FCC Test Report Report No.: AGC06662231210FR02 FCC ID : 2ANTC-C528M **APPLICATION PURPOSE**: Original Equipment **PRODUCT DESIGNATION**: Wireless IP Camera **BRAND NAME** : N/A **MODEL NAME** : C528M, C520M, C528 **APPLICANT** : Ansjer Electronics Co., Ltd **DATE OF ISSUE** : Aug. 22, 2024 **STANDARD(S)** : FCC Part 15 Subpart E § 15.407 **REPORT VERSION**: V1.0 Attestation of Global Conciliance (Shenzhen) Co., Ltd Page 2 of 104 # **Report Revise Record** | Report Version | Revise Time | Issued Date | Valid Version | Notes | | |----------------|-------------|---------------|---------------|-----------------|--| | V1.0 | / | Aug. 22, 2024 | Valid | Initial Release | | #### **Table of Contents** | 1. General Information | 5 | |--|----| | 2. Product Information | 6 | | 2.1 Product Technical Description | 6 | | 2.2 Table of Carrier Frequency | 7 | | 2.3 IEEE 802.11n Modulation Scheme | 8 | | 2.4 Related Submittal(S) / Grant (S) | 9 | | 2.5 Test Methodology | 9 | | 2.6 Special Accessories | 9 | | 2.7 Equipment Modifications | 9 | | 2.8 Antenna Requirement | 9 | | 2.9 Description of Test Software | 10 | | 3. Test Environment | 11 | | 3.1 Address of The Test Laboratory | 11 | | 3.2 Test Facility | 11 | | 3.3 Environmental Conditions | 12 | | 3.4 Measurement Uncertainty | 12 | | 3.5 List of Equipment Used | 13 | | 4.System Test Configuration | 15 | | 4.1 EUT Configuration | 15 | | 4.2 EUT Exercise | 15 | | 4.3 Configuration of Tested System | 15 | | 4.4 Equipment Used in Tested System | 15 | | 4.5 Summary of Test Results | 16 | | 5. Description of Test Modes | | | 6. Duty Cycle Measurement | | | 7. RF Output Power Measurement | 23 | | 7.1 Provisions Applicable | 23 | | 7.2 Measurement Procedure | | | 7.3 Measurement Setup (Block Diagram of Configuration) | | | 7.4 Measurement Result | 24 | | 8. 6dB&26dB Bandwidth Measurement | 26 | | 8.1 Provisions Applicable | | | 8.2 Measurement Procedure | 26 | | 8.3 Measurement Setup (Block Diagram of Configuration) | 26 | | 8.4 Measurement Results | 27 | | 9. Power Spectral Density Measurement | 44 | |--|-----| | 9.1 Provisions Applicable | 44 | | 9.2 Measurement Procedure | 44 | | 9.3 Measurement Setup (Block Diagram of Configuration) | 44 | | 9.4 Measurement Result | 45 | | 10. Conducted Band Edge and Out-of-Band Emissions | 59 | | 10.1 Provisions Applicable | 59 | | 10.2 Measurement Procedure | 59 | | 10.3 Measurement Setup (Block Diagram of Configuration) | 59 | | 10.4 Measurement Results | 60 | | 11. Radiated Spurious Emission | 76 | | 11.1 Measurement Limit | 76 | | 11.2 Measurement Procedure | 77 | | 11.3 Measurement Setup (Block Diagram of Configuration) | 79 | | 11.4 Measurement Result | 80 | | 12. AC Power Line Conducted Emission Test | 100 | | 12.1 Measurement limit | 100 | | 12.2 Block Diagram of Line Conducted Emission Test | 100 | | 12.3 Preliminary Procedure of Line Conducted Emission Test | 101 | | 12.4 Final Procedure of Line Conducted Emission Test | 101 | | 12.5 Test Result of Line Conducted Emission Test | 102 | | Appendix I: Photographs of Test Setup | 104 | | Appendix II: Photographs of EUT | 104 | # 1. General Information | Ansjer Electronics Co., Ltd | | | | |---|--|--|--| | 301,1st Building,No.21 Yongtian Road, Xiangzhou, Zhuhai, Guangdong, China | | | | | Zhuhai Ansjer Electronics Co., Ltd. Zhongshan Branch | | | | | Building C(2nd to 5th Floor), BuildingB(Section A, 2nd Floor; 4rd to 5th Floors) No. 5 Wanli Road, Sanxiang Town,Zhongshan,Guangdong, China | | | | | Zhuhai Ansjer Electronics Co., Ltd. Zhongshan Branch | | | | | Building C(2nd to 5th Floor), BuildingB(Section A, 2nd Floor; 4rd to 5th Floors), No. 5 Wanli Road, Sanxiang Town,Zhongshan,Guangdong, China | | | | | Wireless IP Camera | | | | | N/A | | | | | C528M | | | | | C520M, C528 | | | | | All the series models are the same as the test model except for the model names. | | | | | Jan. 18, 2024 | | | | | Jan. 18, 2024~Aug. 22, 2024 | | | | | No any deviation from the test method | | | | | Normal | | | | | Pass | | | | | AGCER-FCC-5G WLAN-V1 | | | | | | | | | Note: The test results of this report relate only to the tested sample identified in this report. | Prepared By | Cocili | | |-------------|---------------------------------|---------------| | | Cici Li
(Project Engineer) | Aug. 22, 2024 | | Reviewed By | Calin Lin | | | | Calvin Liu
(Reviewer) | Aug. 22, 2024 | | Approved By | Max Zhang | | | | Max Zhang
