TEST REPORT

Dt&C Co., Ltd.

42, Yurim-ro, 154Beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 17042 Tel: 031-321-2664, Fax: 031-321-1664

1. Report No: DRTFCC2405-0052

2. Customer

• Name : Sunny Wave Tech Co., Ltd.

• Address (FCC): 106-405-1, 50, UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, Republic of Korea

Address (IC) : 4F, Tefex Bldg, 7 Dongsan-ro, Seocho-gu Seoul 06781 Korea (Republic Of)

3. Use of Report: FCC & IC Certification

4. Product Name / Model Name : DOGSPLAY / DPT156G101BL

FCC ID: 2BCMN-DPT156G101

IC: 31319-DPT156G101

5. FCC Regulation(s): Part 15.247

IC Standard(s): RSS-247 Issue 3, RSS-Gen Issue 5

Test Method used: ANSI C63.10-2013, KDB789033 D02v02r01, KDB662911 D01v02r01

6. Date of Test: 2024.04.08 ~ 2024.04.30

8. Testing Environment: See appended test report.

9. Test Result: Refer to the attached test result.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

This test report is not related to KOLAS accreditation.

Affirmation

Tested by

Name: SeokHo Han

Technical Manager

Name: JaeJin Lee

2024.05.28.

Dt&C Co., Ltd.

This test report is a general report that does not use the KOLAS accreditation mark and is not related to KS Q ISO/IEC 17025 and KOLAS accreditation.

If this report is required to confirmation of authenticity, please contact to report@dtnc.net

IC: 31319-DPT156G101

Test Report Version

Test Report No.	Date	Description	Revised by	Reviewed by
DRTFCC2405-0052	May. 28, 2024	Initial issue	SeokHo Han	JaeJin Lee

TRF-RF-236(05)210316

Pages: 2 / 37

Table of Contents

1. GENERAL INFORMATION	4
1.1. Description of EUT	4
1.2. Declaration by the applicant / manufacturer	4
1.3 Testing Laboratory	5
1.4 Test Environment	5
1.5 Measurement Uncertainty	5
1.6. Test Equipment List	6
2. Test Methodology	7
2.1. EUT Configuration	
2.2. EUT Exercise	7
2.3. General Test Procedures	7
2.4. Instrument Calibration	7
2.5. Description of Test Modes	8
3. Antenna Requirements	9
4. SUMMARY OF TESTS	
5. TEST RESULT	
5.1. Unwanted Emissions (Radiated)	
5.1.1. Test Setup	
5.1.2. Test Procedures	
5.1.3. Test Results	14
5.2. AC Power-Line Conducted Emissions	19
5.2.1. Test Setup	19
5.2.2. Test Procedures	19
5.2.3. Test Results	19
APPENDIX I	22
APPENDIX II	
APPENDIX III	26

IC: 31319-DPT156G101

FCC ID: 2BCMN-DPT156G101

1. GENERAL INFORMATION

1.1. Description of EUT

Equipment Class	Digital Transmission System (DTS)	
Product Name	DOGSPLAY	
Model Name(s)	DPT156G101BL, DPT156G101BK	
PMN(s)	DPT156G101BL, DPT156G101BK	
Firmware Version Identification Number	202403291441_686e7a5e7c	
EUT Serial Number	No Specified	
Power Supply	DC 12 V	
Modulation Technique	■ 802.11b: CCK, DSSS ■ 802.11g/n: OFDM	
Antenna Specification	Antenna Type: PCB Pattern Antenna Gain: Refer to the table below	

Band	SI	SISO	
24.114	ANT 1 (dBi)	ANT 2 (dBi)	Directional Gain (dBi)
2.4 GHz	2.03	2.08	5.07

Note 1. Directional gain (Correlated signal with unequal antenna gain and equal transmit power) 10 log [(10 G1/20 + 10 G2/20 + ... + 10 GN/20) 2 / Nant] dBi

1.2. Declaration by the applicant / manufacturer

N/A

TRF-RF-236(05)210316 Pages: 4 / 37

FCC ID: 2BCMN-DPT156G101

IC: 31319-DPT156G101

1.3 Testing Laboratory

Dt&C Co., Ltd.

The 3 m test site and conducted measurement facility used to collect the radiated data are located at the 42, Yurim-ro, 154beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 17042.

The test site complies with the requirements of Part 2.948 according to ANSI C63.4-2014.

- FCC & IC MRA Designation No. : KR0034

- ISED#: 5740A

www.dtnc.net		
Telephone	:	+ 82-31-321-2664
FAX	:	+ 82-31-321-1664

1.4 Test Environment

Ambient Condition	
Temperature	+21 °C ~ +24 °C
Relative Humidity	+41 % ~ +45 %

1.5 Measurement Uncertainty

The measurement uncertainties shown below were calculated in accordance with requirements of ANSI C63.4-2014 and ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

Parameter	Measurement uncertainty
Antenna-port conducted emission	1.0 dB (The confidence level is about 95 %, k = 2)
AC power-line conducted emission	3.4 dB (The confidence level is about 95 %, k = 2)
Radiated emission (1 GHz Below)	5.0 dB (The confidence level is about 95 %, k = 2)
Radiated emission (1 GHz ~ 18 GHz)	4.8 dB (The confidence level is about 95 %, k = 2)
Radiated emission (18 GHz Above)	5.7 dB (The confidence level is about 95 %, k = 2)

