FCC SAR Test Report

Report No.: FA810906

APPLICANT : Lenovo(Shanghai) Electronics Technology Co., Ltd.

EQUIPMENT : Portable Tablet Computer

BRAND NAME : Lenovo

MODEL NAME : Lenovo TB-8304F

FCC ID : O57TB8304F

STANDARD : FCC 47 CFR Part 2 (2.1093)

ANSI/IEEE C95.1-1992

IEEE 1528-2013

We, SPORTON International (Kunshan) INC., would like to declare that the tested sample has been evaluated in accordance with the procedures and had been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON International (Kunshan) INC., the test report shall not be reproduced except in full.

> Mark Qu NVLAP LAB CODE 600155-0

Approved by: Mark Qu / Manager

Sporton International (Kunshan) Inc.

No.3-2 Ping-Xiang Rd, Kunshan Development Zone Kunshan City Jiangsu Province 215335 China

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Mar. 09, 2018 Form version.: 170509 FCC ID: O57TB8304F Page 1 of 31

FCC SAR Test Report

Table of Contents

Report No. : FA810906

1. Statement of Compliance	
2. Administration Data	
3. Guidance Applied	5
4. Equipment Under Test (EUT) Information	6
4.1 General Information	6
4.2 Component List	6
5. RF Exposure Limits	7
5.1 Uncontrolled Environment	7
5.2 Controlled Environment	7
6. Specific Absorption Rate (SAR)	8
6.1 Introduction	8
6.2 SAR Definition	8
7. System Description and Setup	
7.1 E-Field Probe	
7.2 Data Acquisition Electronics (DAE)	
7.3 Phantom	11
7.4 Device Holder	
8. Measurement Procedures	
8.1 Spatial Peak SAR Evaluation	13
8.2 Power Reference Measurement	14
8.3 Area Scan	14
8.4 Zoom Scan	
8.5 Volume Scan Procedures	
8.6 Power Drift Monitoring	
9. Test Equipment List	
10. System Verification	17
10.1 Tissue Simulating Liquids	17
10.2 Tissue Verification	
10.3 System Performance Check Results	
11. RF Exposure Positions	
11.1 SAR Testing for Tablet	20
12. Conducted RF Output Power (Unit: dBm)	21
13. Antenna Location	
14. SAR Test Results	
14.1 Body SAR	
14.2 Repeated SAR Measurement	
15. Simultaneous Transmission Analysis	
16. Uncertainty Assessment	
17. References	31
Appendix A. Plots of System Performance Check	
Appendix B. Plots of High SAR Measurement	
Appendix C. DASY Calibration Certificate	
Appendix D. Test Setup Photos	

Issued Date: Mar. 09, 2018 Form version. : 170509

Revision History

Report No.: FA810906

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FA810906	Rev. 01	Initial issue of report	Mar. 09, 2018

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Mar. 09, 2018 Form version. : 170509 FCC ID: O57TB8304F Page 3 of 31

1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for Lenovo(Shanghai) Electronics Technology Co., Ltd., Portable Tablet Computer, Lenovo TB-8304F, are as follows.

Report No.: FA810906

		Highest SAR Summary
Equipment	Frequency	Body
Class	Band	1g SAR (W/kg)
		(0mm Gap)
DTS	WLAN 2.4GHz Band	1.16
NII	WLAN 5GHz Band	0.79
D	ate of Testing:	2018/2/8 ~ 2018/2/11

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 and FCC KDB publications.

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Mar. 09, 2018 FCC ID: O57TB8304F Form version.: 170509 Page 4 of 31

2. Administration Data

Testing Laboratory		
Test Site Sporton International (Kunshan) Inc.		
Test Site Location	No.3-2 Ping-Xiang Rd, Kunshan Development Zone Kunshan City Jiangsu Province 215335 China TEL: +86-512-57900158 FAX: +86-512-57900958	

Report No.: FA810906

Applicant Applicant		
Company Name Lenovo(Shanghai) Electronics Technology Co., Ltd.		
Address NO.68 BUILDING, 199 FENJU RD, China (Shanghai) Pilot Free Trade Zone, 200131, CHINA		

Manufacturer		
Company Name Lenovo PC HK Limited		
Address 23/F, Lincoln House, Taikoo Place 979 King's Road, Quarry Bay, Hong Kong		

3. Guidance Applied

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards:

- FCC 47 CFR Part 2 (2.1093)
- ANSI/IEEE C95.1-1992
- IEEE 1528-2013
- FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- FCC KDB 865664 D02 SAR Reporting v01r02
- FCC KDB 447498 D01 General RF Exposure Guidance v06
- FCC KDB 248227 D01 802.11 Wi-Fi SAR v02r02
- FCC KDB 616217 D04 SAR for laptop and tablets v01r02

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Mar. 09, 2018 FCC ID: O57TB8304F Form version.: 170509 Page 5 of 31

4. Equipment Under Test (EUT) Information

4.1 General Information

Product Feature & Specification		
Equipment Name	Portable Tablet Computer	
Brand Name	Lenovo	
Model Name	Lenovo TB-8304F	
FCC ID	O57TB8304F	
Wireless Technology and Frequency Range	WLAN 2.4GHz Band: 2412 MHz ~ 2462 MHz WLAN 5.2GHz Band: 5180 MHz ~ 5240 MHz WLAN 5.3GHz Band: 5260 MHz ~ 5320 MHz WLAN 5.5GHz Band: 5500 MHz ~ 5720 MHz WLAN 5.8GHz Band: 5745 MHz ~ 5825 MHz Bluetooth: 2402 MHz ~ 2480 MHz	
Mode	WLAN 2.4GHz 802.11b/g/n HT20 WLAN 5GHz 802.11a/n HT20/HT40 Bluetooth v3.0+EDR, Bluetooth v4.0 LE, Bluetooth v4.1 LE, Bluetooth v4.2 LE	
HW	Lenovo Tablet TB-8304F	
SW	TB-8304F_RF01_180102	
EUT Stage	Identical Prototype	
Remark: 1. This device has no voice function. 2. 802.11n-HT40 is not supported in 2.4GHz WLAN.		

Report No.: FA810906

4.2 Component List

There are two samples which the differences of two samples are shown in the table below.

Based on the similarity of two samples, we evaluated there has no effect on SAR distribution, so only choose sample 1 to perform full SAR testing.

Object	Sample 1	Sample 2
LPDDR3 EMCP	NANYA: NT6CL256T32CQ-H1	LEAHKINN: KPN055ES3-Zia1
EMMC	Samsung: KLMAG1JETD-B041003	SanDisk: SDINADF4-16G-H
PCB	CEE: A525c_MainboardPCB	Huashen:A525c_Mainboard PCB
Battery	Sunwoda: 1001000045501	SCUD: R570000028
speakerBox1	Xichundz: ZA2060AAA601USAA_Speaker Box_1511_FPC_Xichundz	Keysound: ZA2060AAA601USAA_Speaker Box_1511_FPC_Keysound
LCM	TXD: TXDT800CXPA-36	Starry: 2081080BH8021006-51F
Camera_Back	JSL: HS6283A1D-0P0J0	JSL: HS6283A1D-0P0J0
Camera_Front	C&T: V20672 V0	Brodsands: B02SF0319

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Mar. 09, 2018 Form version. : 170509 FCC ID: O57TB8304F Page 6 of 31

5. RF Exposure Limits

5.1 Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Report No.: FA810906

5.2 Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Mar. 09, 2018 Form version.: 170509 FCC ID: O57TB8304F Page 7 of 31

6. Specific Absorption Rate (SAR)

6.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

Report No.: FA810906

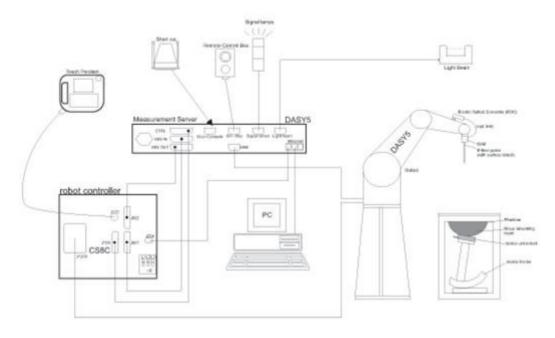
6.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (p). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

$$SAR = \frac{\sigma |E|^2}{\rho}$$


Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Mar. 09, 2018 Form version.: 170509 FCC ID: O57TB8304F Page 8 of 31

7. System Description and Setup

The DASY system used for performing compliance tests consists of the following items:

Report No.: FA810906

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Mar. 09, 2018 Form version.: 170509 FCC ID: O57TB8304F Page 9 of 31

7.1 E-Field Probe

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

<EX3DV4 Probe>

Construction	Symmetric design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents e.g., DGBE)	
Frequency	10 MHz – >6 GHz Linearity: ±0.2 dB (30 MHz – 6 GHz)	
Directivity	±0.3 dB in TSL (rotation around probe axis) ±0.5 dB in TSL (rotation normal to probe axis)	
Dynamic Range	10 μW/g – >100 mW/g Linearity: ±0.2 dB (noise: typically <1 μW/g)	
Dimensions	Overall length: 337 mm (tip: 20 mm) Tip diameter: 2.5 mm (body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm	

Report No.: FA810906

7.2 <u>Data Acquisition Electronics (DAE)</u>

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

Fig 5.1 Photo of DAE

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Mar. 09, 2018 Form version.: 170509 FCC ID: O57TB8304F Page 10 of 31

7.3 Phantom

<SAM Twin Phantom>

NOTAIN TWINT HAIRONIN		
Shell Thickness	2 ± 0.2 mm; Center ear point: 6 ± 0.2 mm	
Filling Volume	Approx. 25 liters	
Dimensions	Length: 1000 mm; Width: 500 mm; Height: adjustable feet	7 %
Measurement Areas	Left Hand, Right Hand, Flat Phantom	

Report No.: FA810906

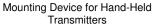
The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

∠FI I Phantom>

<eli fiiaii(0111=""></eli>		
Shell Thickness	2 ± 0.2 mm (sagging: <1%)	
Filling Volume	Approx. 30 liters	
Dimensions	Major ellipse axis: 600 mm Minor axis: 400 mm	

The ELI phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids.

TEL: +86-512-57900158 / FAX: +86-512-57900958


Issued Date: Mar. 09, 2018 Form version.: 170509 FCC ID: O57TB8304F Page 11 of 31

7.4 Device Holder

<Mounting Device for Hand-Held Transmitter>

In combination with the Twin SAM V5.0/V5.0c or ELI phantoms, the Mounting Device for Hand-Held Transmitters enables rotation of the mounted transmitter device to specified spherical coordinates. At the heads, the rotation axis is at the ear opening. Transmitter devices can be easily and accurately positioned according to IEC 62209-1, IEEE 1528, FCC, or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat). And upgrade kit to Mounting Device to enable easy mounting of wider devices like big smart-phones, e-books, small tablets, etc. It holds devices with width up to 140 mm.

Report No.: FA810906

Mounting Device Adaptor for Wide-Phones

<Mounting Device for Laptops and other Body-Worn Transmitters>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the mounting device in place of the phone positioned. The extension is fully compatible with the SAM Twin and ELI phantoms.

Mounting Device for Laptops

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Mar. 09, 2018 FCC ID: O57TB8304F Form version.: 170509 Page 12 of 31

8. Measurement Procedures

The measurement procedures are as follows:

<Conducted power measurement>

(a) For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band

Report No.: FA810906

(b) Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power

<SAR measurement>

- (a) Use base station simulator to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power channel.
- (b) Place the EUT in the positions as Appendix D demonstrates.
- (c) Set scan area, grid size and other setting on the DASY software.
- (d) Measure SAR results for the highest power channel on each testing position.
- (e) Find out the largest SAR result on these testing positions of each band
- (f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

8.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

TEL: +86-512-57900158 / FAX: +86-512-57900958 Issued Date: Mar. 09, 2018

FCC ID : O57TB8304F Page 13 of 31 Form version. : 170509

8.2 Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Report No.: FA810906

8.3 Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly.

Area scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz.

	≤3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°
	\leq 2 GHz: \leq 15 mm 2 – 3 GHz: \leq 12 mm	$3 - 4 \text{ GHz:} \le 12 \text{ mm}$ $4 - 6 \text{ GHz:} \le 10 \text{ mm}$
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of measurement plane orientation the measurement resolution in x or y dimension of the test of measurement point on the test.	on, is smaller than the above, must be \leq the corresponding levice with at least one

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Mar. 09, 2018 Form version.: 170509 FCC ID: O57TB8304F Page 14 of 31

8.4 Zoom Scan

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Report No.: FA810906

Zoom scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz.

