Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Report Reference No...... CTA23060800402

FCC ID.....: 2AZQ8-SC1

Compiled by

(position+printed name+signature)..: File administrators Zoey Cao

Supervised by

(position+printed name+signature)..: Project Engineer Amy Wen

Approved by

(position+printed name+signature)..: RF Manager Eric Wang

Testing Laboratory Name Shenzhen CTA Testing Technology Co., Ltd.

Fuhai Street, Bao'an District, Shenzhen, China

CTATESTIN

Applicant's name...... Shenzhen WeDolnnov Co., Ltd

Office: 1806, Tower B, DaTang ShiDai, 2203 MeiLong Rd,

Longhua, Shenzhen, 518109, China

Test specification:

Standard FCC Part 15.247

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description Live streaming camera

Trade Mark WeDolnnov, RayBit

Manufacturer Shenzhen WeDolnnov Co., Ltd

Model/Type reference..... SC1

Listed Models SC1 Pro, SC2, SC3, SC2 Pro, SC3 Pro

Modulation GFSK

Frequency..... From 2402MHz to 2480MHz

Rating DC 3.7V From Battery and DC 5.0V From external circuit

Result..... PASS

Page 2 of 44 Report No.: CTA23060800402

TEST REPORT

Equipment under Test Live streaming camera

Model /Type SC₁

SC1 Pro, SC2, SC3, SC2 Pro, SC3 Pro Listed Models

Applicant Shenzhen WeDolnnov Co., Ltd

Office: 1806, Tower B, DaTang ShiDai, 2203 MeiLong Rd, Longhua, Address

Shenzhen, 518109, China

Manufacturer Shenzhen WeDolnnov Co., Ltd

Office: 1806, Tower B, DaTang ShiDai, 2203 MeiLong Rd, Longhua, Address

Shenzhen, 518109, China

Test Result: **PASS**

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Page 3 of 44 Report No.: CTA23060800402

Contents

	Contents		
	STING		
1	TEST STANDARDS	4	
C C	STILL		
2	SUMMARY	\G 5	
		-STM	
	2 maril Daniel II	CTATESTITES 5 5 5 5 5	
2.1	General Remarks	5	
2.2	Product Description	5	
2.3 2.4	Equipment Under Test		
2.4 2.5	Short description of the Equipment under Test (EUT) EUT operation mode	6	
2.5 2.6	Block Diagram of Test Setup		
2.0 2.7	Related Submittal(s) / Grant (s)	6	
2. <i>1</i> 2.8	Modifications	6	
2.0	Modifications	V	
<u>3</u>	TEST ENVIRONMENT	7	
3.1	Address of the test laboratory Test Facility	ES TESTANC	
3.2	Test Facility	7ES 7	
3.3	Environmental conditions	7	
3.4	Summary of measurement results	8	
3.5	Statement of the measurement uncertainty	CTATEST7	
3.6	Equipments Used during the Test	9	
	16		
<u>4</u>	TEST CONDITIONS AND RESULTS		
<u>+</u>	TEST CONDITIONS AND RESOLTS	<u></u>	
4.1	AC Power Conducted Emission	10	
4.2	Radiated Emission	10 13 19 20 24 26 28	
4.3	Maximum Peak Output Power	19	
4.4	20dB Bandwidth	20	
4.5	Frequency Separation	24	
4.6	Number of hopping frequency	26	
4.7	Time of Occupancy (Dwell Time) Out-of-band Emissions	10 10 20	
4.8 4.9 (G		32 41	
4.9 4.10	Pseudorandom Frequency Hopping Sequence Antenna Requirement	41	
#.10	Antenna Nequirement	42	
	TING		
<u>5</u>	TEST SETUP PHOTOS OF THE EUT	43	
6	PHOTOS OF THE EUT		
_	TATA		
	C.	STING	
		TATES	
		CTA TESTING	

Page 4 of 44 Report No.: CTA23060800402

TEST STANDARDS 1

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices

Page 5 of 44 Report No.: CTA23060800402

SUMMARY

2.1 General Remarks

Date of receipt of test sample		Jun. 08, 2023
	54	
Testing commenced on	A STATE OF THE PARTY OF THE PAR	Jun. 08, 2023
Testing concluded on	:	Jun. 27, 2023

2.2 Product Description

Product Descript oduct Name: odel/Type reference: wer supply: lapter information uxiliary test supplied by st Lab) :	SC1 DC 3.7V Fi		0V From external circuit	CTP CTP
oduct Name: odel/Type reference: wer supply: apter information uxiliary test supplied by	SC1 DC 3.7V Fi	rom Battery and DC 5.	0V From external circuit	
odel/Type reference: wer supply: apter information uxiliary test supplied by	SC1 DC 3.7V Ft	rom Battery and DC 5.	0V From external circuit	
wer supply: apter information uxiliary test supplied by	DC 3.7V Fi		0V From external circuit	
apter information uxiliary test supplied by	Model: EP-		0V From external circuit	
uxiliary test supplied by		TARROCEC		
	Output: DC	100-240V 50/60Hz	ATEC	TESTING
rdware version:	V1.0		GAN.	CAL
ftware version:	V1.0			
sting sample ID:				
uetooth :				
pported Type:	Bluetooth F	3R/EDR		
odulation:	GFSK, π/4	DQPSK, 8DPSK	STING	3
peration frequency:	2402MHz~	·2480MHz	CTATE	
annel number:	79		CIP	< D
annel separation:	1MHz		-	GEN C
tenna type:	PIFA anter	nna		
tenna gain:	2.42 dBi	G	_	
of s	rdware version: Itware	rdware version: vt.0 vtware version: vt.0 CTA23060 C	rdware version: V1.0 CTA230608004-1# (Engineer sar CTA230608004-2# (Normal sample tooth: Deported Type: Bluetooth BR/EDR dulation: GFSK, π/4DQPSK, 8DPSK Peration frequency: 2402MHz~2480MHz annel number: 79 annel separation: 1MHz enna type: PIFA antenna	rdware version: V1.0 tware version: V1.0 CTA230608004-1# (Engineer sample) CTA230608004-2# (Normal sample) retooth: Deported Type: Bluetooth BR/EDR dulation: GFSK, π/4DQPSK, 8DPSK eration frequency: 2402MHz~2480MHz annel number: 79 annel separation: 1MHz enna type: PIFA antenna

Equipment Under Test

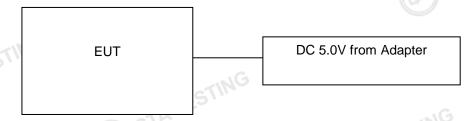
2.3 Equipment Under Tes	if		CTING
Power supply system utilis		CTAT	E2,
Power supply voltage	: (230V / 50 Hz	○ 120V / 60Hz
		12 V DC	○ 24 V DC
		Other (specified in bl	ank below)

DC 3.7V From Battery and DC 5.0V From external circuit

Short description of the Equipment under Test (EUT)

This is a Live streaming camera.