1.6. Test Equipment List

Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal.Date (yy/mm/dd)	S/N
Spectrum Analyzer	Agilent Technologies	N9020A	23/12/15	24/12/15	MY48010133
Spectrum Analyzer	Agilent Technologies	N9020A	23/06/23	24/06/23	US47360812
Spectrum Analyzer	Agilent Technologies	N9020A	23/06/23	24/06/23	MY46471622
Receiver	Rohde Schwarz	ESCI3	23/06/23	24/06/23	100798
DC Power Supply	Agilent Technologies	66332A	23/06/23	24/06/23	US37474125
DC Power Supply	SM techno	SDP30-5D	23/06/23	24/06/23	305DMG288
Multimeter	FLUKE	17B+	23/12/15	24/12/15	36390701WS
Signal Generator	Rohde Schwarz	SMBV100A	23/12/15	24/12/15	255571
Signal Generator	ANRITSU	MG3695C	23/12/15	24/12/15	173501
Thermohygrometer	BODYCOM	BJ5478	23/12/15	24/12/15	120612-1
Thermohygrometer	BODYCOM	BJ5478	23/12/15	24/12/15	120612-2
Thermohygrometer	BODYCOM	BJ5478	23/06/23	24/06/23	N/A
Loop Antenna	ETS-Lindgren	6502	23/11/09	24/11/09	00060496
Hybrid Antenna	Schwarzbeck	VULB 9160	23/12/15	24/12/15	3362
Horn Antenna	ETS-Lindgren	3117	23/06/23	24/06/23	00140394
Horn Antenna	ETS-Lindgren	3117	23/06/23	24/06/23	00143278
Horn Antenna	A.H.Systems Inc.	SAS-574	23/06/23	24/06/23	155
PreAmplifier	tsi	MLA-0118-B01-40	23/12/15	24/12/15	1852267
PreAmplifier	Agilent Technologies	8449B	23/12/15	24/12/15	3008A02108
PreAmplifier	tsj	MLA-1840-J02-45	23/06/23	24/06/23	16966-10728
PreAmplifier	H.P	8447D	23/12/15	24/12/15	2944A07774
High Pass Filter	Wainwright Instruments	WHKX12-935-1000- 15000-40SS	23/12/15	24/12/15	7
High Pass Filter	Wainwright Instruments	WHKX10-2838-3300- 18000-60SS	23/12/15	24/12/15	2
High Pass Filter	Wainwright Instruments	WHKX10-2838-3300- 18000-60SS	23/06/23	24/06/23	1
High Pass Filter	Wainwright Instruments	WHNX8.0/26.5-6SS	23/06/23	24/06/23	3
Attenuator	SMAJK	SMAJK-2-3	23/06/23	24/06/23	3
Attenuator	SMAJK	SMAJK-2-3	23/06/23	24/06/23	2
Attenuator	Aeroflex/Weinschel	86-10-11	23/06/23	24/06/23	408
Power Meter & Wide Bandwidth Sensor	Anritsu	ML2496A MA2411B	23/12/15	24/12/15	1338004 1911481
EMI Test Receiver	ROHDE&SCHWARZ	ESCI7	24/01/29	25/01/29	100910
PULSE LIMITER	ROHDE&SCHWARZ	ESH3-Z2	23/08/21	24/08/21	101333
LISN	SCHWARZBECK	NSLK 8128 RC	23/10/26	24/10/26	8128 RC-387
Digital Thermo Hygrometer	CAS	TE-303N	24/02/07	25/02/07	220502531
Cable	Dt&C	Cable	24/01/03	25/01/03	G-2
Cable	HUBER+SUHNER	SUCOFLEX 100	24/01/03	25/01/03	G-3
Cable	Dt&C	Cable	24/01/03	25/01/03	G-4
Cable	OMT	YSS21S	24/01/03	25/01/03	G-5
Cable	Junkosha	MWX241	24/01/03	25/01/03	mmW-1
Cable	Junkosha	MWX241	24/01/03	25/01/03	mmW-4
Cable	HUBER+SUHNER	SUCOFLEX100	24/01/03	25/01/03	M-01
Cable	HUBER+SUHNER	SUCOFLEX100	24/01/03	25/01/03	M-02
Cable	JUNFLON	MWX241/B	24/01/03	25/01/03	M-03
Cable	Junkosha	MWX221	24/01/03	25/01/03	M-04
Cable	Junkosha	MWX211	24/01/03	25/01/03	M-05
					1
Cable	JUNFLON	J12J101757-00	24/01/03	25/01/03	M-07
Cable	HUBER+SUHNER	SUCOFLEX104	24/01/03	25/01/03	M-08
Cable	HUBER+SUHNER	SUCOFLEX106	24/01/03	25/01/03	M-09
Cable	Junkosha	MWX315	24/01/03	25/01/03	M-10
Cable	Dt&C	Cable	24/01/03	25/01/03	RFC-69
Cable	Radiall	TESTPRO3	24/01/03	25/01/03	RFC-70
Test Software (AC Line Conducted)	tsj	EMI Measurement	NA	NA NA	Version 2.00.0190
Test Software (Radiated)	tsj	EMI Measurement	NA	NA	Version 2.00.0185

Note1: The measurement antennas were calibrated in accordance to the requirements of ANSI C63.5-2017.

Note2: The cable is not a regular calibration item, so it has been calibrated by Dt&C itself.

TRF-RF-236(05)210316 Pages: 6 / 37 Report No.: **DRTFCC2405-0052** IC: **31319-DPT1**

FCC ID: **2BCMN-DPT156G101**IC: **31319-DPT156G101**

2. Test Methodology

The measurement procedures described in the ANSI C63.10-2013 and the guidance provided in KDB558074 D01v05r02 were used in measurement of the EUT.

The EUT was tested per the guidance of KDB558074 D01v05r02. And ANSI C63.10-2013 was used to reference appropriate EUT setup and maximizing procedures of radiated spurious emission and AC line conducted emission testing.

2.1. EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2. EUT Exercise

The EUT was operated in the test mode to fix the TX frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

2.3. General Test Procedures

Conducted Emissions

The power-line conducted emission test procedure is not described on the KDB558074 D01v05r02.

So this test was fulfilled with the requirements in Section 6.2 of ANSI C63.10-2013.

The EUT is placed on the wooden table, which is 0.8 m above ground plane and the conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-peak and Average detector.

Radiated Emissions

Basically the radiated tests were performed with KDB558074 D01v05r02. But some requirements and procedures like test site requirements, EUT setup and maximizing procedure were fulfilled with the requirements in Section 5 and 6 of the ANSI C63.10-2013 as stated on section 12.1 of the KDB558074 D01v05r02.

The EUT is placed on a non-conductive table. For emission measurements at or below 1 GHz, the table height is 80 cm. For emission measurements above 1 GHz, the table height is 1.5 m. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.

2.4. Instrument Calibration

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

TRF-RF-236(05)210316

TRF-RF-236(05)210316

Pages: 7 / 37

FCC ID: 2BCMN-DPT156G101 Report No.: DRTFCC2405-0052

IC: 31319-DPT156G101

2.5. Description of Test Modes

The EUT has been tested with the operating condition for maximizing the emission characteristics. A test program is used to control the EUT for staying in continuous transmitting.

Transmitting Configuration of EUT

	SISO		МІМО	
Mode	Ant 1	Ant 2	Ant 1 & 2	
		Data rate		
802.11b	0	0	X	
802.11g	0	0	X	
802.11n(HT20)	0	0	0	
802.11n(HT40)	0	0	0	

O = Support, X = Not Support

EUT Operation test setup

- Test Software: Tera Term 4.104.0.0 - Power setting: Refer to the table below.

Mode	Frequency [MHz]	Power Setting
	2 412	16
802.11b	2 437	16
	2 462	16
	2 412	15
802.11g	2 437	15
	2 462	15
000 44*	2 412	13
802.11n (HT20)	2 437	13
(П120)	2 462	13
000.44*	2 422	11
802.11n (HT40)	2 437	11
(11140)	2 452	10

Test Mode

Test mode	Worst case data rate	ANT configuration	Tested Frequency (MHz)		(MHz)
TM 1	802.11b 1 Mbps	Single transmitting	2 412	2 437	2 462
TM 2	802.11g 6 Mbps	Single transmitting	2 412	2 437	2 462
TM 3	802.11n(HT20) MCS 0	CDD Multiple transmitting	2 412	2 437	2 462
TM 4	802.11n(HT40) MCS 0	CDD Multiple transmitting	2 422	2 437	2 452

Note1: The worst case data rate was determined based on the modular test report.