Authorized Officer | Aug. 22, 2024 | Page 6 of 104 # 2. Product Information ## 2.1 Product Technical Description | Equipment Type | Outdoor access points Indoor access points | | | | | |----------------------|---|--|--|--|--| | | Fixed P2P access points | | | | | | Operation Frequency | □ □ U-NII 1:5150MHz~5250MHz □ U-NII 2A: 5250MHz~5350MHz | | | | | | Operation requericy | ☑ U-NII 2C:5470MHz~5725MHz ☑ U-NII 3: 5725MHz~5850MHz | | | | | | DFS Design Type | ☐ Master ☐ Slave with radar detection ☐ Slave without radar detection | | | | | | TPC Function | ☐ Yes ☐ No | | | | | | Hardware Version | IT523-C39-528M3 | | | | | | Software Version | V4.3.8.52V301652AA | | | | | | - | For 802.11a/n-HT20: | | | | | | Test Frequency Range | 5180~5240MHz/5260~5320MHz/5500~5720MHz/5745~5825MHz; | | | | | | RF Output Power | 802.11a:12.79dBm,802.11n(HT20):13.49dBm | | | | | | Modulation | 802.11a/n:(64-QAM, 16-QAM, QPSK, BPSK) OFDM | | | | | | Data Data | 802.11a:6/9/12/18/24/36/48/54Mbps; | | | | | | Data Rate | 802.11n: up to 300Mbps; | | | | | | N | 4 channels of U-NII-1 Band;4 channels of U- NII-2A Band | | | | | | Number of channels | 11 channels of U-NII-2C Band;5 channels of U- NII 3 Band | | | | | | Antenna Designation | Dipole antenna | | | | | | Antenna Gain | 3.50dBi | | | | | | Power Supply | DC 5V by adapter | | | | | Page 7 of 104 # 2.2 Table of Carrier Frequency #### For 5180~5240MHz: ## 4 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20): | Channel | Frequency | Channel | Frequency | | |---------|-----------|---------|-----------|--| | 36 | 5180 MHz | 44 | 5220 MHz | | | 40 | 5200 MHz | 48 | 5240 MHz | | #### For 5260~5320MHz: ## 5 channels are provided for 802.11a, 802.11n (HT20): | Channel | Frequency | Channel | Frequency | | |---------|-----------|---------|-----------|--| | 52 | 5260 MHz | 60 | 5300 MHz | | | 56 | 5280 MHz | 64 | 5320 MHz | | ## For 5500~5700MHz: ## 11 channels are provided for 802.11a, 802.11n (HT20): | Channel | Frequency | Channel | Frequency | |---------|-----------|---------|-----------| | 100 | 5500 MHz | 124 | 5620 MHz | | 104 | 5520 MHz | 128 | 5640 MHz | | 108 | 5540 MHz | 132 | 5660 MHz | | 112 | 5560 MHz | 136 | 5680 MHz | | 116 | 5580 MHz | 140 | 5700 MHz | | 120 | 5600 MHz | | | ## For 5745~5825MHz: ## 5 channels are provided for 802.11a, 802.11n (HT20): | Channel | Frequency | Channel | Frequency | |---------|-----------|---------|-----------| | 149 | 5745 MHz | 161 | 5805 MHz | | 153 | 5765 MHz | 165 | 5825 MHz | | 157 | 5785 MHz | | | Page 8 of 104 ## 2.3 IEEE 802.11n Modulation Scheme | MCS
Index | Nss | Modulation | R | N _{BPSC} | N _C | BPS | N _D | BPS | Data
(Mb
800) | | |--------------|-----|------------|-----|-------------------|----------------|-------|----------------|-------|---------------------|-------| | | | | | | 20MHz | 40MHz | 20MHz | 40MHz | 20MHz | 40MHz | | 0 | 1 | BPSK | 1/2 | 1 | 52 | 108 | 26 | 54 | 6.5 | 13.5 | | 1 | 1 | QPSK | 1/2 | 2 | 104 | 216 | 52 | 108 | 13.0 | 27.0 | | 2 | 1 | QPSK | 3/4 | 2 | 104 | 216 | 78 | 162 | 19.5 | 40.5 | | 3 | 1 | 16-QAM | 1/2 | 4 | 208 | 432 | 104 | 216 | 26.0 | 54.0 | | 4 | 1 | 16-QAM | 3/4 | 4 | 208 | 432 | 156 | 324 | 39.0 | 81.0 | | 5 | 1 | 64-QAM | 2/3 | 6 | 312 | 648 | 208 | 432 | 52.0 | 108.0 | | 6 | 1 | 64-QAM | 3/4 | 6 | 312 | 648 | 234 | 489 | 58.5 | 121.5 | | 7 | 1 | 64-QAM | 5/6 | 6 | 312 | 648 | 260 | 540 | 65.0 | 135.0 | | Symbol | Explanation | | | |--------|---|--|--| | NSS | Number of spatial streams | | | | R | Code rate | | | | NBPSC | Number of coded bits per single carrier | | | | NCBPS | Number of coded bits per symbol | | | | NDBPS | Number of data bits per symbol | | | | GI | Guard interval | | | Page 9 of 104 ## 2.4 Related Submittal(S) / Grant (S) This submittal(s) (test report) is intended for **FCC ID: 2ANTC-C528M** filing to comply with the FCC Part 15 requirements. #### 2.5 Test Methodology | No. Identity Document Title | | | |-----------------------------|--------------------|---| | 1 | FCC 47 CFR Part 2 | Frequency allocations and radio treaty matters; general rules and regulations | | 2 | FCC 47 CFR Part 15 | Radio Frequency Devices | | 3 | ANSI C63.10-2013 | American National Standard for Testing Unlicensed Wireless Devices | | 4 | KDB 789033 | 789033 D02 General U-NII Test Procedures New Rules v02r01 | ## 2.6 Special Accessories Refer to section 4.4. ## 2.7 Equipment Modifications Not available for this EUT intended for grant. ## 2.8 Antenna Requirement ## Standard Requirement ## 15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. #### **EUT Antenna:** The non-detachable antenna inside the device cannot be replaced by the user at will. The gain of the antenna is 3.50dBi #### 2.9 Description of Test Software #### For IEEE 802.11 mode: The test utility software used during testing was "SecureCRT". ## Software Setting Diagram | Test Mode
5150MHz~5250MHz | Channel | Power Index | |------------------------------|---------|-------------| | 802.11a | L/M/H | 19 | | 802.11n(HT20) | L/M/H | 19 | | Test Mode
5250MHz~5350MHz | Channel | Power Index | | 802.11a | L/M/H | 19 | | 802.11n(HT20) | L/M/H | 19 | | Test Mode
5470MHz~5725MHz | Channel | Power Index | | 802.11a | L/M/H | 19 | | 802.11n(HT20) | L/M/H | 19 | | Test Mode
