

Report No. : EED32K00091101 Page 1 of 45

TEST REPORT

Product : BLE MODULE

Trade mark : N/A

Model/Type reference : LH-8267M

Serial Number : N/A

Report Number : EED32K00091101 **FCC ID** : 2APP2-LH8267M

Date of Issue : May 24, 2018

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

Longhorn Intelligent Tech Co., Ltd Longhorn Hi-Tech Estate, Gongyeyuan rd., Dalang Street, 518109 Longhua New District, Shenzhen, Guangdong, P.R. China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

Tom- Chen

Tom chen (Test Project)

Reviewed by:

Date:

Kevin yang (Reviewer)

ReJm

May 24, 2018

Kevin Lan (Project Engineer)

Sheek Luo (Lab supervisor)

Check No.:2447676659

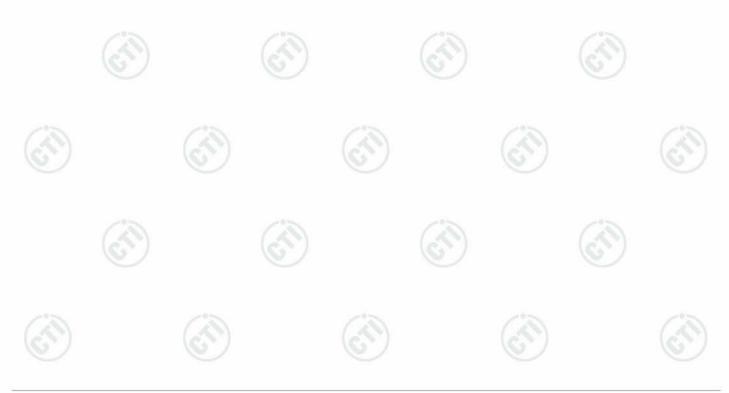
...ay 21, 2010

Report Seal

Page 2 of 45

2 Version

Version No.	Date	16	Description	·/
00	May 24, 2018		Original	
	100	100	793	/15
		(65)		



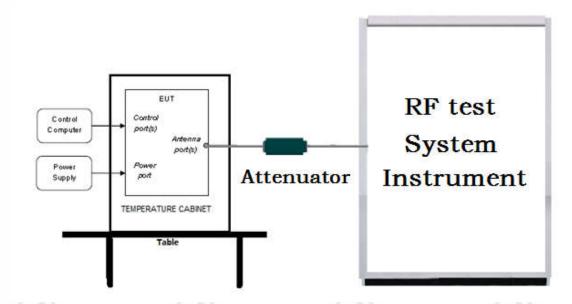
Report No.: EED32K00091101 Page 3 of 45

3 Test Summary

165t Sullillary			_	
Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS	
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS	
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS	
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	

Test according to ANSI C63.4-2014 & ANSI C63.10-2013. The tested sample(s) and the sample information are provided by the client.

_	Content						
1 0	OVER PAGE		•••••		•••••		1
2 V	/ERSION	•••••			•••••		2
3 T	EST SUMMARY	•••••	•••••	•••••	•••••	•••••	3
4 C	CONTENT	•••••		•••••		•••••	4
5 T	EST REQUIREMENT	•••••		•••••		•••••	5
	5.1 TEST SETUP						5
	5.1.1 For Conducted tes						
	5.1.2 For Radiated Emis						
	5.1.3 For Conducted Em						
,	5.2 TEST ENVIRONMENT						
;	5.3 TEST CONDITION						6
6 0	SENERAL INFORMATION.		•••••	••••••	•••••	•••••	7
	6.1 CLIENT INFORMATION						
	6.2 GENERAL DESCRIPTION (
	6.3 PRODUCT SPECIFICATION						
	6.4 DESCRIPTION OF SUPPOR						
	6.5 TEST LOCATION						
	6.6 DEVIATION FROM STAND						
	6.7 ABNORMALITIES FROM S						
	6.8 OTHER INFORMATION RE						
	6.9 MEASUREMENT UNCERTA						
7 E	EQUIPMENT LIST		•••••	•••••	•••••	•••••	9
8 F	RADIO TECHNICAL REQU						
	Appendix A): 6dB Occup	oied Bandwidth	<u> </u>				12
	Appendix B): Conducted	Peak Output Po	wer				14
	Appendix C): Band-edge						
	Appendix D): RF Conduc						
	Appendix E): Power Spe						
	Appendix F): Antenna Re						
	Appendix G): AC Power						
	Appendix H): Restricted						
	Appendix I): Radiated Sp	purious Emissions	3		•••••		32
PH	OTOGRAPHS OF TEST S	ETUP	•••••	•••••	••••••	•••••	37
РН	OTOGRAPHS OF EUT CO	ONSTRUCTIONA	L DETAILS	•••••	••••••	•••••	40



Report No. : EED32K00091101 Page 5 of 45

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

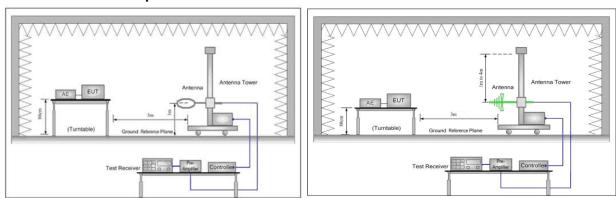


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

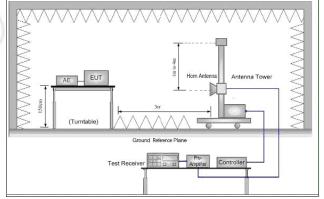
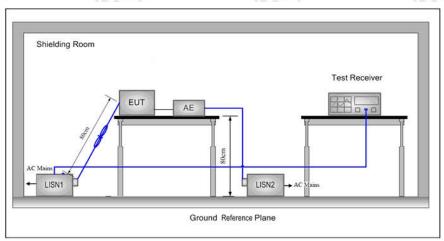
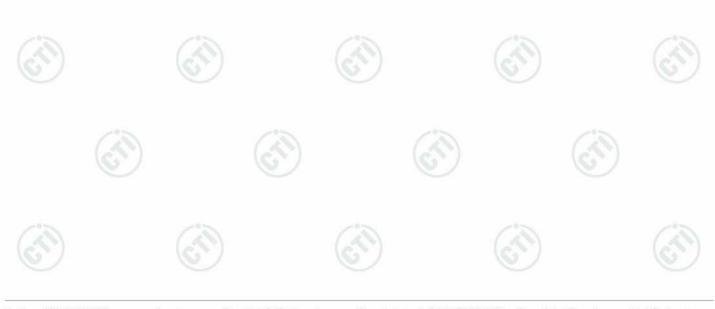



Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup


5.2 Test Environment

Operating Environment:			
Temperature:	21.7 °C		
Humidity:	52% RH	Disc.	1900
Atmospheric Pressure:	1010mbar		

5.3 Test Condition

Test channel:

	Test Mode	Tx/Rx	RF Channel					
١		IX/RX	Low(L)	Middle(M)	High(H)			
1	05014		Channel 1	Channel 20	Channel 40			
	GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz			
	TX mode:	TX mode: The EUT transmitted the continuous signal at the specific channel(s).						

6 General Information

6.1 Client Information

Applicant:	Longhorn Intelligent Tech Co., Ltd
Address of Applicant:	Longhorn Hi-Tech Estate, Gongyeyuan rd., Dalang Street, 518109 Longhua New District, Shenzhen, Guangdong, P.R. China
Manufacturer:	Longhorn Intelligent Tech Co., Ltd
Address of Manufacturer:	Longhorn Hi-Tech Estate, Gongyeyuan rd., Dalang Street, 518109 Longhua New District, Shenzhen, Guangdong, P.R. China
Factory:	Longhorn Intelligent Tech Co., Ltd
Address of Factory:	Longhorn Hi-Tech Estate, Gongyeyuan rd., Dalang Street, 518109 Longhua New District, Shenzhen, Guangdong, P.R. China

6.2 General Description of EUT

Product Name:	BLE MODULE			
Model No.(EUT):	LH-8267M			
Trade mark:	N/A	(10)		(3)
EUT Supports Radios application:	BT4.0 Signal mode, 2402-2480MHz	0.		6.
Power Supply:	DC 3.3 V			
Sample Received Date:	Apr. 17, 2018		/3	
Sample tested Date:	Apr. 17, 2018 to May. 23, 2018		(65)	

6.3 Product Specification subjective to this standard

Operation F	requency:	2402MH	z~2480MHz		6-		229
Bluetooth V	/ersion:	4.0		\			(3)
Modulation	Technique:	DSSS	DSSS				
Modulation	Type:	GFSK					
Number of	Channel:	40					
Hardware \	/ersion:	REV.B(m	nanufacturer d	eclare)		/38	\
Firmware v	ersion:	V1.0(manufacturer declare))	
Sample Typ	oe:	Mobile pi	roduction		f		f
Test power	grade:	N/A					
Test softwa	re of EUT:	(manufac	turer declare)	wtcdb.exe			-05
Antenna Ty	pe and Gain:	Type: PC	B Antenna ar	nd Gain: 0dB	i (25)		
Test Voltag	e:	DC 3.3 V	and AC 120V	/, 60Hz			6
	requency each	l .		<u> </u>			
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1-0-	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

Report No. : EED32K00091101 Page 8 of 45

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

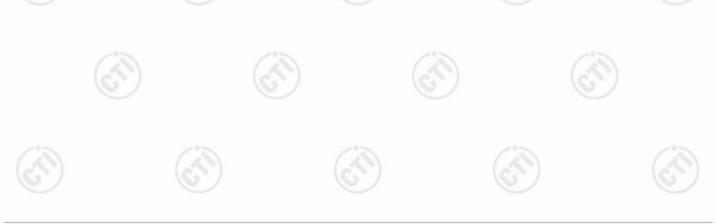
Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164.

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

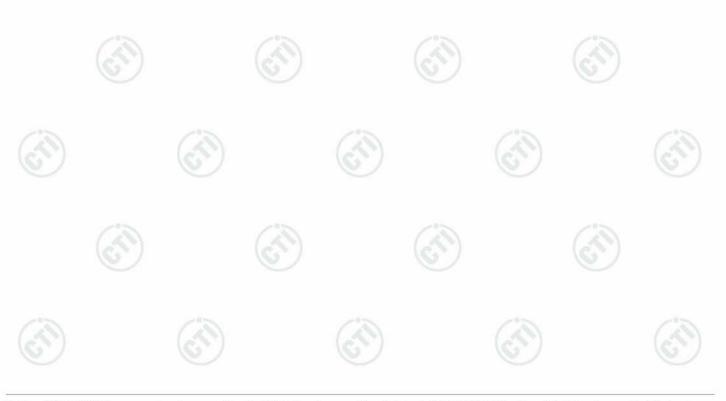

None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	ltem	Measurement Uncertainty
4	Radio Frequency	7.9 x 10 ⁻⁸
2	RF power, conducted	0.31dB (30MHz-1GHz)
	Tri power, conducted	0.57dB (1GHz-18GHz)
3	Radiated Spurious emission test	4.5dB (30MHz-1GHz)
3	radiated opunous emission test	4.8dB (1GHz-12.75GHz)
4	Conduction emission	3.6dB (9kHz to 150kHz)
	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%



Report No. : EED32K00091101 Page 9 of 45

7 Equipment List

			1 202	1. 5	2.1	
RF test system						
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Signal Generator	Keysight	E8257D	MY53401106	03-13-2018	03-12-2019	
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-13-2018	03-12-2019	
Signal Generator	Keysight	N5182B	MY53051549	03-13-2018	03-12-2019	
High-pass filter	Sinoscite	FL3CX03WG 18NM12- 0398-002		01-10-2018	01-09-2019	
DC Power	Keysight	E3642A	MY54426035	03-13-2018	03-12-2019	
power meter & power sensor	R&S	OSP120	101374	03-13-2018	03-12-2019	
RF control unit	JS Tonscend	JS0806-2	158060006	03-13-2018	03-12-2019	
Temperature / Humidity Indicator	Defu	TH128		07-08-2017	07-07-2018	

/ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	S - 1				1/8/2		
Conducted disturbance Test							
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Receiver	R&S	ESCI	100009	06-14-2017	06-13-2018		
Temperature/ Humidity Indicator	TAYLOR	1451	1905	05-05-2017	05-04-2018		
Temperature/ Humidity Indicator	TAYLOR	1451	1905	05-02-2018	05-01-2019		
LISN	schwarzbeck	NNLK8121	8121-529	06-13-2017	06-12-2018		

Page 10 of 45

7.3	/"		100	/*			
3M Semi/full-anechoic Chamber							
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
3MChamber&Accessory Equipment	TDK	SAC-3		06-04-2016	06-03-2019		
Spectrum Analyzer	Agilent	E4443A	MY45300910	11-16-2017	11-15-2018		
Receiver	R&S	ESCI	100435	06-14-2017	06-13-2018		
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-618	08-15-2017	08-14-2018		
Horn Antenna	ETS-LINGREN	3117	00057407	07-20-2015	07-18-2018		
Spectrum Analyzer	R&S	FSP40	100416	06-13-2017	06-12-2018		
Microwave Preamplifier	JS Tonscend	EMC051845 SE	980380	01-19-2018	01-18-2019		
Loop Antenna	ETS-LINDGREN	6502	00071730	06-22-2017	06-21-2019		
Double ridge horn	A.H.SYSTEMS	SAS-574	6042	06-30-2015	06-28-2018		
Pre-amplifier	A.H.SYSTEMS	PAP-1840-60	6041	06-30-2015	06-28-2018		
Temperature/ Humidity Indicator	TAYLOR	1451	1905	05-05-2017	05-04-2018		
Temperature/ Humidity Indicator	TAYLOR	1451	1905	05-02-2018	05-01-2019		
Cable line	Fulai(7M)	SF106	5219/6A	01-09-2018	01-08-2019		
Cable line	Fulai(7M)	SF106	5219/6A	01-09-2018	01-08-2019		
Cable line	Fulai(6M)	SF106	5220/6A	01-10-2018	01-10-2018		
Cable line	Fulai(6M)	SF106	5220/6A	01-09-2018	01-08-2019		
Cable line	Fulai(3M)	SF106	5216/6A	01-10-2018	01-10-2018		
Cable line	Fulai(3M)	SF106	5216/6A	01-09-2018	01-08-2019		
Cable line	Fulai(3M)	SF106	5217/6A	01-09-2018	01-08-2019		
Cable line	Fulai(3M)	SF106	5217/6A	01-09-2018	01-08-2019		
band rejection filter	Sinoscite	FL5CX01CA 09CL12- 0395-001		11-06-2017	11-05-2018		
band rejection filter	Sinoscite	FL5CX01CA 08CL12- 0393-001		11-06-2017	11-05-2018		
band rejection filter	Sinoscite	FL5CX02CA 04CL12- 0396-002	(cir)	11-06-2017	11-05-2018		
band rejection filter	Sinoscite	FL5CX02CA 03CL12- 0394-001		11-06-2017	11-05-2018		

Report No.: EED32K00091101 Page 11 of 45

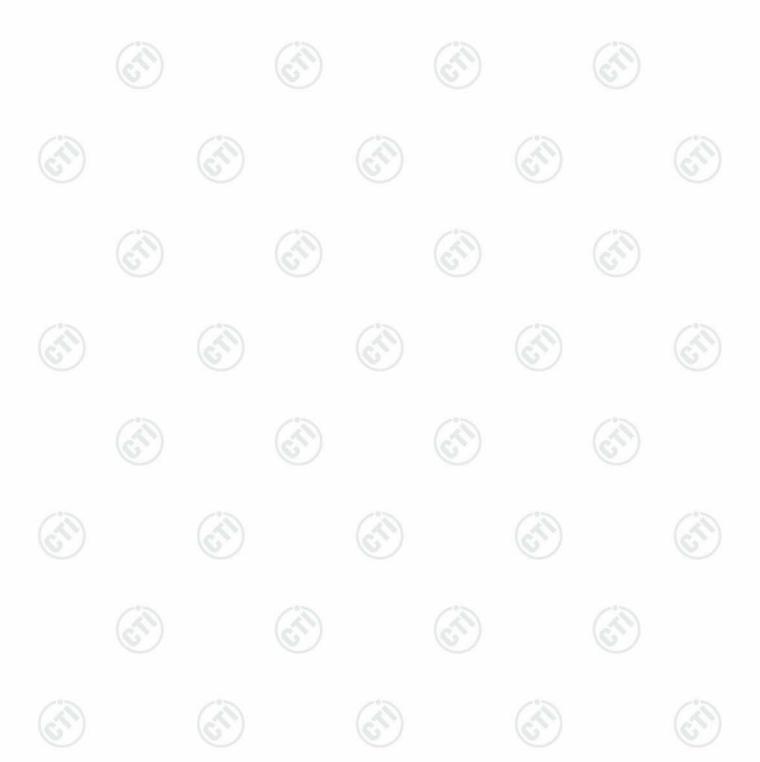
8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

oot itoouito moti				
Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)



Page 12 of 45

Appendix A): 6dB Occupied Bandwidth

Test Result

			L TOTAL D		
Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict	Remark
BLE	LCH	0.9649	2.4584	PASS	
BLE	MCH	1.018	2.5339	PASS	Peak
BLE	НСН	0.9896	2.5066	PASS	detector

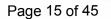
Test Graphs

Report No.: EED32K00091101

Appendix B): Conducted Peak Output Power

Test Result

3,300	3.300		
Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	6.739	PASS
BLE	MCH	6.557	PASS
BLE	HCH	6.761	PASS



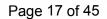
Test Graphs

Report No.: EED32K00091101

Page 16 of 45

Appendix C): Band-edge for RF Conducted Emissions

Result Table


Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
BLE	LCH	6.435	-52.549	-13.57	PASS
BLE	нсн	6.577	-42.096	-13.42	PASS