			≤3 GHz	> 3 GHz
Maximum zoom scan s	patial reso	lution: Δx _{Zoom} , Δy _{Zoom}	\leq 2 GHz: \leq 8 mm 2 – 3 GHz: \leq 5 mm [*]	$3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$
	uniform grid: $\Delta z_{Zoom}(n)$		≤ 5 mm	$3 - 4 \text{ GHz: } \le 4 \text{ mm}$ $4 - 5 \text{ GHz: } \le 3 \text{ mm}$ $5 - 6 \text{ GHz: } \le 2 \text{ mm}$
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	$3 - 4 \text{ GHz: } \le 3 \text{ mm}$ $4 - 5 \text{ GHz: } \le 2.5 \text{ mm}$ $5 - 6 \text{ GHz: } \le 2 \text{ mm}$
	grid $\Delta z_{Zoom}(n>1)$: between subsequent points		≤ 1.5·∆z	Zoom(n-1)
Minimum zoom scan volume x, y, z			≥ 30 mm	$3 - 4 \text{ GHz:} \ge 28 \text{ mm}$ $4 - 5 \text{ GHz:} \ge 25 \text{ mm}$ $5 - 6 \text{ GHz:} \ge 22 \text{ mm}$

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

8.5 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

8.6 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Mar. 09, 2018 Page 15 of 31 Form version.: 170509 FCC ID: O57TB8304F

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is $\leq 1.4 \text{ W/kg}, \leq 8 \text{ mm}, \leq 7 \text{ mm}$ and $\leq 5 \text{ mm}$ zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

9. Test Equipment List

	None of Emilion of	T o /M o d o l	Osais I Norrahan	Calibra	ition
Manufacturer	Name of Equipment	Type/Model	Serial Number	Last Cal.	Due Date
SPEAG	2450MHz System Validation Kit	D2450V2	840	2017/12/7	2018/12/6
SPEAG	5000MHz System Validation Kit	D5GHzV2	1167	2017/7/26	2018/7/25
SPEAG	Data Acquisition Electronics	DAE4	915	2017/6/16	2018/6/15
SPEAG	Dosimetric E-Field Probe	EX3DV3	3898	2017/6/27	2018/6/26
SPEAG	ELI4 Phantom	QD OVA 001 BB	TP-1025	NCR	NCR
SPEAG	Phone Positioner	N/A	N/A	NCR	NCR
Agilent	ENA Series Network Analyzer	E5071C	MY46111157	2017/4/18	2018/4/17
SPEAG	DAK Kit	DAK3.5	1146	2017/7/18	2018/7/17
R&S	Signal Generator	SML03	103818	2017/8/17	2018/8/16
Anritsu	Power Meter	ML2495A	1419002	2017/5/15	2018/5/14
Anritsu	Power Sensor	MA2411B	1339124	2017/5/15	2018/5/14
Anritsu	Power Meter	ML2495A	1218006	2017/10/6	2018/10/5
Anritsu	Power Sensor	MA2411B	1207363	2017/10/6	2018/10/5
R&S	CBT BLUETOOTH TESTER	CBT	100783	2017/8/8	2018/8/7
EXA	Spectrum Analyzer	N9010A	MY55150244	2017/4/18	2018/4/17
WISEWIND	Hygrometer	WISEWIND 0905	0905	2017/4/20	2018/4/19
JM	DIGITAC THERMOMETER	JM222	AA1207166	2017/4/19	2018/4/18
ARRA	Power Divider	A3200-2	N/A	Note	e
Agilent	Dual Directional Coupler	778D	50422	Note	e
PASTERNACK	Dual Directional Coupler	PE2214-10	N/A	Note	е
AR	Amplifier	5S1G4	333096	Note	
mini-circuits	Amplifier	ZVE-3W-83+	162601250	Note	
MCL	Attenuation1	BW-S10W5+	N/A	Note	
MCL	Attenuation2	BW-S10W5+	N/A	Note	е
MCL	Attenuation3	BW-S10W5+	N/A	Note	е

Report No.: FA810906

Note:

Prior to system verification and validation, the path loss from the signal generator to the system check source and the power meter, which includes the amplifier, cable, attenuator and directional coupler, was measured by the network analyzer. The reading of the power meter was offset by the path loss difference between the path to the power meter and the path to the system check source to monitor the actual power level fed to the system check source.

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Mar. 09, 2018 Form version. : 170509 FCC ID: O57TB8304F Page 16 of 31

10. System Verification

10.1 Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 10.1.

Report No.: FA810906

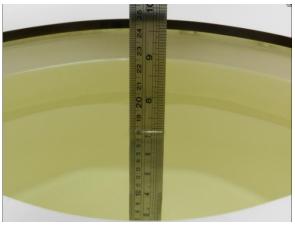


Fig 10.1 Photo of Liquid Height for Body SAR

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Mar. 09, 2018 Form version. : 170509 FCC ID: O57TB8304F Page 17 of 31

10.2 Tissue Verification

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Report No.: FA810906

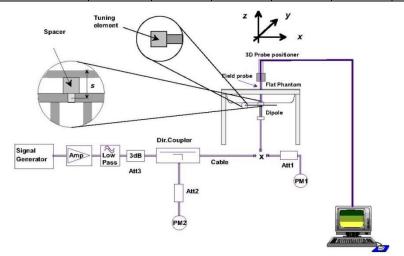
Frequency (MHz)	Water (%)	Sugar (%)	Cellulose (%)	Salt (%)	Preventol (%)	DGBE (%)	Conductivity (σ)	Permittivity (εr)	
	For Body								
2450	68.6	0	0	0	0	31.4	1.95	52.7	

Simulating Liquid for 5GHz, Manufactured by SPEAG

Ingredients	(% by weight)
Water	64~78%
Mineral oil	11~18%
Emulsifiers	9~15%
Additives and Salt	2~3%

<Tissue Dielectric Parameter Check Results>

Frequency (MHz)	Tissue Type	Liquid Temp. (℃)	Conductivity (σ)	Permittivity (ϵ_r)	Conductivity Target (σ)	Permittivity Target (ε _r)	Delta (σ) (%)	Delta (ε _r) (%)	Limit (%)	Date
2450	Body	22.6	2.012	54.301	1.95	52.70	3.18	3.04	±5	2018/2/11
5250	Body	22.6	5.457	47.285	5.36	48.95	1.81	-3.40	±5	2018/2/8
5600	Body	22.6	5.904	46.678	5.77	48.50	2.32	-3.76	±5	2018/2/8
5750	Body	22.8	6.117	46.416	5.94	48.28	2.98	-3.86	±5	2018/2/9


TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Mar. 09, 2018 Form version. : 170509 FCC ID: O57TB8304F Page 18 of 31

10.3 System Performance Check Results

Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

Date	Frequency (MHz)	Tissue Type	Input Power (mW)	Dipole S/N	Probe S/N	DAE S/N	Measured SAR (W/kg)	Targeted SAR (W/kg)	Normalized SAR (W/kg)	Deviation (%)
2018/2/11	2450	Body	250	840	3898	915	12.80	51.90	51.2	-1.35
2018/2/8	5250	Body	100	1167	3898	915	7.96	76.90	79.6	3.51
2018/2/8	5600	Body	100	1167	3898	915	8.08	80.00	80.8	1.00
2018/2/9	5750	Body	100	1167	3898	915	8.12	77.50	81.2	4.77

Report No.: FA810906

Fig 8.3.1 System Performance Check Setup

Fig 8.3.2 Setup Photo

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Mar. 09, 2018 Form version. : 170509 FCC ID: O57TB8304F Page 19 of 31

11. RF Exposure Positions

11.1 SAR Testing for Tablet

This device can be used also in full sized tablet exposure conditions, due to its size. Per FCC KDB 616217, the back surface and edges of the tablet should be tested for SAR compliance with the tablet touching the phantom. The SAR exclusion threshold in KDB 447498 D01v06 can be applied to determine SAR test exclusion for adjacent edge configurations. The closest distance from the antenna to an adjacent tablet edge is used to determine if SAR testing is required for the adjacent edges, with the adjacent edge positioned against the phantom and the edge containing the antenna positioned perpendicular to the phantom.

Report No.: FA810906

This EUT was tested in four different positions. They are bottom-face, Edge1, Edge2 and Edge4 touching with phantom 0mm.

<EUT Setup Photos>

Please refer to Appendix D for the test setup photos.

Sporton International (Kunshan) Inc.

12. Conducted RF Output Power (Unit: dBm)

<WLAN Conducted Power>

General Note:

Per KDB 248227 D01v02r02, SAR test reduction is determined according to 802.11 transmission mode configurations and certain exposure conditions with multiple test positions. In the 2.4 GHz band, separate SAR procedures are applied to DSSS and OFDM configurations to simplify DSSS test requirements. For OFDM, in both 2.4 and 5 GHz bands, an initial test configuration must be determined for each standalone and aggregated frequency band, according to the transmission mode configuration with the highest maximum output power specified for production units to perform SAR measurements. If the same highest maximum output power applies to different combinations of channel bandwidths, modulations and data rates, additional procedures are applied to determine which test configurations require SAR measurement. When applicable, an initial test position may be applied to reduce the number of SAR measurements required for next to the ear, UMPC mini-tablet or hotspot mode configurations with multiple test positions.

Report No.: FA810906

- For 2.4 GHz 802.11b DSSS, either the initial test position procedure for multiple exposure test positions or the DSSS procedure for fixed exposure position is applied; these are mutually exclusive. For 2.4 GHz and 5 GHz OFDM configurations, the initial test configuration is applied to measure SAR using either the initial test position procedure for multiple exposure test position configurations or the initial test configuration procedures for fixed exposure test conditions. Based on the reported SAR of the measured configurations and maximum output power of the transmission mode configurations that are not included in the initial test configuration, the subsequent test configuration and initial test position procedures are applied to determine if SAR measurements are required for the remaining OFDM transmission configurations. In general, the number of test channels that require SAR measurement is minimized based on maximum output power measured for the test sample(s).
- For OFDM transmission configurations in the 2.4 GHz and 5 GHz bands. When the same maximum power is specified for 3. multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel for each
- DSSS and OFDM configurations are considered separately according to the required SAR procedures. SAR is measured in the initial test position using the 802.11 transmission mode configuration required by the DSSS procedure or initial test configuration and subsequent test configuration(s) according to the OFDM procedures.18 The initial test position procedure is
 - When the reported SAR of the initial test position is ≤ 0.4 W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and 802.11 transmission mode combinations within the frequency band or aggregated band.
 - When the reported SAR of the test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position on the highest maximum output power channel, until the report SAR is ≤ 0.8 W/kg or all required test position are tested.
 - For all positions/configurations, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested.

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Mar. 09, 2018 Form version.: 170509 FCC ID: O57TB8304F Page 21 of 31

<2.4GHz WLAN>

	Mode	Channel	Frequency (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Duty Cycle %	
		CH 1	2412	14.92	15.50		
	802.11b	CH 6	2437	15.15	15.50	100.00	
2.4GHz WLAN		CH 11	2462	15.01	15.50		
2.4GHZ WLAN		CH 1	2412	14.84	15.50		
	802.11g	CH 6	2437	15.03	15.50	97.46	
		CH 11	2462	14.79	15.50		
		CH 1	2412	14.03	14.50		
	802.11n-HT20	CH 6	2437	13.99	14.50	97.30	
		CH 11	2462	13.94	14.50		

Report No.: FA810906

<5GHz WLAN>

	Mode	Channel	Frequency (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Duty Cycle %
		CH 36	5180	15.03	15.50	
	900 110	CH 40	5200	15.06	15.50	07.47
	802.11a	CH 44	5220	15.13	15.50	97.47
5.2GHz WLAN		CH 48	5240	15.17	15.50	
		CH 36	5180	14.94	15.50	
	802.11n-HT20	CH 40	5200	14.91	15.50	97.29
	802.1111-H120	CH 44	5220	15.04	15.50	97.29
		CH 48	5240	14.90	15.50	
	000 11 = 11740	CH 38	5190	10.17	12.00	94.71
	802.11n-HT40	CH 46	5230	14.07	14.50	94.71

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Mar. 09, 2018 Form version. : 170509 FCC ID: O57TB8304F Page 22 of 31

	Mode	Channel	Frequency (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Duty Cycle %
		CH 52	5260	14.68	15.50	
	902 110	CH 56	5280	14.63	15.50	97.47
	802.11a	CH 60	5300	14.70	15.50	97.47
5.3GHz WLAN		CH 64	5320	14.79	15.50	
		CH 52	5260	14.75	15.50	
	802.11n-HT20	CH 56	5280	14.65	15.50	97.29
	002.11II-H120	CH 60	5300	14.73	15.50	97.29
	802.11n-HT40	CH 64	5320	14.71	15.50	
		CH 54	5270	13.85	14.50	94.71
	002.1111-1140	CH 62	5310	11.23	13.00	34.71