For more details, refer to the user's manual of the EUT.


Page 6 of 44 Report No.: CTA23060800402

2.5 EUT operation mode

The Applicant provides communication tools software (Engineer mode) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 79 channels provided to the EUT and Channel 00/39/78 were selected to test.

provided to the EUT and Channel 00/39/78 were sele	ected to test.	
	ected to test.	
Operation Frequency:		
Channel	Frequency (MHz)	
00	2402	
01	2403	
TING	:	
38	2440	
39	2441	
40	2442	
	ESTIN	
77	2479	~10
78	2480	

Block Diagram of Test Setup

Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for the device filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8 **Modifications**

No modifications were implemented to meet testing criteria.

Page 7 of 44 Report No.: CTA23060800402

TEST ENVIRONMENT

Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory
Accreditation to perform electromagnetic emission measurement

CAB identifier: CN0127 ISED#: 27890

Shenzhen CTA Testing Technology Co., Ltd. has been listed by Innovation, Science and Economic Development Canada to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

CTA TESTING During the measurement the environmental conditions were within the listed ranges:

Radiated Emission:

tadiatoa Erinoolorii	
Temperature:	24 ° C
Humidity:	45 %
Atmospheric pressure:	950-1050mbar

AC Power Conducted Emission:

Temperature:	25 ° C	
7E5\"		
Humidity:	46 %	ING
		ESTIN
Atmospheric pressure:	950-1050mbar	CATE
	C	11.
Conducted testing:	CALL.	
Temperature:	25 ° C	

Conducted testing:

2.1.4.4.5.6.4.1.9.	
Temperature:	25 ° C
Humidity:	44 %
Atmospheric pressure:	950-1050mbar
TESI	
CTA	
	-55711
	TATES

Page 8 of 44 Report No.: CTA23060800402

3.4 Summary of measurement results

Test Specification clause	Test case	Test Mode	Test Channel	Reco In Re	orded eport	Test result
§15.247(a)(1)	Carrier Frequency separation	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK П/4DQPSK 8DPSK		Compliant
§15.247(a)(1)	Number of Hopping channels	GFSK П/4DQPSK 8DPSK	⊠ Full	GFSK	⊠ Full	Compliant
§15.247(a)(1)	Time of Occupancy (dwell time)	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK Π/4DQPSK 8DPSK		Compliant
§15.247(a)(1)	Spectrumbandwidth of aFHSS system20dB bandwidth	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	Compliant
§15.247(b)(1)	Maximum output peak power	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK П/4DQPSK 8DPSK	✓ Lowest✓ Middle✓ Highest	Compliant
§15.247(d)	Band edgecompliance conducted	GFSK П/4DQPSK 8DPSK	✓ Lowest✓ Highest	GFSK П/4DQPSK 8DPSK	✓ Lowest✓ Highest	Compliant
§15.205	Band edgecompliance radiated	GFSK П/4DQPSK 8DPSK		GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Highest	Compliant
§15.247(d)	TX spuriousemissions conducted	GFSK П/4DQPSK 8DPSK	 Lowest Middle Highest	GFSK П/4DQPSK 8DPSK	✓ Lowest✓ Middle✓ Highest	Compliant
§15.247(d)	TX spuriousemissions radiated	GFSK П/4DQPSK 8DPSK	✓ Lowest✓ Middle✓ Highest	GFSK	✓ Lowest✓ Middle✓ Highest	Compliant
§15.209(a)	TX spurious Emissions radiated Below 1GHz	GFSK N/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK	⊠ Middle	Compliant
§15.107(a) §15.207	Conducted Emissions 9KHz-30 MHz	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK	⊠ Middle	Compliant

Remark:

- The measurement uncertainty is not included in the test result. 1.
- We tested all test mode and recorded worst case in report 2.

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

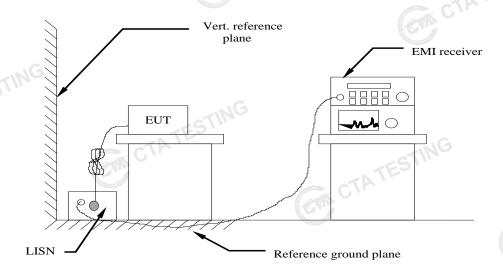
Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Page 9 of 44 Report No.: CTA23060800402