Test Graphs

Report No.: EED32K00091101

Ū

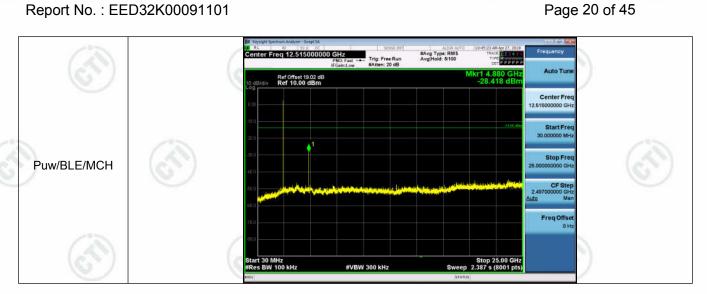
Appendix D): RF Conducted Spurious Emissions

Result Table

The first of the f				
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	6.163	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	5.951	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	нсн	6.277	<limit< td=""><td>PASS</td></limit<>	PASS

Report No.: EED32K00091101 Page 19 of 45

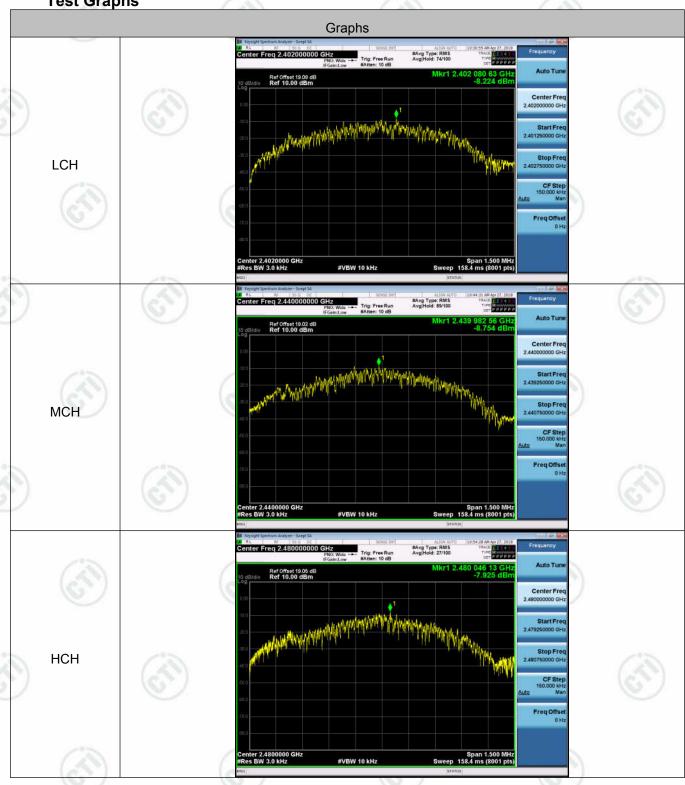
Test Graphs



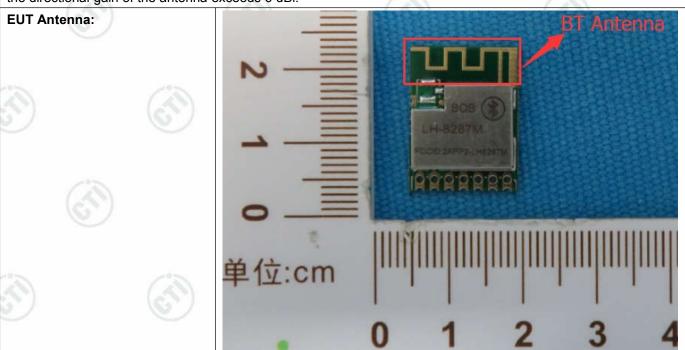
Appendix E): Power Spectral Density

Result Table

Mode	Channel	PSD [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
BLE	LCH	-8.224	8	PASS
BLE	MCH	-8.754	8	PASS
BLE	НСН	-7.925	8	PASS



Test Graphs


Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

Report No. : EED32K00091101 Page 24 of 45

Appendix G): AC Power Line Conducted Emission

Test Procedure: Test frequency range :150KHz-30MHz

- 1)The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu\text{H} + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3)The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Limit:

Fraguency range (MUz)	Limit (dBμV)					
Frequency range (MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				

^{*} The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

NOTE: The lower limit is applicable at the transition frequency

Measurement Data

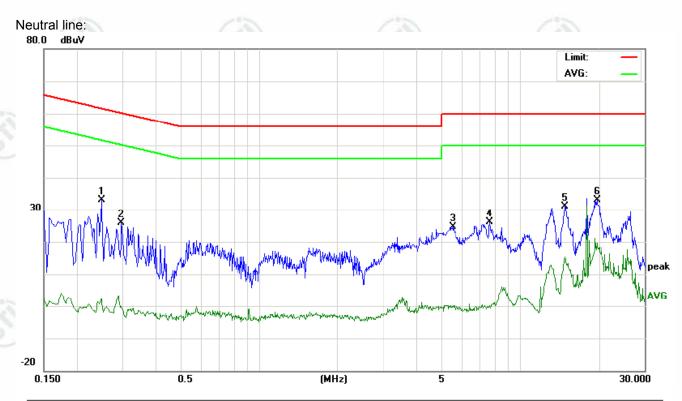
An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Page 25 of 45

20 0.150 0.5 (MHz) 5 30.000

No.	Freq.		ding_Le dBuV)	vel	Correct Factor	M	leasuren (dBuV)		Lin (dB			rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.2100	20.83	18.56	-7.88	9.72	30.55	28.28	1.84	63.20	53.20	-34.92	-51.36	Р	
2	0.2460	19.05	16.38	-6.64	9.74	28.79	26.12	3.10	61.89	51.89	-35.77	-48.79	Р	
3	6.9340	16.06	13.45	-9.87	9.62	25.68	23.07	-0.25	60.00	50.00	-36.93	-50.25	Р	
4	15.0220	21.69	19.41	4.81	10.01	31.70	29.42	14.82	60.00	50.00	-30.58	-35.18	Р	
5	18.0020	24.41	22.13	22.82	10.04	34.45	32.17	32.86	60.00	50.00	-27.83	-17.14	Р	
6	26.3060	17.97	15.24	5.55	10.21	28.18	25.45	15.76	60.00	50.00	-34.55	-34.24	Р	