Report No.: FA810906

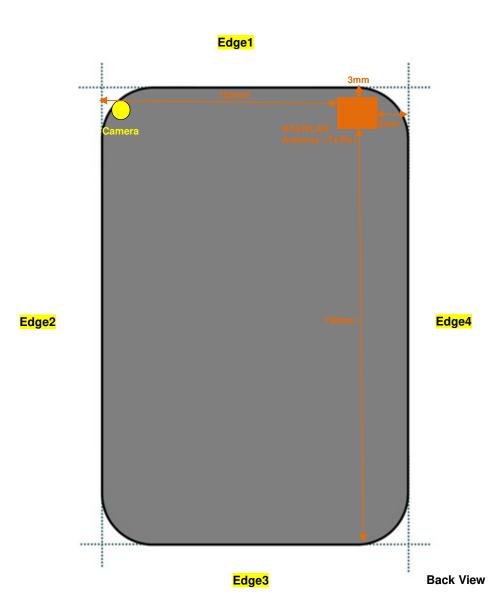
	Mode	Channel	Frequency (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Duty Cycle %
		CH 100	5500	13.80	15.00	
		CH 116	5580	13.86	15.00	
	802.11a	CH 132	5660	13.92	15.00	97.47
		CH 140	5700	14.09	15.00	
		CH 144	5720	14.07	15.00	
5.5GHz WLAN		CH 100	5500	13.77	15.00	
		CH 116	5580	13.87	15.00	
	802.11n-HT20	CH 132	5660	13.93	15.00	97.29
		CH 140	5700	14.03	15.00	
		CH 144	5720	14.07	15.00	
		CH 102	5510	10.75	12.50	
	802.11n-HT40	CH 110	5550	14.00	14.50	94.71
	002.1111 - П140	CH 134	5670	14.08	14.50	94.71
		CH 142	5710	14.10	14.50	

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Mar. 09, 2018 Form version. : 170509 FCC ID: O57TB8304F Page 23 of 31

	Mode	Channel	Frequency (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Duty Cycle %
		CH 149	5745	13.60	14.50	
	802.11a	CH 157	5785	13.66	14.50	97.47
5.8GHz WLAN		CH 165	5825	13.32	14.50	
		CH 149	5745	13.25	14.00	
	802.11n-HT20	CH 157	5785	13.27	14.00	97.29
		CH 165	5825	13.35	14.00	
	902 11n HT40	CH 151	5755	13.39	14.00	94.71
	802.11n-HT40	CH 159	5795	13.56	14.00	94.71

Report No.: FA810906


<Bluetooth>

	Mode Band	Max Average power(dBm)							
I	Wode Band	v3.0 with EDR	v4.0/4.1/4.2 with LE						
I	2.4GHz Bluetooth	7.50	0.50						

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Mar. 09, 2018 Form version. : 170509 FCC ID: O57TB8304F Page 24 of 31

13. Antenna Location

Report No. : FA810906

Diagonal Dimension: 236mm

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Mar. 09, 2018 Form version. : 170509 FCC ID: O57TB8304F Page 25 of 31

SPORTON LAB. FCC SAR Test Report

General Note:

The below table, when the distance is < 50 mm exclusion threshold is "Ratio", when the distance is > 50 mm exclusion threshold is "mW"

Report No.: FA810906

- 2. Maximum power is the source-based time-average power and represents the maximum RF output power among production units
- 3. Per KDB 447498 D01v06, for larger devices, the test separation distance of adjacent edge configuration is determined by the closest separation between the antenna and the user.
- 4. Per KDB 447498 D01v06, standalone SAR test exclusion threshold is applied; If the test separation distance is < 5mm, 5mm is used to determine SAR exclusion threshold.
- 5. Per KDB 447498 D01v06, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] [√f(GHz)] ≤ 3.0 for 1-g SAR and ≤ 7.5 for 10-g extremity SAR

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison
- 6. Per KDB 447498 D01v06, at 100 MHz to 6 GHz and for test separation distances > 50 mm, the SAR test exclusion threshold is determined according to the following
 - a) [Threshold at 50 mm in step 1) + (test separation distance 50 mm) (f(MHz)/150)] mW, at 100 MHz to 1500 MHz
 - b) [Threshold at 50 mm in step 1) + (test separation distance 50 mm) 10] mW at > 1500 MHz and ≤ 6 GHz

	Wireless Interface	Bluetooth	2.4GHz WLAN	5GHz WLAN				
Exposure Position	Calculated Frequency	2480MHz	2462MHz	5825MHz				
	Maximum power (dBm)	7.50	15.50	15.50				
	Maximum rated power(mW)	5.0	35.0	35.0				
	Separation distance(mm)		0					
Bottom Face	Exclusion Threshold	1.9	11.0	16.9				
	Testing required?	No	Yes	Yes				
	Separation distance(mm)	3						
Edge 1	Exclusion Threshold	1.9	11.0	16.9				
	Testing required?	No	Yes	Yes				
	Separation distance(mm)	103						
Edge 2	Exclusion Threshold	625.0	626.0	592.0				
	Testing required?	No	No	No				
	Separation distance(mm)	196						
Edge 3	Exclusion Threshold	1555.0	1556.0	1522.0				
	Testing required?	No	No	No				
	Separation distance(mm)		6					
Edge 4	Exclusion Threshold	1.6	9.2	14.1				
	Testing required?	No	Yes	Yes				

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Mar. 09, 2018 Form version.: 170509 FCC ID: O57TB8304F Page 26 of 31

14. SAR Test Results

General Note:

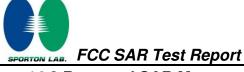
- 1. Per KDB 447498 D01v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.
 - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.

Report No.: FA810906

- b. For SAR testing of WLAN signal with non-100% duty cycle, the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)"
- c. For WLAN: Reported SAR(W/kg)= Measured SAR(W/kg)* Duty Cycle scaling factor * Tune-up scaling factor
- 2. Per KDB 447498 D01v06, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the *reported* 1-g or 10-g SAR for the mid-band or highest output power channel is:
 - ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
 - · ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
 - ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz
- Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is not required when the measured SAR is < 0.8W/kg.
- 4. Per KDB 248227 D01v02r02, for 2.4GHz 802.11g/n SAR testing is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.
- 5. Per KDB 248227 D01v02r02, U-NII-1 SAR testing is not required when the U-NII-2A band highest reported SAR for a test configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band.
- 6. When the reported SAR of the test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position on the highest maximum output power channel, until the report SAR is ≤ 0.8 W/kg or all required test position are tested.
- 7. For all positions / configurations, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions / configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested.
- 8. During SAR testing the WLAN transmission was verified using a spectrum analyzer.

14.1 Body SAR

<WLAN 2.4GHz SAR>


Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)			Duty Cycle Scaling Factor		Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	WLAN 2.4GHz	802.11b 1Mbps	Bottom Face	0	6	2437	15.15	15.5	1.084	100	1.000	-0.06	1.050	1.138
01	WLAN 2.4GHz	802.11b 1Mbps	Bottom Face	0	11	2437	15.01	15.5	1.119	100	1.000	0.07	1.040	<mark>1.164</mark>
	WLAN 2.4GHz	802.11b 1Mbps	Edge 1	0	6	2437	15.15	15.5	1.084	100	1.000	0.03	0.691	0.749
	WLAN 2.4GHz	802.11b 1Mbps	Edge 4	0	6	2437	15.15	15.5	1.084	100	1.000	-0.05	0.329	0.357

<WLAN 5GHz SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Cycle	Duty Cycle Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	WLAN 5.3GHz	802.11a 6Mbps	Bottom Face	0	64	5320	14.79	15.5	1.178	97.47	1.026	0.08	0.418	0.505
02	WLAN 5.3GHz	802.11a 6Mbps	Edge 1	0	64	5320	14.79	15.5	1.178	97.47	1.026	0.12	0.652	<mark>0.788</mark>
	WLAN 5.3GHz	802.11a 6Mbps	Edge 4	0	64	5320	14.79	15.5	1.178	97.47	1.026	-0.07	0.171	0.207
	WLAN 5.5GHz	802.11a 6Mbps	Bottom Face	0	140	5700	14.09	15	1.233	97.47	1.026	-0.04	0.089	0.113
03	WLAN 5.5GHz	802.11a 6Mbps	Edge 1	0	140	5700	14.09	15	1.233	97.47	1.026	-0.01	0.184	0.233
	WLAN 5.5GHz	802.11a 6Mbps	Edge 4	0	140	5700	14.09	15	1.233	97.47	1.026	0.03	0.071	0.089
	WLAN 5.8GHz	802.11a 6Mbps	Bottom Face	0	157	5785	13.66	14.5	1.213	97.47	1.026	-0.04	0.076	0.095
04	WLAN 5.8GHz	802.11a 6Mbps	Edge 1	0	157	5785	13.66	14.5	1.213	97.47	1.026	-0.01	0.127	<mark>0.158</mark>
	WLAN 5.8GHz	802.11a 6Mbps	Edge 4	0	157	5785	13.66	14.5	1.213	97.47	1.026	0.03	0.052	0.065

Sporton International (Kunshan) Inc.

FCC ID : O57TB8304F Page 27 of 31 Form version. : 170509

14.2 Repeated SAR Measurement

No.	Band	Mode	Test Position	Gap (mm)	Ch.		Power	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Duty Cycle %	Duty Cycle Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Ratio	Reported 1g SAR (W/kg)
1st	WLAN 2.4GHz	802.11b 1Mbps	Bottom Face	0	6	2437	15.15	15.5	1.084	100	1.000	-0.06	1.050	1	1.138
2nd	WLAN 2.4GHz	802.11b 1Mbps	Bottom Face	0	6	2437	15.15	15.5	1.084	100	1.000	0.05	1.030	1.019	1.116

Report No.: FA810906

General Note:

- 1. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg.
- Per KDB 865664 D01v01r04, if the ratio among the repeated measurement is ≤ 1.2 and the measured SAR <1.45W/kg, only one repeated measurement is required.
- 3. The ratio is the difference in percentage between original and repeated measured SAR.
- 4. All measurement SAR result is scaled-up to account for tune-up tolerance and is compliant.

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Mar. 09, 2018 FCC ID: O57TB8304F Form version.: 170509 Page 28 of 31

15. Simultaneous Transmission Analysis

NO.	Simultaneous Transmission Configurations
1.	None

Note:

- 1. WLAN and Bluetooth share the same antenna, and cannot transmit simultaneously.
- 2. EUT will choose either WLAN 2.4GHz or WLAN 5GHz according to the network signal condition; therefore, 2.4GHz WLAN and 5GHz WLAN will not operate simultaneously at any moment.

Report No.: FA810906

Test Engineer: Nick Hu

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Mar. 09, 2018 Form version. : 170509 FCC ID: O57TB8304F Page 29 of 31

16. Uncertainty Assessment

Per KDB 865664 D01 SAR measurement 100MHz to 6GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg and the measured 10-g SAR within a frequency band is < 3.75 W/kg. The expanded SAR measurement uncertainty must be $\le 30\%$, for a confidence interval of k = 2. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. For this device, the highest measured 1-g SAR is less 1.5W/kg). Therefore, the measurement uncertainty table is not required in this report.

Report No.: FA810906

Sporton International (Kunshan) Inc.