5725MHz~5850MHz | Channel | Power Index | | 802.11a | L/M/H | 18 | | 802.11n(HT20) | L/M/H | 18 | Page 11 of 104 #### 3. Test Environment #### 3.1 Address of The Test Laboratory Laboratory: Attestation of Global Compliance (Shenzhen) Co., Ltd. Address: 1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China #### 3.2 Test Facility The test facility is recognized, certified, or accredited by the following organizations: #### CNAS-Lab Code: L5488 Attestation of Global Compliance (Shenzhen) Co., Ltd. has been assessed and proved to follow CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories.) #### A2LA-Lab Cert. No.: 5054.02 Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to follow ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing. ## FCC-Registration No.: 975832 Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files with Registration 975832. ## IC-Registration No.: 24842 (CAB identifier: CN0063) Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the Certification and Engineering Bureau of Industry Canada. The acceptance letter from the IC is maintained in our files with Registration 24842. Page 12 of 104 ## 3.3 Environmental Conditions | | Normal Conditions | |-------------------------|-------------------| | Temperature range (°C) | 15 - 35 | | Relative humidity range | 20% - 75% | | Pressure range (kPa) | 86 - 106 | | Power supply | DC 5V | ## 3.4 Measurement Uncertainty The reported uncertainty of measurement y ±U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%. | Measurement Uncertainty | |----------------------------| | $U_c = \pm 2.9 \text{ dB}$ | | $U_c = \pm 3.9 \text{ dB}$ | | $U_c = \pm 4.9 \text{ dB}$ | | $U_c = \pm 0.8 \text{ dB}$ | | $U_c = \pm 2.6 \text{ dB}$ | | U _c = ±2 % | | $U_c = \pm 2.7 \%$ | | | # 3.5 List of Equipment Used | RF Conducted Test System | | | | | | | | |--------------------------|---------------|------------------------|--------------|------------|------------|------------------------------|------------------------------| | Used | Equipment No. | Test Equipment | Manufacturer | Model No. | Serial No. | Last Cal. Date
(YY-MM-DD) | Next Cal. Date
(YY-MM-DD) | | \boxtimes | AGC-ER-E036 | Spectrum Analyzer | Agilent | N9020A | MY49100060 | 2023-06-01 | 2024-05-31 | | \boxtimes | AGC-ER-E036 | Spectrum Analyzer | Agilent | N9020A | MY49100060 | 2024-05-24 | 2025-05-23 | | \boxtimes | AGC-ER-E061 | Spectrum Analyzer | Agilent | N9020A | MY52090123 | 2023-06-03 | 2024-06-02 | | | AGC-ER-E061 | Spectrum Analyzer | Agilent | N9020A | MY52090123 | 2024-05-28 | 2025-05-27 | | | AGC-ER-E062 | Power Sensor | Agilent | U2021XA | MY54110007 | 2024-02-01 | 2025-01-31 | | | AGC-ER-E063 | Power Sensor | Agilent | U2021XA | MY54110009 | 2024-02-01 | 2025-01-31 | | \boxtimes | AGC-EM-A152 | 6dB Attenuator | Eeatsheep | LM-XX-6-5W | N/A | 2023-06-09 | 2025-06-08 | | | AGC-ER-E083 | Signal Generator | Agilent | E4421B | US39340815 | 2023-06-01 | 2024-05-31 | | | AGC-ER-E083 | Signal Generator | Agilent | E4421B | US39340815 | 2024-05-23 | 2025-05-22 | | | N/A | RF Connection
Cable | N/A | 1# | N/A | Each time | N/A | | | N/A | RF Connection
Cable | N/A | 2# | N/A | Each time | N/A | | • F | Radiated Spurious Emission | | | | | | | |-------------|----------------------------|----------------------------------|--------------|-----------|------------|------------------------------|------------------------------| | Used | Equipment No. | Test Equipment | Manufacturer | Model No. | Serial No. | Last Cal. Date
(YY-MM-DD) | Next Cal. Date
(YY-MM-DD) | | | AGC-EM-E046 | EMI Test Receiver | R&S | ESCI | 10096 | 2022-02-03 | 2023-02-02 | | | AGC-EM-E046 | EMI Test Receiver | R&S | ESCI | 10096 | 2024-02-01 | 2025-01-31 | | \boxtimes | AGC-EM-E116 | EMI Test Receiver | R&S | ESCI | 100034 | 2023-06-03 | 2024-06-02 | | \boxtimes | AGC-EM-E116 | EMI Test Receiver | R&S | ESCI | 100034 | 2024-05-24 | 2025-05-23 | | \boxtimes | AGC-EM-E061 | Spectrum Analyzer | Agilent | N9010A | MY53470504 | 2023-06-01 | 2024-05-31 | | \boxtimes | AGC-EM-E061 | Spectrum Analyzer | Agilent | N9010A | MY53470504 | 2024-05-28 | 2025-05-27 | | \boxtimes | AGC-EM-E086 | Loop Antenna | ZHINAN | ZN30900C | 18051 | 2022-03-07 | 2024-03-06 | | \boxtimes | AGC-EM-E086 | Loop Antenna | ZHINAN | ZN30900C | 18051 | 2024-03-05 | 2026-03-04 | | \boxtimes | AGC-EM-E001 | Wideband Antenna | SCHWARZBECK | VULB9168 | D69250 | 2023-05-11 | 2025-05-10 | | \boxtimes | AGC-EM-E029 | Broadband Ridged
Horn Antenna | ETS | 3117 | 00034609 | 2023-04-02 | 2024-04-01 | | \boxtimes | AGC-EM-E029 | Broadband Ridged
Horn Antenna | ETS | 3117 | 00034609 | 2024-03-31 | 2025-03-30 | | \boxtimes | AGC-EM-E082 | Horn Antenna | SCHWARZBECK | BBHA 9170 | #768 | 2023-09-24 | 2025-09-23 | | \boxtimes | AGC-EM-E146 | Pre-amplifier | ETS | 3117-PA | 00246148 | 2022-08-04 | 2024-08-03 | | \boxtimes | AGC-EM-E146 | Pre-amplifier | ETS | 3117-PA | 00246148 | 2024-07-24 | 2026-07-23 | | \boxtimes | AGC-EM-A119 | 2.4G Filter | SongYi | N/A | N/A | 2023-06-01 | 2024-05-31 | Page 14 of 104 | \boxtimes | AGC-EM-A119 | 2.4G Filter | SongYi | N/A | N/A | 2024-05-23 | 2025-05-22 | |-------------|-------------|----------------|-----------|------------|-----|------------|------------| | \boxtimes | AGC-EM-A138 | 6dB Attenuator | Eeatsheep | LM-XX-6-5W | N/A | 2023-06-09 | 2025-06-08 | | | AGC-EM-A139 | 6dB Attenuator | Eeatsheep | LM-XX-6-5W | N/A | 2023-06-09 | 2025-06-08 | | • A | AC Power Line Conducted Emission | | | | | | | | |-------------|----------------------------------|-------------------|--------------|------------|------------|------------------------------|------------------------------|--| | Used | Equipment No. | Test Equipment | Manufacturer | Model No. | Serial No. | Last Cal. Date