FCC ID: 2BCMN-DPT156G101

IC: 31319-DPT156G101

3. Antenna Requirements

■ According to Part 15.203

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

The antenna is permanently attached.(Refer to Internal Photo file.) Therefore this E.U.T Complies with the requirement of §15.203

TRF-RF-236(05)210316 Pages: 9 / 37

FCC ID: **2BCMN-DPT156G101**Report No.: **DRTFCC2405-0052**IC: **31319-DPT156G101**

4. SUMMARY OF TESTS

FCC part section(s)	RSS section(s)	Test Description	Limit	Test Condition	Status Note 1
15.247(a)	RSS-247[5.2]	6 dB Bandwidth	> 500 kHz		NT Note 2
15.247(b)	RSS-247[5.4]	Maximum Peak Output Power	< 1 Watt (conducted), FCC & IC < 4 Watt (e.i.r.p), IC		NT Note 2
15.247(d)	RSS-247[5.5]	Unwanted Emissions(Conducted)	20 dBc in any 100 kHz BW	Conducted	NT Note 2
15.247(e)	RSS-247[5.3]	Power Spectral Density	< 8 dBm / 3 kHz		NT Note 2
-	RSS-Gen[6.7]	Occupied Bandwidth (99 %)	NA		NT Note 2
15.247(d) 15.205 15.209	RSS-247[5.5] RSS-Gen[8.9] RSS-Gen[8.10]	Unwanted Emissions(Radiated)	Part 15.209 limits (Refer to section 5.1)	Radiated	C Note 3
15.207	RSS-Gen[8.8]	AC Power-Line Conducted Emissions	Part 15.207 limits (Refer to section 5.2)	AC Line Conducted	С
15.203	-	Antenna Requirements	Part 15.203 (Refer to section 3)	-	С

Note 1: C=Comply NC=Not Comply NT=Not Tested NA=Not Applicable

Note 2: This device uses the certified module. (FCC ID: 2AC23-DCT85, IC number: 12290A-DCT85)

Please refer to the module test for conducted signal test items. The conducted output power was verified to be the same as module.

Note 3: This test item was performed in three orthogonal EUT positions and the worst case data was reported.

IC: 31319-DPT156G101

5. TEST RESULT

5.1. Unwanted Emissions (Radiated)

■ Test Requirements and limit,

Part 15.247(d), Part 15.205, Part 15.209 & RSS-247 [5.5], RSS-Gen [8.9], RSS-Gen [8.10]

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of Part 15.247 the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Report No.: DRTFCC2405-0052

- Part 15.209 & RSS-Gen[8.9]: General requirement

Frequency (MHz)	FCC Limit (uV/m)	IC Limit (μA/m)	Measurement Distance (m)
0.009 - 0.490	2 400 / F (kHz)	6.37/F (F in kHz)	300
0.490 - 1.705	24 000 / F (kHz)	63.7/F (F in kHz)	30
1.705 – 30.0	30	0.08	30

Frequency (MHz)	FCC Limit (uV/m)	IC Limit (uV/m)	Measurement Distance (m)
30 ~ 88	100 **	100	3
88 ~ 216	150 **	150	3
216 ~ 960	200 **	200	3
Above 960	500	500	3

^{**}Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§15.231 and 15.241.

TRF-RF-236(05)210316 Pages: 11 / 37

Report No.: **DRTFCC2405-0052** IC: **31319-DPT156G101**

FCC ID: 2BCMN-DPT156G101

- Part 15.205(a): Restricted band of operation

MHz	MHz	MHz	MHz	GHz	GHz
0.009 ~ 0.110	8.414 25 ~ 8.414 75	108 ~ 121.94	1 300 ~ 1 427	4.5 ~ 5.15	14.47 ~ 14.5
0.495 ~ 0.505	12.29 ~ 12.293	123 ~ 138	1 435 ~ 1 626.5	5.35 ~ 5.46	15.35 ~ 16.2
2.173 5 ~ 2.190 5	12.519 75 ~ 12.520 25	149.9 ~ 150.05	1 645.5 ~ 1 646.5	7.25 ~ 7.75	17.7 ~ 21.4
4.125 ~ 4.128	12.576 75 ~ 12.577 25	156.524 75 ~ 156.525 25	1 660 ~ 1 710	8.025 ~ 8.5	22.01 ~ 23.12
4.177 25 ~ 4.177 75	13.36 ~ 13.41	156.7 ~ 156.9	1 718.8 ~ 1 722.2	9.0 ~ 9.2	23.6 ~ 24.0
4.207 25 ~ 4.207 75	16.42 ~ 16.423	162.012 5 ~ 167.17	2 200 ~ 2 300	9.3 ~ 9.5	31.2 ~ 31.8
6.215 ~ 6.218	16.694 75 ~ 16.695 25	167.72 ~ 173.2	2 310 ~ 2 390	10.6 ~ 12.7	36.43 ~ 36.5
6.267 75 ~ 6.268 25	16.804 25 ~ 16.804 75	240 ~ 285	2 483.5 ~ 2 500	13.25 ~ 13.4	Above 38.6
6.311 75 ~ 6.312 25	25.5 ~ 25.67	322 ~ 335.4	2 655 ~ 2 900		
8.291 ~ 8.294	37.5 ~ 38.25	399.90 ~ 410	3 260 ~ 3 267		
8.362 ~ 8.366	73 ~ 74.6	608 ~ 614	3 332 ~ 3 339		
8.376 25 ~ 8.386 75	74.8 ~ 75.2	960 ~ 1 240	3 345.8 ~ 3 358		
			3 600 ~ 4 400		

- RSS-Gen[8.10]: Restricted frequency bands

	restricted frequency				
MHz	MHz	MHz	MHz	MHz	GHz
0.090 ~ 0.110	8.362 ~ 8.366	73 ~ 74.6	608 ~ 614	3 345.8 ~ 3 358	9.0 ~ 9.2
0.495 ~ 0.505	8.376 25 ~ 8.386 75	74.8 ~ 75.2	960 ~ 1 427	3 500 ~ 4 400	9.3 ~ 9.5
2.173 5 ~ 2.190 5	8.414 25 ~ 8.414 75	108 ~ 138	1 435 ~ 1 626.5	4 500 ~ 5 150	10.6 ~ 12.7
3.020 ~ 3.026	12.29 ~ 12.293	149.9 ~ 150.05	1 645.5 ~ 1 646.5	5 350 ~ 5 460	13.25 ~ 13.4
4.125 ~ 4.128	12.519 75 ~ 12.520 25	156.524 75 ~	1 660 ~ 1 710	7 250 ~ 7 750	14.47 ~ 14.5
4.177 25 ~ 4.177 75	12.576 75 ~ 12.577 25	156.525 25	1 718.8 ~ 1 722.2	8 025 ~ 8 500	15.35 ~ 16.2
4.207 25 ~ 4.207 75	13.36 ~ 13.41	156.7 ~ 156.9	2 200 ~ 2 300		17.7 ~ 21.4
5.677 ~ 5.683	16.42 ~ 16.423	162.01 25 ~ 167.17	2 310 ~ 2 390		22.01 ~ 23.12
6.215 ~ 6.218	16.694 75 ~ 16.695 25	167.72 ~ 173.2	2 483.5 ~ 2 500		23.6 ~ 24.0
6.267 75 ~ 6.268 25	16.804 25 ~ 16.804 75	240 ~ 285	2 655 ~ 2 900		31.2 ~ 31.8
6.311 75 ~ 6.312 25	25.5 ~ 25.67	322 ~ 335.4	3 260 ~ 3 267		36.43 ~ 36.5
8.291 ~ 8.294	37.5 ~ 38.25	399.90 ~ 410	3 332 ~ 3 339		Above 38.6

TRF-RF-236(05)210316

Pages: 12 / 37

Report No.: **DRTFCC2405-0052** IC: **31319-DPT156G101**

FCC ID: 2BCMN-DPT156G101

5.1.1. Test Setup

Refer to the APPENDIX I.

5.1.2. Test Procedures

- 1. The EUT is placed on a non-conductive table. For emission measurements at or below 1 GHz, the table height is 80 cm. For emission measurements above 1 GHz, the table height is 1.5 m.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3 m away from the receiving antenna, which is varied from 1 m to 4 m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.

Note: Measurement Instrument Setting for Radiated Emission Measurements.