Report No.: EED32K00091101 Page 26 of 45

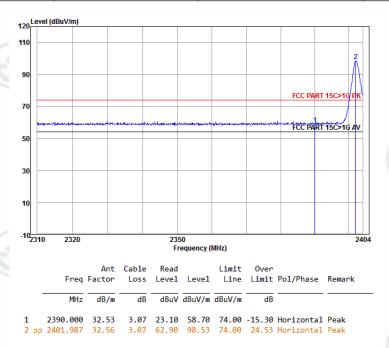
No.	Freq.		ding_Le dBuV)	vel	Correct Factor	M	leasuren (dBuV)		Lin (dBı			rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.2500	23.34	20.52	-7.38	9.74	33.08	30.26	2.36	61.75	51.75	-31.49	-49.39	Р	
2	0.2980	16.06	13.87	-9.97	9.78	25.84	23.65	-0.19	60.30	50.30	-36.65	-50.49	Р	
3	5.5220	15.12	12.42	-9.43	9.62	24.74	22.04	0.19	60.00	50.00	-37.96	-49.81	Р	
4	7.6580	16.44	14.10	-9.52	9.66	26.10	23.76	0.14	60.00	50.00	-36.24	-49.86	Р	
5	14.8940	21.12	19.08	5.40	10.01	31.13	29.09	15.41	60.00	50.00	-30.91	-34.59	Р	
6	19.6380	22.99	20.53	9.65	10.06	33.05	30.59	19.71	60.00	50.00	-29.41	-30.29	Р	

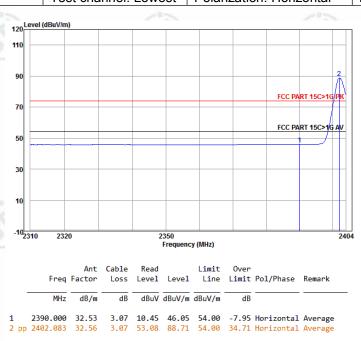
Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix H): Restricted bands around fundamental frequency (Radiated)

(Radiated)						
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Ab 2012 40115	Peak	1MHz	3MHz	Peak	105
	Above 1GHz	Peak	1MHz	10Hz	Average	
Test Procedure:	a. The EUT was placed of at a 3 meter semi-aned determine the position. b. The EUT was set 3 me was mounted on the toto. c. The antenna height is determine the maximular polarizations of the antenna was tuned was turned from 0 deg. e. The test-receiver systems and width with Maximular f. Place a marker at the	on the top of a rotal choic camber. The of the highest radieters away from the pop of a variable-heil varied from one man value of the field tenna are set to manission, the EUT was to heights from 1 rees to 360 degreem was set to Peal um Hold Mode.	table wa iation. e interfere ight anter leter to fo d strength ake the m was arrang meter to es to find k Detect I	s rotated 3 ence-recei nna tower. ur meters n. Both hor neasureme ged to its v 4 meters a the maxin function a	wing antenna above the gro- izontal and vi- ent. worst case ar and the rotata num reading. nd Specified	to , which ound t ertical and the
	frequency to show con bands. Save the spect for lowest and highest	npliance. Also mea rum analyzer plot.	asure any	emissions	s in the restric	
	bands. Save the spect for lowest and highest Above 1GHz test proceds g. Different between above to fully Anechoic Channel 18GHz the distance is h. Test the EUT in the low. i. The radiation measure Transmitting mode, an	npliance. Also mea rum analyzer plot. channel ure as below: we is the test site, on the change form to 1 meter and table towest channel, the ements are perform d found the X axis	change fr table 0.8 is 1.5 met e Highest ned in X, is	om Semi- meter to 1 er). channel Y, Z axis p	Anechoic Ch. .5 meter(Abo	ambe ove
imit:	bands. Save the spect for lowest and highest Above 1GHz test proceding. G. Different between above to fully Anechoic Channel 18GHz the distance is h. Test the EUT in the low in the radiation measure Transmitting mode, and j. Repeat above procedure.	npliance. Also mea rum analyzer plot. channel ure as below: we is the test site, on the change form to 1 meter and table towest channel, the ements are perform d found the X axis ures until all freque	change fr table 0.8 is 1.5 met e Highest ned in X, s positioni	emissions or each por each por semi-meter to 1 er). channel Y, Z axis por grant was a control was a	Anechoic Ch. .5 meter(Abo	ambe ove
imit:	bands. Save the spect for lowest and highest Above 1GHz test proceds g. Different between above to fully Anechoic Channel 18GHz the distance is h. Test the EUT in the low. i. The radiation measure Transmitting mode, an	npliance. Also mea rum analyzer plot. channel ure as below: we is the test site, on the change form to 1 meter and table towest channel, the ements are perform d found the X axis	change fr table 0.8 is 1.5 met e Highest ned in X, s positioni	emissions or each por	Anechoic Ch. 5 meter(Abo	ambe ove
imit:	bands. Save the spect for lowest and highest Above 1GHz test proceding. Different between about to fully Anechoic Chammat 18GHz the distance is h. Test the EUT in the low in the radiation measure Transmitting mode, and j. Repeat above procedure. Frequency	npliance. Also mearum analyzer plot. channel ure as below: we is the test site, on the change form to the channel of the chan	change fr table 0.8 is 1.5 met e Highest ned in X, s positioni	om Semi- meter to 1 er). channel Y, Z axis p ng which interpretained was	Anechoic Ch. 5 meter (Abo	ambe ove
imit:	bands. Save the spect for lowest and highest Above 1GHz test proceding. Different between above to fully Anechoic Chamman 18GHz the distance is how in the left of the result of the rediation measure and the rediation measure	npliance. Also mearum analyzer plot. channel ure as below: ve is the test site, on the change form to the second table owest channel, the ements are performed found the X axis tres until all freque Limit (dBµV/m 40.0)	change fr table 0.8 is 1.5 met e Highest ned in X, s positioni	om Semi- meter to 1 rer). channel Y, Z axis p ng which i asured wa Rer Quasi-pe	Anechoic Ch. S meter (Abo cositioning for t is worse cas as complete. mark eak Value	ambe ove
Limit:	bands. Save the spect for lowest and highest Above 1GHz test proceding. Different between above to fully Anechoic Chammat 18GHz the distance is how in the result of the	npliance. Also mearum analyzer plot. channel ure as below: ve is the test site, on the change form to the second table owest channel, the ments are performed found the X axis tres until all freques Limit (dBµV/m 40.0 43.5	change fr table 0.8 is 1.5 met e Highest ned in X, s positioni	om Semi- meter to 1 er). channel Y, Z axis p ng which i asured wa Rer Quasi-pe Quasi-pe	Anechoic Ch. 5 meter(Aboositioning for tis worse cases complete. mark eak Value eak Value	ambe ove
Limit:	bands. Save the spect for lowest and highest Above 1GHz test proceding. Different between above to fully Anechoic Chammat 18GHz the distance is how in the left in the left. The radiation measure and the radiation measure and the requency and the requence and the requency and the requence and t	npliance. Also mearum analyzer plot. channel ure as below: ve is the test site, on the change form to the test site of the test site, on the change form to the test site of the test site. The test site of the test site of the test site of the test site. The test site of the te	change fr table 0.8 is 1.5 met e Highest ned in X, s positioni	om Semi- meter to 1 er). channel Y, Z axis p ng which i asured wa Rer Quasi-pe Quasi-pe Quasi-pe	Anechoic Ch. 5 meter (Aboversitioning for t is worse cases complete. mark eak Value eak Value	ambe ove