17. References

- [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"
- [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992

Report No. : FA810906

- [3] IEEE Std. 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", Sep 2013
- [4] SPEAG DASY System Handbook
- [5] FCC KDB 865664 D01 v01r04, "SAR Measurement Requirements for 100 MHz to 6 GHz", Aug 2015
- [6] FCC KDB 865664 D02 v01r02, "RF Exposure Compliance Reporting and Documentation Considerations" Oct 2015
- [7] FCC KDB 447498 D01 v06, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Oct 2015
- [8] FCC KDB 248227 D01 v02r02, "SAR Guidance for IEEE 802.11 (WiFi) Transmitters", Oct 2015.
- [9] FCC KDB 616217 D04 v01r02, "SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers", Oct 2015

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Mar. 09, 2018 Form version.: 170509 FCC ID: O57TB8304F Page 31 of 31

Appendix A. Plots of System Performance Check

Report No.: FA810906

The plots are shown as follows.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Mar. 09, 2018 Form version.: 170509 FCC ID: O57TB8304F Page A1 of A1

System Check_Body_2450MHz

DUT: D2450V2 - SN:840

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL_2450 Medium parameters used: f = 2450 MHz; $\sigma = 2.012$ S/m; $\varepsilon_r = 54.301$; $\rho = 1000$

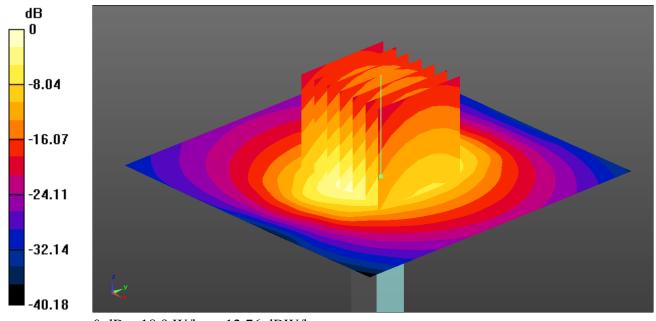
Date: 2018.2.11

 kg/m^3

Ambient Temperature: 23.3 °C; Liquid Temperature: 22.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3898; ConvF(7.85, 7.85, 7.85); Calibrated: 2017.6.27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 2017.6.16
- Phantom: SAM2; Type: SAM; Serial: TP:1025
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)


Pin=250mW/Area Scan (81x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 18.9 W/kg

Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 85.76 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 25.2 W/kg

SAR(1 g) = 12.8 W/kg; SAR(10 g) = 6.01 W/kg

Maximum value of SAR (measured) = 19.1 W/kg

0 dB = 18.9 W/kg = 12.76 dBW/kg

System Check_Body_5250MHz

DUT: D5GHzV2-SN:1167

Communication System: UID 0, CW (0); Frequency: 5250 MHz; Duty Cycle: 1:1

Medium: MSL_5000 Medium parameters used: f = 5250 MHz; $\sigma = 5.457$ S/m; $\varepsilon_r = 47.285$; $\rho = 1000$

Date: 2018.2.8

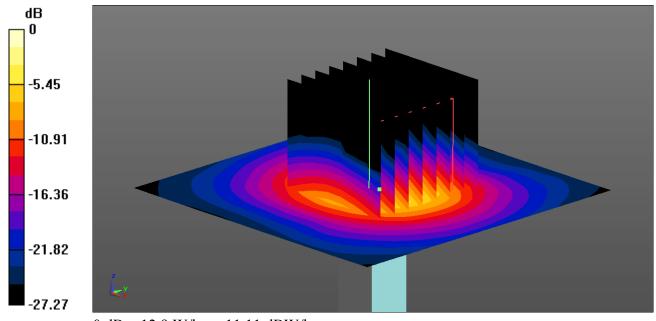
 kg/m^3

Ambient Temperature: 23.2 °C; Liquid Temperature: 22.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3898; ConvF(5.13, 5.13, 5.13); Calibrated: 2017.6.27;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 2017.6.16
- Phantom: SAM2; Type: SAM; Serial: TP:1025
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)

Pin=100mW/Area Scan (71x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 12.9 W/kg


Pin=100mW/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 53.66 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 22.6 W/kg

SAR(1 g) = 7.96 W/kg; SAR(10 g) = 2.13 W/kg

Maximum value of SAR (measured) = 12.8 W/kg

0 dB = 12.9 W/kg = 11.11 dBW/kg

System Check_Body_5600MHz

DUT: D5GHzV2-SN:1167

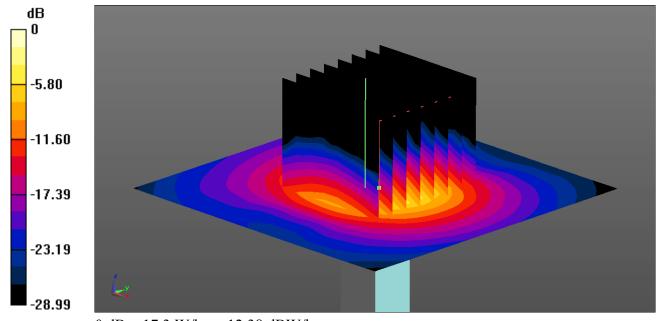
Communication System: UID 0, CW (0); Frequency: 5600 MHz; Duty Cycle: 1:1

Medium: MSL_5000 Medium parameters used: f = 5600 MHz; $\sigma = 5.904$ S/m; $\varepsilon_r = 46.678$; $\rho = 1000$

Date: 2018.2.8

 kg/m^3

Ambient Temperature : 23.2 °C; Liquid Temperature : 22.6 °C


DASY5 Configuration:

- Probe: EX3DV4 SN3898; ConvF(4.14, 4.14, 4.14); Calibrated: 2017.6.27;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 2017.6.16
- Phantom: SAM2; Type: SAM; Serial: TP:1025
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)

Pin=100mW/Area Scan (71x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 17.3 W/kg

Pin=100mW/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 57.99 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 29.7 W/kg

SAR(1 g) = 8.08 W/kg; SAR(10 g) = 2.21 W/kgMaximum value of SAR (measured) = 16.6 W/kg

0 dB = 17.3 W/kg = 12.38 dBW/kg

System Check_Body_5750MHz

DUT: D5GHzV2-SN:1167

Communication System: UID 0, CW (0); Frequency: 5750 MHz; Duty Cycle: 1:1

Medium: MSL_5000 Medium parameters used: f = 5750 MHz; $\sigma = 6.117$ S/m; $\epsilon_r = 46.416$; $\rho = 1000$

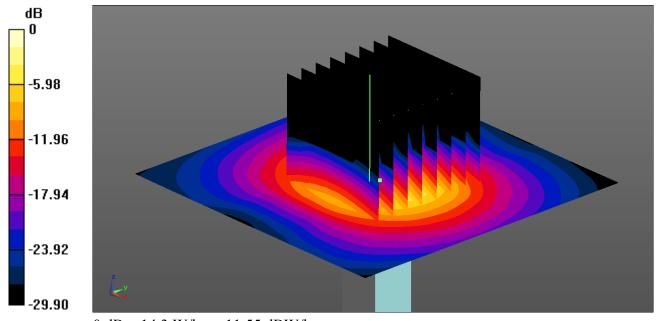
Date: 2018.2.9

 kg/m^3

Ambient Temperature: 23.2 °C; Liquid Temperature: 22.8 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3898; ConvF(4.5, 4.5, 4.5); Calibrated: 2017.6.27;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 2017.6.16
- Phantom: SAM2; Type: SAM; Serial: TP:1025
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)


Pin=100mW/Area Scan (71x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 14.3 W/kg

Pin=100mW/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 52.62 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 27.6 W/kg

SAR(1 g) = 8.12 W/kg; SAR(10 g) = 2.25 W/kg

Maximum value of SAR (measured) = 14.6 W/kg

0 dB = 14.3 W/kg = 11.55 dBW/kg

Appendix B. Plots of High SAR Measurement

The plots are shown as follows.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Mar. 09, 2018 FCC ID: O57TB8304F

Form version.: 170509 Page B1 of B1

Report No.: FA810906

01_WLAN2.4GHZ_802.11b_ 1Mbps_Bottom Face_0mm_Ch11

Communication System: UID 0, WIFI (0); Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: MSL_2450 Medium parameters used: f = 2462 MHz; $\sigma = 2.029$ S/m; $\varepsilon_r = 54.244$; $\rho = 1000$

Date: 2018.2.11

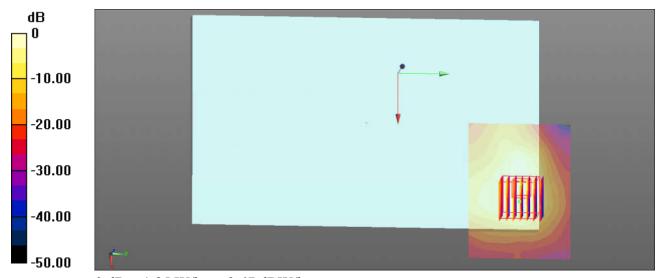
 kg/m^3

Ambient Temperature : 23.3 °C; Liquid Temperature : 22.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3898; ConvF(7.85, 7.85, 7.85); Calibrated: 2017.6.27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 2017.6.16
- Phantom: SAM2; Type: SAM; Serial: TP:1025
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)

Ch11/Area Scan (81x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.85 W/kg


Ch11/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 0.5860 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 3.48 W/kg

SAR(1 g) = 1.04 W/kg; SAR(10 g) = 0.393 W/kg

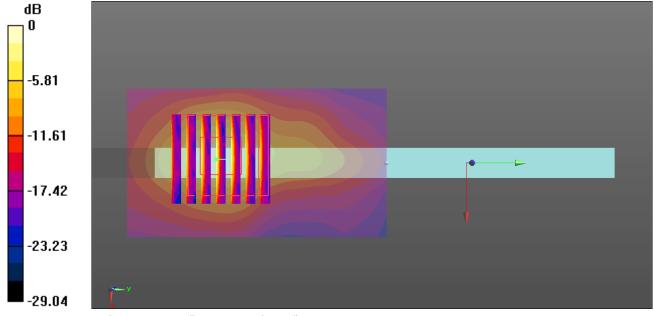
Maximum value of SAR (measured) = 2.27 W/kg

0 dB = 1.85 W/kg = 2.67 dBW/kg

02_WLAN 5GHz_Band2 802.11a 6Mbps_Edge 1_0mm_Ch64

Communication System: UID 0, WIFI (0); Frequency: 5320 MHz; Duty Cycle: 1:1.026 Medium: MSL_5000 Medium parameters used: f = 5320 MHz; $\sigma = 5.548$ S/m; $\varepsilon_r = 47.141$; $\rho = 1000$ kg/m³

Date: 2018.2.8


Ambient Temperature: 23.2 °C; Liquid Temperature: 22.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3898; ConvF(5.13, 5.13, 5.13); Calibrated: 2017.6.27;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 2017.6.16
- Phantom: SAM2; Type: SAM; Serial: TP:1025
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)

Ch64/Area Scan (41x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.65 W/kg

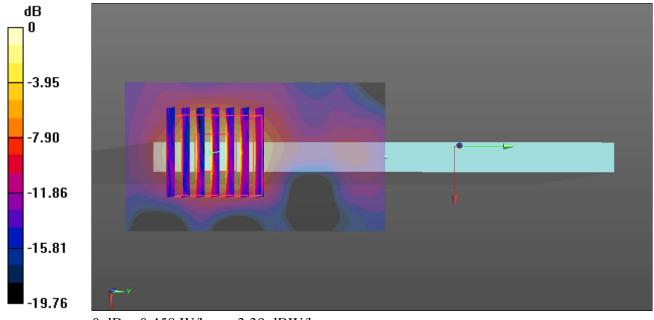
Ch64/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 2.479 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 3.17 W/kg SAR(1 g) = 0.652 W/kg; SAR(10 g) = 0.171 W/kg Maximum value of SAR (measured) = 1.81 W/kg

0 dB = 1.65 W/kg = 2.17 dBW/kg

03_WLAN 5GHz_Band3 802.11a 6Mbps_Edge 1_0mm_Ch140

Communication System: UID 0, WIFI (0); Frequency: 5700 MHz; Duty Cycle: 1:1.026 Medium: MSL_5000 Medium parameters used: f = 5700 MHz; $\sigma = 6.044$ S/m; $\varepsilon_r = 46.519$; $\rho = 1000$ kg/m³

Date: 2018.2.8


Ambient Temperature: 23.2 °C; Liquid Temperature: 22.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3898; ConvF(4.14, 4.14, 4.14); Calibrated: 2017.6.27;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 2017.6.16
- Phantom: SAM2; Type: SAM; Serial: TP:1025
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)

Ch140/Area Scan (41x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.458 W/kg

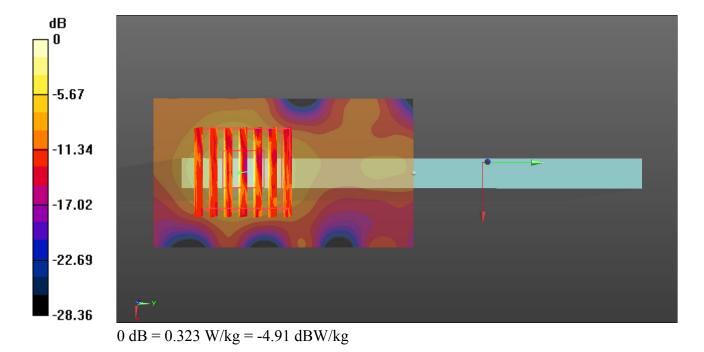
Ch140/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 2.409 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 0.909 W/kg SAR(1 g) = 0.184 W/kg; SAR(10 g) = 0.053 W/kg Maximum value of SAR (measured) = 0.501 W/kg

0 dB = 0.458 W/kg = -3.39 dBW/kg

04_WLAN 5GHz_Band4 802.11a 6Mbps_Edge 1_0mm_Ch157

Communication System: UID 0, WIFI (0); Frequency: 5785 MHz; Duty Cycle: 1:1.026 Medium: MSL_5000 Medium parameters used: f = 5785 MHz; $\sigma = 6.159$ S/m; $\varepsilon_r = 46.381$; $\rho = 1000$ kg/m³

Date: 2018.2.9


Ambient Temperature: 23.2 °C; Liquid Temperature: 22.8 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3898; ConvF(4.5, 4.5, 4.5); Calibrated: 2017.6.27;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 2017.6.16
- Phantom: SAM2; Type: SAM; Serial: TP:1025
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)

Ch157/Area Scan (41x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.323 W/kg

Ch157/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 2.104 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 0.869 W/kg SAR(1 g) = 0.127 W/kg; SAR(10 g) = 0.039 W/kg Maximum value of SAR (measured) = 0.355 W/kg

Appendix C. **DASY Calibration Certificate**

Report No.: FA810906

The DASY calibration certificates are shown as follows.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Mar. 09, 2018 Form version. : 170509 FCC ID: O57TB8304F Page C1 of C1

In Collaboration with

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

Client

Sporton

Certificate No:

Z17-97263

CALIBRATION

CNAS L0570

CALIBRATION CERTIFICATE

Tel: +86-10-62304633-2079

E-mail: cttl@chinattl.com

Object D2450V2 - SN: 840

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

December 7, 2017

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRVD	102196	02-Mar-17 (CTTL, No.J17X01254)	Mar-18
Power sensor NRV-Z5	100596	02-Mar-17 (CTTL, No.J17X01254)	Mar-18
Reference Probe EX3DV4	SN 3617	23-Jan-17(SPEAG,No.EX3-3617_Jan17)	Jan-18
DAE3	SN 536	09-Oct-17(CTTL-SPEAG,No.Z17-97198)	Oct-18
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	13-Jan-17 (CTTL, No.J17X00286)	Jan-18
Network Analyzer E5071C	MY46110673	13-Jan-17 (CTTL, No.J17X00285)	Jan-18

GES AV SCHWIN	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	G. M.
Reviewed by:	Lin Hao	SAR Test Engineer	林光
Approved by:	Qi Dianyuan	SAR Project Leader	and .

