RF Exposure Evaluation declaration

Product Name : Intel® Wireless-AC 9560Model No.: 9560NGWFCC ID: PD99560NG

Applicant : Intel Mobile Communications

Address : 100 Center Point Circle, Suite 200 Columbia, South Carolina 29210 USA

Date of Receipt:Sep. 15, 2017Date of Declaration :Nov. 16, 2017Report No.:1790208R-RFUSP02V00

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standard through the calibration report of the equipment and evaluated measurement uncertainty herein.

This report must not be used to claim product endorsement by TAF or any agency of the government.

The test report shall not be reproduced without the written approval of DEKRA Testing and Certification Co., Ltd.

Issued Date: Nov. 16, 2017 Report No.: 1790208R-RFUSP02V00

Product Name	Intel® Wireless-AC 9560	
Applicant	Intel Mobile Communications	
Address	100 Center Point Circle, Suite 200 Columbia, South Carolina 29210 USA	
Manufacturer	Intel Mobile Communications	
Model No.	9560NGW	
FCC ID.	PD99560NG	
EUT Rated Voltage	DC 3.3V (via Mini-PCI Express slot)	
EUT Test Voltage	AC 120V/60Hz	
Trade Name	Intel	
Applicable Standard	FCC 47 CFR 1.1310	
Test Result	Complied	

Documented By :

Chen Dri

(Adm. Specialist / April Chen)

Tested By :

niu om C

(Engineer / Tom Chiu)

Approved By :

(Director / Vincent Lin)

1. RF Exposure Evaluation

1.1. Limits

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b) LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency Range	Electric Field	Magnetic Field	Power Density	Average Time
(MHz)	Strength (V/m)	Strength (A/m)	(mW/cm^2)	(Minutes)
(A) Limits for Occupational/ Control Exposures				
300-1500			F/300	6
1500-100,000			5	6
(B) Limits for General Population/ Uncontrolled Exposures				
300-1500			F/1500	6
1500-100,000			1	30

F= Frequency in MHz

Friis Formula

Friis transmission formula: $Pd = (Pout*G)/(4*pi*r^2)$

Where

 $Pd = power density in mW/cm^{2}$ Pout = output power to antenna in mW G = gain of antenna in linear scale Pi = 3.1416 R = distance between observation point and center of the radiator in cm

Pd id the limit of MPE, 1 mW/cm^2 . If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

1.2. Test Procedure

Software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.

The temperature and related humidity: 18°C and 78% RH.

1.3. Test Result of RF Exposure Evaluation

Product	:	Intel® Wireless-AC 9560
Test Item	:	RF Exposure Evaluation
Test Site	:	No.3 OATS

For 2.4GHz:

Operation Frequency Range	2412-2472MHz, 2422-2462MHz,
	2402-2480MHz
Maximum Conducted output power	29.88dBm
Antenna gain	2.89dBi

Output Power Into Antenna & RF Exposure Evaluation Distance:

Output Power to Antenna (mW)		Power Density at $R = 20 \text{ cm} (\text{mW/cm2})$	
	972.7472238	0.3765	

Power density is lower than the limit (1 mW/cm2).

For 5GHz:

Operation Frequency Range	5180-5240MHz, 5260-5320MHz,
	5500-5700MHz, 5745-5825MHz,
	5190-5230MHz, 5270-5310MHz,
	5510-5670MHz, 5755-5795MHz,
	5720 MHz, 5710MHz, 5210-5290MHz,
	5530-5690MHz, 5775MHz
Maximum Conducted output power	24.27dBm
Antenna gain	4.22dBi

Output Power Into Antenna & RF Exposure Evaluation Distance:

Output Power to Antenna (mW)	Power Density at $R = 20 \text{ cm} (\text{mW/cm2})$
267.3006409	0.1405

Power density is lower than the limit (1 mW/cm2).