HAC RF TEST REPORT No. I19Z70333-SEM01 For Samsung Electronics. Co., Ltd. Mobile phone Model Name: SM-A015A, SM-A015AZ With Hardware Version: REV3.0 Software Version: A015A.001(A015AUCU0ATAC), A015AZ.001(A015AZUCE0ATA1) FCC ID: ZCASMA015A Results Summary: M Category = M4 Issued Date: 2020-2-13 #### Note: The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S.Government. #### **Test Laboratory:** #### CTTL, Telecommunication Technology Labs, CAICT No. 51, Xueyuan Road, Haidian District, Beijing, P. R. China 100191. Tel:+86(0)10-62304633-2512, Fax:+86(0)10-62304633-2504 Email: cttl terminals@caict.ac.cn, website: www.caict.ac.cn # **REPORT HISTORY** | Report Number | Revision | Issue Date | Description | |-----------------|----------|------------|---------------------------------| | I19Z70333-SEM01 | Rev.0 | 2020-2-13 | Initial creation of test report | # **TABLE OF CONTENT** | 1 TEST LABORATORY | 5 | |---|----| | 1.1 TESTING LOCATION | 5 | | 1.2 TESTING ENVIRONMENT | 5 | | 1.3 PROJECT DATA | | | 1.4 Signature | 5 | | 2 CLIENT INFORMATION | 6 | | 2.1 APPLICANT INFORMATION | | | 2.2 Manufacturer Information | 6 | | 3 EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE) | 7 | | 3.1 About EUT | 7 | | 3.2 Internal Identification of EUT used during the test | | | 3.3 INTERNAL IDENTIFICATION OF AE USED DURING THE TEST | | | 3.4 Air Interfaces / Bands Indicating Operating Modes | 8 | | 4 MAXIMUM OUTPUT POWER | 9 | | 5 REFERENCE DOCUMENTS | 10 | | 5.1 Reference Documents for testing | 10 | | 6 OPERATIONAL CONDITIONS DURING TEST | 11 | | 6.1 HAC MEASUREMENT SET-UP | 11 | | 6.2 Probe Specification | | | 6.3TEST ARCH PHANTOM & PHONE POSITIONER | | | 6.4ROBOTIC SYSTEM SPECIFICATIONS | 13 | | 7 EUT ARRANGEMENT | 14 | | 7.1 WD RF EMISSION MEASUREMENTS REFERENCE AND PLANE | 14 | | 8 SYSTEM VALIDATION | 15 | | 8.1 Validation Procedure | 15 | | 8.2 VALIDATION RESULT | | | 9 EVALUATION OF MIF | 16 | | 9.1 Introduction | 16 | | 9.2 MIF MEASUREMENT WITH THE AIA | | | 9.3 TEST EQUIPMENT FOR THE MIF MEASUREMENT | | | 9.4 TEST SIGNAL VALIDATION | | | 9.5 DUT MIF RESULTS | 18 | | 10 EVALUATION FOR LOW-POWER EXEMPTION | 20 | | 10.1 Product testing threshold | 20 | | 10.2 CONDUCTED POWER | | | 10.3 CONCLUSION | 21 | | 11 RF TES | T PROCEDUERES | 22 | |-----------|--------------------------------|----| | 12 MEASU | REMENT RESULTS (E-FIELD) | 23 | | | 63.19-2011 LIMITS | | | | REMENT UNCERTAINTY | | | | EST INSTRUMENTS | | | 16 CONCL | USION | 25 | | | TEST LAYOUT | | | ANNEX B | TEST PLOTS | 27 | | ANNEX C | SYSTEM VALIDATION RESULT | 39 | | ANNEX D | PROBE CALIBRATION CERTIFICATE | 41 | | ANNEX E | DIPOLE CALIBRATION CERTIFICATE | 50 | # 1 Test Laboratory ## 1.1 Testing Location | CompanyName: | CTTL(Shouxiang) | |--------------|--| | Address: | No. 51 Shouxiang Science Building, Xueyuan Road, Haidian District, | | | Beijing, P. R. China100191 | ## 1.2 Testing Environment | Temperature: | 18°C~25°C, | | | |---|------------|--|--| | Relative humidity: | 30%~ 70% | | | | Ground system resistance: | < 0.5 Ω | | | | Andriant raise is absoluted and found your law and in sometimes with monitoring the formula and | | | | Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surrounding objects is minimized and in compliance with requirement of standards. ## 1.3 Project Data | Project Leader: | Qi Dianyuan | |---------------------|------------------| | Test Engineer: | Lin Hao | | Testing Start Date: | January 10, 2020 | | Testing End Date: | January 10, 2020 | # 1.4 Signature Lin Xiaojun (Prepared this test report) Qi Dianyuan (Reviewed this test report) Lu Bingsong **Deputy Director of the laboratory** (Approved this test report) # **2 Client Information** # 2.1 Applicant Information | Company Name: | Samsung Electronics. Co., Ltd. | | |-----------------|---|--| | Address/Post: | R5, A Tower 22 Floor A-1,(Maetan dong) | | | | 129,Samsung-ro,Yeongtong-gu, Suwon-Si, Gyeonggi-do 16677, Korea | | | Contact Person: | JP KIM | | | Contact Email: | jp426.kim@samsung.com | | | Telephone: | +82-10-4376-0326 | | # 2.2 Manufacturer Information | Company Name: | Samsung Electronics. Co., Ltd. | | | |-----------------|---|--|--| | Address/Post: | R5, A Tower 22 Floor A-1,(Maetan dong) | | | | | 129,Samsung-ro,Yeongtong-gu, Suwon-Si, Gyeonggi-do 16677, Korea | | | | Contact Person: | JP KIM | | | | Contact Email: | jp426.kim@samsung.com | | | | Telephone: | +82-10-4376-0326 | | | # 3 Equipment Under Test (EUT) and Ancillary Equipment (AE) ## 3.1 About EUT | Description: | Mobile phone | |--------------------|---| | Model name: | SM-A015A,SM-A015AZ | | Operating mode(s): | GSM850/900/1800/1900, WCDMA850/1700/1900 | | | LTE Band 2/4/5/12/14, BT, Wi-Fi (2.4G/5G) | # 3.2 Internal Identification of EUT used during the test | EUT ID* IMEI | | HW Version | SW Version | |--------------|-----------------|------------|---| | EUT1 | 351766110013894 | REV3.0 | A015A.001(A015AUCU0ATAC),
A015AZ.001(A015AZUCE0ATA1) | | EUT2 | 351766110028066 | REV3.0 | A015A.001(A015AUCU0ATAC),
A015AZ.001(A015AZUCE0ATA1) | ^{*}EUT ID: is used to identify the test sample in the lab internally. Note: It is performed to test HAC with the EUT1&2 # 3.3 Internal Identification of AE used during the test | AE ID* | Description | Model | SN | Manufacturer | | |--------|----------------------|--------------------|----|---------------------------|--| | ΛΕ1 | Secondary | QL1695 | , | Ningde Amperex Technology | | | AE1 | Li-ion Battery | QL 1095 | , | Limited | | | ۸۲۵ | Lloodoot | Headset EHS61ASFWE | / | DONGGUAN YOUNGBO | | | AE2 | пеаиѕеі | | | ELECTRONICS CO.,LTD | | | AE3 | 3 Headset EHS61ASFWE | | | CRESYN VIETNAM CO.,LTD. | | ^{*}AE ID: is used to identify the test sample in the lab internally. ## 3.4 Air Interfaces / Bands Indicating Operating Modes | Air-interface | Band(MHz) | Туре | C63.19/tested | Simultaneous
Transmission
s | ОТТ | |---------------|-----------------|------|------------------|-----------------------------------|------------| | GSM | 850 | VO | Yes | | NA | | GSIVI | 1900 | VO | res | BT, WLAN | INA | | GPRS/EDGE | 850 | DT | V ₁ . | | Google duo | | GPRS/EDGE | 1900 | וט | Yes | | | | | 850 | | | | | | WCDMA | 1700 | VO | Yes | BT, WLAN | NA | | (UMTS) | 1900 | | | | | | | HSPA | DT | Yes | | Google duo | | LTE FDD | Band2/4/5/12/14 | V/D | Yes | BT, WLAN | Google duo | | ВТ | 2450 | DT | NA | GSM,WCDMA,
LTE | NA | | WLAN | 2450 | V/D | Yes | GSM,WCDMA,
LTE | Google duo | | WLAN | 5G | V/D | Yes | GSM,WCDMA,
LTE | Google duo | NA: Not Applicable VO: Voice Only V/D: CMRS and IP Voice Service over Digital Transport DT: Digital Transport ^{*} HAC Rating was not based on concurrent voice and data modes, Non current mode was found to represent worst case rating for both M and T rating Note1 = No Associated T-Coil measurement has been made in accordance with 285076 D02 T-Coil testing for CMRS IP # **4 Maximum Output Power** | GSM | | Tune up (dBm) | | | | | |--------------|-------------------------|--------------------------|------------------------|--|--|--| | 850MHz | Channel 251(848.8MHz) | Channel 190(836.6MHz) | Channel 128(824.2MHz) | | | | | Voice | 33.7 | 33.7 | 33.7 | | | | | EDGE | 24.7 | 24.7 | 24.7 | | | | | GSM | | Tune up(dBm) | | | | | | 1900MHz | Channel 810(1909.8MHz) | Channel 661(1880MHz) | Channel 512(1850.2MHz) | | | | | Voice | 31 | 31 | 31 | | | | | EDGE | 25.2 | 25.2 | 25.2 | | | | | WCDMA | | Tune up (dBm) | | | | | | 850MHz | Channel 4233(846.6MHz) | Channel 4182(836.4MHz) | Channel 4132(826.4MHz) | | | | | RMC | 24.7 | 24.7 | 24.7 | | | | | HSPA | 23.7 | 23.7 | 23.7 | | | | | | | Tune up (dBm) | | | | | | WCDMA | Channel 1513 | Channel 1412 (1732.4MHz) | Channel 1312 | | | | | 1700MHz | (1752.6MHz) | | (1712.4MHz) | | | | | RMC | 23.5 | 23.5 | 23.5 | | | | | HSPA | 22.6 | 22.6 | 22.6 | | | | | WODIA | | Tune up (dBm) | | | | | | WCDMA | Channel 9538(1907.6MHz) | Channel 9400(1880MHz) | Channel | | | | | 1900MHz | | | 9262(1852.4MHz) | | | | | RMC | 24.7 | 24.7 | 24.7 | | | | | HSPA | 23.7 | 23.7 | 23.7 | | | | | LTE Band2 | | Tune up (dBm) | | | | | | LIL Balluz | Channel 19100(1900MHz) | Channel18900(1880MHz) | Channel 18700(1860MHz) | | | | | QPSK | 24.2 | 24.2 | 24.2 | | | | | 16QAM | 23.2 | 23.2 | 23.2 | | | | | 64QAM | 22.2 | 22.2 | 22.2 | | | | | | | Conducted Power (dBm) | | | | | | LTE Band4 | Channel 20300(1745MHz) | Channel | Channel | | | | | | Chamile 20300(1743Wi12) | 20175(1732.5MHz) | 20050(1720MHz) | | | | | QPSK | 23.7 | 23.7 | 23.7 | | | | | 16QAM | 22.7 | 22.7 | 22.7 | | | | | 64QAM | 21.7 | 21.7 | 21.7 | | | | | LTE Band5 | | Conducted Power (dBm) | | | | | | LIE Ballus | Channel 20600(844MHz) | Channel 20525(836.5MHz) | Channel20450(829MHz) | | | | | QPSK | 24.2 | 24.2 | 24.2 | | | | | 16QAM | 23.2 | 23.2 | 23.2 | | | | | 64QAM | 22.2 | 22.2 | 22.2 | | | | | LTE Band12 | | Tune up (dBm) | | | | | | LIL Ballu 12 | Channel 23130(711MHz) | Channel 23095(707.5MHz) | Channel23060(704MHz) | | | | | QPSK | 24.2 | 24.2 | 24.2 | | |-------------|-----------------------|-----------------------|-----------------------|--| | 16QAM | 23.2 | 23.2 | 23.2 | | | 64QAM | 22.2 | 22.2 | 22.2 | | | LTE Band14 | | Conducted Power (dBm) | | | | LIE Band 14 | | Channel 23330(793MHz) | | |
| QPSK | | 24 | | | | 16QAM | | 23 | | | | 64QAM | | 22 | | | | 2.4GHz | | Tune up (dBm) | | | | 802.11n | Channel 11 (2462MHz) | Channel 6 (2437MHz) | Channel 1 (2412MHz) | | | 20M | 19.6 | 19.6 | 19.6 | | | 5GHz | Tune up (dBm) | | | | | 802.11n | Channel 102(5510 MHz) | Channel 126(5630 MHz) | Channel 142(5710 MHz) | | | 40M | 19 | 19 | 19 | | # **5 Reference Documents** # **5.1 Reference Documents for testing** The following document listed in this section is referred for testing. | | _ | | |-------------------|--|---------| | Reference | Title | Version | | ANSI C63.19-2011 | American National Standard for Methods of Measurement of | 2011 | | | Compatibility between Wireless Communication Devices and | Edition | | | Hearing Aids | | | FCC 47 CFR §20.19 | Hearing Aid Compatible Mobile Headsets | 2015 | | | | Edition | | KDB 285076 D01 | Equipment Authorization Guidance for Hearing Aid Compatibility | v05 | ## **6 OPERATIONAL CONDITIONS DURING TEST** #### 6.1 HAC MEASUREMENT SET-UP These measurements are performed using the DASY5 NEO automated dosimetric assessment system. It is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland. It consists of high precision robotics system (Stäubli), robot controller, Intel Core2 computer, near-field probe, probe alignment sensor. The robot is a six-axis industrial robot performing precise movements. A cell controller system contains the power supply, robot controller, teach pendant (Joystick),and remote control, is used to drive the robot motors. The PC consists of the HP Intel Core21.86 GHz computer with Windows XP system and HAC Measurement Software DASY5 NEO, A/D interface card, monitor, mouse, and keyboard. The Stäubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE)circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card. Fig. 1 HAC Test Measurement Set-up The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. ## **6.2 Probe Specification** #### E-Field Probe Description Construction One dipole parallel, two dipoles normal to probe axis Built-in shielding against static charges PEEK enclosure material Calibration In air from 100 MHz to 3.0 GHz (absolute accuracy ±6.0%, k=2) Frequency 40 MHz to > 6 GHz (can be extended to < 20 MHz) Linearity: ± 0.2 dB (100 MHz to 3 GHz) Directivity ± 0.2 dB in air (rotation around probe axis) ± 0.4 dB in air (rotation normal to probe axis) Dynamic Range 2 V/m to > 1000 V/m; Linearity: ± 0.2 dB Dimensions Overall length: 330 mm (Tip: 16 mm) Tip diameter: 8 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.5 mm Application General near-field measurements up to 6 GHz Field component measurements Fast automatic scanning in phantoms [ER3DV6] #### 6.3Test Arch Phantom & Phone Positioner The Test Arch phantom should be positioned horizontally on a stable surface. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. It enables easy and well defined positioning of the phone and validation dipoles as well as simple teaching of the robot (Dimensions: $370 \times 370 \times 370 \text{ mm}$). The Phone Positioner supports accurate and reliable positioning of any phone with effect on near field $<\pm 0.5$ dB. Fig. 2 HAC Phantom & Device Holder ## 6.4Robotic System Specifications #### **Specifications** Positioner: Stäubli Unimation Corp. Robot Model: RX160L Repeatability: ±0.02 mm No. of Axis: 6 ## **Data Acquisition Electronic (DAE) System** **Cell Controller** Processor: Intel Core2 Clock Speed: 1.86GHz **Operating System: Windows XP** **Data Converter** Features: Signal Amplifier, multiplexer, A/D converter, and control logic Software: DASY5 software Connecting Lines: Optical downlink for data and status info. Optical uplink for commands and clock ## **7 EUT ARRANGEMENT** ## 7.1 WD RF Emission Measurements Reference and Plane Figure 4 illustrates the references and reference plane that shall be used in the WD emissions measurement. - The grid is 5 cm by 5 cm area that is divided into 9 evenly sized blocks or sub-grids. - The grid is centered on the audio frequency output transducer of the WD (speaker or T-coil). - The grid is located by reference to a reference plane. This reference plane is the planar area that contains the highest point in the area of the WD that normally rests against the user's ear - The measurement plane is located parallel to the reference plane and 15 mm from it, out from the phone. The grid is located in the measurement plane. Fig. 3 WD reference and plane for RF emission measurements ### **8 SYSTEM VALIDATION** #### 8.1 Validation Procedure Place a dipole antenna meeting the requirements given in ANSI C63.19 in the position normally occupied by the WD. The dipole antenna serves as a known source for an electrical output. Position the E-field probes so that: - •The probes and their cables are parallel to the coaxial feed of the dipole antenna - •The probe cables and the coaxial feed of the dipole antenna approach the measurement area from opposite directions - The center point of the probe element(s) are 15 mm from the closest surface of the dipole elements. Fig. 4 Dipole Validation Setup #### 8.2 Validation Result | | E-Field Scan | | | | | | | |------|--------------------|------------------|---------------------------------------|----------------------------------|----------------------------|---------------------------|--| | Mode | Frequency
(MHz) | Input Power (mW) | Measured ¹
Value(dBV/m) | Target ² Value(dBV/m) | Deviation ³ (%) | Limit ⁴
(%) | | | CW | 835 | 100 | 40.61 | 40.56 | 0.58 | ±25 | | | CW | 1880 | 100 | 39.05 | 38.89 | 1.86 | ±25 | | #### Notes: - 1. Please refer to the attachment for detailed measurement data and plot. - 2. Target value is provided by SPEAD in the calibration certificate of specific dipoles. - 3. Deviation (%) = 100 * (Measured value minus Target value) divided by Target value. - 4. ANSI C63.19 requires values within \pm 25% are acceptable, of which 12% is deviation and 13% is measurement uncertainty. Values independently validated for the dipole actually used in the measurements should be used, when available. ## 9 Evaluation of MIF #### 9.1 Introduction The MIF (Modulation Interference Factor) is used to classify E-field emission to determine Hearing Aid Compatibility (HAC). It scales the power-averaged signal to the RF audio interference level and is characteristic to a modulation scheme. The HAC standard preferred "indirect" measurement method is based on average field measurement with separate scaling by the MIF. With an Audio Interference Analyzer (AIA) designed by SPEAG specifically for the MIF measurement, these values have been verified by practical measurements on an RF signal modulated with each of the waveforms. The resulting deviations from the simulated values are within the requirements of the HAC standard. The AIA (Audio Interference Analyzer) is an USB powered electronic sensor to evaluate signals in the frequency range 698MHz - 6 GHz. It contains RMS detector and audio frequency circuits for sampling of the RF envelope. Fig. 5 AIA Front View #### 9.2 MIF measurement with the AIA The MIF is measured with the AIA as follows: - 1. Connect the AIA via USB to the DASY5 PC and verify the configuration settings. - 2. Couple the RF signal to be evaluated to an AIA via cable or antenna. - 3. Generate a MIF measurement job for the unknown signal and select the measurement port and timing settings. - 4. Document the results via the post processor in a report. ## 9.3 Test equipment for the MIF measurement | No. | Name | Туре | Serial Number | Manufacturer | |-----|------------------|---------------|---------------|--------------| | 01 | Signal Generator | E4438C | MY49071430 | Agilent | | 02 | AIA | SE UMS 170 CB | 1029 | SPEAG | | 03 | BTS | E5515C | MY50263375 | Agilent | ## 9.4 Test signal validation The signal generator (E4438C) is used to generate a 1GHz signal with different modulation in the below table based on the ANSI C63.19-2011. The measured MIF with AIA are compared with the target values given in ANSI C63.19-2011 table D.3, D.4 and D5. | Pulse modulation | Target MIF | Measured MIF | Deviation | |--|------------|--------------|-----------| | 0.5ms pulse, 1000Hz repetition rate | -0.9 dB | -0.9 dB | 0 dB | | 1ms pulse, 100Hz repetition rate | +3.9 dB | +3.7 dB | 0.2 dB | | 0.1ms pulse, 100Hz repetition rate | +10.1 dB | +10.0 dB | 0.1 dB | | 10ms pulse, 10Hz repetition rate | +1.6 dB | +1.7 dB | 0.1 dB | | Sine-wave modulation | Target MIF | Measured MIF | Deviation | | 1 kHz, 80% AM | -1.2 dB | -1.3 dB | 0.1 dB | | 1 kHz, 10% AM | -9.1 dB | -9.0 dB | 0.1 dB | | 1 kHz, 1% AM | -19.1 dB | -18.9 dB | 0.2 dB | | 100 Hz, 10% AM | -16.1 dB | -16.0 dB | 0.1 dB | | 10 kHz, 10% AM | -21.5 dB | -21.6 dB | 0.1 dB | | Transmission protocol | Target MIF | Measured MIF |
Deviation | | GSM; full-rate version 2; speech codec/handset low | +3.5 dB | +3.47 dB | 0.03 dB | | WCDMA; speech; speech codec low; AMR 12.2 kb/s | -20.0 dB | -19.8 dB | 0.2 dB | | CDMA; speech; SO3; RC3; full frame rate; 8kEVRC | -19.0 dB | -19.1 dB | 0.1 dB | | CDMA; speech; SO3; RC1; 1/8 th frame rate; 8kEVRC | +3.3 dB | +3.44 dB | 0.14 dB | # 9.5 DUT MIF results | Typical MIF levels in ANSI C63.19-2011 | | | | | |--|--------------------------------|--|--|--| | Transmission protocol | Modulation interference factor | | | | | GSM-FDD (TDMA, GMSK) | +3.63 dB | | | | | EDGE-FDD (TDMA, 8PSK, TN 0-1) | +1.23dB | | | | | EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3) | -1.82dB | | | | | UMTS-FDD (WCDMA) | -27.23 dB | | | | | UMTS-FDD (HSPA) | -20.75dB | | | | | LTE-FDD (SC-FDMA, 1RB, 20MHz, QPSK) | -15.63 dB | | | | | LTE-FDD (SC-FDMA, 1RB, 20MHz, 16QAM) | -9.76 dB | | | | | LTE-FDD (SC-FDMA, 1RB, 20MHz, 64QAM) | -9.93 dB | | | | | LTE-TDD (SC-FDMA, 1RB, 20MHz, QPSK) | -1.62 dB | | | | | LTE-TDD (SC-FDMA, 1RB, 20MHz, 16QAM) | -1.44 dB | | | | | LTE-TDD (SC-FDMA, 1RB, 20MHz, 64QAM) | -1.54 dB | | | | | CDMA2000, RC1, SO3, 1/8th Rate 25 fr | +3.26 dB | | | | | | Measured MIF for GSM | | | | | | | |-----------------------------|----------------------|------|------|------|------|------|------| | Band GSM 8502TX GSM 19002T> | | | | X | | | | | Channel | | 251 | 190 | 128 | 810 | 661 | 512 | | Mode | Voice | 3.27 | 3.50 | 3.49 | 3.48 | 3.49 | 3.46 | | Mode | EDGE | 1.54 | 1.42 | 1.38 | 1.42 | 1.35 | 1.39 | | | Measured MIF for WCDMA | | | | | | | | | | |------|------------------------|--------|------------|--------|------------|--------|--------|--------|--------|--------| | В | Band WCDMA 850 | | WCDMA 1700 | | WCDMA 1900 | | 900 | | | | | Cha | annel | 4458 | 4407 | 4357 | 1738 | 1637 | 1537 | 9938 | 9800 | 9662 | | Mada | RMC | -22.56 | -23.64 | -22.14 | -22.54 | -22.81 | -23.08 | -22.74 | -22.35 | -23.09 | | Mode | HSUPA | -22.89 | -23.26 | -22.68 | -22.16 | -23.04 | -22.58 | -23.11 | -22.69 | -22.73 | # **QPSK** | Measured MIF levels | | | | | | |---------------------|---------|--------------------------------|--|--|--| | Band | Channel | Modulation interference factor | | | | | | 19100 | -13.52 | | | | | Band2 | 18900 | -14.36 | | | | | | 18700 | -13.72 | | | | | | 20300 | -14.36 | | | | | Band4 | 20175 | -13.69 | | | | | | 20050 | -14.06 | | | | | | 20600 | -13.68 | | | | | Band5 | 20525 | -13.25 | | | | | | 20450 | -14.36 | | | | | | 23130 | -14.05 | | | | | Band12 | 23095 | -14.28 | | | | | | 23060 | -14.36 | | | | | Band14 | 23330 | -14.19 | | | | ## **16QAM** | 104, | | | |--------|------------------|--------------------------------| | | Measured MIF lev | vels | | Band | Channel | Modulation interference factor | | | 19100 | -9.65 | | Band2 | 18900 | -10.12 | | | 18700 | -10.06 | | | 20300 | -9.26 | | Band4 | 20175 | -11.26 | | | 20050 | -10.74 | | | 20600 | -9.63 | | Band5 | 20525 | -9.58 | | | 20450 | -9.62 | | | 23130 | -10.16 | | Band12 | 23095 | -10.39 | | | 23060 | -10.45 | | Band14 | 23330 | -10.04 | #### 64QAM | Measured MIF levels | | | | | | |---------------------|---------|--------------------------------|--|--|--| | Band | Channel | Modulation interference factor | | | | | | 19100 | -9.68 | | | | | Band2 | 18900 | -10.21 | | | | | | 18700 | -9.74 | | | | | | 20300 | -10.39 | | | | | Band4 | 20175 | -11.06 | | | | | | 20050 | -10.84 | | | | | | 20600 | -10.38 | | | | | Band5 | 20525 | -9.89 | | | | | | 20450 | -10.62 | | | | | | 23130 | -11.09 | | | | | Band12 | 23095 | -9.68 | | | | | | 23060 | -9.94 | | | | | Band14 | 23330 | -10.14 | | | | #### WiFi | 2.4GHz
802.11n | 11 | -12.78 | |-------------------|---------|--------| | | 6 | -13.63 | | | 1 | -12.65 | | 5GHz | 134 | -14.48 | | 802.11n | 802.11n | -14.40 | # 10 Evaluation for low-power exemption ## 10.1 Product testing threshold There are two methods for exempting an RF air interface technology from testing. The first method requires evaluation of the MIF for the worst-case operating mode. An RF air interface technology of a device is exempt from testing when its average antenna input power plus its MIF is \leq 17 dBm for any of its operating modes. The second method does not require determination of the MIF. The RF emissions testing exemption shall be applied to an RF air interface technology in a device whose peak antenna input power, averaged over intervals \leq 50 $\,\mu$ s20, is \leq 23 dBm. An RF air interface technology that is exempted from testing by either method shall be rated as M4. The first method is used to be exempt from testing for the RF air interface technology in this report. ## 10.2 Conducted power | Band | Average power (dBm) | MIF (dB) | Sum (dBm) | C63.19 Tested | |-------------------|---------------------|----------|-----------|---------------| | GSM 850 - Voice | 33.7 | 3.50 | 37.2 | Yes | | GSM 850 - EDGE | 24.7 | 1.54 | 26.24 | Yes* | | GSM 1900 - Voice | 31 | 3.49 | 34.49 | Yes | | GSM 1900 - EDGE | 25.2 | 1.42 | 26.62 | Yes* | | WCDMA 850 - RMC | 24.7 | -22.14 | 2.56 | No | | WCDMA 850 - HSPA | 23.7 | -22.68 | 1.02 | No | | WCDMA 1700 - RMC | 23.5 | -22.54 | 0.96 | No | | WCDMA 1700 - HSPA | 22.6 | -22.16 | 0.44 | No | | WCDMA 1900 - RMC | 24.7 | -22.35 | 2.35 | No | | WCDMA 1900 - HSPA | 23.7 | -22.69 | 1.01 | No | | LTE Band 2 QPSK | 24.2 | -13.52 | 10.68 | No | | LTE Band 4 QPSK | 23.7 | -13.69 | 10.01 | No | | LTE Band 5 QPSK | 24.2 | -13.25 | 10.95 | No | | LTE Band 12 QPSK | 24.2 | -14.05 | 10.15 | No | | LTE Band 14 QPSK | 24 | -14.19 | 9.81 | No | | LTE Band 2 16QAM | 23.2 | -9.65 | 13.55 | No | | LTE Band 4 16QAM | 22.7 | -9.26 | 13.44 | No | | LTE Band 5 16QAM | 23.2 | -9.58 | 13.62 | No | | LTE Band 12 16QAM | 23.2 | -10.16 | 13.04 | No | | LTE Band 14 16QAM | 23 | -10.04 | 12.96 | No | | LTE Band 2 64QAM | 22.2 | -9.68 | 12.52 | No | | LTE Band 4 64QAM | 21.7 | -10.39 | 11.31 | No | | LTE Band 5 64QAM | 22.2 | -9.89 | 12.31 | No | | LTE Band 12 64QAM | 22.2 | -9.68 | 12.52 | No | | LTE Band 14 64QAM | 22 | -10.14 | 11.86 | No | | WiFi-2.4G | 19.6 | -12.65 | 6.95 | No | | WiFi-5G | 19 | -14.48 | 4.52 | No | ^{*}Note: For GSM bands, EDGE modes were not evaluated as Voice modes were found to the worst-case modes for the GSM air interface. #### 10.3 Conclusion According to the above table, the sums of average power and MIF for WCDMA, LTE FDD and WiFi are less than 17dBm. So it is measured for GSM bands. The WCDMA, LTE FDD and WiFi are exempt from testing and rated as M4. ### 11 RF TEST PROCEDUERES #### The evaluation was performed with the following procedure: - 1) Confirm proper operation of the field probe, probe measurement system and other instrumentation and the positioning system. - 2) Position the WD in its intended test position. The gauge block can simplify this positioning. - 3) Configure the WD normal operation for maximum rated RF output power, at the desired channel and other operating parameters (e.g., test mode), as intended for the test. - 4) The center sub-grid shall centered on the center of the T-Coil mode axial measurement point or the acoustic output, as appropriate. Locate the field probe at the initial test position in the 50 mm by 50 mm grid, which is contained in the measurement plane. If the field alignment method is used, align the probe for maximum field reception. - 5) Record the reading. - 6) Scan the entire 50 mm by 50 mm region in equally spaced increments and record the reading at each measurement point. The distance between measurement points shall be sufficient to assure the identification of the maximum reading. - 7) Identify the five contiguous sub-grids around the center sub-grid whose maximum reading is the lowest of all available choices. This eliminates the three sub-grids with the maximum readings. Thus, the six areas to be used to determine the WD's highest emissions are identified. - 8) Identify the maximum field reading within the non-excluded sub-grids identified in Step 7) - 9) Evaluate the MIF and add to the maximum steady-state rms field-strength reading to obtain the RF audio interference level.. - Compare this RF audio interference level with the categories and record the resulting WD category rating. # 12 Measurement Results (E-Field) | Fred | luency | Measured | Dower Drift (dD) | Cotomony | | | | | |--------|---------|---------------|------------------|-------------------------|--|--|--|--| | MHz | Channel | Value(dBV/m) | Power Drift (dB) | Category | | | | | | | GSM 850 | | | | | | | | | 848.8 | 251 | 35.31 | 0.01 | M4 (see Fig B.1) | | | | | | 836.6 | 190 | 35.82 | 0 | M4 (see Fig B.2) | | | | | | 824.2 | 128 | 34.96 | 0 | M4 (see Fig B.3) | | | | | | | | GSM 19 | 00 | | | | | | | 1909.8 | 810 | 27.99 | 0.01 | M4 (see Fig B.4) | | | | | | 1880 | 661 | 29.32 | -0.01 | M4 (see Fig B.5) | | | | | | 1850.2 | 512 | 27.90 | -0.04 | M4 (see Fig B.6) | | | | | ## 13 ANSIC 63.19-2011 LIMITS # WD RF audio interference level categories in logarithmic units | Emission categories | < 960 MHz E | -field emissions | |---------------------|--------------|------------------| | Category M1 | 50 to 55 | dB (V/m) | | Category M2 | 45 to 50 | dB (V/m) | | Category M3 | 40 to 45 | dB (V/m) | | Category M4 | < 40 | dB (V/m) | | Emission categories | > 960 MHz E- | field emissions | | Category M1 | 40 to 45 | dB (V/m) | | Category M2 | 35 to 40 | dB (V/m) | | Category M3 | 30 to 35 | dB (V/m) | | Category M4 | < 30 | dB (V/m) | # **14 MEASUREMENT UNCERTAINTY** | No. | Error source | Туре | Uncertainty Value(%) | Prob.
Dist. | k | c _i E | Standard Uncertainty (%) u ; (%)E | Degree of freedom V _{eff} or <i>v</i> _i | | |------|--------------------------------|------|----------------------|----------------|------------|------------------|-----------------------------------|---|--| | Meas | Measurement System | | | | | | | | | |
1 | Probe Calibration | В | 5. | N | 1 | 1 | 5.1 | ∞ | | | 2 | Axial Isotropy | В | 4.7 | R | $\sqrt{3}$ | 1 | 2.7 | ∞ | | | 3 | Sensor Displacement | В | 16.5 | R | $\sqrt{3}$ | 1 | 9.5 | ∞ | | | 4 | Boundary Effects | В | 2.4 | R | $\sqrt{3}$ | 1 | 1.4 | ∞ | | | 5 | Linearity | В | 4.7 | R | $\sqrt{3}$ | 1 | 2.7 | ∞ | | | 6 | Scaling to Peak Envelope Power | В | 2.0 | R | $\sqrt{3}$ | 1 | 1.2 | ∞ | | | 7 | System Detection Limit | В | 1.0 | R | $\sqrt{3}$ | 1 | 0.6 | ∞ | | | 8 | Readout Electronics | В | 0.3 | N | 1 | 1 | 0.3 | ∞ | | | 9 | Response Time | В | 0.8 | R | $\sqrt{3}$ | 1 | 0.5 | ∞ | | | 10 | Integration Time | В | 2.6 | R | $\sqrt{3}$ | 1 | 1.5 | ∞ | | | 11 | RF Ambient Conditions | В | 3.0 | R | $\sqrt{3}$ | 1 | 1.7 | ∞ | | | 12 | RF Reflections | В | 12.0 | R | $\sqrt{3}$ | 1 | 6.9 | ∞ | | | 13 | Probe Positioner | В | 1.2 | R | $\sqrt{3}$ | 1 | 0.7 | ∞ | | | 14 | Probe Positioning | Α | 4.7 | R | $\sqrt{3}$ | 1 | 2.7 | ∞ | | | 15 | Extra. And Interpolation | В | 1.0 | R | $\sqrt{3}$ | 1 | 0.6 | ∞ | | | Test | Sample Related | | | | | | | | | | 16 | Device Positioning Vertical | В | 4.7 | R | $\sqrt{3}$ | 1 | 2.7 | ∞ | | | 17 | Device Positioning Lateral | В | 1.0 | R | $\sqrt{3}$ | 1 | 0.6 | ∞ | | | 18 | Device Holder and Phantom | В | 2.4 | R | $\sqrt{3}$ | 1 | 1.4 | ∞ | | | 19 | Power Drift | В | 5.0 | R | $\sqrt{3}$ | 1 | 2.9 | ∞ | | | 20 | AIA measurement | В | 12 | R | $\sqrt{3}$ | 1 | 6.9 | ∞ | |------|--|---|--------------|---|------------|---|------|---| | Pha | ntom and Setup related | | | | | | | | | 21 | Phantom Thickness | В | 2.4 | R | $\sqrt{3}$ | 1 | 1.4 | 8 | | Coml | Combined standard uncertainty(%) 16.2 | | | | | | | | | · - | nded uncertainty
idence interval of 95 %) | ı | $u_e = 2u_c$ | Z | k=: | 2 | 32.4 | | # **15 MAIN TEST INSTRUMENTS** **Table 1: List of Main Instruments** | No. | Name | Туре | Serial Number | Calibration Date | Valid Period | |-----|------------------|---------------|---------------|--------------------------|--------------| | 01 | Signal Generator | E4438C | MY49071430 | January 23, 2019 | One Year | | 02 | Power meter | NRP2 | 106277 | September 4, 2019 | One year | | 03 | Power sensor | NRP8S | 104291 | September 4, 2019 | One year | | 04 | Amplifier | 60S1G4 | 0331848 | No Calibration Requested | | | 05 | E-Field Probe | EF3DV3 | 4060 | May 17, 2019 | One year | | 06 | DAE | SPEAG DAE4 | 771 | January 11, 2019 | One year | | 07 | HAC Dipole | CD835V3 | 1023 | August 26, 2019 | One year | | 80 | HAC Dipole | CD1880V3 | 1018 | August 26, 2019 | One year | | 09 | HAC Dipole | CD2600V3 | 1017 | August 23, 2019 | One year | | 10 | BTS | E5515C | MY50263375 | January 17, 2019 | One year | | 11 | AIA | SE UMS 170 CB | 1029 | No Calibration Re | quested | # **16 CONCLUSION** The HAC measurement indicates that the EUT complies with the HAC limits of the ANSIC63.19-2011. The total M-rating is **M4.** ***END OF REPORT BODY*** # ANNEX A TEST LAYOUT Picture A1:HAC RF System Layout ## ANNEX B TEST PLOTS ## HAC RF E-Field GSM 850 High Date: 2020-1-10 Electronics: DAE4 Sn771 Medium: Air Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.0°C Communication System: GSM 850; Frequency: 848.8 MHz; Duty Cycle: 1:8.3 Probe: EF3DV3 - SN4060;ConvF(1, 1, 1) GSM850/E Scan - ER3DV6 - 2011: 15 mm from Probe Center to the Device/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 49.00 V/m; Power Drift = 0.01 dB Applied MIF = 3.27 dB RF audio interference level = 35.31 dBV/m Emission category: M4 MIF scaled E-field | Grid 1 M4 | Grid 2 | M4 | Grid 3 | M4 | |------------------|--------|-------|--------|-------| | 34.75 dBV/m | 35. 01 | dBV/m | 34. 36 | dBV/m | | Grid 4 M4 | Grid 5 | M4 | Grid 6 | M4 | | 34.8 dBV/m | 35. 31 | dBV/m | 34. 87 | dBV/m | | Grid 7 M4 | Grid 8 | M4 | Grid 9 | M4 | | 34.76 dBV/m | 35. 31 | dBV/m | 34. 96 | dBV/m | 0 dB = 58.27 V/m = 35.31 dBV/m Fig B.1 HAC RF E-Field GSM 850 High #### HAC RF E-Field GSM 850 Middle Date: 2020-1-10 Electronics: DAE4 Sn771 Medium: Air Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.0°C Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3 Probe: EF3DV3 - SN4060;ConvF(1, 1, 1) GSM850/E Scan - ER3DV6 - 2011: 15 mm from Probe Center to the Device 2/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 50.99 V/m; Power Drift = -0.00 dB Applied MIF = 3.50 dB RF audio interference level = 35.82 dBV/m Emission category: M4 | Grid 1 | M4 | Grid 2 | M4 | Grid 3 | M4 | |--------|-------|--------|-------|--------|-------| | 35. 96 | dBV/m | 36. 04 | dBV/m | 34. 82 | dBV/m | | Grid 4 | M4 | Grid 5 | M4 | Grid 6 | M4 | | 35. 65 | dBV/m | 35. 82 | dBV/m | 34. 81 | dBV/m | | Grid 7 | M4 | Grid 8 | M4 | Grid 9 | M4 | | 35. 35 | dBV/m | 35. 52 | dBV/m | 34. 66 | dBV/m | Fig B.2 HAC RF E-Field GSM 850 Middle ## HAC RF E-Field GSM 850 Low Date: 2020-1-10 Electronics: DAE4 Sn771 Medium: Air Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.0°C Communication System: GSM 850; Frequency: 824.2 MHz; Duty Cycle: 1:8.3 Probe: EF3DV3 - SN4060;ConvF(1, 1, 1) GSM850/E Scan - ER3DV6 - 2011: 15 mm from Probe Center to the Device 3/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 45.96 V/m; Power Drift = 0.00 dB Applied MIF = 3.49 dB RF audio interference level = 34.96 dBV/m Emission category: M4 | Grid 1 M4 | Grid 2 | M4 | Grid 3 | M4 | |------------------|--------|-------|--------|-------| | 34.4 dBV/m | 34. 72 | dBV/m | 33. 98 | dBV/m | | Grid 4 M4 | Grid 5 | M4 | Grid 6 | M4 | | 34.53 dBV/m | 34. 96 | dBV/m | 34. 38 | dBV/m | | Grid 7 M4 | Grid 8 | M4 | Grid 9 | M4 | | 34.47 dBV/m | 34. 95 | dBV/m | 34. 42 | dBV/m | Fig B.3 HAC RF E-Field GSM 850 Low ## HAC RF E-Field GSM 1900 High Date: 2020-1-10 Electronics: DAE4 Sn771 Medium: Air Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.0°C Communication System: PCS 1900; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3 Probe: EF3DV3 - SN4060;ConvF(1, 1, 1) GSM1900/E Scan - ER3DV6 - 2011: 15 mm from Probe Center to the Device/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 17.19 V/m; Power Drift = 0.01 dB Applied MIF = 3.48 dB RF audio interference level = 27.99 dBV/m Emission category: M4 | Grid 1 M4 | Grid 2 | M4 | Grid 3 | M4 | |------------------|--------|-------|--------|-------| | 23.23 dBV/m | 25. 82 | dBV/m | 25. 82 | dBV/m | | Grid 4 M4 | Grid 5 | M4 | Grid 6 | M4 | | 25.58 dBV/m | 27. 99 | dBV/m | 27. 95 | dBV/m | | Grid 7 M4 | Grid 8 | M4 | Grid 9 | M4 | | 26.83 dBV/m | 28. 79 | dBV/m | 28. 64 | dBV/m | 0 db 21.32 v/m 20.13 dbv/ Fig B.4 HAC RF E-Field GSM 1900 High #### HAC RF E-Field GSM 1900 Middle Date: 2020-1-10 Electronics: DAE4 Sn771 Medium: Air Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.0°C Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3 Probe: EF3DV3 - SN4060;ConvF(1, 1, 1) GSM1900/E Scan - ER3DV6 - 2011: 15 mm from Probe Center to the Device 2/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 20.06 V/m; Power Drift = -0.01 dB Applied MIF = 3.49 dB RF audio interference level = 29.32 dBV/m Emission category: M4 | Grid 1 M4 | Grid 2 | 2 M4 | Grid 3 | M4 | |------------------|------------------------|-------------|--------|-------| | 25. 02 dBV | /m 27. 25 | dBV/m | 27. 25 | dBV/m | | Grid 4 M4 | Grid 5 | 5 M4 | Grid 6 | M4 | | 26. 96 dBV | /m <mark>29. 32</mark> | dBV/m | 29. 28 | dBV/m | | Grid 7 M4 | Grid 8 | 3 M3 | Grid 9 | M4 | | 28. 18 dBV | /m <mark>30. 09</mark> | dBV/m | 29. 95 | dBV/m | 0 dB = 31.96 V/m = 30.09 dBV/m Fig B.5 HAC RF E-Field GSM 1900 Middle ## HAC RF E-Field GSM 1900 Low Date: 2020-1-10 Electronics: DAE4 Sn771 Medium: Air Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.0°C Communication System: PCS 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3 Probe: EF3DV3 - SN4060;ConvF(1, 1, 1) GSM1900/E Scan - ER3DV6 - 2011: 15 mm from Probe Center to the Device 3/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 17.29 V/m; Power Drift = -0.04 dB Applied MIF = 3.46 dB RF audio interference level = 27.90 dBV/m Emission category: M4 ### MIF scaled E-field | Grid 1 M4 | Grid 2 M4 | Grid 3 M4 | |------------------|------------------|------------------| | 22.84 dBV/m | 25.74 dBV/m | 25.72 dBV/m | | Grid 4 M4 | Grid 5 M4 | Grid 6 M4 | | 25.47 dBV/m | 27.9 dBV/m | 27.83 dBV/m | | Grid 7 M4 | Grid 8 M4 | Grid 9 M4 | | 26.74 dBV/m | 28.7 dBV/m | 28.52 dBV/m | 0 dB = 27.21 V/m = 28.69 dBV/m Fig B.6 HAC RF E-Field GSM 1900 Low # ANNEX C SYSTEM VALIDATION RESULT E SCAN of Dipole 835 MHz Date: 2020-1-10 Electronics: DAE4 Sn771 Medium: Air Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon r = 1$; $\rho = 1000$ kg/m3 Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Probe: EF3DV3 - SN4060;ConvF(1, 1, 1) E Scan - measurement distance from the probe sensor center to CD835 Dipole = 15mm/Hearing Aid Compatibility Test (41x361x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm
Reference Value = 134.8 V/m; Power Drift = 0.04 dB Applied MIF = 0.00 dB RF audio interference level = 40.61 dBV/m **Emission category: M3** MIF scaled E-field | Grid 2 M3
40.61 dBV/m | Grid 3 M3
40.74 dBV/m | |--|--| | Grid 5 M4
35.76 dBV/m | Grid 6 M4
35.76 dBV/m | | Grid 8 M3
40.72 dBV/m | Grid 9 M3
40.67 dBV/m | 0 dB = 40.61 dBV/m # E SCAN of Dipole 1880 MHz Date: 2020-1-10 Electronics: DAE4 Sn771 Medium: Air Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³ Communication System: CW; Frequency: 1880 MHz; Duty Cycle: 1:1 Probe: EF3DV3 - SN4060;ConvF(1, 1, 1) E Scan - measurement distance from the probe sensor center to CD1880 Dipole = 15mm/Hearing Aid Compatibility Test (41x181x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 154.1 V/m; Power Drift = 0.05 dB Applied MIF = 0.00 dB RF audio interference level = 39.05 dBV/m **Emission category: M2** ## MIF scaled E-field | Grid 1 M2 | Grid 2 M2 | Grid 3 M2 | |------------------|------------------|------------------| | 38.71 dBV/m | 39.05 dBV/m | 39.26 dBV/m | | Grid 4 M2 | Grid 5 M2 | Grid 6 M2 | | 36.14 dBV/m | 36.08 dBV/m | 36.27 dBV/m | | Grid 7 M2 | Grid 8 M2 | Grid 9 M2 | | 38.75 dBV/m | 39.98 dBV/m | 38.89 dBV/m | 0 dB = 39.05 dBV/m # ANNEX D PROBE CALIBRATION CERTIFICATE Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client CTTL (Auden) Certificate No: EF3-4060_May19 # CALIBRATION CERTIFICATE Object EF3DV3-SN:4060 Calibration procedure(s) QA CAL-02.v9, QA CAL-25.v7 Calibration procedure for E-field probes optimized for close near field evaluations in air Calibration date: May 17, 2019 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 03-Apr-19 (No. 217-02892/02893) | Apr-20 | | Power sensor NRP-Z91 | SN: 103244 | 03-Apr-19 (No. 217-02892) | Apr-20 | | Power sensor NRP-Z91 | SN: 103245 | 03-Apr-19 (No. 217-02893) | Apr-20 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 04-Apr-19 (No. 217-02894) | Apr-20 | | DAE4 | SN: 789 | 14-Jan-19 (No. DAE4-789_Jan19) | Jan-20 | | Reference Probe ER3DV6 | SN: 2328 | 09-Oct-18 (No. ER3-2328 Oct18) | Oct-19 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-18) | In house check: Jun-20 | | Network Analyzer E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-18) | In house check: Oct-19 | Calibrated by: Name Function Signature Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: May 20, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: EF3-4060_May19 Page 1 of 19 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: NORMx,y,z sensitivity in free space DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters En incident E-field orientation normal to probe axis Ep incident E-field orientation parallel to probe axis Polarization () φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1309-2005, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", December 2005 - b) CTIA Test Plan for Hearing Aid Compatibility, Rev 3.1.1, May 2017 #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 for XY sensors and 9 = 90 for Z sensor (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). - $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide setup - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EF3-4060_May19 EF3DV3 - SN:4060 May 17, 2019 # DASY/EASY - Parameters of Probe: EF3DV3 - SN:4060 ## **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |------------------------|----------|----------|----------|-----------| | Norm $(\mu V/(V/m)^2)$ | 0.79 | 0.74 | 1.28 | ± 10.1 % | | DCP (mV) ^B | 98.2 | 95.5 | 93.6 | | Calibration results for Frequency Response (30 MHz = 6 GHz) | Frequency
MHz | Target E-Field
V/m | Measured
E-field (En)
V/m | Deviation
E-normal
in % | Measured
E-field (Ep)
V/m | Deviation
E-normal
In % | Unc (k=2) | |------------------|-----------------------|---------------------------------|-------------------------------|---------------------------------|-------------------------------|-----------| | 30 | 77.2 | 77.3 | 0.2% | 77.4 | 0.3% | ± 5.1 % | | 100 | 77.3 | 78.3 | 1.3% | 78.6 | 1.7% | ± 5.1 % | | 450 | 77.1 | 78.1 | 1.3% | 78.2 | 1.4% | ± 5.1 % | | 600 | 77.1 | 77.6 | 0.7% | 77.6 | 0.7% | ± 5.1 % | | 750 | 77.2 | 77.6 | 0.5% | 77.4 | 0.3% | ± 5.1 % | | 1800 | 143.1 | 139.1 | -2.8% | 139.3 | -2.6% | ± 5.1 % | | 2000 | 135.1 | 131.5 | -2.6% | 131.6 | -2.6% | ± 5.1 % | | 2200 | 127.5 | 123.4 | -3.2% | 124.8 | -2.1% | ± 5.1 % | | 2500 | 125.5 | 122.5 | -2.3% | 123.6 | -1.5% | ± 5.1 % | | 3000 | 79.4 | 75.9 | -4.5% | 76.8 | -3.3% | ± 5.1 % | | 3500 | 256.2 | 247.1 | -3.5% | 244.6 | -4.5% | ± 5.1 % | | 3700 | 249.5 | 238.4 | -4.4% | 237.2 | -4.9% | ± 5.1 % | | 5200 | 50.7 | 51.2 | 0.9% | 51.5 | 1.6% | ± 5.1 % | | 5500 | 49.7 | 49.4 | -0.6% | 48.2 | -3.0% | ± 5.1 % | | 5800 | 48.8 | 48.7 | -0.3% | 49.6 | 1.6% | ± 5.1 % | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: EF3-4060_May19 B Numerical linearization parameter: uncertainty not required. Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value. EF3DV3 - SN:4060 May 17, 2019 # DASY/EASY - Parameters of Probe: EF3DV3 - SN:4060 Calibration Results for Modulation Response | UID | Communication System Name | | A
dB | B
dBõV | С | D
dB | VR
mV | Max
dev. | Max
Unc ^F
(k=2) | |--------|-----------------------------|---|---------|-----------|-------|---|----------|-------------|----------------------------------| | 0 | CW | X | 0.00 | 0.00 | 1.00 | 0.00 | 171.1 | ± 3.5 % | ± 4.7 % | | | | Y | 0.00 | 0.00 | 1.00 | | 164.2 | | | | | | Z | 0.00 | 0.00 | 1.00 | | 172.8 | 1 | | | 10352- | Pulse Waveform (200Hz, 10%) | X | 2.72 | 65.67 | 9.66 | 10.00 | 60.0 | ± 3.2 % | ± 9.6 % | | AAA | | Y | 6.00 | 74.00 | 13.00 | | 60.0 | | | | | | Z | 2.66 | 66.07 | 9.64 | | 60.0 | 1 | | | 10353- | Pulse Waveform (200Hz, 20%) | X | 1.27 | 62.48 | 7.17 | 6.99 | 80.0 | ± 1.3 % | ± 9.6 % | | AAA | | Y | 1.38 | 63.43 | 7.77 | | 80.0 | | 2010 // | | | | Z | 1.30 | 63.08 | 7.35 | | 80.0 | 1 | | | 10354- | Pulse Waveform (200Hz, 40%) | X | 0.57 | 60.93 | 5.43
| 3.98 | 95.0 | ± 0.9 % | ± 9.6 % | | AAA | | Y | 0.70 | 62.08 | 6.24 | 1 1419/6/10 | 95.0 | | 0.000.0000.0000 | | | | Z | 0.61 | 61.44 | 5.61 | 1 | 95.0 | 1 | | | 10355- | Pulse Waveform (200Hz, 60%) | X | 0.31 | 60.48 | 4.52 | 2.22 | 120.0 | ± 0.9 % | ± 9.6 % | | AAA | | Y | 0.35 | 60.82 | 4.90 | | 120.0 | | | | | | Z | 0.42 | 61.46 | 4.70 | | 120.0 | | | | 10387- | QPSK Waveform, 1 MHz | X | 0.52 | 60.58 | 6.63 | 0.00 | 150.0 | ± 2.6 % | ± 9.6 % | | AAA | | Y | 0.46 | 60.00 | 5.71 | | 150.0 | | Contract of the | | | | Z | 0.44 | 60.00 | 5.37 | | 150.0 | 1 | | | 10388- | QPSK Waveform, 10 MHz | X | 2.47 | 70.93 | 17.56 | 0.00 | 150.0 | ± 1.0 % | ± 9.6 % | | AAA | | Y | 2.22 | 69.08 | 16.44 | | 150.0 | | | | | | Z | 2.44 | 71.07 | 17.65 | | 150.0 | 1 | | | 10396- | 64-QAM Waveform, 100 kHz | X | 1.74 | 65.32 | 17.52 | 3.01 | 150.0 | ± 3.3 % | ± 9.6 % | | AAA | | Y | 1.82 | 65.53 | 17.41 | 0.0000000000000000000000000000000000000 | 150.0 | 2000000000 | | | | | Z | 2.13 | 67.57 | 17.98 | | 150.0 | 1 | | | 10399- | 64-QAM Waveform, 40 MHz | X | 3.57 | 67.84 | 16.46 | 0.00 | 150.0 | ± 1.8 % | ± 9.6 % | | AAA | | Y | 3.41 | 67.03 | 15.92 | | 150.0 | 1 | | | | | Z | 3.54 | 67.84 | 16.52 | | 150.0 | 1 | | | 10414- | WLAN CCDF, 64-QAM, 40MHz | X | 4.80 | 66.13 | 16.05 | 0.00 | 150.0 | ± 3.4 % | ± 9.6 % | | AAA | | Y | 4.67 | 65.67 | 15.72 | | 150.0 | | | | | | Z | 4.77 | 66.19 | 16.15 | | 150.0 | 1 | | Note: For details on UID parameters see Appendix The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: EF3-4060_May19 Numerical linearization parameter: uncertainty not required. E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. EF3DV3 – SN:4060 May 17, 2019 # DASY/EASY - Parameters of Probe: EF3DV3 - SN:4060 ## Sensor Frequency Model Parameters | | Sensor X | Sensor Y | Sensor Z | |----------------------|----------|----------|----------| | Frequency Corr. (LF) | 0.22 | 0.21 | 4.59 | | Frequency Corr. (HF) | 2.82 | 2.82 | 2.82 | ### Sensor Model Parameters | | C1
fF | C2
fF | α
V-1 | T1
ms.V ⁻² | T2
ms.V ⁻¹ | T3
ms | T4
V ⁻² | T5
V ⁻¹ | T6 | |---|----------|----------|----------|--------------------------|--------------------------|----------|-----------------------|-----------------------|------| | X | 36.7 | 244.56 | 37.42 | 5.96 | 0.18 | 4.95 | 0.00 | 0.00 | 1.01 | | Υ | 35.1 | 235.07 | 37.62 | 8.08 | 0.00 | 4.99 | 0.00 | 0.06 | 1.01 | | Z | 33.6 | 228.28 | 38.82 | 7.28 | 0.00 | 4.99 | 0.00 | 0.19 | 1.00 | #### Other Probe Parameters | Sensor Arrangement | Rectangular | |---|-------------| | Connector Angle (°) | -36.4 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 12 mm | | Tip Length | 25 mm | | Tip Diameter | 4 mm | | Probe Tip to Sensor X Calibration Point | 1.5 mm | | Probe Tip to Sensor Y Calibration Point | 1.5 mm | | Probe Tip to Sensor Z Calibration Point | 1.5 mm | Certificate No: EF3-4060_May19 Page 5 of 19 EF3DV3 – SN:4060 May 17, 2019 # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ # Receiving Pattern (ϕ), $9 = 90^{\circ}$ Certificate No: EF3-4060_May19 Page 6 of 19 EF3DV3 – SN:4060 May 17, 2019 # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) # Receiving Pattern (ϕ), $\vartheta = 90^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) Certificate No: EF3-4060_May19 Page 7 of 19 EF3DV3 - SN:4060 May 17, 2019 # Dynamic Range f(E-field) (TEM cell, f = 900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) Certificate No: EF3-4060_May19 Page 8 of 19 EF3DV3 - SN:4060 May 17, 2019 # Deviation from Isotropy in Air Error (φ, θ), f = 900 MHz Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2) Certificate No: EF3-4060_May19 Page 9 of 19 # ANNEX E DIPOLE CALIBRATION CERTIFICATE ## Dipole 835 MHz Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client CTTL (Auden) Certificate No: CD835V3-1023_Aug19 | | CD835V3 - SN: 1023 | | | | | | |---------------------------------|-----------------------------------|--|--------------------------------|--|--|--| | alibration procedure(s) | QA CAL-20.v7
Calibration Proce | dure for Validation Sources in air | | | | | | alibration date: | August 26, 2019 | | | | | | | he measurements and the uncerta | ainties with confidence po | conal standards, which realize the physical unit
robability are given on the following pages and
by facility: environment temperature $(22 \pm 3)^{\circ}$ C | d are part of the certificate. | | | | | rimary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | | | | ower meter NRP | SN: 104778 | 03-Apr-19 (No. 217-02892/02893) | Apr-20 | | | | | ower sensor NRP-Z91 | SN: 103244 | 03-Apr-19 (No. 217-02892) | Apr-20 | | | | | ower sensor NRP-Z91 | SN: 103245 | 03-Apr-19 (No. 217-02893) | Apr-20 | | | | | eference 20 dB Attenuator | SN: 5058 (20k) | 04-Apr-19 (No. 217-02894) | Apr-20 | | | | | ype-N mismatch combination | SN: 5047.2 / 06327 | 04-Apr-19 (No. 217-02895) | Apr-20 | | | | | robe EF3DV3 | SN: 4013 | 03-Jan-19 (No. EF3-4013 Jan19) | Jan-20 | | | | | AE4 | SN: 781 | 09-Jan-19 (No. DAE4-781_Jan19) | Jan-20 | | | | | econdary Standards | ID# | Check Date (in house) | Scheduled Check | | | | | ower meter Agilent 4419B | SN: GB42420191 | 09-Oct-09 (in house check Oct-17) | In house check: Oct-20 | | | | | ower sensor HP E4412A | SN: US38485102 | 05-Jan-10 (in house check Oct-17) | In house check: Oct-20 | | | | | ower sensor HP 8482A | SN: US37295597 | 09-Oct-09 (in house check Oct-17) | In house check: Oct-20 | | | | | P generator R&S SMT-06 | SN: 837633/005 | 10-Jan-19 (in house check Jan-19) | In house check: Oct-22 | | | | | letwork Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-18) | In house check: Oct-19 | | | | | | Name | Function | Signature | | | | | | Leif Klysner | Laboratory Technician | Seil Illan | | | | | calibrated by: | | | 1 mg | | | | Certificate No: CD835V3-1023_Aug19 Page 1 of 5 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### References ANSI-C63.19-2011 American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids. #### Methods Applied and Interpretation of Parameters: - Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms. - Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler While the dipole under test is connected, the forward power is adjusted to the same level. - Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy. - Feed Point Impedance and Return Loss: These parameters are measured using a Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles. - E-field distribution: E field is measured in the x-y-plane with an
isotropic E-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: CD835V3-1023_Aug19 Page 2 of 5 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.2 | |------------------------------------|-----------------|----------| | Phantom | HAC Test Arch | | | Distance Dipole Top - Probe Center | 15 mm | | | Scan resolution | dx, dy = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | | Input power drift | < 0.05 dB | | ## Maximum Field values at 835 MHz | E-field 15 mm above dipole surface | condition | Interpolated maximum | |------------------------------------|--------------------|--------------------------| | Maximum measured above high end | 100 mW input power | 106.7 V/m = 40.56 dBV/m | | Maximum measured above low end | 100 mW input power | 106.6 V/m = 40.56 dBV/m | | Averaged maximum above arm | 100 mW input power | 106.7 V/m ± 12.8 % (k=2) | # Appendix (Additional assessments outside the scope of SCS 0108) ## Antenna Parameters | Frequency | Return Loss | Impedance | |-----------|-------------|------------------| | 800 MHz | 17.2 dB | 41.4 Ω - 9.3 jΩ | | 835 MHz | 25.2 dB | 52.6 Ω + 5.0 jΩ | | 880 MHz | 16.4 dB | 62.6 Ω - 11.7 jΩ | | 900 MHz | 16.2 dB | 52.8 Ω - 15.9 jΩ | | 945 MHz | 24.1 dB | 45.6 Ω + 4.0 jΩ | ## 3.2 Antenna Design and Handling The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth. The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals. Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected. After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured. Certificate No: CD835V3-1023_Aug19 Page 3 of 5 ## Impedance Measurement Plot Certificate No: CD835V3-1023_Aug19 #### DASY5 E-field Result Date: 26.08.2019 Test Laboratory: SPEAG Lab2 # DUT: HAC-Dipole 835 MHz; Type: CD835V3; Serial: CD835V3 - SN: 1023 Communication System: UID 0 - CW ; Frequency: 835 MHz Medium parameters used: $\sigma=0$ S/m, $\epsilon_r=1$; $\rho=0$ kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EF3DV3 SN4013; ConvF(1, 1, 1) @ 835 MHz; Calibrated: 03.01.2019 - Sensor-Surface: (Fix Surface) - Electronics: DAE4 Sn781; Calibrated: 09.01.2019 - Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070 - DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470) # Dipole E-Field measurement @ 835MHz/E-Scan - 835MHz d=15mm/Hearing Aid Compatibility Test (41x361x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 127.9 V/m; Power Drift = -0.01 dB Applied MIF = 0.00 dB RF audio interference level = 40.56 dBV/m Emission category: M3 MIF scaled E-field | | Grid 2 M3
40.56 dBV/m | Grid 3 M3
40.51 dBV/m | |--------------------------|--------------------------|--------------------------| | Grid 4 M4
35.34 dBV/m | | STANDARD AND BUILDING | | Grid 7 M3
40.23 dBV/m | Grid 8 M3
40.56 dBV/m | Grid 9 M3
40.49 dBV/m | Certificate No: CD835V3-1023_Aug19 Page 5 of 5 ## Dipole 1880 MHz Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schwelzerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client CTTL (Auden) Certificate No: CD1880V3-1018_Aug19 | CALIBRATION C | ERTIFICATE | | | |---|--|--|--------------------------------| | Dbject | CD1880V3 - SN: | 1018 | | | Calibration procedure(s) | QA CAL-20.v7
Calibration Proce | edure for Validation Sources in air | | | Calibration date: | August 26, 2019 | | | | The measurements and the uncerta | ainties with confidence produced in the closed laborator | conal standards, which realize the physical unit
robability are given on the following pages and
ry facility: environment temperature $(22 \pm 3)^{\circ}$ C | d are part of the certificate. | | | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Primary Standards Power meter NRP | SN: 104778 | 03-Apr-19 (No. 217-02892/02893) | Apr-20 | | Power sensor NRP-Z91 | SN: 103244 | 03-Apr-19 (No. 217-02892) | Apr-20 | | Power sensor NRP-Z91 | SN: 103245 | 03-Apr-19 (No. 217-02893) | Apr-20 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 04-Apr-19 (No. 217-02894) | Apr-20 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 04-Apr-19 (No. 217-02895) | Apr-20 | | Probe EF3DV3 | SN: 4013 | 03-Jan-19 (No. EF3-4013 Jan19) | Jan-20 | | DAE4 | SN: 781 | 09-Jan-19 (No. DAE4-781_Jan19) | Jan-20 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter Agilent 4419B | SN: GB42420191 | 09-Oct-09 (in house check Oct-17) | In house check: Oct-20 | | Power sensor HP E4412A | SN: US38485102 | 05-Jan-10 (in house check Oct-17) | In house check: Oct-20 | | | SN: US37295597 | 09-Oct-09 (in house check Oct-17) | In house check: Oct-20 | | | SN: 837633/005 | 10-Jan-19 (in house check Jan-19) | In house check: Oct-22 | | Power sensor HP 8482A | | 31-Mar-14 (in house check Oct-18) | In house check: Oct-19 | | Power sensor HP 8482A
RF generator R&S SMT-06 | SN: US41080477 | ST-War-14 (ITTIOUSE CITCON OUT TO) | | | Power sensor HP 8482A
RF generator R&S SMT-06 | SN: US41080477 | Function | Signature | | Power sensor HP 8482A
RF generator R&S SMT-06 | 1 carried contraction with | AND A 3 A 3 A 3 A 3 A 3 A 3 A 3 A 3 A 3 A | Signature
Sel III | | Power sensor HP 8482A
RF generator R&S SMT-06
Network Analyzer Agilent E8358A | Name | Function | Signature Sel Illy | Certificate No: CD1880V3-1018_Aug19 Page 1 of 5 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### References ANSI-C63.19-2011 American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids. #### Methods Applied and Interpretation of Parameters: - Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms. - Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional couple. While the dipole under test is connected, the forward power is adjusted to the same level. - Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy. -
Feed Point Impedance and Return Loss: These parameters are measured using a Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles. - E-field distribution: E field is measured in the x-y-plane with an isotropic E-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: CD1880V3-1018_Aug19 Page 2 of 5 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | AS I System comiguration, as far as not given | on page 1. | | |---|------------------|----------| | DASY Version | DASY5 | V52.10.2 | | Phantom | HAC Test Arch | | | Distance Dipole Top - Probe Center | 15 mm | | | Scan resolution | dx, dy = 5 mm | | | Frequency | 1880 MHz ± 1 MHz | | | Input power drift | < 0.05 dB | | ## Maximum Field values at 1880 MHz | E-field 15 mm above dipole surface | condition | Interpolated maximum | |------------------------------------|--------------------|-------------------------| | Maximum measured above high end | 100 mW input power | 88.0 V/m = 38.89 dBV/m | | Maximum measured above low end | 100 mW input power | 86.5 V/m = 38.74 dBV/m | | Averaged maximum above arm | 100 mW input power | 87.3 V/m ± 12.8 % (k=2) | # Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters** | Frequency | Return Loss | Impedance | |-----------|-------------|-----------------------------| | 1730 MHz | 27.8 dB | $54.3 \Omega + 0.3 j\Omega$ | | 1880 MHz | 21.6 dB | 55.4 Ω + 7.0 jΩ | | 1900 MHz | 22.8 dB | 56.3 Ω + 4.5 jΩ | | 1950 MHz | 33.3 dB | 52.2 Ω - 0.1 jΩ | | 2000 MHz | 19.4 dB | 47.6 Ω + 10.2 jΩ | ## 3.2 Antenna Design and Handling The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth. The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals. Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected. After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured. Certificate No: CD1880V3-1018_Aug19 Page 3 of 5 ### Impedance Measurement Plot #### DASY5 E-field Result Date: 26.08.2019 Test Laboratory: SPEAG Lab2 # DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: CD1880V3 - SN: 1018 Communication System: UID 0 - CW; Frequency: 1880 MHz Medium parameters used: $\sigma = 0$ S/m, $\epsilon_r = 1$; $\rho = 0$ kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ## DASY52 Configuration: - Probe: EF3DV3 SN4013; ConvF(1, 1, 1) @ 1880 MHz; Calibrated: 03.01.2019 - · Sensor-Surface: (Fix Surface) - Electronics: DAE4 Sn781; Calibrated: 09.01.2019 - Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070 - DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470) # Dipole E-Field measurement @ 1880MHz/E-Scan - 1880MHz d=15mm/Hearing Aid Compatibility Test (41x181x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 151.1 V/m; Power Drift = -0.01 dB Applied MIF = 0.00 dB RF audio interference level = 38.89 dBV/m Emission category: M2 MIF scaled E-field | Grid 1 M2
38.47 dBV/m | 0110 - 111- | Grid 3 M2
38.86 dBV/m | |--------------------------|--------------------------|--------------------------| | Grid 4 M2
35.88 dBV/m | | Grid 6 M2
35.97 dBV/m | | | Grid 8 M2
38.74 dBV/m | Grid 9 M2
38.6 dBV/m | Certificate No: CD1880V3-1018_Aug19 Page 5 of 5 # The photos of HAC test are presented in the additional document: Appendix to test report No.I19Z70333-SEM01/02 The photos of HAC test