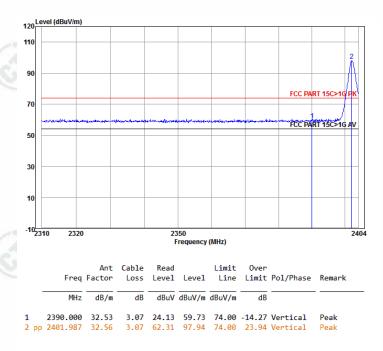


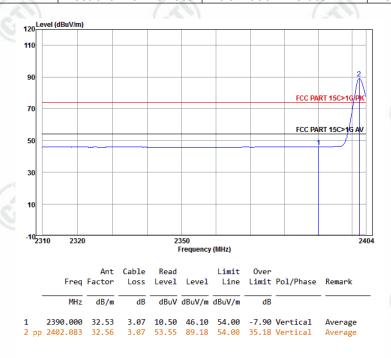

Report No. : EED32K00091101 Page 28 of 45

Test plot as follows:

Worse case mode:	GFSK		(67)
Frequency: 2402MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

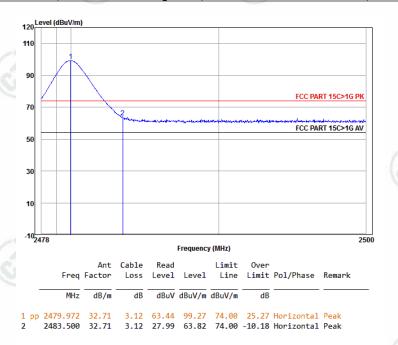
Worse case mode:	GFSK			
Frequency: 2402MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Average	

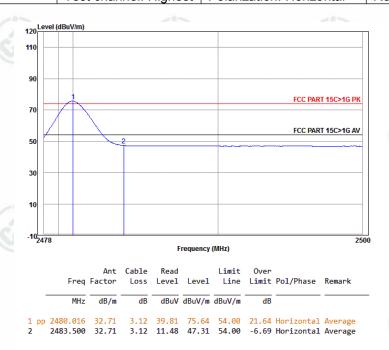




Report No. : EED32K00091101 Page 29 of 45

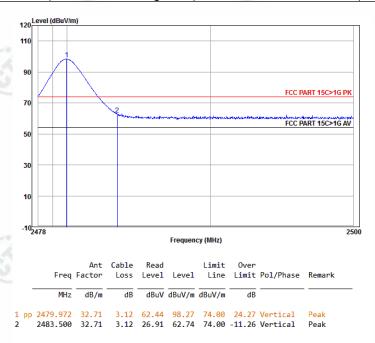
Worse case mode:	GFSK		
Frequency: 2402MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak

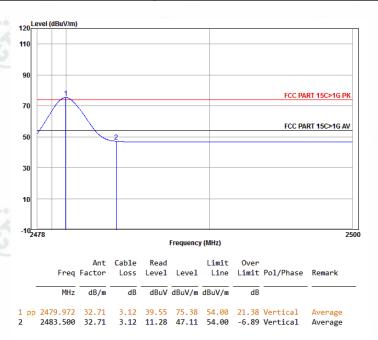

Worse case mode:	GFSK			
Frequency: 2402MHz	Test channel: Lowest	Polarization: Vertical	Remark: Average	



D	\sim		4 -
Page	311	α	45

Worse case mode:	GFSK		
Frequency: 2480MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak


Worse case mode:	GFSK			
Frequency: 2480MHz	Test channel: Highest	Polarization: Horizontal	Remark: Average	



Report No. : EED32K00091101 Page 31 of 45

Worse case mode:	GFSK	(20)	(25)	
Frequency: 2480MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak	

Worse case mode:	GFSK		
Frequency: 2480MHz	Test channel: Highest	Polarization: Vertical	Remark: Average

Note: The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

Appendix I): Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Abovo 10Uz	Peak	1MHz	3MHz	Peak	
(0,	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

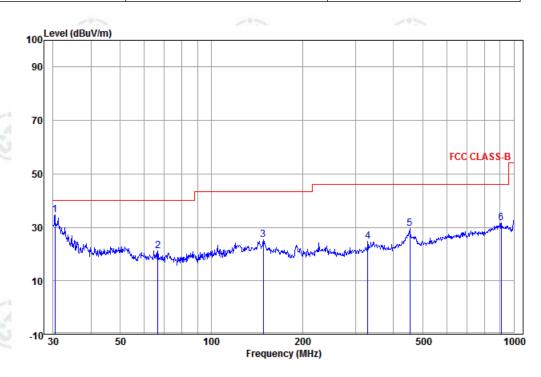
Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

	- 11	n	١ı	t:
ш	-11	п	ш	ι.

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	/05	30
1.705MHz-30MHz	30	-		30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

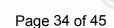
Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.



Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

30MHz~1GHz (QP)			1
Test mode:	Transmitting	Vertical	

	Freq		Cable Loss				Over Limit	Pol/Phase	Remark
-	MHz	dB/m	dB	dBuV	dBuV/m	dBu V/m	dB		
1 pp	30.424	11.99	0.09	22.56	34.64	40.00	-5.36	Vertical	QP
2	66.499	11.30	0.24	9.78	21.32	40.00	-18.68	Vertical	QP
3	148.441	8.90	0.61	15.82	25.33	43.50	-18.17	Vertical	QP
4	329.039	14.00	1.22	9.43	24.65	46.00	-21.35	Vertical	QP
5	452.720	16.24	1.47	11.76	29.47	46.00	-16.53	Vertical	QP
6	909.667	22.08	2.46	7.22	31.76	46.00	-14.24	Vertical	QP



Page 35 of 45

Transmitter Emission above 1GHz

Worse case mode:		GFSK		Test channel:		Lowest	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1038.921	29.81	1.58	44.63	49.22	35.98	74.00	-38.02	Pass	H
1565.200	30.99	2.37	43.92	47.76	37.20	74.00	-36.80	Pass	ЭН
4804.000	34.69	5.98	44.60	48.54	44.61	74.00	-29.39	Pass	Н
5821.207	35.77	7.26	44.52	49.05	47.56	74.00	-26.44	Pass	Н
7206.000	36.42	6.97	44.77	49.78	48.40	74.00	-25.60	Pass	Н
9608.000	37.88	6.98	45.58	46.06	45.34	74.00	-28.66	Pass	Н
1309.737	30.48	2.03	44.23	48.41	36.69	74.00	-37.31	Pass	V
1630.264	31.11	2.45	43.85	47.79	37.50	74.00	-36.50	Pass	V
4804.000	34.69	5.98	44.60	54.86	50.93	74.00	-23.07	Pass	V
5986.509	35.89	7.43	44.50	48.89	47.71	74.00	-26.29	Pass	V
7206.000	36.42	6.97	44.77	47.58	46.20	74.00	-27.80	Pass	V
9608.000	37.88	6.98	45.58	46.71	45.99	74.00	-28.01	Pass	V

Worse case mode:		GFSK		Test channel:		Middle	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1138.626	30.07	1.76	44.48	48.47	35.82	74.00	-38.18	Pass	- H
1514.252	30.90	2.31	43.98	48.19	37.42	74.00	-36.58	Pass	H)
4880.000	34.85	6.13	44.60	46.98	43.36	74.00	-30.64	Pass	H
6577.752	36.20	7.29	44.56	49.32	48.25	74.00	-25.75	Pass	Н
7320.000	36.43	6.85	44.87	46.78	45.19	74.00	-28.81	Pass	Н
9760.000	38.05	7.12	45.55	47.68	47.30	74.00	-26.70	Pass	Н
1273.572	30.40	1.97	44.28	48.05	36.14	74.00	-37.86	Pass	V
1529.749	30.93	2.33	43.96	48.41	37.71	74.00	-36.29	Pass	V
4880.000	34.85	6.13	44.60	54.33	50.71	74.00	-23.29	Pass	V
5986.509	35.89	7.43	44.50	48.70	47.52	74.00	-26.48	Pass	V
7320.000	36.43	6.85	44.87	49.56	47.97	74.00	-26.03	Pass	V
9760.000	38.05	7.12	45.55	45.86	45.48	74.00	-28.52	Pass	V

- 2.5%		J-070		-2187%			21%		
Worse case mode:		GFSK		Test channel:		Highest	Highest Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1185.958	30.19	1.84	44.40	47.82	35.45	74.00	-38.55	Pass	→ H
1565.200	30.99	2.37	43.92	47.77	37.21	74.00	-36.79	Pass	(H)
4960.000	35.02	6.29	44.60	46.39	43.10	74.00	-30.90	Pass	H
6561.030	36.19	7.30	44.56	48.63	47.56	74.00	-26.44	Pass	Н
7440.000	36.45	6.73	44.97	48.59	46.80	74.00	-27.20	Pass	Н
9920.000	38.22	7.26	45.52	45.66	45.62	74.00	-28.38	Pass	Н
1182.943	30.18	1.83	44.41	47.78	35.38	74.00	-38.62	Pass	V
1388.708	30.65	2.14	44.13	48.25	36.91	74.00	-37.09	Pass	V
4960.000	35.02	6.29	44.60	54.18	50.89	74.00	-23.11	Pass	V
5806.408	35.76	7.25	44.52	49.83	48.32	74.00	-25.68	Pass	V
7440.000	36.45	6.73	44.97	46.38	44.59	74.00	-29.41	Pass	V
9920.000	38.22	7.26	45.52	47.11	47.07	74.00	-26.93	Pass	V

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

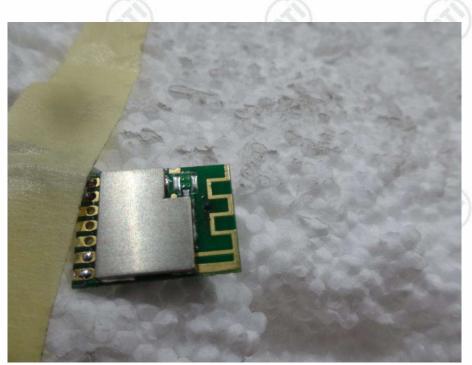
2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

PHOTOGRAPHS OF TEST SETUP

Test model No.: LH-8267M

Radiated spurious emission Test Setup-1(Below 30MHz)

Radiated spurious emission Test Setup-2(30MHz-1GHz)

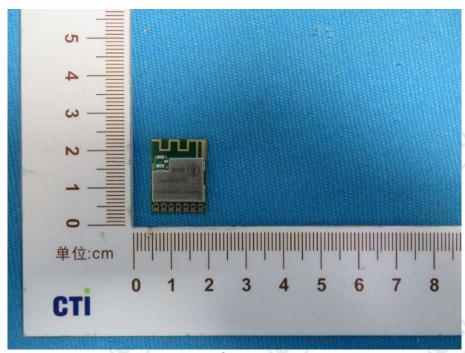


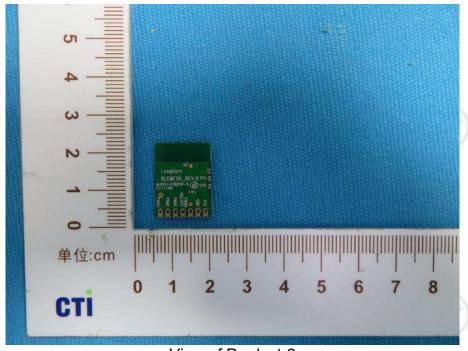
Page 38 of 45

Radiated spurious emission Test Setup-3(Above 1GHz)