(YY-MM-DD) | Next Cal. Date
(YY-MM-DD) | | | \boxtimes | AGC-EM-E045 | EMI Test Receiver | R&S | ESPI | 101206 | 2023-06-03 | 2024-06-02 | | | | AGC-EM-E045 | EMI Test Receiver | R&S | ESPI | 101206 | 2024-05-28 | 2025-05-27 | | | | AGC-EM-A130 | 6dB Attenuator | Eeatsheep | LM-XX-6-5W | DC-6GZ | 2023-06-09 | 2025-06-08 | | | | AGC-EM-E023 | AMN | R&S | 100086 | ESH2-Z5 | 2023-06-03 | 2024-06-02 | | | | AGC-EM-E023 | AMN | R&S | 100086 | ESH2-Z5 | 2024-05-28 | 2025-05-27 | | | Test Software | | | | | | | | |---------------|---------------|---------------------|--------------|----------------------|---------------------|--|--| | Used | Equipment No. | Test Equipment | Manufacturer | Model No. | Version Information | | | | \boxtimes | AGC-EM-S001 | CE Test System | R&S | ES-K1 | V1.71 | | | | \boxtimes | AGC-EM-S003 | RE Test System | FARA | EZ-EMC | VRA-03A | | | | | AGC-ER-S012 | BT/WIFI Test System | Tonscend | JS1120-2 | 2.6 | | | | \boxtimes | AGC-EM-S011 | RSE Test System | Tonscend | TS+-Ver2.1(JS36-RSE) | 4.0.0.0 | | | Page 15 of 104 # 4. System Test Configuration #### 4.1 EUT Configuration The EUT configuration for testing is installed on RF field strength measurement to meet the Commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application. #### 4.2 EUT Exercise The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements. ## 4.3 Configuration of Tested System #### 4.4 Equipment Used in Tested System The following peripheral devices and interface cables were connected during the measurement: #### ☐ Test Accessories Come From The Laboratory | No. | Equipment | Manufacturer | Model No. | Specification Information | Cable | |-----|-------------|--------------|-----------|---------------------------|-------| | 1 | Control Box | USB-TTL | N/A | N/A | N/A | # | No. | Equipment | Manufacturer | Model No. | Specification Information | Cable | |-----|-----------|--|-------------|--|---------------------| | 1 | Adapter | Zhongshan
Vzzon Energy
Tech Co.,Ltd. | VZ-0051000U | Input: AC 100-240V 50/60Hz, 0.5A
Output: DC 5V 1.0A | N/A | | 2 | USB Cable | N/A | N/A | N/A | 1.95m
unshielded | Page 16 of 104 # 4.5 Summary of Test Results | Item | FCC Rules | Description of Test | Result | |------|-----------------------------|---|----------------------| | 1 | §15.203 | Antenna Equipment | Pass | | 2 | §15.407(a/1/2/3) | RF Output Power | Pass | | 3 | §15.407(e) | 6 dB Bandwidth | Pass | | 4 | §15.403(i) | 26dB bandwidth Measurement | Pass | | 5 | §15.407(a/1/2/3) | Power Spectral Density | Pass | | 6 | §15.407(g) | Frequency Stability | Pass
(See Note 1) | | 7 | §15.407(c) | Transmission Discontinuation Requirement | Pass
(See Note 2) | | 8 | §15.407(b)(1/2/3/4) | Conducted Band Edge and Out-of-Band Emissions | Pass | | 9 | §15.209,§15.407(b)(1/2/3/4) | Radiated Spurious Emission | Pass | | 10 | §15.207 | AC Power Line Conducted Emission | Pass | #### Note: 1. Refer to the manufacturer's declaration in the user manual. Page 17 of 104 ## 5. Description of Test Modes | EUT Configure Mode | | Applic | cable To | Description | | |--------------------|-------------|-------------|-------------|-------------|---------------------------------------| | 201 Configure Mode | RE > 1G | RE<1G | PLC | APCM | Description | | А | \boxtimes | \boxtimes | \boxtimes | | Powered by Adapter with WIFI(5G) Link | | В | | | | | Powered by Battery with WIFI(5G) Link | | С | | | | | Powered by USB with WIFI(5G) Link | Where. RE > 1G: Radiated Emission above 1GHz PLC: Power Line Conducted Emission NOTE 1: The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on X-plane. NOTE 2: "--"means no effect. NOTE 3: The radiation part tests the dual-antenna MIMO as the worst combination. #### Radiated Emission Test (Above 1GHz): - ☑ Pre-Scan has been conducted to determine the worst-case mode from all possible combinations be Meen available modulations, data rates and antenna ports (IF EUT with antenna diversity architecture). ☐ Support 802.11ax, device debugging is tested in Full RU state - The device under test has multiple antennas. The mode that supports MIMO technology records the worst data, and the mode that does not support MIMO technology records antenna 1 as the worst data. - Following channel(s) was (were) selected for the final test as listed below. | EUT Configure
Mode | Mode | Freq. Band
(MHz) | Available
Channel | Tested Channel | Modulation | Data
Rate
(Mbps) | |-----------------------|---------|---------------------|----------------------|----------------|------------|------------------------| | А | 802.11a | 5180-5240 | 36 to 48 | 36, 40, 48 | OFDM | 6.0 | | Α | 802.11a | 5260-5320 | 52 to 64 | 52, 60, 64 | OFDM | 6.0 | | Α | 802.11a | 5500-5700 | 100 to 140 | 100, 116, 140 | OFDM | 6.0 | | А | 802.11a | 5745-5825 | 149 to 165 | 149, 157, 165 | OFDM | 6.0 | Page 18 of 104 # Radiated Emission Test (Below 1GHz): | \boxtimes | Pre-Scan has been conducted to determine the worst-case mode from all possible combinations be Mee | |-------------|--| | | available modulations, data rates and antenna ports (If EUT with antenna diversity architecture). | The device under test has multiple antennas. The mode that supports MIMO technology records the worst data, and the mode that does not support MIMO technology records antenna 1 as the worst data. Following channel(s) was (were) selected for the final test as listed below. | EUT Configure