3.6 Equipments Used during the Test


	-65/11					
	Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
	LISN	R&S	ENV216	CTA-308	2022/08/03	2023/08/02
	LISN	R&S	ENV216	CTA-314	2022/08/03	2023/08/02
	EMI Test Receiver	R&S	ESPI	CTA-307	2022/08/03	2023/08/02
	EMI Test Receiver	R&S	ESCI	CTA-306	2022/08/03	2023/08/02
	Spectrum Analyzer	Agilent	N9020A	CTA-301	2022/08/03	2023/08/02
CTA .	Spectrum Analyzer	R&S	FSP	CTA-337	2022/08/03	2023/08/02
1	Vector Signal generator	Agilent	N5182A	CTA-305	2022/08/03	2023/08/02
	Analog Signal Generator	R&S	SML03	CTA-304	2022/08/03	2023/08/02
	Universal Radio Communication	CMW500	R&S	CTA-302	2022/08/03	2023/08/02
	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2022/08/03	2023/08/02
	Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2021/08/07	2024/08/06
	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2021/08/07	2024/08/06
	Loop Antenna	Zhinan	ZN30900C	CTA-311	2021/08/07	2024/08/06
	Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/07	2024/08/06
	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2022/08/03	2023/08/02
	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2022/08/03	2023/08/02
	Directional coupler	NARDA	4226-10	CTA-303	2022/08/03	2023/08/02
	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2022/08/03	2023/08/02
	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2022/08/03	2023/08/02
CTATE	Automated filter bank	Tonscend	JS0806-F	CTA-404	2022/08/03	2023/08/02
	Power Sensor	Agilent	U2021XA	CTA-405	2022/08/03	2023/08/02
	Amplifier	Schwarzbeck	BBV9719	CTA-406	2022/08/03	2023/08/02
			PPA SALIA	TE		2023/06/02
G					CAN C.	

Report No.: CTA23060800402 Page 10 of 44

TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

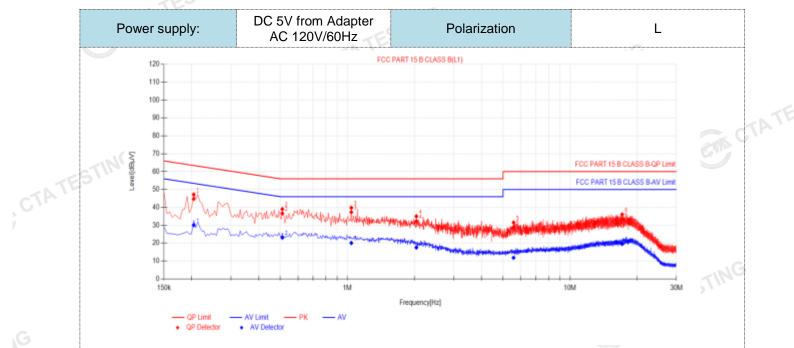
TEST CONFIGURATION

TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

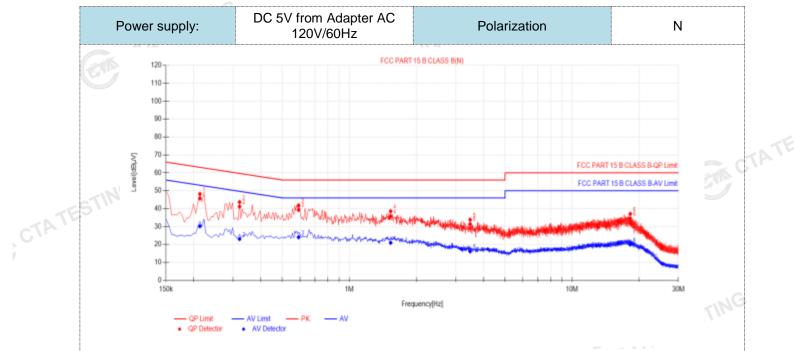
For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:


Eroquonov rongo (MUz)	Limit (dBuV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50
* Decreases with the logarithm of the freque	ncy.	

TEST RESULTS

1. All modes of GFSK, ⊓/4 DQPSK and 8DPSK were test at Low, Middle, and High channel; only the worst result of GFSK Middle Channel was reported as below:

Report No.: CTA23060800402

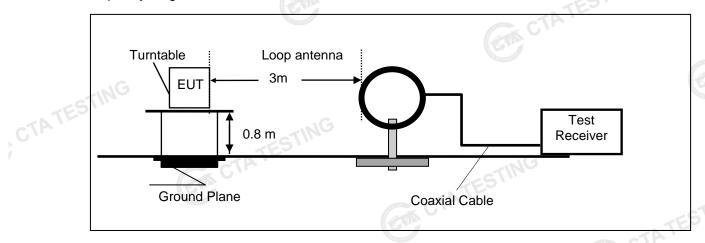

2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:

Final Data List No. Freq. Factor GB QP QP QP Limit Margin [dBµV] [dBµV]										- Continue			
NO. Freq. [MHz] Factor [dB] Reading[dB Value Limit Margin Reading Value Limit Margin [dBµV] [Final D	ata Lis	t										
2 0.51 10.50 26.12 36.62 56.00 19.38 12.60 23.10 46.00 22.90 PASS 3 1.041 10.50 26.84 37.34 56.00 18.66 9.60 20.10 46.00 25.90 PASS 4 2.04 10.50 21.77 32.27 56.00 23.73 7.06 17.56 46.00 28.44 PASS 5 5.5725 10.50 18.38 28.88 60.00 31.12 1.34 11.84 50.00 38.16 PASS 6 17.124 10.50 22.79 33.29 60.00 26.71 9.04 19.54 50.00 30.46 PASS 10te:1).QP Value (dBμV)= QP Reading (dBμV)+ Factor (dB) (dBμV)	NO.			Reading[dB	Value	Limit	Margin	Reading	Value	Limit	Margin	Verdict	
3 1.041 10.50 26.84 37.34 56.00 18.66 9.60 20.10 46.00 25.90 PASS 4 2.04 10.50 21.77 32.27 56.00 23.73 7.06 17.56 46.00 28.44 PASS 5 5.5725 10.50 18.38 28.88 60.00 31.12 1.34 11.84 50.00 38.16 PASS 6 17.124 10.50 22.79 33.29 60.00 26.71 9.04 19.54 50.00 30.46 PASS lote:1).QP Value (dBμV)= QP Reading (dBμV)+ Factor (dB)). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)	1	0.204	10.50	34.26	44.76	63.45	18.69	19.58	30.08	53.45	23.37	PASS	
4 2.04 10.50 21.77 32.27 56.00 23.73 7.06 17.56 46.00 28.44 PASS 5 5.5725 10.50 18.38 28.88 60.00 31.12 1.34 11.84 50.00 38.16 PASS 6 17.124 10.50 22.79 33.29 60.00 26.71 9.04 19.54 50.00 30.46 PASS lote:1).QP Value (dBμV)= QP Reading (dBμV)+ Factor (dB)). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)	2	0.51	10.50	26.12	36.62	56.00	19.38	12.60	23.10	46.00	22.90	PASS	
5 5.5725 10.50 18.38 28.88 60.00 31.12 1.34 11.84 50.00 38.16 PASS 6 17.124 10.50 22.79 33.29 60.00 26.71 9.04 19.54 50.00 30.46 PASS lote:1).QP Value (dBμV)= QP Reading (dBμV)+ Factor (dB)). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)	3	1.041	10.50	26.84	37.34	56.00	18.66	9.60	20.10	46.00	25.90	PASS	
6 17.124 10.50 22.79 33.29 60.00 26.71 9.04 19.54 50.00 30.46 PASS lote:1).QP Value (dBμV)= QP Reading (dBμV)+ Factor (dB)). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)	4	2.04	10.50	21.77	32.27	56.00	23.73	7.06	17.56	46.00	28.44	PASS	
lote:1).QP Value (dBµV)= QP Reading (dBµV)+ Factor (dB)). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)	5	5.5725	10.50	18.38	28.88	60.00	31.12	1.34	11.84	50.00	38.16	PASS	
lote:1).QP Value (dBµV)= QP Reading (dBµV)+ Factor (dB)). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)	6	17.124	10.50	22.79	33.29	60.00	26.71	9.04	19.54	50.00	30.46	PASS	
	Note:1).QP Value ($dB\mu V$)= QP Reading ($dB\mu V$)+ Factor (dB)										J.P.		
	-IN	, ,			, ,		, ,	1					