- KDB558074 D01v05r02 Section 8.6
- ANSI C63.10-2013 Section 11.12

1. Frequency Range Below 1 GHz

RBW = 100 or 120 kHz, VBW = 3 x RBW, Detector = Peak or Quasi Peak

2. Frequency Range > 1 GHz

Peak Measurement > 1 GHz

RBW = 1 MHz, VBW = 3 MHz, Detector = Peak, Sweep time = Auto, Trace mode = Max Hold until the trace stabilizes Average Measurement > 1 GHz

- 1. RBW = 1 MHz (unless otherwise specified).
- 2. VBW \geq 3 x RBW.
- 3. Detector = RMS (Number of points ≥ 2 x Span / RBW)
- 4. Averaging type = power (i.e., RMS).
- 5. Sweep time = auto.
- 6. Perform a trace average of at least 100 traces.
- 7. A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:
 - 1) If power averaging (RMS) mode was used in step 4, then the applicable correction factor is 10 log(1 / D), where D is the duty cycle.
 - 2) If linear voltage averaging mode was used in step 4, then the applicable correction factor is 20 log(1 / D), where D is the duty cycle.
 - 3) If a specific emission is demonstrated to be continuous (≥ 98 percent duty cycle) rather than turning on and off with the transmit cycle, then no duty cycle correction is required for that emission.

Duty Cycle Correction factor

Test Mode	Date rate	T _{on} (ms)	T _{on+off} (ms)	D = T _{on} / (T _{on+off})	DCCF = 10 log(1/D) (dB)
TM 1	1 Mbps	8.385	8.490	0.987 6	0.05
TM 2	6 Mbps	3.107	3.209	0.968 2	0.14
TM 3	MCS 0	4.768	4.872	0.978 7	0.09
TM 4	MCS 0	2.316	2.418	0.957 8	0.19

Note1: Where, T= Transmission duration / D= Duty cycle

Note2: Please refer to the appendix II for duty cycle plots.

This test report is prohibited to copy of reissde in whole of in part without the approval of blac co., Etc.

TRF-RF-236(05)210316

Pages: 13 / 37

FCC ID: **2BCMN-DPT156G101**IC: **31319-DPT156G101**

5.1.3. Test Results

Test Notes

- 1. The radiated emissions below 1 GHz were investigated 9 kHz to 1 GHz and the worst case data was reported.
- 2. Information of Distance Correction Factor

For finding emissions, measurements may be performed at a distance closer than that specified in the regulations. In this case, the distance factor is applied to the result.

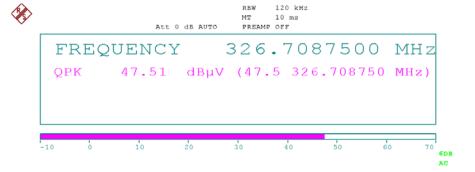
- Calculation of distance correction factor

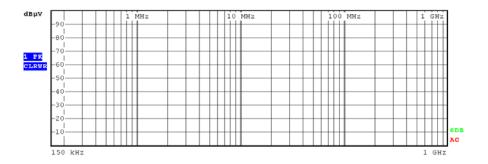
At frequencies below 30 MHz = $40 \log(\text{ tested distance} / \text{ specified distance})$

At frequencies at or above 30 MHz = 20 log(tested distance / specified distance)

When distance factor is "N/A", the measurements were performed at the specified distance and distance factor is not applied.

3. Sample Calculation.


Margin = Limit - Result / Result = Reading + TF+ DCCF + DCF / TF = AF + CL + HL + AL - AG


Where, TF = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, HL = High pass filter Loss, AL = Attenuator Loss, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

Radiated Emissions data(9 kHz ~ 1 GHz): TM 3

Tested Frequency (MHz)	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin(dB)
	326.71	Н	Х	QPK	47.50	-4.16	N/A	N/A	43.34	46.02	2.68
	475.21	V	Х	QPK	43.00	-0.91	N/A	N/A	42.09	46.02	3.93
2 412	490.05	V	Х	QPK	42.80	-0.71	N/A	N/A	42.09	46.02	3.93
2412	-	-	-	ı	-	-	-	-	-	ı	ı
	-	-	-	-	-	-	-	-	-	•	•
	-	-	-	-	-	-	-	-	-	ı	•

TM 3 & 2412 MHz & X axis & Hor Detector Mode: QPK

Date: 19.APR.2024 10:41:34

Report No.: DRTFCC2405-0052 IC: 31319-DPT156G101

FCC ID: 2BCMN-DPT156G101

Test Notes

- 1. The radiated emissions above 1GHz were investigated up to 25 GHz. And no other spurious and harmonic emissions were found below listed frequencies.
- 2. Information of Distance Correction Factor
 - For finding emissions, measurements may be performed at a distance closer than that specified in the regulations. In this case, the distance factor is applied to the result.
 - Calculation of distance correction factor
 - At frequencies below 30 MHz = 40 log(tested distance / specified distance)
 - At frequencies at or above 30 MHz = 20 log(tested distance / specified distance)
 - When distance factor is "N/A", the measurements were performed at the specified distance and distance factor is not applied.
- 3. Sample Calculation.
 - Margin = Limit Result / Result = Reading + TF+ DCCF + DCF / TF = AF + CL + HL + AL AG
 - Where, TF = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, HL = High pass filter Loss, AL = Attenuator Loss, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

Radiated Emissions data(1 GHz ~ 25 GHz) : TM 1 (ANT 2)

Tested Frequency (MHz)	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin(dB)
	2 386.68	Н	Х	PK	42.94	3.73	N/A	N/A	46.67	74.00	27.33
	2 386.75	Н	Х	AV	33.10	3.73	N/A	N/A	36.83	54.00	17.17
	4 823.58	Н	Х	PK	40.96	8.55	N/A	N/A	49.51	74.00	24.49
2 412	4 823.32	Н	Х	AV	30.55	8.55	N/A	N/A	39.10	54.00	14.90
2412	12 062.05	Н	Х	PK	47.65	9.60	N/A	N/A	57.25	74.00	16.75
	12 061.21	Н	Х	AV	37.99	9.60	N/A	N/A	47.59	54.00	6.41
	14 471.88	Н	Х	PK	46.70	9.75	N/A	N/A	56.45	74.00	17.55
	14 471.93	Н	Х	AV	38.39	9.75	N/A	N/A	48.14	54.00	5.86
	4 873.15	Н	Х	PK	40.88	8.39	N/A	N/A	49.27	74.00	24.73
	4 872.65	Н	Х	AV	30.38	8.39	N/A	N/A	38.77	54.00	15.23
2 437	12 186.70	Н	Х	PK	48.04	9.43	N/A	N/A	57.47	74.00	16.53
2 431	12 186.18	Ι	Х	AV	38.61	9.43	N/A	N/A	48.04	54.00	5.96
	14 621.91	Ι	Х	PK	47.19	10.04	N/A	N/A	57.23	74.00	16.77
	14 621.95	Ι	Х	AV	39.10	10.04	N/A	N/A	49.14	54.00	4.86
	2 486.44	Ι	Х	PK	43.25	3.96	N/A	N/A	47.21	74.00	26.79
	2 485.95	Ι	X	AV	33.41	3.96	N/A	N/A	37.37	54.00	16.63
	4 922.75	Ι	Х	PK	40.53	8.38	N/A	N/A	48.91	74.00	25.09
2 462	4 923.08	Ι	Х	AV	30.47	8.38	N/A	N/A	38.85	54.00	15.15
2 402	12 311.64	Ι	Х	PK	47.51	9.43	N/A	N/A	56.94	74.00	17.06
	12 310.92	Ι	Х	AV	38.74	9.43	N/A	N/A	48.17	54.00	5.83
	14 772.03	Η	Х	PK	47.54	10.57	N/A	N/A	58.11	74.00	15.89
	14 772.09	Η	Х	AV	38.87	10.57	N/A	N/A	49.44	54.00	4.56