Mode | Mode | Freq. Band
(MHz) | Available
Channel | Tested Channel | Modulation | Data
Rate
(Mbps) | |-----------------------|----------------|---------------------|----------------------|----------------|------------|------------------------| | Α | 802.11a(20MHz) | 5180-5240 | 36 to 48 | 36 | OFDM | MCS0 | #### Power Line Conducted Emission Test: Pre-Scan has been conducted to determine the worst-case mode from all possible combinations be Meen available modulations, data rates and antenna ports (If EUT with antenna diversity architecture). ☐ The device under test has multiple antennas. The mode that supports MIMO technology records the worst data, and the mode that does not support MIMO technology records antenna 1 as the worst data. Following channel(s) was (were) selected for the final test as listed below. | EUT Configure
Mode | Mode | Freq. Band
(MHz) | Available
Channel | Tested Channel | Modulation | Data
Rate
(Mbps) | |-----------------------|----------------|---------------------|----------------------|----------------|------------|------------------------| | Α | 802.11a(20MHz) | 5180-5240 | 36 to 48 | 36 | OFDM | MCS0 | #### Band edge Measurement: | \boxtimes | Pre-Scan has been conducted to determine the worst-case mode from all possible combinations be Meen | |-------------|---| | | available modulations, data rates and antenna ports (If EUT with antenna diversity architecture). | | | Support 802.11ax, device debugging is tested in Full RU state | ☐ The device under test has multiple antennas. The mode that supports MIMO technology records the worst data, and the mode that does not support MIMO technology records antenna 1 as the worst data. Following channel(s) was (were) selected for the final test as listed below. | EUT Configure
Mode | Mode | Freq. Band
(MHz) | Available
Channel | Tested Channel | Modulation | Data
Rate
(Mbps) | |-----------------------|---------|---------------------|----------------------|----------------|------------|------------------------| | Α | 802.11a | 5180-5240 | 36 to 48 | 36 | OFDM | MCS0 | | Α | 802.11a | 5260-5320 | 52 to 64 | 64 | OFDM | MCS0 | | Α | 802.11a | 5500-5700 | 100 to 140 | 100 | OFDM | MCS0 | #### Note: - Only the data of band edge emission at the restricted band 4.5GHz-5.15GHz and 5.35GHz-5.46GHz record in the report. Other restricted band 7.25GHz-7.77GHz were considered as ambient noise. No recording in the test report. - 2. The EUT disables n40 through firmware control, which cannot be changed by the user. Page 19 of 104 # • Antenna Port Conducted Measurement: | $oxed{\boxtimes}$ Pre-Scan has been conducted to determine the worst-case mode from all possible combinations be Meer | |---| | available modulations, data rates and antenna ports (If EUT with antenna diversity architecture). | ☐ Support 802.11ax, device debugging is tested in Full RU state ⊠ Following channel(s) was (were) selected for the final test as listed below. | EUT Configure
Mode | Mode | Freq. Band
(MHz) | i lested Gliallitei | | Modulation | Data
Rate
(Mbps) | |-----------------------|---------|---------------------|---------------------|----------|------------|------------------------| | Α | 802.11a | 5180-5240 | 36 to 48 | 36, 48 | OFDM | 6.0 | | Α | 802.11a | 5260-5320 | 52 to 64 | 52, 64 | OFDM | 6.0 | | Α | 802.11a | 5500-5700 | 100 to 140 | 100, 140 | OFDM | 6.0 | | Α | 802.11a | 5745-5825 | 149 to 165 | 149, 165 | OFDM | 6.0 | Page 20 of 104 # 6. Duty Cycle Measurement 5GHz WLAN (NII) operation is possible in 20MHz channel bandwidths. The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz, and detector = Average. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows: | Operating mode | Data rates (Mbps) | Duty Cycle (%) | Duty Cycle Factor (dB) | | | | |-------------------------------|----------------------------------|-------------------------|------------------------|--|--|--| | Band U-NII1:5150MHz-5250MHz | | | | | | | | 802.11a | 6 | 80 | 0.97 | | | | | 802.11n_HT20 | MCS0 | 79 | 1.02 | | | | | Band U-NII 2A:5250MHz-5350MHz | | | | | | | | 802.11a | 6 | 80 | 0.97 | | | | | 802.11n_HT20 | MCS0 | 79 | 1.02 | | | | | Operating mode | Doto rotos (Mbna) | Duty Cycle (%) | Duty Cycle Factor (dB) | | | | | Operating mode | Data rates (Mbps) | Duty Cycle (76) | Duty Cycle Factor (dB) | | | | | Operating mode | Band U-NII 2C:5150 | , | Duty Cycle Factor (db) | | | | | 802.11a | | , | 0.97 | | | | | | Band U-NII 2C:5150I | MHz-5250MHz | , , , , , , | | | | | 802.11a | Band U-NII 2C:5150I | MHz-5250MHz
80
79 | 0.97 | | | | | 802.11a | Band U-NII 2C:5150I
6
MCS0 | MHz-5250MHz
80
