20	5745	14.09	0	14.09	30	Pass
NVNT	n20	5785	13.20	0.10	13.30	30	Pass
NVNT	n20	5825	12.37	0	12.37	30	Pass
NVNT	n40	5755	13.42	0	13.42	30	Pass
NVNT	n40	5795	12.75	0	12.75	30	Pass
NVNT	ac20	5745	14.08	0	14.08	30	Pass
NVNT	ac20	5785	13.28	0.11	13.39	30	Pass
NVNT	ac20	5825	12.31	0	12.31	30	Pass
NVNT	ac40	5755	13.57	0	13.57	30	Pass
NVNT	ac40	5795	12.78	0	12.78	30	Pass
NVNT	ax20	5745	13.77	0	13.77	30	Pass
NVNT	ax20	5785	12.89	0.09	12.98	30	Pass
NVNT	ax20	5825	11.97	0	11.97	30	Pass
NVNT	ax40	5755	14.63	0	14.63	30	Pass
NVNT	ax40	5795	13.78	0	13.78	30	Pass