Issued: December 10, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2504 F-mail: cttl@chinattl.com http://www.chinattl.cn

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Page 2 of 8

Certificate No: Z17-97263

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.0.1446
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.8 ± 6 %	1.83 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C	-	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.2 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	52.6 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.14 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.5 mW /g ± 18.7 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.5 ± 6 %	1.93 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.9 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	51.9 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.99 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	24.0 mW /g ± 18.7 % (k=2)

Certificate No: Z17-97263 Page 3 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.0Ω+ 4.51jΩ	
Return Loss	- 26.3dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	51.1Ω+ 5.09jΩ	
Return Loss	- 25.8dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.025 ns
6.5 (2) (2) (2) (2) (3)	TO 25 - 250 (1724)

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: Z17-97263 Page 4 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel; +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ctil@chinattl.com http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 840

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.826 \text{ S/m}$; $\epsilon r = 39.84$; $\rho = 1000 \text{ kg/m}3$

Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

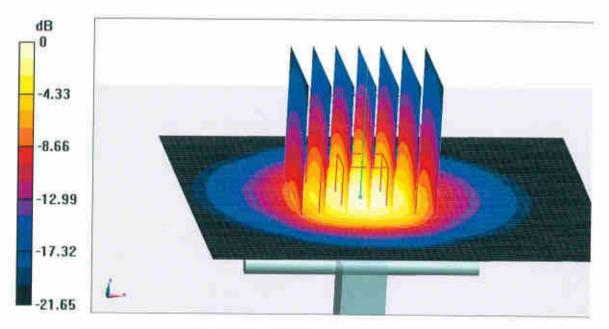
DASY5 Configuration:

Probe: EX3DV4 - SN3617; ConvF(7.74, 7.74, 7.74); Calibrated: 1/23/2017;

Date: 12.06.2017

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn536; Calibrated: 10/9/2017
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,

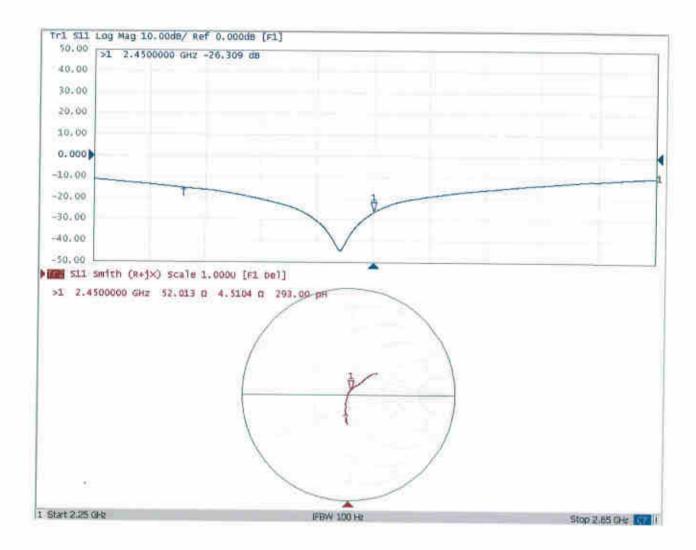

dy=5mm, dz=5mm

Reference Value = 106.0 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 27.3 W/kg

SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.14 W/kg

Maximum value of SAR (measured) = 22.0 W/kg


0 dB = 22.0 W/kg = 13.42 dBW/kg

Certificate No: Z17-97263 Page 5 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

DASY5 Validation Report for Body TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 840

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.926 \text{ S/m}$; $\epsilon_r = 52.48$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

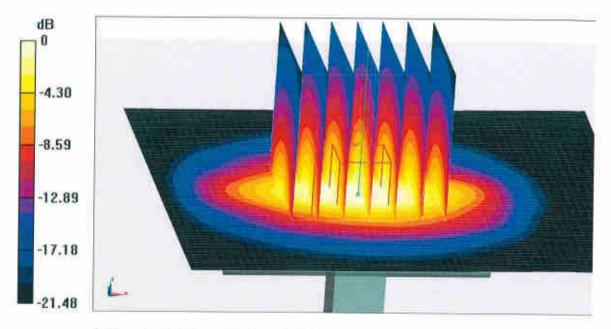
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: EX3DV4 - SN3617; ConvF(7.8, 7.8, 7.8); Calibrated: 1/23/2017;

Date: 12.07.2017

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn536; Calibrated: 10/9/2017
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

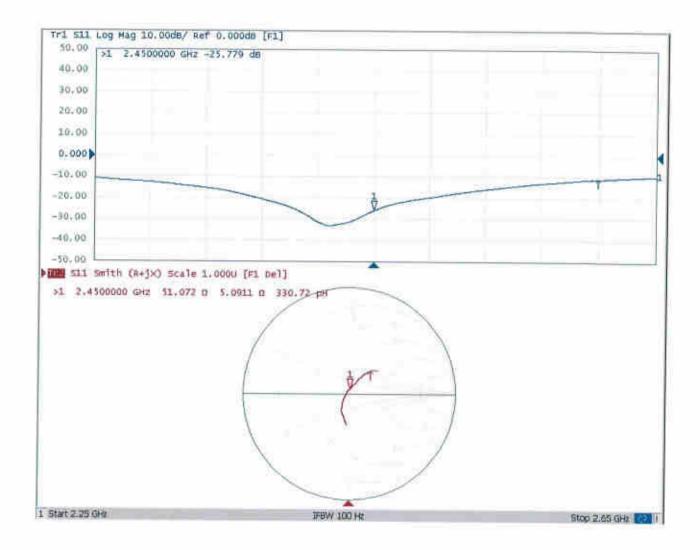

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 99.77 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 26.8 W/kg

SAR(1 g) = 12.9 W/kg; SAR(10 g) = 5.99 W/kg

Maximum value of SAR (measured) = 21.7 W/kg


0 dB = 21.7 W/kg = 13.36 dBW/kg

Certificate No: Z17-97263 Page 7 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

Sporton (Auden)

Certificate No: D5GHzV2-1167_Jul17

CALIBRATION CERTIFICATE

Object

D5GHzV2 - SN:1167

Calibration procedure(s)

QA CAL-22.v2

Calibration procedure for dipole validation kits between 3-6 GHz

Calibration date:

July 26, 2017

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
Type-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18
Reference Probe EX3DV4	SN: 3503	31-Dec-16 (No. EX3-3503_Dec16)	Dec-17
DAE4	SN: 601	28-Mar-17 (No. DAE4-601_Mar17)	Mar-18
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN; GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17
	Name	Function	Signature
Calibrated by:	Johannes Kurikka	Laboratory Technician	gen in
	0 0 EV		anne
Approved by:	Katja Pokovic	Technical Manager	ex us

Issued: July 27, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D5GHzV2-1167_Jul17

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

 IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

 EC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016

c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.2 ± 6 %	4.56 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	7	

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.99 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.8 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.7 ± 6 %	4.92 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	2. 555. 2	****

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	83.8 W / kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.39 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.9 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5750 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.5 ± 6 %	5.08 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.07 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.8 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.3 ± 6 %	5.52 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	9442	

SAR result with Body TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.74 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	76.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.17 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.5 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.7 ± 6 %	5.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	****	****

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.05 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	80.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.26 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.4 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5750 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.3	5.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.4 ± 6 %	6.20 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	****	7-7-7

SAR result with Body TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.80 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	77.5 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.18 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.6 W/kg ± 19.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	48.2 Ω - 11.7 jΩ
Return Loss	- 18,4 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	56.5 Ω - 6.7 jΩ	
Return Loss	- 21.2 dB	

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	54.2 Ω - 9.2 jΩ
Return Loss	- 20.3 dB

Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	48.0 Ω - 9.7 jΩ
Return Loss	- 20.0 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	56.6 Ω - 6.3 jΩ	
Return Loss	- 21,4 dB	

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	56.0 Ω - 8.7 jΩ	
Return Loss	- 20.0 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.199 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	October 30, 2013	

Certificate No: D5GHzV2-1167_Jul17

DASY5 Validation Report for Head TSL

Date: 25.07.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1167

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; $\sigma = 4.56$ S/m; $\epsilon_r = 36.2$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 4.92$ S/m; $\epsilon_r = 35.7$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 5.08$ S/m; $\epsilon_r = 35.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.58, 5.58, 5.58); Calibrated: 31.12.2016, ConvF(5.09, 5.09, 5.09); Calibrated: 31.12.2016, ConvF(5.02, 5.02, 5.02); Calibrated: 31.12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 68.85 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 29.6 W/kg

SAR(1 g) = 7.99 W/kg; SAR(10 g) = 2.28 W/kg

Maximum value of SAR (measured) = 17.8 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 70.37 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 32.9 W/kg

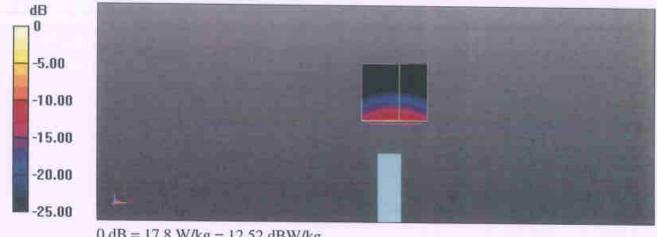
SAR(1 g) = 8.38 W/kg; SAR(10 g) = 2.39 W/kg

Maximum value of SAR (measured) = 19.3 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan,

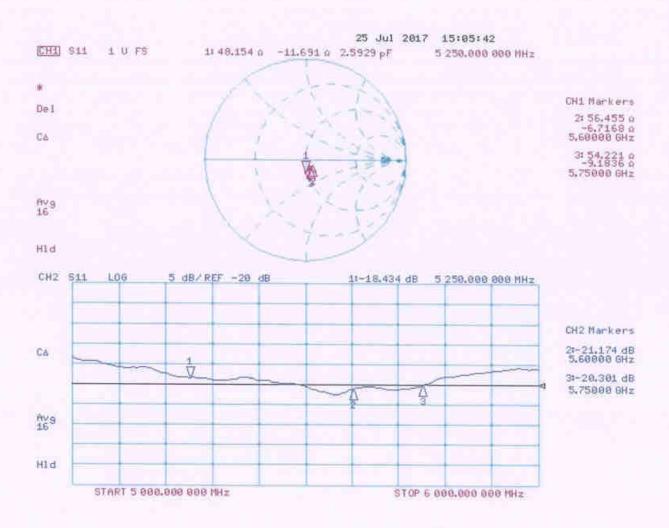
dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 67.77 V/m; Power Drift = -0.07 dB


Peak SAR (extrapolated) = 32.2 W/kg

SAR(1 g) = 8.07 W/kg; SAR(10 g) = 2.28 W/kg

Maximum value of SAR (measured) = 18.7 W/kg


Certificate No: D5GHzV2-1167_Jul17

Page 8 of 13

0 dB = 17.8 W/kg = 12.52 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 26.07.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1167