79 | 0.97 | | | | #### Remark: - Duty Cycle factor = 10 * log (1/ Duty cycle) - 2. The duty cycle of each frequency band mode reflects the determination requirements of the low channel measurement value. - 3. Involving the test items of duty cycle compensation coefficient, the final results have been added and calculated by the software and presented. #### The test plots as follows: 7. RF Output Power Measurement #### 7.1 Provisions Applicable | Operation Band | | EUT Category | LIMIT | | |----------------|-----------------------------------|----------------------|---|--| | U-NII-1 | | Outdoor Access Point | 1 Watt (30 dBm) (Max. e.i.r.p < 125mW(21 dBm) at any elevation angle above 30 degrees as measured from the horizon) | | | 0 | Fixed point-to-point Access Point | | 1 Watt (30 dBm) | | | | ☐ Indoor Access Point | | 1 Watt (30 dBm) | | | | \boxtimes | Client devices | 250mW (23.98 dBm) | | | U-NII-2A | | / | 250mW (23.98 dBm) or 11 dBm+10 log B* | | | U-NII-2C | / | | 250mW (23.98 dBm) or 11 dBm+10 log B* | | | U-NII-3 | | / | 1 Watt (30 dBm) | | Note: Where B is the 26dB emission bandwidth in MHz. #### 7.2 Measurement Procedure Method PM is Measurement using an RF average power meter. The procedure for this method is as follows: - 1. The testing follows the ANSI C63.10 Section 12.3.3.1 - Measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the following conditions are satisfied: - 3. The EUT is configured to transmit continuously, or to transmit with a constant duty cycle. - 4. At all times when the EUT is transmitting, it shall be transmitting at its maximum power control level. - 5. The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five. - 6. Determine according to the duty cycle of the equipment: when it is less than 98%, follow the steps below. - 7. Measure the average power of the transmitter. This measurement is an average over both the ON and OFF periods of the transmitter. - 8. Adjust the measurement in dBm by adding [10 log (1 / D)], where D is the duty cycle {e.g., [10 log (1 / 0.25)], if the duty cycle is 25%}. - 9. The final test results have been increased by the duty cycle factor and recorded in the report. ## 7.3 Measurement Setup (Block Diagram of Configuration) #### 7.4 Measurement Result | Test Data of Conducted Output Power for band 5.15-5.25 GHz | | | | | | | |--|-----------------------|------------------------|-----------------|--------------|--|--| | Test Mode | Test Channel
(MHz) | Average Power
(dBm) | Limits
(dBm) | Pass or Fail | | | | | 5180 | 10.97 | 23.98 | Pass | | | | 802.11a | 5200 | 11.38 | 23.98 | Pass | | | | | 5240 | 11.77 | 23.98 | Pass | | | | | 5180 | 11.17 | 23.98 | Pass | | | | 802.11n20 | 5200 | 11.26 | 23.98 | Pass | | | | | 5240 | 11.72 | 23.98 | Pass | | | | Test Data of Conducted Output Power for band 5.25-5.35 GHz | | | | | | |--|-----------------------|------------------------|-----------------|--------------|--| | Test Mode | Test Channel
(MHz) | Average Power
(dBm) | Limits
(dBm) | Pass or Fail | | | 802.11a | 5260 | 12.14 | 23.98 | Pass | | | | 5300 | 10.85 | 23.98 | Pass | | | | 5320 | 10.12 | 23.98 | Pass | | | 802.11n20 | 5260 | 11.80 | 23.98 | Pass | | | | 5300 | 10.35 | 23.98 | Pass | | | | 5320 | 9.86 | 23.98 | Pass | | | Test Data of Conducted Output Power for band 5.470-5.725 GHz | | | | | | | |--|-----------------------|------------------------|-----------------|--------------|--|--| | Test Mode | Test Channel
(MHz) | Average Power
(dBm) | Limits
(dBm) | Pass or Fail | | | | 802.11a | 5500 | 12.79 | 23.98 | Pass | | | | | 5580 | 10.98 | 23.98 | Pass | | | | | 5700 | 9.34 | 23.98 | Pass | | | | 802.11n20 | 5500 | 13.49 | 23.98 | Pass | | | | | 5580 | 12.36 | 23.98 | Pass | | | | | 5700 | 12.51 | 23.98 | Pass | | | | Test Data of Conducted Output Power for band 5.725-5.850 GHz | | | | | | |--|-----------------------|-------------------------------------|----|--------------|--| | Test Mode | Test Channel
(MHz) | el Average Power Limits (dBm) (dBm) | | Pass or Fail | | | | 5745 | 9.17 | 30 | Pass | | | 802.11a | 5785 | 10.19 | 30 | Pass | | | | 5825 | 12.33 | 30 | Pass | | | 802.11n20 | 5745 | 8.85 | 30 | Pass | | | | 5785 | 9.97 | 30 | Pass | | | | 5825 | 11.74 | 30 | Pass | | Page 26 of 104 #### 8. 6dB&26dB Bandwidth Measurement #### 8.1 Provisions Applicable The minimum 6dB bandwidth shall be at least 500 kHz. #### **8.2 Measurement Procedure** ## ◆ -6dB bandwidth (DTS bandwidth) Test setting: - 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator - 2. Set the EUT Work on operation frequency individually. - 3. Set RBW = 100kHz. - 4. Set the VBW $\geq 3*RBW$. Detector = Peak. Trace mode = max hold. - 5. Measure the maximum width of the emission that is 6 dB down from the peak of the emission. #### 99% occupied bandwidth test setting: - 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator - 2. Set the EUT Work on the top, the middle and the bottom operation frequency individually. - 3. Set Span = approximately 1.5 to 5 times the OBW, centered on a nominal channel The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW; Sweep = auto; Detector function = peak - 4. Set SPA Trace 1 Max hold, then View. #### ◆ -26dB Bandwidth test setting: - 1. Set RBW = approximately 1% of the emission bandwidth. - 2. Set the VBW > RBW. - 3. Detector = Peak. - 4. Trace mode = max hold. - 5. Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%. Note: The EUT was tested according to KDB 789033 for compliance to FCC 47CFR 15.407 requirements. ## 8.3 Measurement Setup (Block Diagram of Configuration) Page 27 of 104 #### **8.4 Measurement Results** | Test Data of Occupied Bandwidth and -26dB Bandwidth for band 5.15-5.25 GHz | | | | | | |--|-----------------------|---------------------------------|--------------------------|-----------------|--------------| | Test Mode | Test Channel