Close-up Test Setup

Page 39 of 45



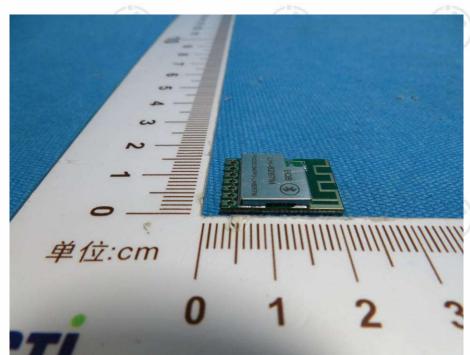

Report No. : EED32K00091101 Page 40 of 45

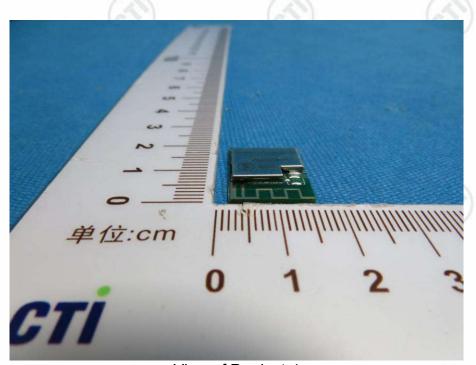
PHOTOGRAPHS OF EUT Constructional Details

Test model No.: LH-8267M

View of Product-1

View of Product-2

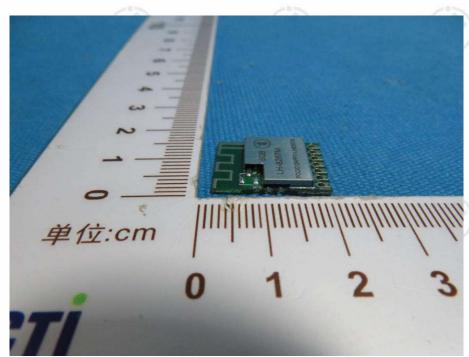


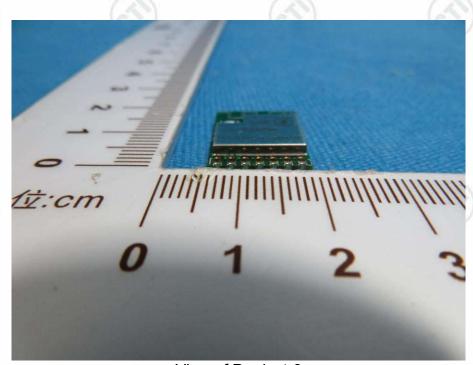


Report No. : EED32K00091101 Page 41 of 45

View of Product-3

View of Product-4

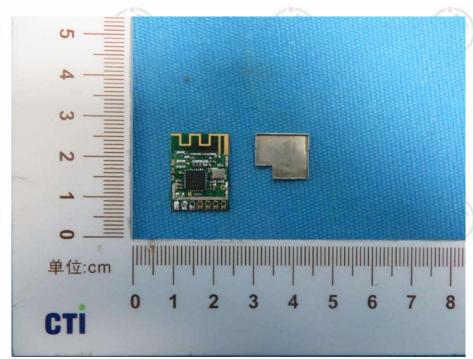


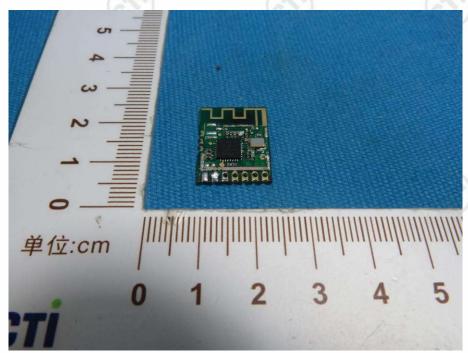


Report No. : EED32K00091101 Page 42 of 45

View of Product-5

View of Product-6

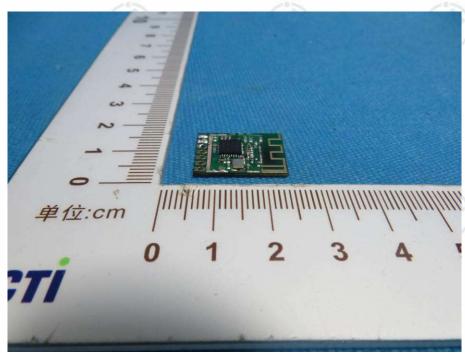


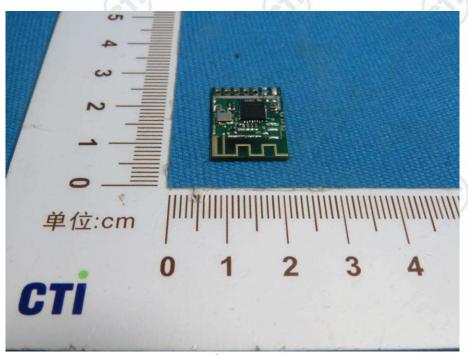


Report No. : EED32K00091101 Page 43 of 45

View of Product-7

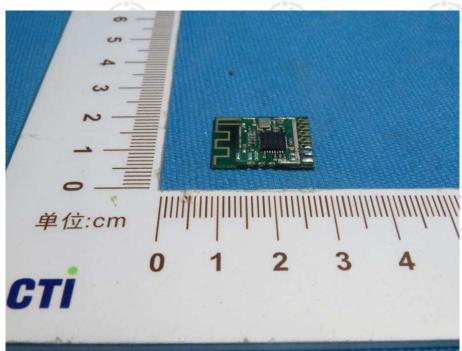
View of Product-8





View of Product-9

View of Product-10





Report No. : EED32K00091101 Page 45 of 45

View of Product-11

View of Product-12

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.