TRF-RF-236(05)210316 Pages: 15 / 37

IC: 31319-DPT156G101

TD Dt&C

Tested Frequency (MHz)	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin(dB)
	2 389.54	Н	Х	PK	46.33	3.73	N/A	N/A	50.06	74.00	23.94
	2 389.36	Н	Х	AV	33.73	3.73	0.14	N/A	37.60	54.00	16.40
	4 823.16	Н	Х	PK	41.13	8.55	N/A	N/A	49.68	74.00	24.32
2 412	4 823.50	Н	Х	AV	30.39	8.55	0.14	N/A	39.08	54.00	14.92
2412	12 056.42	Н	Х	PK	45.39	9.59	N/A	N/A	54.98	74.00	19.02
	12 056.34	Н	Х	AV	35.56	9.59	0.14	N/A	45.29	54.00	8.71
	14 473.48	Н	Х	PK	45.83	9.76	N/A	N/A	55.59	74.00	18.41
	14 473.43	Н	Х	AV	35.14	9.76	0.14	N/A	45.04	54.00	8.96
	4 872.66	Н	Х	PK	40.91	8.39	N/A	N/A	49.30	74.00	24.70
	4 872.97	Н	Х	AV	30.48	8.39	0.14	N/A	39.01	54.00	14.99
0.407	12 186.14	Н	Х	PK	46.58	9.43	N/A	N/A	56.01	74.00	17.99
2 437	12 185.91	Н	Х	AV	36.63	9.43	0.14	N/A	46.20	54.00	7.80
	14 622.72	Н	Х	PK	45.55	10.05	N/A	N/A	55.60	74.00	18.40
	14 623.43	Н	Х	AV	35.10	10.05	0.14	N/A	45.29	54.00	8.71
	2 483.74	Н	Х	PK	52.34	3.96	N/A	N/A	56.30	74.00	17.70
	2 484.14	Н	Х	AV	34.63	3.96	0.14	N/A	38.73	54.00	15.27
	4 923.30	Н	Х	PK	40.63	8.38	N/A	N/A	49.01	74.00	24.99
2.402	4 922.69	Н	Х	AV	30.46	8.38	0.14	N/A	38.98	54.00	15.02
2 462	12 314.84	Н	Х	PK	47.21	9.43	N/A	N/A	56.64	74.00	17.36
	12 314.48	Н	Х	AV	36.71	9.43	0.14	N/A	46.28	54.00	7.72
	14 770.89	Н	Х	PK	45.71	10.56	N/A	N/A	56.27	74.00	17.73
	14 771.24	Н	Х	AV	35.32	10.57	0.14	N/A	46.03	54.00	7.97

TRF-RF-236(05)210316 Pages: 16 / 37

TD Dt&C IC: 31319-DPT156G101

Radiated Emissions data(1 GHz ~ 25 GHz) : TM 3 (MIMO)

Tested Frequency (MHz)	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin(dB)
	2 389.96	Н	Х	PK	54.53	3.73	N/A	N/A	58.26	74.00	15.74
	2 389.16	Н	Х	AV	36.09	3.73	0.09	N/A	39.91	54.00	14.09
	4 823.47	Н	Х	PK	40.94	8.55	N/A	N/A	49.49	74.00	24.51
2 412	4 823.42	Ι	Х	AV	30.35	8.55	0.09	N/A	38.99	54.00	15.01
2412	12 060.23	Н	Х	PK	48.55	9.60	N/A	N/A	58.15	74.00	15.85
	12 060.73	Н	Х	AV	37.80	9.60	0.09	N/A	47.49	54.00	6.51
	14 472.39	Н	Х	PK	45.55	9.76	N/A	N/A	55.31	74.00	18.69
	14 472.75	Н	Х	AV	35.10	9.76	0.09	N/A	44.95	54.00	9.05
	4 872.39	Н	Х	PK	41.44	8.39	N/A	N/A	49.83	74.00	24.17
	4 872.55	Н	Х	AV	30.32	8.39	0.09	N/A	38.80	54.00	15.20
2.427	12 189.66	Н	Х	PK	47.62	9.42	N/A	N/A	57.04	74.00	16.96
2 437	12 189.00	Н	Х	AV	37.57	9.42	0.09	N/A	47.08	54.00	6.92
	14 623.61	Н	Х	PK	45.03	10.05	N/A	N/A	55.08	74.00	18.92
	14 623.31	Н	Х	AV	34.80	10.05	0.09	N/A	44.94	54.00	9.06
	2 484.31	Н	Х	PK	56.21	3.96	N/A	N/A	60.17	74.00	13.83
	2 483.64	Н	Х	AV	38.34	3.96	0.09	N/A	42.39	54.00	11.61
	4 923.25	Н	Х	PK	41.04	8.38	N/A	N/A	49.42	74.00	24.58
2 462	4 923.35	Н	Х	AV	30.39	8.38	0.09	N/A	38.86	54.00	15.14
2 462	12 307.86	Н	Х	PK	47.36	9.44	N/A	N/A	56.80	74.00	17.20
	12 307.42	Н	Х	AV	37.40	9.44	0.09	N/A	46.93	54.00	7.07
	14 771.42	Н	Х	PK	46.58	10.57	N/A	N/A	57.15	74.00	16.85
	14 771.52	Н	Х	AV	35.24	10.57	0.09	N/A	45.90	54.00	8.10

TRF-RF-236(05)210316 Pages: 17 / 37

IC: 31319-DPT156G101

Radiated Emissions data(1 GHz ~ 25 GHz) : TM 4 (MIMO)

Tested Frequency (MHz)	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin(dB)
	2 386.56	Н	Х	PK	53.20	3.73	N/A	N/A	56.93	74.00	17.07
	2 386.67	Н	Х	AV	38.44	3.73	0.19	N/A	42.36	54.00	11.64
	4 842.81	Н	Х	PK	40.58	8.51	N/A	N/A	49.09	74.00	24.91
2 422	4 843.15	Η	Х	AV	30.45	8.51	0.19	N/A	39.15	54.00	14.85
2 422	12 110.58	Н	Х	PK	45.72	9.61	N/A	N/A	55.33	74.00	18.67
	12 110.68	Η	Х	AV	35.44	9.61	0.19	N/A	45.24	54.00	8.76
	14 532.25	Н	Х	PK	45.50	9.77	N/A	N/A	55.27	74.00	18.73
	14 532.80	Н	Х	AV	34.73	9.77	0.19	N/A	44.69	54.00	9.31
	4 874.29	Н	Х	PK	40.68	8.38	N/A	N/A	49.06	74.00	24.94
	4 874.10	Н	Х	AV	30.38	8.38	0.19	N/A	38.95	54.00	15.05
2 437	12 190.08	Н	Х	PK	46.16	9.42	N/A	N/A	55.58	74.00	18.42
2 437	12 189.20	Н	Х	AV	36.02	9.42	0.19	N/A	45.63	54.00	8.37
	14 621.01	Н	Х	PK	44.76	10.04	N/A	N/A	54.80	74.00	19.20
	14 621.99	Н	Х	AV	34.88	10.05	0.19	N/A	45.12	54.00	8.88
	2 485.36	Н	Х	PK	56.05	3.96	N/A	N/A	60.01	74.00	13.99
	2 485.14	Н	Х	AV	41.85	3.96	0.19	N/A	46.00	54.00	8.00
	4 903.44	Н	Х	PK	40.81	8.29	N/A	N/A	49.10	74.00	24.90
2 452	4 903.45	Н	Х	AV	30.16	8.29	0.19	N/A	38.64	54.00	15.36
2 432	12 256.82	Н	Х	PK	46.09	9.42	N/A	N/A	55.51	74.00	18.49
	12 257.00	Н	Х	AV	35.45	9.42	0.19	N/A	45.06	54.00	8.94
	14 711.66	Н	Х	PK	46.23	10.57	N/A	N/A	56.80	74.00	17.20
	14 711.59	Н	Χ	AV	35.19	10.57	0.19	N/A	45.95	54.00	8.05