(MHz) | 99% Occupied
Bandwidth (MHz) | -26dB Bandwidth
(MHz) | Limits
(MHz) | Pass or Fail | | 802.11a | 5180 | 16.226 | 19.075 | N/A | Pass | | | 5200 | 16.185 | 18.705 | N/A | Pass | | | 5240 | 16.203 | 18.910 | N/A | Pass | | 802.11n20 | 5180 | 17.315 | 20.110 | N/A | Pass | | | 5200 | 17.310 | 19.958 | N/A | Pass | | | 5240 | 17.289 | 19.655 | N/A | Pass | | Test Data of Occupied Bandwidth and -26dB Bandwidth for band 5.25-5.35 GHz | | | | | | |--|-----------------------|---------------------------------|--------------------------|-----------------|--------------| | Test Mode | Test Channel
(MHz) | 99% Occupied
Bandwidth (MHz) | -26dB Bandwidth
(MHz) | Limits
(MHz) | Pass or Fail | | | 5260 | 16.205 | 18.896 | N/A | Pass | | 802.11a | 5300 | 16.198 | 18.666 | N/A | Pass | | | 5320 | 16.212 | 18.847 | N/A | Pass | | 802.11n20 | 5260 | 17.289 | 19.821 | N/A | Pass | | | 5300 | 17.321 | 19.779 | N/A | Pass | | | 5320 | 17.326 | 20.302 | N/A | Pass | | Test Data of Occupied Bandwidth and -26dB Bandwidth for band 5.47-5.725 GHz | | | | | | |---|-----------------------|---------------------------------|--------------------------|-----------------|--------------| | Test Mode | Test Channel
(MHz) | 99% Occupied
Bandwidth (MHz) | -26dB Bandwidth
(MHz) | Limits
(MHz) | Pass or Fail | | 802.11a | 5500 | 16.241 | 19.003 | N/A | Pass | | | 5600 | 16.199 | 18.731 | N/A | Pass | | | 5700 | 16.215 | 18.785 | N/A | Pass | | 802.11n20 | 5500 | 17.401 | 22.664 | N/A | Pass | | | 5600 | 17.377 | 19.942 | N/A | Pass | | | 5700 | 17.357 | 20.297 | N/A | Pass | | Test Data of Occupied Bandwidth and DTS Bandwidth for band 5.725-5.85 GHz | | | | | | | |---|-----------------------|---------------------------------|------------------------|-----------------|--------------|--| | Test Mode | Test Channel
(MHz) | 99% Occupied
Bandwidth (MHz) | DTS
Bandwidth (MHz) | Limits
(MHz) | Pass or Fail | | | 802.11a | 5745 | 16.256 | 15.081 | 0.5 | Pass | | | | 5785 | 16.366 | 14.983 | 0.5 | Pass | | | | 5825 | 16.674 | 13.852 | 0.5 | Pass | | | 802.11n20 | 5745 | 17.392 | 14.968 | 0.5 | Pass | | | | 5785 | 17.505 | 15.024 | 0.5 | Pass | | | | 5825 | 17.696 | 15.023 | 0.5 | Pass | | ## Test Graphs of Occupied Bandwidth and -26dB Bandwidth for band 5.15-5.25 GHz Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/ # Test Graphs of Occupied Bandwidth for band 5.25-5.35 GHz Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/ ## Test Graphs of Occupied Bandwidth and -26dB Bandwidth for band 5.470-5.725 GHz Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/ # Test Graphs of Occupied Bandwidth and -26dB Bandwidth for band 5.745-5.825 GHz Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/ Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/ # Test Graphs of DTS Bandwidth for band 5.725-5.85 GHz Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/ 9. Power Spectral Density Measurement # 9.1 Provisions Applicable | Operation Band | EUT Category | | LIMIT | | | |----------------|--------------|-----------------------------------|---------------|--|------------| | U-NII-1 | | Outdoor Access Point | 17dBm/ MHz | | | | | | Fixed point-to-point Access Point | 17dBm/ MHz | | | | | | Indoor Access Point | 17dBm/ MHz | | | | | \boxtimes | Client devices | 11dBm/ MHz | | | | U-NII-2A | / | | 11dBm/ MHz | | | | U-NII-2C | / | | / | | 11dBm/ MHz | | U-NII-3 | / | | 30 dBm/500kHz | | | #### 9.2 Measurement Procedure - Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator. - 2. Span was set to encompass the entire 26dB EBW of the signal. - 3. RBW = 1MHz. - 4. If measurement bandwidth of Maximum PSD is specified in 500 kHz, RBW = 100KHz - 5. Set VBW≥[3×RBW]. - 6. Sweep Time=Auto couple. - 7. Detector function=RMS (i.e., power averaging). - 8. Trace average at least 100 traces in power averaging (rms) mode. - 9. When the measurement bandwidth of Maximum PSD is specified in 100 kHz, add a constant factor 10*log(500kHz/100kHz) = 6.99 dB to the measured result. - 10. Determine according to the duty cycle of the equipment: when it is less than 98%, follow the steps below. - 11. Add [10 log (1/D)], where D is the duty cycle, to the measured power to compute the average power during the actual transmission times (because the measurement represents an average over both the ON and OFF times of the transmission). For example, add [10 log (1/0.25)] = 6 dB if the duty cycle is 25%. - 12. The final test results have been increased by the duty cycle factor and recorded in the report # 9.3 Measurement Setup (Block Diagram of Configuration) # 9.4 Measurement Result | Test Data of Conducted Output Power Density for band 5.15-5.25 GHz | | | | | | |--|-----------------------|---------------------------------|---------------------|--------------|--| | Test Mode | Test Channel