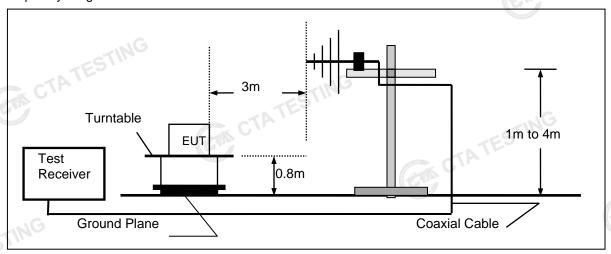
- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). $QPMargin(dB) = QP Limit (dB\mu V) QP Value (dB\mu V)$
 - 4). $AVMargin(dB) = AV Limit (dB\mu V) AV Value (dB\mu V)$

Page 12 of 44 Report No.: CTA23060800402

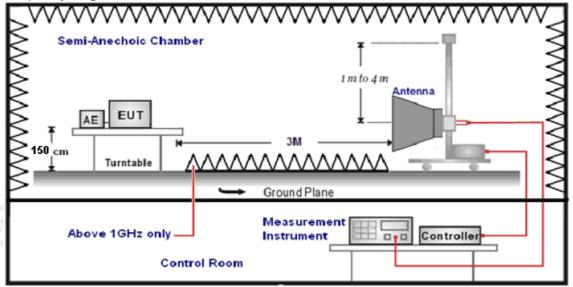
Fina	l Data Lis	st										
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict	
1	0.213	10.50	35.18	45.68	63.09	17.41	19.69	30.19	53.09	22.90	PASS	
2	0.321	10.50	30.66	41.16	59.68	18.52	12.56	23.06	49.68	26.62	PASS	
3	0.591	10.50	28.80	39.30	56.00	16.70	13.54	24.04	46.00	21.96	PASS	
4	1.5315	10.50	25.23	35.73	56.00	20.27	10.45	20.95	46.00	25.05	PASS	
5	3.4845	10.50	20.89	31.39	56.00	24.61	5.66	16.16	46.00	29.84	PASS	
6	18.2445	10.50	24.02	34.52	60.00	25.48	9.48	19.98	50.00	30.02	PASS	
18.2445 10.50 24.02 34.52 60.00 25.48 9.48 19.98 50.00 30.02 PASS												


- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
 - 4). AVMargin(dB) = AV Limit (dBμV) AV Value (dBμV) CTATESTING

Report No.: CTA23060800402 Page 13 of 44


4.2 **Radiated Emission**

TEST CONFIGURATION


Frequency range 9 KHz – 30MHz

Frequency range 30MHz - 1000MHz

Page 14 of 44 Report No.: CTA23060800402

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -1GHz; the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz - 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed.
- Radiated emission test frequency band from 9KHz to 25GHz. 5.
- The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance	
9KHz-30MHz	Active Loop Antenna	3	Pau Cz
30MHz-1GHz	Ultra-Broadband Antenna	3	
1GHz-18GHz	Double Ridged Horn Antenna	3	
18GHz-25GHz	Horn Anternna	1	

Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
	Peak Value: RBW=1MHz/VBW=3MHz,	
1GHz-40GHz	Sweep time=Auto	Peak
1GH2-40GHZ	Average Value: RBW=1MHz/VBW=10Hz,	reak
	Sweep time=Auto	

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

sample calculation is as follows:	
FS = RA + AF + CL - AG	CTATES
Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	(SA)

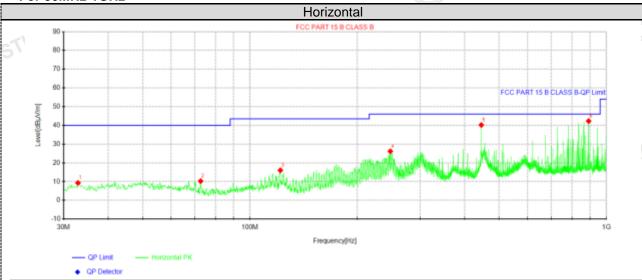
Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance	Radiated (dBµV/m)	Radiated (µV/m)
	(Meters)		
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

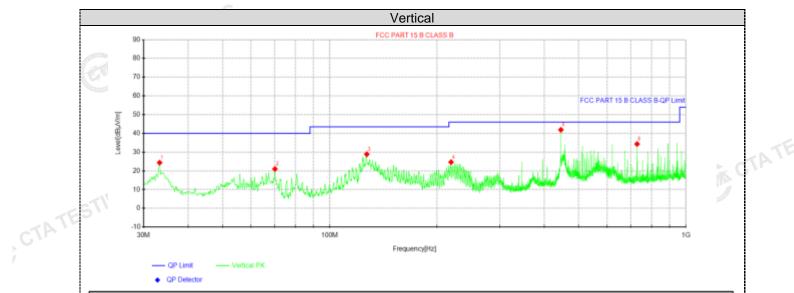

Page 15 of 44 Report No.: CTA23060800402

TEST RESULTS

Remark:

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X
- We measured Radiated Emission at GFSK, π/4 DQPSK and 8DPSK mode from 9 KHz to 25GHz and recorded worst case at GFSK DH5 mode.
- For below 1GHz testing recorded worst at GFSK DH5 middle channel. 3.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

For 30MHz-1GHz


5	Suspected Data List												
		Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Delevite			
	NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity			
	1	32.91	27.53	9.30	-18.23	40.00	30.70	100	315	Horizontal			
	2	72.68	31.25	10.25	-21.00	40.00	29.75	100	55	Horizontal			
	3	121.665	36.49	16.03	-20.46	43.50	27.47	100	248	Horizontal			
	4	247.522	44.22	26.17	-18.05	46.00	19.83	100	121	Horizontal			
	5	445.523	55.30	40.19	-15.11	46.00	5.81	100	325	Horizontal			
L	6	891.117	51.52	42.29	-9.23	46.00	3.71	100	231	Horizontal			

Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

CTATESTIN'

Report No.: CTA23060800402 Page 16 of 44

Suspe	Suspected Data List													
NO	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Delegity					
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity					
1	33.2738	42.54	24.38	-18.16	40.00	15.62	100	280	Vertical					
2	70.1338	41.89	21.00	-20.89	40.00	19.00	100	104	Vertical					
3	127	49.89	28.88	-21.01	43.50	14.62	100	271	Vertical					
4	219.028	43.49	24.65	-18.84	46.00	21.35	100	360	Vertical					
5	445.523	57.01	41.90	-15.11	46.00	4.10	100	202	Vertical					
6	729.006	45.49	34.33	-11.16	46.00	11.67	100	3	Vertical					

CTATE

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

Page 17 of 44 Report No.: CTA23060800402

For 1GHz to 25GHz

Note: GFSK , $\pi/4$ DQPSK and 8DPSK all have been tested, only worse case GFSK is reported.

GFSK (above 1GHz)

Freque	ncy(MHz)):	24	02	Polarity:		HORIZONTAL		
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	61.71	PK	74	12.29	65.98	32.33	5.12	41.72	-4.27
4804.00	45.33	AV	54	8.67	49.60	32.33	5.12	41.72	-4.27
7206.00	54.40	PK	74	19.60	54.92	36.6	6.49	43.61	-0.52
7206.00	43.18	AV	54	10.82	43.70	36.6	6.49	43.61	-0.52

Freque	ncy(MHz)	:	24	02	Pola	arity:	VERTICAL				
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)		
4804.00	59.78	PK	74	14.22	64.05	32.33	5.12	41.72	-4.27		
4804.00	42.34	AV	54	11.66	46.61	32.33	5.12	41.72	-4.27		
7206.00	52.16	PK	74	21.84	52.68	36.6	6.49	43.61	-0.52		
7206.00	40.29	AV	54	13.71	40.81	36.6	6.49	43.61	-0.52		

Freque	ncy(MHz)	:	24	41	Pola	arity:	HORIZONTAL			
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4882.00	62.02	PK	74	11.98	65.90	32.6	5.34	41.82	-3.88	
4882.00	44.84	AV	54	9.16	48.72	32.6	5.34	41.82	-3.88	
7323.00	54.59	PK	74	19.41	54.70	36.8	6.81	43.72	-0.11	
7323.00	43.19	AV	54	10.81	43.30	36.8	6.81	3.72	-0.11	

Freque	Frequency(MHz):			41	Pola	arity:	VERTICAL			
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4882.00	59.42	PK	74	14.58	63.30	32.6	5.34	41.82	-3.88	
4882.00	43.15	AV	54	10.85	47.03	32.6	5.34	41.82	-3.88	
7323.00	52.65	PK	74	21.35	52.76	36.8	6.81	43.72	-0.11	
7323.00	40.37	AV	54	13.63	40.48	36.8	6.81	43.72	-0.11	

Frequency(MHz):		2480		Polarity:		HORIZONTAL			
Frequency (MHz)	Emis Le (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	61.53	PK	74	12.47	64.61	32.73	5.66	41.47	-3.08
4960.00	45.65	AV	54	8.35	48.73	32.73	5.66	41.47	-3.08
7440.00	53.52	PK	74	20.48	53.07	37.04	7.25	43.84	0.45
7440.00	42.45	PK	54	11.55	42.00	37.04	7.25	43.84	0.45

Frequency(MHz):		2480		Polarity:		VERTICAL			
Frequency (MHz)	Le	sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	60.10	PK	74	13.90	63.18	32.73	5.66	41.47	-3.08
4960.00	43.26	AV	54	10.74	46.34	32.73	5.66	41.47	-3.08
7440.00	53.33	PK	74	20.67	52.88	37.04	7.25	43.84	0.45
7440.00	41.07	PK	54	12.93	40.62	37.04	7.25	43.84	0.45

Page 18 of 44 Report No.: CTA23060800402

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Results of Band Edges Test (Radiated)

Note: GFSK, Pi/4 DQPSK and 8DPSK all have been tested, only worse case GFSK is reported.