TRF-RF-236(05)210316 Pages: 18 / 37

FCC ID: 2BCMN-DPT156G101 Report No.: DRTFCC2405-0052 IC: 31319-DPT156G101

5.2. AC Power-Line Conducted Emissions

■ Test Requirements and limit, Part 15.207 & RSS-Gen [8.8]

An intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 uH/50 ohm line impedance stabilization network (LISN).

Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges.

Francisco Banas (MILL)	Conducted Limit (dBuV)					
Frequency Range (MHz)	Quasi-Peak	Average				
0.15 ~ 0.5	66 to 56 *	56 to 46 *				
0.5 ~ 5.0	56	46				
5 ~ 30	60	50				

^{*} Decreases with the logarithm of the frequency

5.2.1. Test Setup

See test photographs for the actual connections between EUT and support equipment.

5.2.2. Test Procedures

Conducted emissions from the EUT were measured according to the ANSI C63.10-2013.

- 1. The test procedure is performed in a 6.5 m x 3.5 m x 3.5 m (L x W x H) shielded room. The EUT along with its peripherals were placed on a 1.0 m (W) x 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.
- 2. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.
- 3. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.
- 4. The excess power cable between the EUT and the LISN was bundled. The power cables of peripherals were unbundled. All connecting cables of EUT and peripherals were moved to find the maximum emission.

5.2.3. Test Results

Refer to the next page. (The worst case data was reported. The worst data is TM 3 & Lowest)

TRF-RF-236(05)210316 Pages: 19 / 37

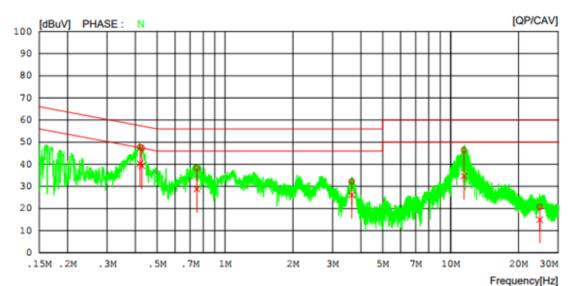
AC Power-Line Conducted Emissions (Graph)

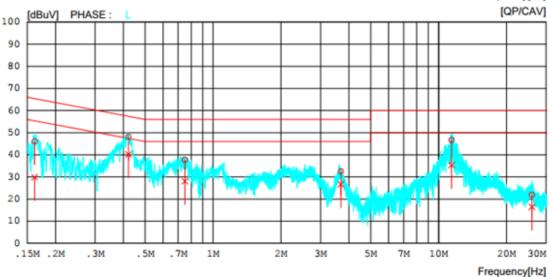
Results of Conducted Emission

Date 2024-04-12

Order No. Model Name Temp/Humi/Atm Test Condition

DPT156G101BL 21 °C / 45% 150 kHz - 30 MHz


WLAN 2.4G_n20_2412 Memo


LIMIT : FCC P15.207 AV FCC P15.207 QP

Lisn Factor

1. NSLK 8128 RC-387_N_23.10.26 2. NSLK 8128 RC-387_L1_23.10.26 Cable Loss
1. C1_LISN TO RECIVER_2023-12-11
Pulse Lmitter

1. PULSE LIMITER_ESH3-Z2_101333_2023.08.21

TRF-RF-236(05)210316 Pages: 20 / 37

IC: 31319-DPT156G101

AC Power-Line Conducted Emissions (List)

Report No.: DRTFCC2405-0052

Results of Conducted Emission

Date 2024-04-12

Order No. Model Name Temp/Humi/Atm Test Condition

DPT156G101BL 21 °C / 45% 150 kHz - 30 MHz

Memo

WLAN 2.4G_n20_2412

LIMIT : FCC P15.207 AV FCC P15.207 QP

Lisn Factor

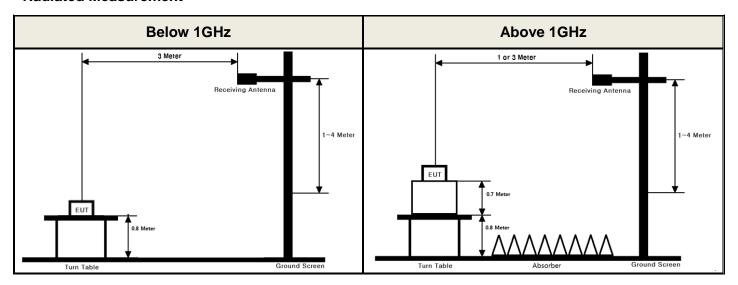
1. NSLK 8128 RC-387_N_23.10.26 2. NSLK 8128 RC-387_L1_23.10.26

Cable Loss
1. C1_LISN TO RECIVER_2023-12-11

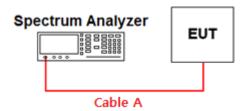
Pulse Lmitter

1. PULSE LIMITER_ESH3-Z2_101333_2023.08.21

NC	FREQ	READING QP CAV [dBuV][dBuV]	C.FACTOR	RESULT QP CAV [dBuV][dBuV]	LIMIT QP CAV [dBuV][dBuV]	MARGIN QP CAV [dBuV][dBuV]	PHASE
	0.42004	37.78 30.28	10.00	47.78 40.28	57.45 47.45	9.67 7.17	N
2	0.42799	37.36 29.31	10.00	47.36 39.31	57.29 47.29	9.93 7.98	N
3	0.74961	28.30 18.77	10.01	38.31 28.78	56.00 46.00	17.69 17.22	N
4	3.64880	22.13 16.00	10.09	32.22 26.09	56.00 46.00	23.78 19.91	N
5	11.46240	35.93 24.23	10.42	46.35 34.65	60.00 50.00	13.65 15.35	N
6	24.88060	10.08 4.36	10.59	20.67 14.95	60.00 50.00	39.33 35.05	N
7	0.16168	36.08 19.88	9.99	46.07 29.87	65.38 55.38	19.31 25.51	L
8	0.42192	38.16 30.15	10.00	48.16 40.15	57.41 47.41	9.25 7.26	L
9	0.75000	27.63 17.96	10.11	37.74 28.07	56.00 46.00	18.26 17.93	L
10	3.68520	22.34 16.50	10.19	32.53 26.69	56.00 46.00	23.47 19.31	L
11	11.40500	36.20 24.84	10.52	46.72 35.36	60.00 50.00	13.28 14.64	L
12	25.92080	11.28 5.78	10.66	21.94 16.44	60.00 50.00	38.06 33.56	L