(MHz) | Average Power Density (dBm/MHz) | Limits
(dBm/MHz) | Pass or Fail | | | 802.11a | 5180 | 1.352 | 11 | Pass | | | | 5200 | 1.559 | 11 | Pass | | | | 5240 | 1.866 | 11 | Pass | | | 802.11n20 | 5180 | 1.099 | 11 | Pass | | | | 5200 | 1.557 | 11 | Pass | | | | 5240 | 1.945 | 11 | Pass | | | | Test Data of Conducted Output Power Density for band 5.25-5.35 GHz | | | | | | |-----------|--|---------------------------------|------------------|--------------|--|--| | Test Mode | Test Channel
(MHz) | Average Power Density (dBm/MHz) | Limits (dBm/MHz) | Pass or Fail | | | | 802.11a | 5260 | 2.092 | 11 | Pass | | | | | 5300 | 1.037 | 11 | Pass | | | | | 5320 | 0.215 | 11 | Pass | | | | 802.11n20 | 5260 | 1.724 | 11 | Pass | | | | | 5300 | 0.463 | 11 | Pass | | | | | 5320 | -0.110 | 11 | Pass | | | | Test Data of Conducted Output Power Density for band 5.470-5.725 GHz | | | | | | |--|-----------------------|---------------------------------|------------------|--------------|--| | Test Mode | Test Channel
(MHz) | Average Power Density (dBm/MHz) | Limits (dBm/MHz) | Pass or Fail | | | 802.11a | 5500 | 2.920 | 11 | Pass | | | | 5600 | 1.360 | 11 | Pass | | | | 5700 | -0.219 | 11 | Pass | | | 802.11n20 | 5500 | 3.543 | 11 | Pass | | | | 5600 | 1.451 | 11 | Pass | | | | 5700 | 0.490 | 11 | Pass | | | | Test Data of Conducted Output Power Density for band 5.725-5.85 GHz | | | | | | |-----------|---|--|--|------------------------|--------------|--| | Test Mode | Test
Channel
(MHz) | Average Power
Density
(dBm/100kHz) | Average Power
Density
(dBm/500kHz) | Limits
(dBm/500kHz) | Pass or Fail | | | | 5745 | 2.328 | -2.638 | 30 | Pass | | | 802.11a | 5785 | 2.692 | -1.315 | 30 | Pass | | | | 5825 | 2.824 | 0.317 | 30 | Pass | | | | 5745 | -0.185 | -2.883 | 30 | Pass | | | 802.11n20 | 5785 | 2.218 | -1.378 | 30 | Pass | | | | 5825 | 2.318 | -0.027 | 30 | Pass | | Note:1.Power density(dBm/500kHz) = Power density(dBm/100kHz)+10*log(500/100). # Test Graphs of Conducted Output Power Spectral Density for band 5.15-5.25 GHz Test Graph 802.11n20 ANT1 5180 MCS0 PSD # Test Graphs of Conducted Output Power Spectral Density for band 5.25-5.35 GHz Test Graph 802.11n20 ANT1 5260 MCS0 PSD #VBW 3.0 MHz* Freq Offset 0 Hz Span 30.00 MHz Sweep 1.066 ms (1000 pts) Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com. Test Graph 802.11n20 ANT1 5320 MCS0 PSD #VBW 3.0 MHz* Center 5.32000 GHz #Res BW 1.0 MHz # Test Graphs of Conducted Output Power Spectral Density for band 5.470-5.725 GHz Test Graph 802.11n20 ANT1 5500 MCS0 PSD 0 Hz Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com. Test Graph 802.11n20 ANT1 5700 MCS0 PSD #VBW 3.0 MHz* Span 30.00 MHz Sweep 1.066 ms (1000 pts) Center 5.70000 GHz #Res BW 1.0 MHz # Test Graphs of Conducted Output Power Spectral Density for band 5.725-5.85 GHz 3.000000 MHz Freq Offset 0 Hz Man <u>Auto</u> Morrano Span 30.00 MHz Sweep 3.730 ms (1000 pts) Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com. Test Graph 802.11n20 ANT1 5745 MCS0 PSD **#VBW 300 kHz*** Center 5.74500 GHz #Res BW 100 kHz Report No.: AGC06662231210FR02 Page 59 of 104 # 10. Conducted Band Edge and Out-of-Band Emissions # 10.1 Provisions Applicable | Applicable to | | Limit | | | |-----------------------------|------------------------------|-------------------------------|--|--| | Restricted bands | 789033 D02 General UNII Test | Field strength at 3m (dBuV/m) | | | | | Procedures New Rules v02r01 | PK: 74 | AV: 54 | | | Out of the restricted bands | Applicable to | EIRP Limit (dBm/MHz) | Equivalent field Strength at 3m (dBuV/m) | | | | FCC 15.407(b)(1) | PK: -27 | PK: 68.2 | | | | 15.407(b)(2) | | | | | | 15.407(b)(3) | | | | | | 15.407(b)(4) | See Note 2 | | | Note 1: The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength: E = $$\frac{1000000 \sqrt{30 P}}{2}$$ µV/m, where P is the eirp (Watts). Note 2: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. #### **10.2 Measurement Procedure** - 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator - 2. Set the Span = wide enough to capture the peak level of the in-band emission and all spurious emissions from the lowest frequency generated in the EUT up through the 10th harmonic. - RBW = 1MHz; VBW= 3MHz; Sweep = auto; Detector function = Peak. (Test frequency below 1GHz) 3. - 4. RBW = 1 MHz; VBW= 3 MHz; Sweep = auto; Detector function = Peak. (Test frequency Above 1GHz) - Set SPA Trace 1 Max hold, then View. 5. - Antenna gain and path loss have been compensated to the Correction factor. 6. - 7. Mark the maximum useless stray point and compare it with the limit value to record the result. # 10.3 Measurement Setup (Block Diagram of Configuration) Any report havi a/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com. #### 10.4 Measurement Results # Test Graphs of Spurious Emissions outside of the 5.15-5.25 GHz band for transmitters operating in the 5.15-5.25 GHz band # Test Graphs of Spurious Emissions outside of the 5.25-5.35 GHz band for transmitters operating in the 5.25-5.35 GHz band