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; $\sigma = 5.52$ S/m; $\epsilon_r = 47.3$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 5.99$ S/m; $\epsilon_r = 46.7$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 6.2$ S/m; $\epsilon_r = 46.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.14, 5.14, 5.14); Calibrated: 31.12.2016, ConvF(4.57, 4.57, 4.57); Calibrated: 31.12.2016, ConvF(4.51, 4.51, 4.51); Calibrated: 31.12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.50 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 29.6 W/kg

SAR(1 g) = 7.74 W/kg; SAR(10 g) = 2.17 W/kg

Maximum value of SAR (measured) = 17.7 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

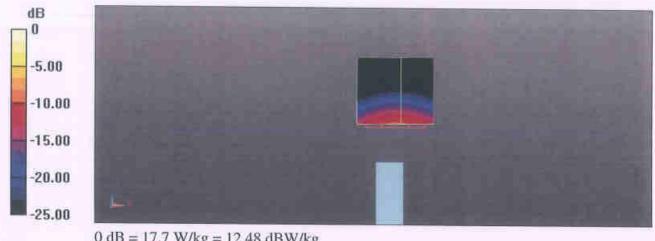
Reference Value = 65.37 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 33.4 W/kg

SAR(1 g) = 8.05 W/kg; SAR(10 g) = 2.26 W/kg

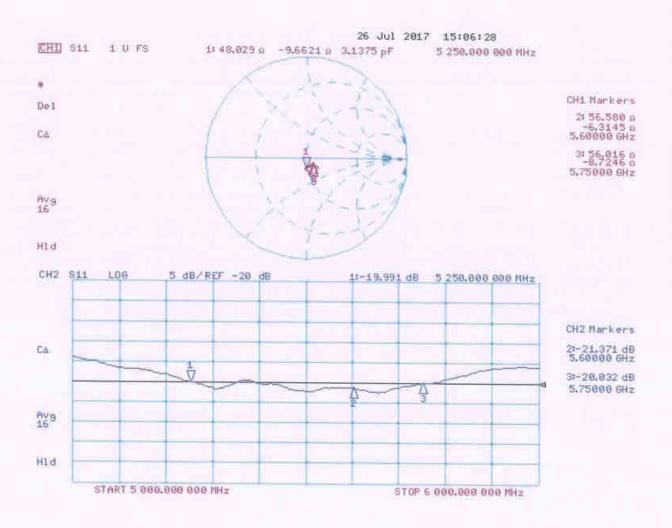
Maximum value of SAR (measured) = 18.9 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan,


dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64.14 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 33.6 W/kg


SAR(1 g) = 7.8 W/kg; SAR(10 g) = 2.18 W/kg

Maximum value of SAR (measured) = 18.7 W/kg

0 dB = 17.7 W/kg = 12.48 dBW/kg

Impedance Measurement Plot for Body TSL

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

IMPORTANT NOTICE

USAGE OF THE DAE 4

The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points:

Battery Exchange: The battery cover of the DAE4 unit is closed using a screw, over tightening the screw may cause the threads inside the DAE to wear out.

Shipping of the DAE: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside.

E-Stop Failures. Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements.

Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect.

DASY Configuration Files: Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file.

Important Note:

Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer.

Important Note:

Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the Estop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure.

Important Note:

To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Auden

Certificate No: DAE4-915_Jun17

Accreditation No.: SCS 0108

C

CALIBRATION CERTIFICATE

Object DAE4 - SD 000 D04 BK - SN: 915

Calibration procedure(s) QA CAL-06.v29

Calibration procedure for the data acquisition electronics (DAE)

Calibration date: June 16, 2017

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	09-Sep-16 (No:19065)	Sep-17
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
	OF LUNIO OFO AA LOOL	ARCHARACTURA DE CARACTURA DE CA	In house check: Jan-18
Auto DAE Calibration Unit	SE UWS 053 AA 1001	05-Jan-17 (in house check)	in nouse theck, Jan-16

Name Function Signature

Calibrated by: Eric Hainfeld Technician

Approved by: Fin Bomholt Deputy Technical Manager

Issued: June 16, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE4-915_Jun17

Page 1 of 5

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Glossary

DAE

data acquisition electronics

Connector angle

information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = 6.1μV , full range = -100...+300 mV Low Range: 1LSB = 61nV , full range = -1.....+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Ÿ.	Z
High Range	404.270 ± 0.02% (k=2)	404.412 ± 0.02% (k=2)	404.743 ± 0.02% (k=2)
Low Range	3 97876 + 1 50% //-2\	3 00515 + 1 50% (1/-2)	3 08830 + 1 50% /6-21

Connector Angle

Connector Angle to be used in DASY system	115.5 ° ± 1 °
---	---------------

Certificate No: DAE4-915_Jun17

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (μV)	Error (%)
Channel X + Input	200035.45	1,45	0.00
Channel X + Input	20005.57	0.83	0.00
Channel X - Input	-20002.65	2.63	-0.01
Channel Y + Input	200042,17	8.68	0.00
Channel Y + Input	20005.49	0.84	0.00
Channel Y - Input	-20005.61	-0.27	0.00
Channel Z + Input	200035.40	-4.00	-0.00
Channel Z + Input	20003.55	-0.96	-0.00
Channel Z - Input	-20006.81	-1.32	0.01

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	2000.99	0.13	0.01
Channel X + Input	201.24	0.41	0.20
Channel X - Input	-198.67	0.56	-0.28
Channel Y + Input	2000.59	-0.24	-0.01
Channel Y + Input	200.55	-0.27	-0.13
Channel Y - Input	-199,51	-0.27	0.13
Channel Z + Input	2000.64	-0.11	-0.01
Channel Z + Input	199.75	-0.97	-0.48
Channel Z - Input	-200.42	-1.11	0.56

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	-15,06	-16.32
	- 200	18.64	16.76
Channel Y	200	-5.13	-5.50
	- 200	4.34	4.43
Channel Z	200	-1.15	-1.30
	- 200	-0.70	-0.95

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	(#)	3.31	-3.48
Channel Y	200	8,37	+	4.21
Channel Z	200	10.27	6.52	5

Certificate No: DAE4-915_Jun17 Page 4 of 5

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16111	17514
Channel Y	15972	16571
Channel Z	15895	17158

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MΩ

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.96	-0.08	2.02	0.45
Channel Y	0.28	-0.96	1.60	0.46
Channel Z	-0.41	-1.19	0.62	0.37

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)	
Supply (+ Vcc)	+0.01	+6	+14	
Supply (- Vcc)	-0.01	-8	-9	

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client Auden

Certificate No: EX3-3898 Jun17

CALIBRATION CERTIFICATE

Object EX3DV4 - SN:3898

Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date: June 27, 2017

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02525)	Apr-18
Reference 20 dB Attenuator	SN: S5277 (20x)	07-Apr-17 (No. 217-02528)	Apr-18
Reference Probe ES3DV2	SN: 3013	31-Dec-16 (No. ES3-3013_Dec16)	Dec-17
DAE4	SN: 660	7-Dec-16 (No. DAE4-660_Dec16)	Dec-17
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-16)	In house check: Jun-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check, Oct-17

Calibrated by:

Leif Klysner

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: June 28, 2017.

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

 b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016

c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-3898_Jun17 Page 2 of 38

Probe EX3DV4

SN:3898

Manufactured: October 9, 2012

Calibrated:

June 27, 2017

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	0.38	0.35	0.31	± 10.1 %
DCP (mV) ^B	99.1	99.4	100.3	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	143.9	±2.7 %
		Y	0.0	0.0	1.0		142.2	
		Z	0.0	0.0	1.0		145.7	

Note: For details on UID parameters see Appendix.

Sensor Model Parameters

	C1 fF	C2 fF	α V-1	T1 ms.V ⁻²	T2 ms.V ⁻¹	T3 ms	T4 V-2	T5 V ⁻¹	T6
X	32.49	240.5	35.09	11.03	0.713	4.958	1.269	0.147	1.005
Υ	33.00	245.0	35.30	9.807	0.625	4.966	1.221	0.120	1.005
Z	31.60	235.2	35.43	7.345	0.706	4.969	1.116	0.151	1.005

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

⁸ Numerical linearization parameter: uncertainty not required.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	10.75	10.75	10.75	0.35	1.03	± 12.0 %
835	41.5	0.90	10.23	10.23	10.23	0.48	0.80	± 12.0 %
900	41.5	0.97	10.03	10.03	10.03	0.49	0.80	± 12.0 %
1750	40.1	1.37	8.63	8.63	8.63	0.37	0.80	± 12.0 %
1900	40.0	1.40	8.37	8.37	8.37	0.33	0.80	± 12.0 %
2000	40.0	1.40	8.36	8.36	8.36	0.35	0.80	± 12.0 %
2300	39.5	1.67	7.91	7.91	7.91	0.36	0.80	± 12.0 %
2450	39.2	1.80	7.55	7.55	7.55	0.39	0.80	± 12.0 %
2600	39.0	1.96	7.37	7.37	7.37	0.38	0.86	± 12.0 %
3500	37.9	2.91	7.31	7.31	7.31	0.25	1.25	± 13.1 %
5250	35.9	4.71	5.62	5.62	5.62	0.35	1.80	± 13.1 %
5600	35.5	5.07	5.03	5.03	5.03	0.40	1.80	± 13.1 %
5750	35.4	5.22	5.18	5.18	5.18	0.40	1.80	± 13.1 %

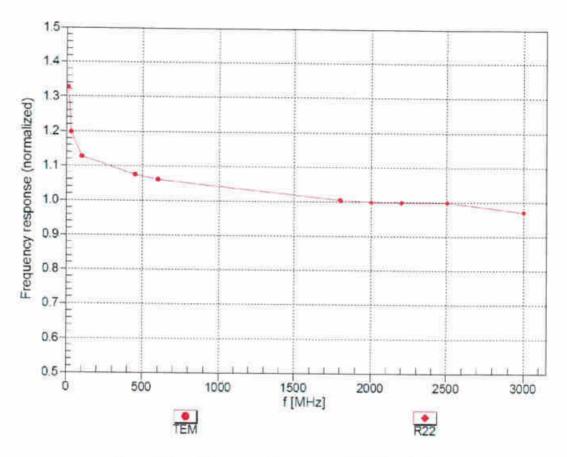
^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

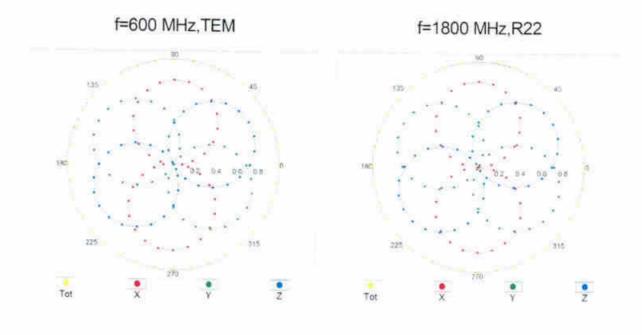
Calibration Parameter Determined in Body Tissue Simulating Media

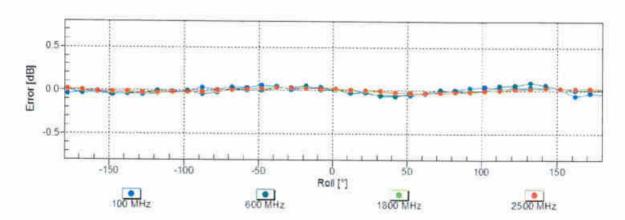
f (MHz) ^C	Relative Permittivity F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	10.45	10.45	10.45	0.52	0.82	± 12.0 %
835	55.2	0.97	10.40	10.40	10.40	0.49	0.80	± 12.0 %
900	55.0	1.05	10.32	10.32	10.32	0.47	0.80	± 12.0 %
1750	53.4	1.49	8.50	8.50	8.50	0.39	0.80	± 12.0 %
1900	53.3	1.52	8.17	8.17	8.17	0.35	0.84	± 12.0 %
2000	53.3	1.52	8.35	8.35	8.35	0.44	0.80	± 12.0 %
2300	52.9	1.81	7.95	7.95	7.95	0.41	0.80	± 12.0 %
2450	52.7	1.95	7.85	7.85	7.85	0.32	0.95	± 12.0 %
2600	52.5	2.16	7.51	7.51	7.51	0.26	0.95	± 12.0 %
3500	51.3	3.31	6.97	6.97	6.97	0.28	1.25	± 13.1 %
5250	48.9	5.36	5.13	5.13	5.13	0.40	1.90	± 13.1 %
5600	48.5	5.77	4.14	4.14	4.14	0.50	1.90	± 13.1 %
5750	48.3	5.94	4.50	4.50	4.50	0.50	1.90	± 13.1 %


Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

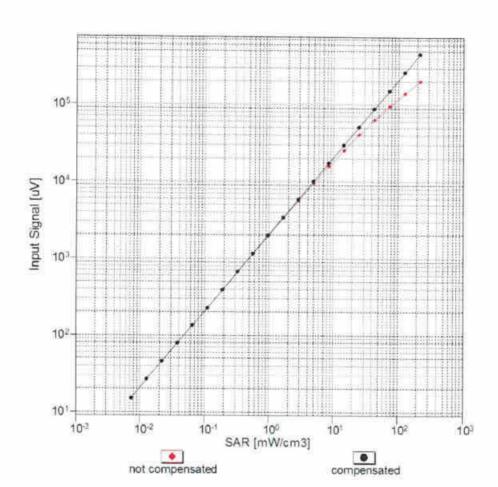
validity can be extended to \pm 110 MHz.