IC: 31319-DPT156G101



APPENDIX I

Radiated Measurement

Conducted Measurement

Path loss information

Frequency (GHz)	Path Loss (dB)	Frequency (GHz)	Path Loss (dB)
0.03	10.77	15	11.88
1	11.05	20	12.16
2.412 & 2.437 & 2.462	11.18	25	12.94
5	11.32	-	-
10	11.70	-	-

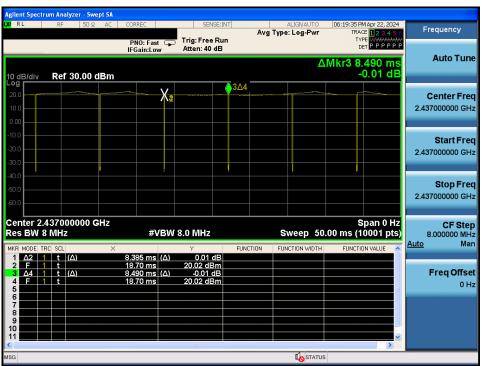
Note 1: The path loss from EUT to Spectrum analyzer was measured and used for test. Path loss (S/A's correction factor) = Cable A + Attenuator

TRF-RF-236(05)210316 Pages: 22 / 37

FCC ID: 2BCMN-DPT156G101 Report No.: DRTFCC2405-0052

IC: 31319-DPT156G101

APPENDIX II


Duty cycle plots

- Test Procedures
- KDB558074 D01v05r02 Section 6

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW ≥ OBW if possible; otherwise, set RBW to the largest available value. Set VBW ≥ RBW. Set detector = peak or average.

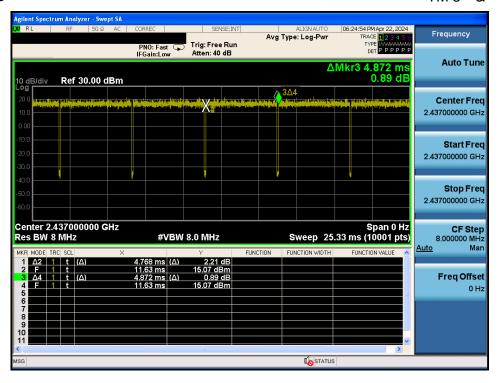
The zero-span measurement method shall not be used unless both RBW and VBW are > 50 /T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zerospan method of measuring duty cycle shall not be used if T ≤ 16.7 microseconds.)