GFSK

Frequency(MHz):		2402		Polarity:		HORIZONTAL			
Frequency (MHz)	Lev	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	61.39	PK	74	12.61	71.81	27.42	4.31	42.15	-10.42
2390.00	43.97	AV	54	10.03	54.39	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)):	24	02	Polarity:		VERTICAL		
Frequency (MHz)	Emis Lev (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	59.82	PK	74	14.18	70.24	27.42	4.31	42.15	-10.42
2390.00	42.14	AV	54	11.86	52.56	27.42	4.31	42.15	-10.42
Freque	Frequency(MHz):		24	80	Polarity:		HORIZONTAL		
Frequency (MHz)		ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
	60.88	PK	74	13.12	70.99	27.7	4.47	42.28	-10.11
2483.50	00.00			10.12	10.33	27.7	7.77	12.20	10.11
2483.50 2483.50	42.48	AV	54	11.52	52.59	27.7	4.47	42.28	-10.11
2483.50		AV	+	11.52	52.59				-10.11
2483.50	42.48 ency(MHz) Emis	AV Ssion	54	11.52	52.59	27.7		42.28	-10.11
2483.50 Freque Frequency	42.48 ency(MHz) Emis	AV Ssion vel	54 24 Limit	11.52 80 Margin	52.59 Pola Raw Value	27.7 arity: Antenna Factor	4.47 Cable Factor	42.28 VERTICAL Pre- amplifier	-10.11 Correction Factor

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- CTA TESTING 5. The other emission levels were very low against the limit.

Page 19 of 44 Report No.: CTA23060800402

Maximum Peak Output Power

Limit

The Maximum Peak Output Power Measurement is 125mW (20.97).

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to CTATE the powersensor.

Test Configuration

Test Results

GFSK	00 39 78	0.13 0.53	20.97	Pass
GFSK		0.53	20.97	Pass
	78		E TEAT	1 033
		1.79		
-ING	00	0.11		
π/4DQPSK	39	0.56	20.97	Pass
CTA	78	1.79		
	00	0.10	TING	
8DPSK	39	0.56	20.97	Pass
	78	1.80	C	Can'

Page 20 of 44 Report No.: CTA23060800402

20dB Bandwidth

Limit

For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwidth.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30 KHz RBW and 100 KHz VBW.

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

Test Configuration



Test Results

EUT		SPECTRUM ANALYZER	
Test Results			CTA TEST
Modulation	Channel	20dB bandwidth (MHz)	Result
TING	CH00	0.945	
GFSK	CH39	0.945	
CTA.	CH78	0.945	
	CH00	1.317	NG.
π/4DQPSK	CH39	1.269	Pass
	CH78	1.314	
	CH00	1.308	
8DPSK	CH39	1.302	in the
-ING	CH78	1.278	
Test plot as follows:	TESTING		

Report No.: CTA23060800402

Report No.: CTA23060800402

Page 24 of 44 Report No.: CTA23060800402

Frequency Separation

LIMIT

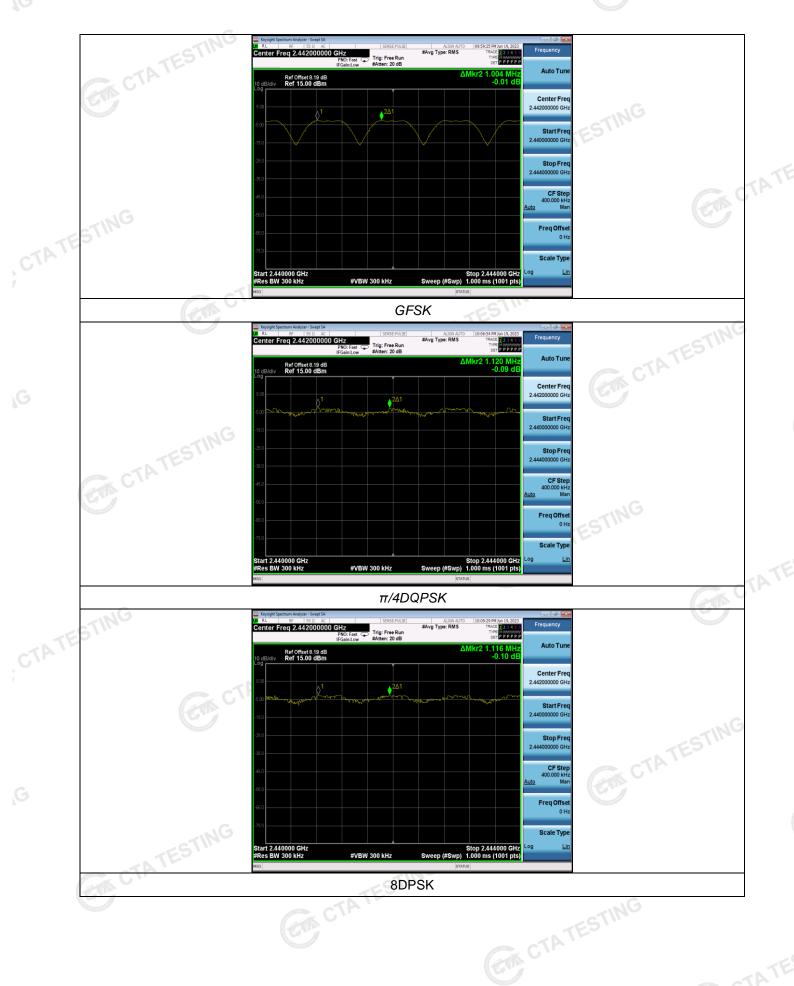
According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW.

TEST CONFIGURATION

TEST RESULTS


TEST RESULTS		CTATES CTATES		TESTING
Modulation	Channel	Channel Separation (MHz)	Limit(MHz)	Result
GFSK	CH38	1.004	25KHz or 2/3*20dB	Pass
	CH39	1.004	bandwidth	F 055
#/4DODSK	CH38	1 120	25KHz or 2/3*20dB	Pass
π/4DQPSK	CH39	1.120	bandwidth	Fass
8DPSK	CH38	1.116	25KHz or 2/3*20dB	Doos
ODPSK	CH39	71.116	bandwidth	Pass

Note:

We have tested all mode at high, middle and low channel, and recorded worst case at middle