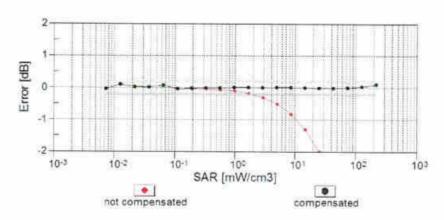
At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.


G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

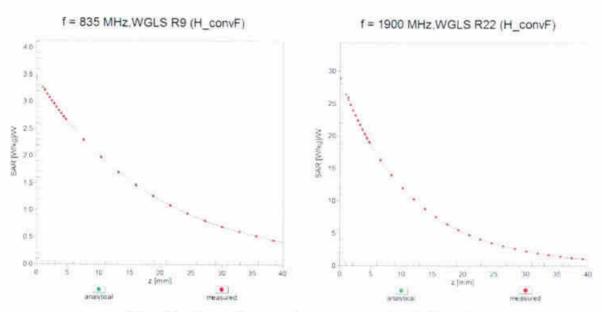

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

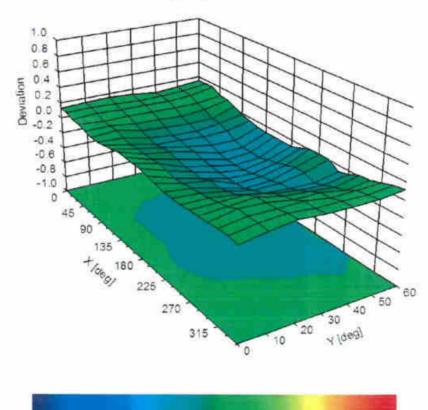
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	112
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Appendix: Modulation Calibration Parameters

ÜID	dix: Modulation Calibration Para Communication System Name		A dB	dB√μV	С	D dB	VR mV	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	143.9	±2.7 %
		Y	0.00	0.00	1.00	32,464	142.2	- Fall 7
		Z	0.00	0.00	1,00		145.7	
10010- CAA	SAR Validation (Square, 100ms, 10ms)	X	2.36	65.22	10.01	10.00	20.0	± 9.6 %
		Y	2.38	65:50	10.11		20.0	
		Z	2.49	65.99	10.50		20.0	
10011- CAB	UMTS-FDD (WCDMA)	×	0.97	66,94	14.95	0.00	150.0	± 9.6 %
		Y	1.04	68.03	15.67		150.0	
		Z	0.97	66.89	14.93		150.0	
10012- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	X	1.16	63.59	14.83	0.41	150,0	± 9.6 %
		Y	1.18	63.88	15.16		150.0	
		Z	1 15	63.44	14.80		150.0	
10013- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps)	×	4.63	66.61	16.74	1.46	150.0	± 9.6 %
		Y	4.65	66.69	16.86		150.0	
		Z	4.62	66.62	16.77		150.0	
10021- DAC	GSM-FDD (TDMA, GMSK)	X	9.40	81.38	17.52	9.39	50.0	±9.6 %
		Υ	16.05	87.81	19.48		50.0	
		Z	22 43	92.46	21.10		50.0	
10023- DAC	GPRS-FDD (TDMA, GMSK, TN 0)	×	7.11	77.84	16.31	9.57	50.0	± 9.6 %
		Y	10.05	82.09	17.71		50.0	
		Z	11.78	84.47	18.73		50.0	
10024- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	×	13.45	86.10	17.72	6.56	60.0	± 9.6 %
		Y	100.00	106,94	22.92		60.0	
		2	100.00	108.65	23.66		60.0	
10025- DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	×	3.63	65.06	22.13	12.57	50.0	±9.6 %
		Y	5.18	76.12	28.60		50.0	
		Z	3.25	61.92	20.33		50.0	
10026- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	Х	6.62	83.09	28.34	9.56	60.0	± 9.6 %
		Y	7:13	86.03	30.02		60.0	
		Z	5.66	79.86	27:23		60.0	
10027- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	X	100.00	105.78	21.78	4.80	80.0	± 9.6 %
		Y	100.00	107.41	22.39		80,0	
		Z	100,00	109.53	23.24		0.08	
10028- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	X	100.00	107.00	21,71	3.55	100.0	± 9.6 %
		Y	100.00	109.56	22.70		100.0	
		Z	100.00	112.11	23.68		100.0	
10029- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	×	4.64	75.90	24,34	7.80	80.0	± 9.6 %
		Υ	4.68	76.87	25.15		0.08	
10000	Territoria de la companya della companya della companya de la companya della comp	Z	4.08	73.46	23,48		0.08	
10030- CAA	IEEE 802 15.1 Bluetooth (GFSK, DH1)	×	5.90	78.01	14.62	5.30	70.0	± 9.6 %
		Y	25.51	92,34	18.68		70.0	
10071	1555 000 45 4 DI	Z	25.49	93.66	19.29		70.0	
10031- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	X	100.00	106.02	20,18	1.88	100.0	± 9.6 %
		Y	100.00	109.92	21.67		100.0	
		- 2	100.00	111.87	22.32		100.0	

10032- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	×	100.00	114.56	22.90	1.17	100.0	±9.6 %
		Y	100.00	122.28	25.84		100.0	
		Z	100.00	123,55	26.18		100.0	
10033- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	X	3.55	73.49	16.00	5.30	70.0	± 9.6 %
		Y	4.05	76.03	17.25		70.0	
		Z	3.36	73.75	16.36		70.0	
10034- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	X	1.68	68.28	12.61	1.88	100.0	±9.6 %
		Y	1.85	69.87	13.55		100.0	
		Z	1.56	68.16	12.68		100.0	
10035- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	Х	1.37	67.38	12.10	1.17	100.0	± 9.6 %
		Y	1.50	68.80	12.97		100.0	
		Z	1.28	67.19	12.08		100.0	
10036- CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	×	3,90	74.92	16.61	5.30	70.0	± 9.6 %
		Y	4.61	77.96	18.03		70.0	
		Z	3.72	75.34	17.04		70.0	
10037- CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	×	1.57	67.63	12.31	1.88	100.0	± 9.6 %
		Y	1.70	69.04	13.19		100.0	
		Z	1.45	67.44	12.35		100.0	
10038- CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	×	1.37	67.55	12.30	1.17	100.0	± 9.6 %
		Y	1.50	69.01	13.19		100.0	
		Z	1.28	67.33	12,27		100.0	
10039- CAB	CDMA2000 (1xRTT, RC1)	×	1.30	69.04	12.94	0.00	150.0	±9.6 %
		Y	1.55	71.17	14.03		150.0	
		Z	1.24	68.56	12.61		150.0	
10042- CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4- DQPSK, Halfrate)	X	5.68	76.10	14.67	7.78	50.0	± 9.6 %
		Y	9.76	82.03	16.60		50.0	
		Z	12.77	85.55	17.89		50.0	
10044- CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	×	0.01	90.50	0.61	0.00	150.0	±9.6%
		Y	0.01	91.46	2.87		150.0	
		Z	0.01	90.61	1.44		150.0	
10048- CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	Х	5.51	71.14	15.12	13.80	25.0	±9.6 %
		Y	6.15	72.46	15.57		25.0	
		Z	6.71	73.40	16.16		25.0	
10049- CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	×	5.68	73.94	15.07	10.79	40.0	±9.6%
		Y	6.47	75.65	15.68		40.0	
		Z	7.05	76.86	16.35		40.0	
10056- CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	Х	6.87	78.23	18.34	9.03	50.0	±9.6 %
		Y	8.46	81.68	19.73		50.0	
12-9-0		Z	7.33	79.69	19.06		50.0	
10058- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	X	3.79	72.47	22.17	6.55	100.0	±9.6 %
		Y	3.76	72.88	22.68		100.0	
4000		Z	3.40	70.54	21.50		100.0	
10059- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	X	1.18	64.29	15.13	0.61	110.0	±9.6 %
		Υ	1.19	64.62	15.50		110.0	
400		Z	1.15	64.01	15.07		110.0	
10060- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	×	2.28	80.40	19.85	1.30	110.0	± 9.6 %
		Y	3.16	86.37	22.34		110.0	
		Z	1.76	77.97	19.44		110.0	

10061- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	X	1.88	72.36	18.12	2.04	110.0	± 9.6 %
		Y	1.96	73.75	19.06		110.0	
		Z	1.64	70.87	17.81		110.0	
10062- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	X	4.44	66.67	16.29	0.49	100.0	± 9.6 %
		Y	4.47	66.75	16.40		100.0	
		Z	4.43	66.68	16.31		100.0	
10063- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	X	4.45	66.73	16.35	0.72	100.0	± 9.6 %
		Y	4.47	66.82	16.46		100.0	
		Z	4.44	66.74	16.38		100.0	
10064- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	X	4.67	66.90	16.51	0.86	100.0	±9.6 %
		Y	4.70	66.98	16.63		100.0	
VIII A VIII I		Z	4.66	66.90	16.54		100.0	
10065- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	X	4.54	66.69	16.54	1.21	100.0	± 9.6 %
		Y	4.57	66.78	16.66		100.0	
		Z	4.53	66.69	16.57		100.0	
10066- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	Х	4.55	66.64	16.64	1.46	100.0	± 9.6 %
		Y	4.57	66.74	16.77		100.0	
		Z	4.53	66.63	16.67		100.0	
10067- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	X	4.82	66.89	17.07	2.04	100.0	± 9.6 %
		Y	4.85	67.00	17.21		100.0	
		Z	4.80	66.88	17.10		100.0	
10068- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	Х	4.85	66.79	17.19	2,55	100.0	± 9.6 %
		Y	4.88	66.89	17.34		100.0	
		Z	4.84	66.77	17.22		100.0	
10069- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	X	4.91	66.79	17.35	2.67	100.0	±9.6 %
		Y	4.94	66.90	17,51		100.0	
		Z	4.89	66.76	17.38		100.0	
10071- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	Х	4,72	66,64	16.98	1.99	100.0	± 9.6 %
		Y	4.74	66.72	17.11		100.0	
		Z	4.70	66.64	17.01		100.0	
10072- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	X	4.66	66.81	17.11	2.30	100.0	± 9.6 %
		Y	4.68	66.91	17.25		100.0	
40070	THE AND IN THE STATE OF	Z	4.64	66.80	17.14		100.0	
10073- CAB	(DSSS/OFDM, 18 Mbps)	Х	4.72	66.97	17.39	2.83	100.0	± 9.6 %
		Y	4.74	67.07	17.55		100.0	
10071	1555 000 11 West 2 1 27	Z	4.70	66.94	17.43	272701	100.0	31 A 7 A 7 A
10074- CAB	(DSSS/OFDM, 24 Mbps)	X	4.74	66.94	17.53	3.30	100.0	±9.6 %
		Y	4.76	67.04	17.69		100.0	
10075	1555 000 44 - W/5 0 4 CV	Z	4.72	66.91	17.56	0.00	100.0	
10075- CAB	(DSSS/OFDM, 36 Mbps)	×	4.77	66.95	17,74	3.82	90.0	± 9.6 %
		Y	4.78	67.04	17.91		90.0	
10070	IEEE 000 44- WIELO 4 001	Z	4.74	66.89	17.77		90.0	1000
10076- CAB	(DSSS/OFDM, 48 Mbps)	X	4.81	66.85	17.91	4.15	90.0	± 9.6 %
		Y	4.82	66.94	18.08		90.0	
10077	IEEE 900 44- WEE 0 4 011-	Z	4.79	66.79	17.94	1.00	90.0	
10077- CAB	(DSSS/OFDM, 54 Mbps)	X	4.85	66.95	18.02	4.30	90.0	± 9.6 %
		Y	4.86	67.03	18.19		90.0	
		Z	4.82	66.88	18.05		90.0	

EX3DV4- SN:3898

10081- CAB	CDMA2000 (1xRTT, RC3)	×	0.66	64.51	10.46	0.00	150.0	±9.6 %
		Y	0.73	65.64	11.22		150.0	
		Z	0.65	64.36	10.28		150.0	
10082- CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4- DQPSK, Fullrate)	×	0.56	57.02	2.34	4.77	80.0	±9.6 %
		Y	0.50	57.27	2.55		80.0	
		Z	0.72	60,56	4.69		80.0	
10090- DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	X	12.76	85.53	17.57	6.56	60.0	±9.6 %
		Y	100.00	106.92	22.92		60.0	
		Z	100.00	108.63	23.67		60.0	
10097- CAB	UMTS-FDD (HSDPA)	×	1.81	68.44	15.60	0.00	150.0	± 9.6 %
		Y	1.88	69.07	16.03		150.0	
		2	1.81	68.48	15.60		150.0	
10098- CAB	UMTS-FDD (HSUPA, Subtest 2)	X	1.77	68.36	15.57	0.00	150.0	± 9.6 %
		Y	1.84	69.01	16.01		150.0	
72222		Z	1.77	68.40	15.57		150.0	
10099- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	X	6,65	83.17	28,36	9.56	60.0	±9.6%
		Y	7.18	86.14	30.05		60.0	
Carminate Mills		Z	5.69	79.94	27.25		60.0	
10100- CAC	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	2.91	69.85	16.63	0.00	150.0	± 9.6 %
		Y	3.00	70.32	16:93		150.0	
*****		Z	2.90	69.77	16.63		150.0	
10101- CAC	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	×	3.08	67.30	15.83	0.00	150.0	±9.6%
		Y	3.12	67.53	16.02		150.0	
		Z	3,07	67.26	15.83		150.0	
10102- CAC	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	X	3.19	67.35	15.95	0.00	150.0	± 9.6 %
		Y	3.22	67.55	16.12		150.0	
		Z	3.18	67.32	15.96		150.0	
10103- CAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	Х	5.34	73.16	19.00	3.98	65.0	± 9.6 %
		Y	5.40	73.67	19.39		65.0	
		Z	4.60	71.12	18.33		65.0	
10104- CAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	X	5.56	71.82	19.11	3.98	65.0	±9.6 %
		Y	5.54	72.04	19.38		65.0	
TTSHSTS		Z	5.21	71.00	18.89		65.0	
10105- CAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	X	5.34	70.90	19,01	3.98	65.0	± 9.6 %
		Y	5.32	71.12	19.27		65.0	
470477		Z	4.66	68.69	18.12		65.0	
10108- CAD	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	×	2.51	69.21	16.45	0.00	150.0	±9.6 %
		Y	2.58	69.70	16.77		150.0	
20100		Z	2.50	69.15	16.45		150.0	
10109- CAD	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	Х	2.72	67.32	15,69	0.00	150.0	±9.6 %
		Y	2.77	67.58	15.90		150.0	
dra and	I THE PARK YOUR PROPERTY.	Z	271	67.30	15.69		150.0	
10110- CAD	LTE-FDD (SC-FDMA, 100% RB, 5 MHz. OPSK)	X	2.00	68.45	15.89	0.00	150.0	±9.6 %
		Y	2.08	69.04	16.29		150.0	
40444	LET FOR VOC POLICE AND	Z	1.99	68.40	15.88		150.0	
10111- CAD	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	X	2.48	68.76	16.00	0,00	150.0	± 9.6 %
		Y	2.54	69.09	16.25		150.0	
		Z	2.48	68.79	15.99		150.0	

10112- CAD	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	X	2.85	67.43	15.79	0.00	150.0	± 9.6 %
		Y	2.89	67.66	15.98		150.0	
		Z	2.84	67.42	15.79		150.0	
10113- CAD	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	X	2.63	68.98	16.15	0.00	150.0	± 9.6 %
		Y	2.68	69.26	16.38		150.0	
		Z	2.62	69.01	16.14		150.0	
10114- CAB	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	Х	4.93	67.18	16.42	0.00	150.0	± 9.6 %
		Υ	4.96	67.24	16.50		150.0	
		Z	4.93	67.19	16.45		150.0	
10115- CAB	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	Х	5.17	67.22	16.44	0.00	150.0	± 9.6 %
		Y	5.19	67.28	16.52		150.0	
		Z	5.16	67.22	16.46		150.0	
10116- CAB	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	X	5.00	67.33	16.43	0.00	150.0	± 9.6 %
		Y	5.03	67.41	16.51		150.0	
		Z	5.00	67.33	16.45		150.0	
10117- CAB	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	X	4.92	67.09	16.40	0.00	150.0	± 9.6 %
		Y	4.94	67.16	16.48		150.0	
		Z	4.91	67.08	16.41		150.0	
10118- CAB	IEEE 802.11n (HT Mixed, 81 Mbps, 16- QAM)	×	5.24	67.41	16.54	0.00	150.0	± 9.6 %
		Y	5.27	67.48	16.62		150.0	
		Z	5.23	67.40	16.55		150.0	
10119- CAB	IEEE 802.11n (HT Mixed, 135 Mbps, 64- QAM)	×	5.01	67.35	16.44	0.00	150.0	± 9.6 %
		Y	5.04	67.42	16.53		150.0	
		Z	5.01	67.36	16.47		150.0	
10140- CAC	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	X	3.20	67.37	15.86	0.00	150.0	± 9.6 %
		Y	3.24	67.57	16.03		150.0	
		Z	3.19	67.34	15.86		150.0	
10141- CAC	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	X	3.33	67.58	16.07	0.00	150.0	±9.6 %
		Y	3.37	67.75	16.23		150.0	
		Z	3.32	67.56	16.09		150.0	
10142- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	X	1.77	68.44	15.19	0.00	150.0	± 9.6 %
		Υ	1.85	69.19	15,67		150.0	
		Z	1.75	68.38	15.13		150.0	
10143- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	×	2.28	69.18	15.08	0.00	150.0	± 9.6 %
		Υ	2.37	69.74	15:46		150.0	
		Z	2.25	69.10	14.98		150.0	
10144- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	X	1.90	65.81	12.85	0.00	150.0	±9.6 %
		Υ	1.97	66.25	13.19		150.0	
		Z	1.87	65.68	12.71		150.0	
10145- CAD	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	Х	0.75	61.28	7.87	0.00	150.0	±9.6 %
		Y	0.79	61.77	8.31		150.0	
		Z	0.72	60.96	7.53		150.0	
10146- CAD	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	Х	0.94	60.26	6.31	0.00	150.0	±9.6 %
		Υ	0.97	60.64	6.68		150.0	
7.2.7		Z	0.88	60.00	6.02		150.0	
10147- CAD	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	X	0.98	60.58	6.58	0.00	150.0	± 9.6 %
		Y	1.02	61.02	6.98		150.0	

EX3DV4- SN:3898 June 27, 2017

10149- CAC	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	×	2.73	67.39	15.75	0.00	150.0	± 9.6 %
		Y	2.78	67.65	15.96		150.0	
		2	2.72	67.37	15.75		150.0	
10150- CAC	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	Х	2.86	67.50	15.84	0.00	150.0	±9.6 %
	-	Y	2.90	67.73	16.03		150.0	
		2	2.85	67.49	15,84		150.0	
10151- CAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	5.53	75.34	19.83	3.98	65.0	±9.6 %
		Y	5.61	76:00	20.31		65.0	
		Z	5.08	74:50	19.70		65.0	
10152- CAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	Х	5.02	71:45	18.44	3.98	65.0	± 9.6 %
		Y	5.02	71.77	18.77		65.0	
		Z	4,68	70.65	18.22		65.0	
10153- CAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	×	5.43	72.70	19.38	3.98	65.0	±9.6 %
		Y	5.41	72.94	19.67		65.0	
		Z	5.06	71.88	19.17		65.0	
10154- CAD	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	x	2.05	68.86	16.15	0.00	150.0	± 9.6 %
		Υ	2.12	69.44	16.53		150.0	
		Z	2.04	68.82	16.14		150.0	
10155- CAD	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	×	2.49	68.81	16.03	0.00	150.0	±9.6 %
		Y	2.54	69.14	16.28		150.0	
		Z	2.48	68:84	16.03		150.0	
10156- CAD	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	Х	1.58	68.16	14.58	0.00	150,0	± 9.6 %
		Y	1.68	69.02	15.13		150.0	
		Z	1.56	68.05	14.47		150.0	
10157- CAD	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	×	1.70	65.93	12.48	0.00	150.0	± 9.6 %
		Ý	1.78	66.49	12.89		150.0	
		Z	1.66	65.72	12.29		150.0	
10158- CAD	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	X	2.64	69.08	16.22	0.00	150.0	± 9.6 %
		Y	2.69	69.36	16.44		150.0	
		Z	2.64	69.12	16.21		150.0	
10159- CAD	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	×	1.78	66.26	12.68	0.00	150.0	±9.6 %
		Y	1.86	66.85	13,10		150.0	
		Z	1.74	66.02	12:46		150.0	
10160- CAC	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	Х	2,56	68.64	16.25	0.00	150.0	± 9.6 %
		Y	2.63	69.06	16.53		150.0	
		Z	2.55	68.63	16.25		150.0	
10161- CAC	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	х	2.75	67.48	15.71	0.00	150.0	±9.6 %
		Y	2.79	67.73	15.91		150.0	
		Z	2.74	67.48	15.70		150.0	
10162- CAC	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	Х	2.86	67.74	15.86	0.00	150.0	± 9.6 %
		Y	2.90	67.97	16.06		150.0	
		Z	2.85	67.74	15.86		150.0	
10166- CAD	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	×	3.15	68.95	18.91	3.01	150,0	±9.6 %
		Y	3.17	69,13	19.12		150.0	
		Z	3.08	68.65	18.81		150.0	
10167- CAD	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	Х	3.77	72.21	19.51	3.01	150.0	± 9.6 %
		Y	3.79	72.51	19.79		150.0	

10168- CAD	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	X	4.40	75.66	21.46	3.01	150.0	±9.6 %
		Y	4.36	75.65	21.58		150.0	
		Z	4.22	75.12	21.31		150.0	
10169- CAC	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	Х	2.61	67.74	18.35	3.01	150.0	± 9.6 %
		Y	2.59	67.78	18.53		150.0	
		Z	2.55	67.29	18.17		150.0	
10170- CAC	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	X	3.58	74.69	21.32	3.01	150.0	± 9.6 %
		Y	3.46	74.45	21.40		150.0	
		Z	3.38	73.77	21.02		150.0	
10171- AAC	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	×	2.81	69.59	17.94	3.01	150.0	±9.6 %
		Y	2.78	69.86	18.27		150.0	
		Z	2.67	68.85	17.66		150.0	
10172- CAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	3.79	76.98	22.56	6.02	65.0	± 9.6 %
		Y	3.93	78.65	23.67		65.0	
		Z	2.71	71.26	20.45		65.0	
10173- CAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	Х	6.07	83.26	22.96	6.02	65.0	±9.6 %
		Y	6.67	86.09	24.37		65.0	
		Z	4.93	80.81	22.46		65.0	
10174- CAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	X	3.48	74.02	19.09	6.02	65.0	± 9.6 %
		Υ	5.11	80.99	22.02		65.0	
		Z	2.54	69.95	17.79		65.0	
10175- CAD	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	2.58	67.41	18.08	3.01	150.0	±9.6 %
		Y	2.56	67.49	18.28		150.0	
		Z	2.52	66,97	17.90		150.0	
10176- CAD	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	×	3.58	74.71	21.34	3.01	150.0	± 9.6 %
		Y	3.47	74.48	21.41		150.0	
		Z	3.38	73.80	21.04		150.0	
10177- CAF	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	X	2.60	67.55	18.17	3.01	150.0	±9.6 %
		Y	2.58	67.61	18.36		150.0	
		Z	2.53	67.10	17.98		150.0	
10178- CAD	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM)	X	3.55	74.51	21.23	3.01	150.0	±9.6 %
		Y	3.44	74.31	21,32		150.0	
		Z	3.35	73.60	20.93		150.0	
10179- CAD	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	Х	3.14	71.91	19.46	3.01	150.0	± 9.6 %
		Y	3.09	72.04	19.71		150.0	
		Z	2.97	71.07	19.16		150.0	
10180- CAD	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM)	X	2.81	69.54	17.90	3.01	150.0	±9.6%
		Υ	2.78	69.82	18.24		150.0	
		Z	2.67	68.81	17.63		150.0	
10181- CAC	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	X	2.59	67.53	18.16	3.01	150.0	± 9.6 %
		Υ	2.57	67.60	18,35		150.0	
1902		Z	2.53	67.08	17.98		150.0	
10182- CAC	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	×	3.55	74.48	21.21	3.01	150.0	± 9.6 %
		Y	3.44	74.29	21.31		150.0	
		Z	3.35	73.57	20.91		150.0	
10183- AAB	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	X	2.80	69.52	17.89	3.01	150.0	±9.6 %
		Y	2.78	69.80	18.23		150.0	
		Z	2.67	68.78	17.61		150.0	