TM 1 **Duty Cycle** & 2 437 MHz

TRF-RF-236(05)210316 Pages: 23 / 37

IC: 31319-DPT156G101

Report No.: DRTFCC2405-0052

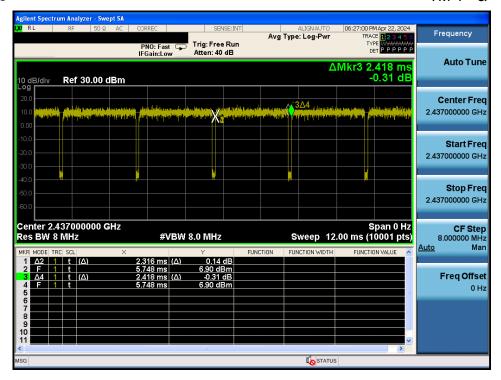

Duty Cycle

TM 2 & 2437 MHz

Duty Cycle

TM 3 & 2437 MHz

TRF-RF-236(05)210316 Pages: 24 / 37

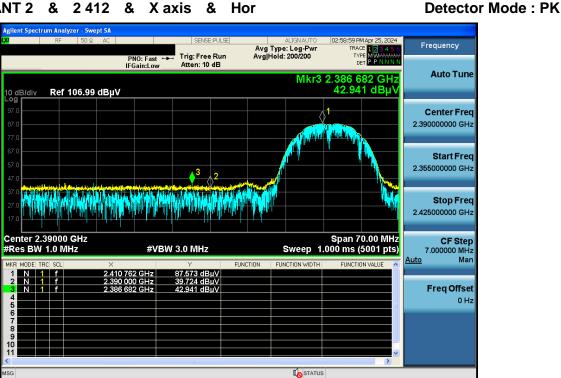


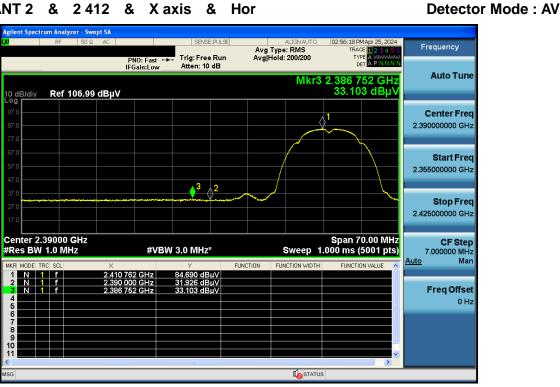
IC: 31319-DPT156G101

Duty Cycle

TM 4 & 2 437 MHz

TRF-RF-236(05)210316 Pages: 25 / 37

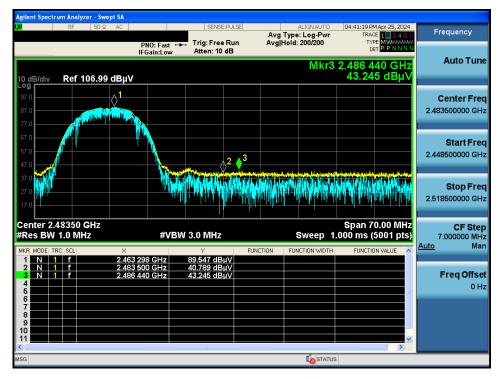

IC: 31319-DPT156G101


APPENDIX III

Unwanted Emissions (Radiated) Test Plot

TM 1 & ANT 2 & 2412 & X axis & Hor

TM 1 & ANT 2 & 2412 & Xaxis & Hor


TRF-RF-236(05)210316 Pages: 26 / 37

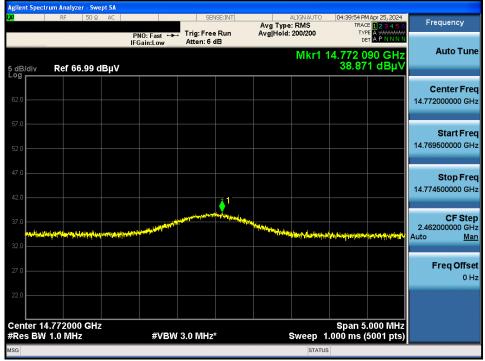
TM 1 & ANT 2 & 2462 & X axis & Hor

Detector Mode: PK

Detector Mode: AV

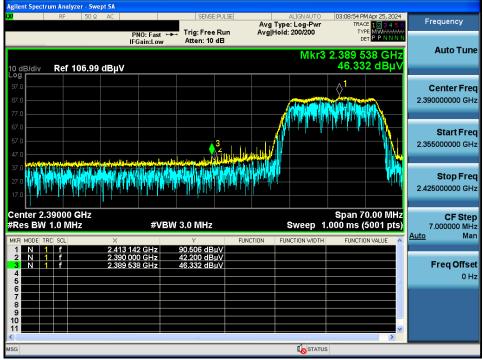
TM 1 & ANT 2 & 2462 & X axis & Hor

TRF-RF-236(05)210316 Pages: 27 / 37



IC: 31319-DPT156G101

TDt&C

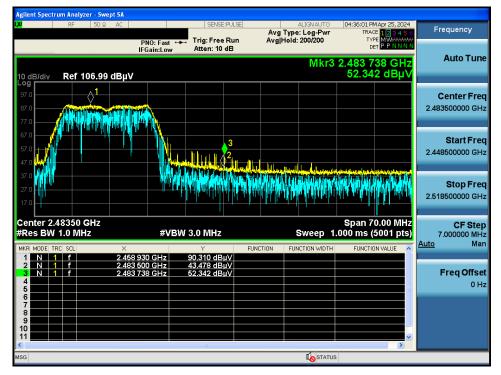

TRF-RF-236(05)210316 Pages: 28 / 37

TM 2 & ANT 2 & 2412 & Xaxis & Hor

Detector Mode : PK

TM 2 & ANT 2 & 2412 & X axis & Hor

TRF-RF-236(05)210316 Pages: 29 / 37


IC: 31319-DPT156G101

Report No.: DRTFCC2405-0052

TM 2 & ANT 2 & 2462 & X axis & Hor

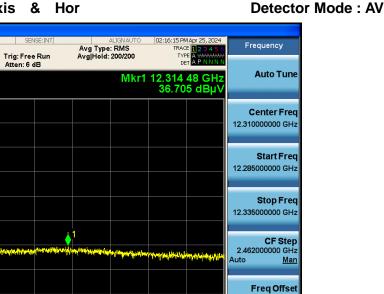
Detector Mode: PK

TM 2 & ANT 2 & 2462 & X axis & Hor

Detector Mode: AV

TRF-RF-236(05)210316 Pages: 30 / 37

0 Hz


TDt&C IC: 31319-DPT156G101 Report No.: DRTFCC2405-0052

#VBW 3.0 MHz*

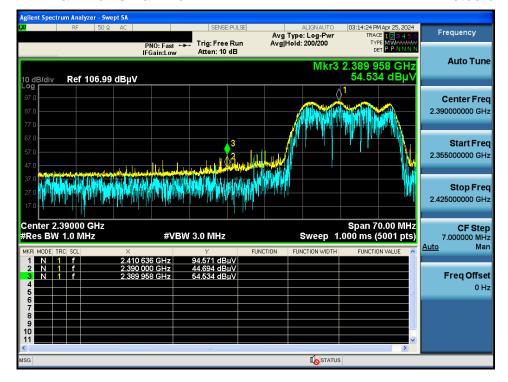
TM 2 & ANT 2 & 2462 & X axis & Hor

Ref 66.99 dBµV

Center 12.31000 GHz #Res BW 1.0 MHz

Span 50.00 MHz Sweep 1.000 ms (5001 pts)

TRF-RF-236(05)210316 Pages: 31 / 37



IC: 31319-DPT156G101

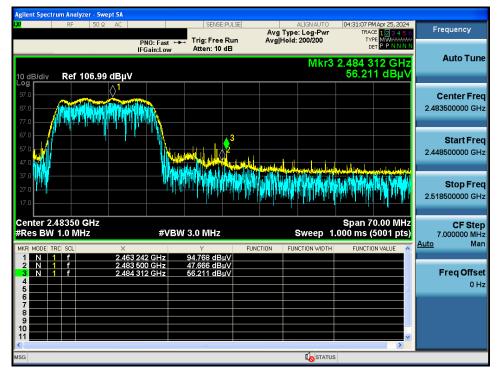
Report No.: DRTFCC2405-0052

TM 3 & 2412 & Xaxis & Hor

Detector Mode: PK

TM 3 & 2412 & Xaxis & Hor

Detector Mode: AV

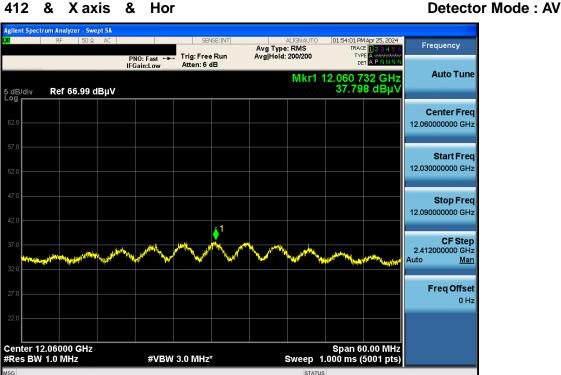

TRF-RF-236(05)210316 Pages: 32 / 37

TM 3 & 2462 & Xaxis & Hor

Detector Mode: PK

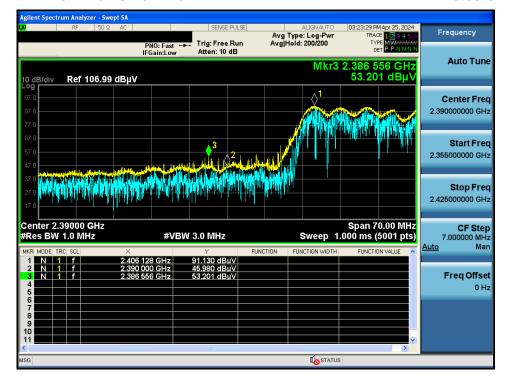
TM 3 & 2462 & Xaxis & Hor

Detector Mode: AV


TRF-RF-236(05)210316 Pages: 33 / 37

IC: 31319-DPT156G101

TM 3 & 2412 & X axis & Hor



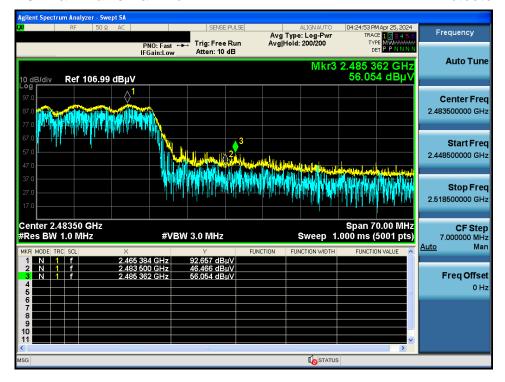
TRF-RF-236(05)210316 Pages: 34 / 37


TM 4 & 2422 & Xaxis & Hor

Detector Mode: PK

TM 4 & 2422 & Xaxis & Hor

Detector Mode: AV



TRF-RF-236(05)210316 Pages: 35 / 37

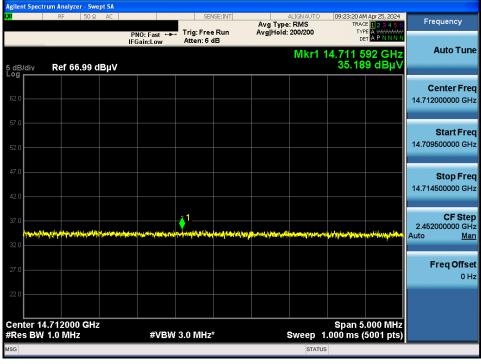
TM 4 & 2452 & Xaxis & Hor

Detector Mode: PK

TM 4 & 2452 & Xaxis & Hor

Detector Mode: AV

TRF-RF-236(05)210316



IC: 31319-DPT156G101

TM 4 & 2452 & X axis & Hor

Detector Mode : AV

TRF-RF-236(05)210316 Pages: 37 / 37