Test plot as follows: CTATESTING

Page 25 of 44 Report No.: CTA23060800402

Page 26 of 44 Report No.: CTA23060800402

Number of hopping frequency

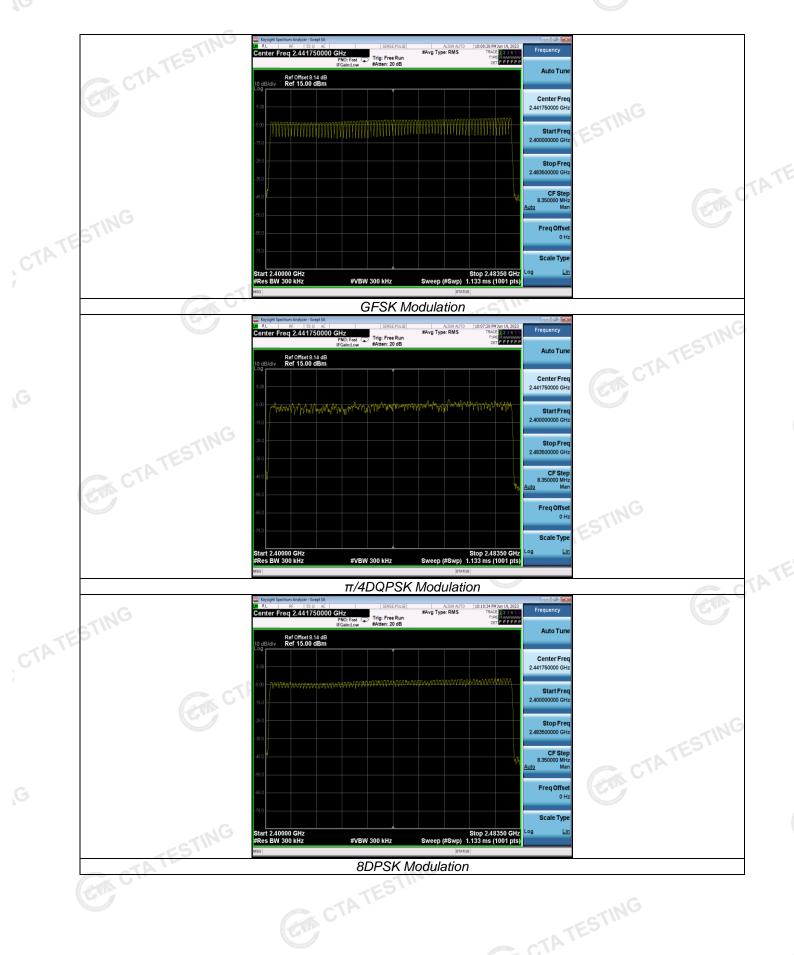
Limit

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

Test Procedure

CTATE The transmitter output was connected to the spectrum analyzer through an attenuator. Set spectrum analyzer start 2400MHz to 2483.5MHz with 100 KHz RBW and 300 KHz VBW.

Test Configuration



Test Results

Test Results			
Modulation	Number of Hopping Channel	Limit	Result
GFSK	79		
π/4DQPSK	79	≥15	Pass
8DPSK	79		

Test plot as follows:

Report No.: CTA23060800402 Page 27 of 44

Page 28 of 44 Report No.: CTA23060800402

Time of Occupancy (Dwell Time)

Limit

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Test Procedure

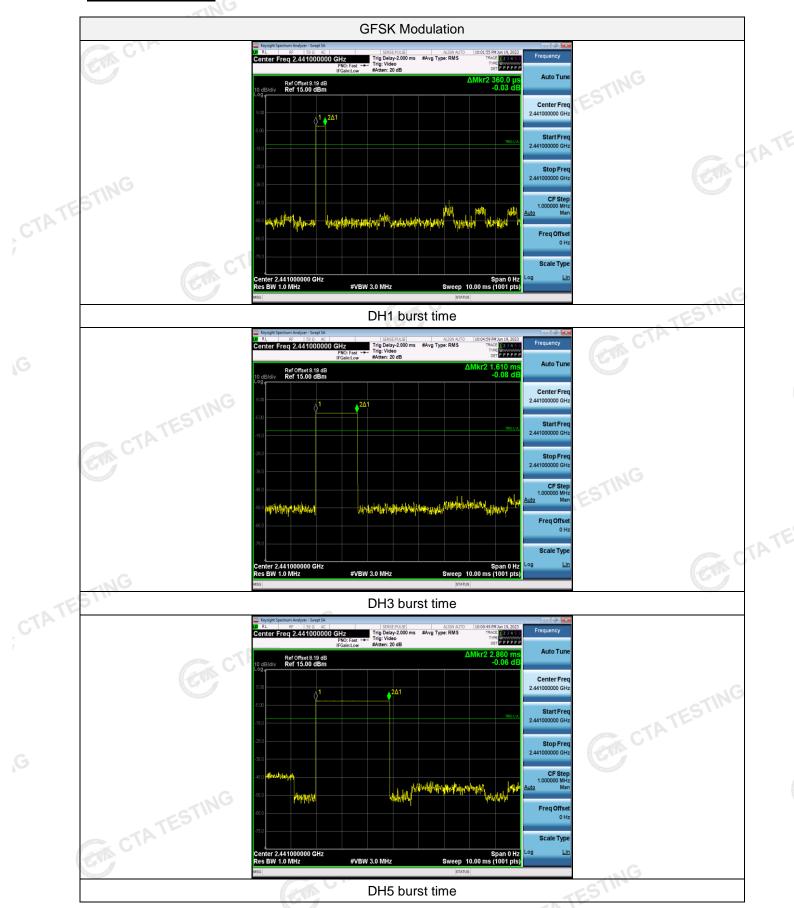
The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with 1MHz RBW and 1MHz VBW, Span 0Hz.

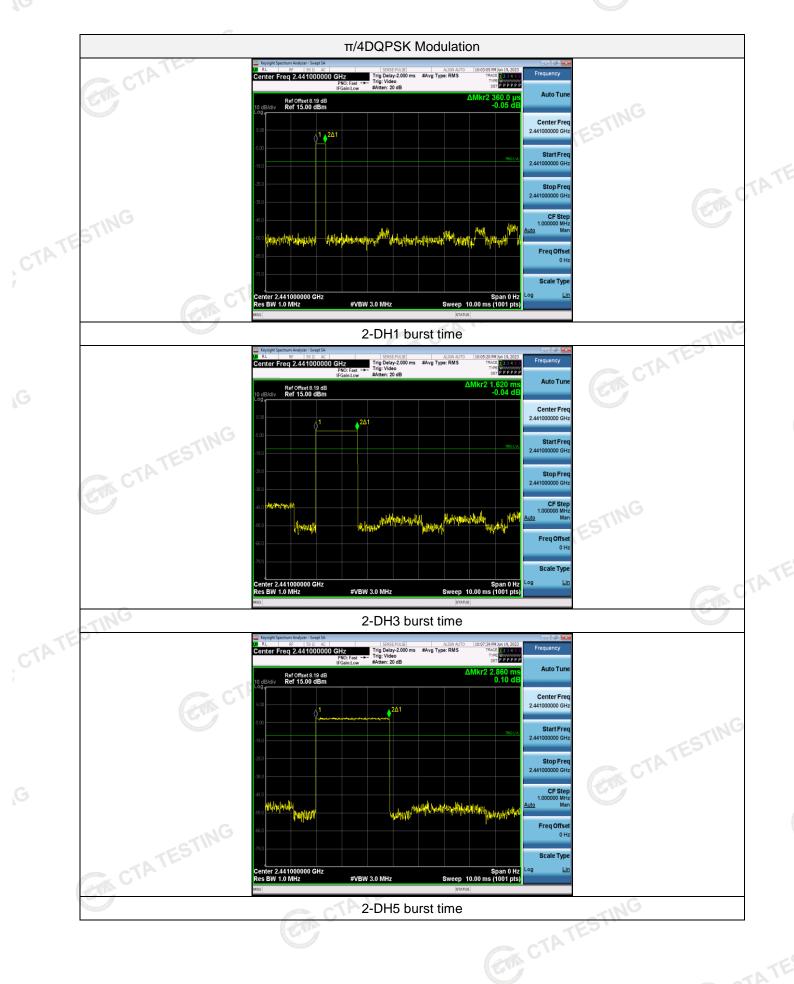
Test Configuration

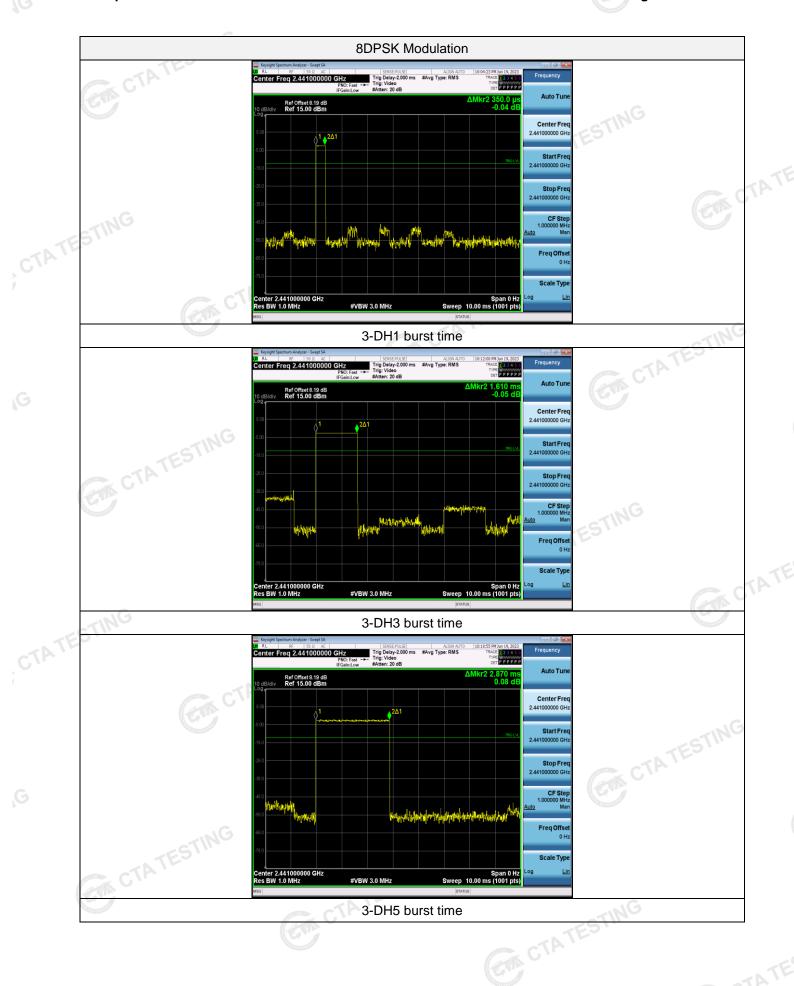
Test Results

Test Results			CTATES		TESTING
Modulation	Packet	Burst time (ms)	Dwell time (s)	Limit (s)	Result
	DH1	0.36	0.115		
GFSK	DH3	1.61	0.258	0.40	Pass
TES	DH5	2.86	0.305		
CIL	2-DH1	0.36	0.115		
π/4DQPSK	2-DH3	1.62	0.259	0.40	Pass
	2-DH5	2.86	0.305	TESTIN	
	3-DH1	0.35	0.112	CTA	
8DPSK	3-DH3	1.61	0.258	0.40	Pass
	3-DH5	2.87	0.306		C

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.


Dwell time=Pulse time (ms) \times (1600 \div 2 \div 79) \times 31.6 Second for DH1, 2-DH1, 3-DH1


Dwell time=Pulse time (ms) \times (1600 \div 4 \div 79) \times 31.6 Second for DH3, 2-DH3, 3-DH3

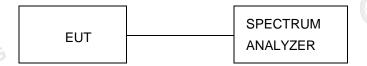

Dwell time=Pulse time (ms) \times (1600 \div 6 \div 79) \times 31.6 Second for DH5, 2-DH5, 3-DH5

Page 29 of 44 Report No.: CTA23060800402

Test plot as follows:

Page 32 of 44 Report No.: CTA23060800402

Out-of-band Emissions 4.8


Limit (

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are CTA TESTING made of the in-band reference level, bandedge and out-of-band emissions.

Test Configuration

Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data.

We measured all conditions (DH1, DH3, DH5) and recorded worst case at DH5

Test plot as follows:

