

TEST REPORT

Report No. CISRR241108056

Project No. CISR241108056

FCC ID 2A7X4XSY320

Applicant SHENZHEN XINSIYUAN ELECTRONIC TECHNOLOGY CO.,LTD

Address 4th Floor, Building A, No. 207, Xingye2nd Road, Fenghuang Community,

FuyongTown, Baoan District, Shenzhen, China

Manufacturer SHENZHEN XINSIYUAN ELECTRONIC TECHNOLOGY CO.,LTD

Address 4th Floor, Building A, No. 207, Xingye2nd Road, Fenghuang Community,

FuyongTown, Baoan District, Shenzhen, China

Product Name Multi-function emergency radio

Trade Mark N/A

Model/Type reference XSY320

Listed Model(s) N/A

Standard 47 CFR Part 15, Subpart B

Test date November 8, 2024 to November 13, 2024

Issue date November 15, 2024

Test result Complied

Prepared by: Edward Wang

Edward Wang

GenryLong

Approved By: Genry Long

The test results relate only to the tested samples.

The test report should not be reproduced except in full without the written approval of Shenzhen Bangce Testing Technology Co., Ltd.

Contents

1. REPORT VERSION	3
2. TEST DESCRIPTION	4
3. SUMMARY	5
3.1. Product Description	5
3.2. Modification of EUT	5
3.3. Deviation from standards	5
3.4. Testing Site	5
4. TEST CONFIGURATION	6
4.1. Descriptions of test mode	6
4.2. Environmental conditions	6
4.3. Equipment Used during the Test	7
5. TEST RESULTS	8
5.1. Emission Test Results (EMI)	8
5.1.1. Conducted emissions on AC mains	
5.1.2. Radiated emissions (Below 1GHz)	
6. TEST SETUP PHOTOS	14
7. EXTERNAL AND INTERNAL PHOTOS	15
7.1. External Photos	15
7.2. Internal Photos	19

1. REPORT VERSION

Version No.	Issue date	Description
00	November 15, 2024	Original

2. TEST DESCRIPTION

No.	Test Item	Standard Requirement	Result
1	Conducted emissions on AC mains	15.107, Class B	Pass
2	Radiated emissions (Below 1GHz)	15.109, Class B	Pass

Note:

The measurement uncertainty is not included in the test result.

3. **SUMMARY**

3.1. Product Description

Main unit information:				
Product Name:	Multi-function emergency radio			
Trade Mark:	N/A			
Model No.:	XSY320			
Listed Model(s):	N/A			
Power supply:	DC 5V			
Accessory unit information:				
Battery information:	3.7V			

3.2. Modification of EUT

No modifications are made to the EUT during all test items.

3.3. Deviation from standards

None

3.4. Testing Site

Laboratory Name	Shenzhen Bangce Testing Technology Co., Ltd.			
Laboratory Location	101, building 10, Yunli Intelligent Park, Shutianpu community, Matian Street, Guangming District, Shenzhen, Guangdong, China			
Contact information	Tel: 86-755-2319 6848, email: service@cis-cn.net Website: http://www.cis-cn.net/			
FCC registration number	736346			
FCC designation number	CN1372			

4. TEST CONFIGURATION

4.1. Descriptions of test mode

No	Test mode Description		
TM1	M1 Working mode Keep the EUT in normal operating mode with		
TM2	Charging mode	Keep the EUT in Charging state	
TM3	Charging+working mode	Keep the EUT in Charging and working state	

4.2. Environmental conditions

Туре	Requirement		
Temperature:	15~35°C		
Relative Humidity:	25~75%		
Air Pressure:	860~1060mbar		

4.3. Equipment Used during the Test

Conducted emissions on AC mains						
Item	Equipment name	Manufacturer	Model	Serial No.	Calibration date	Due date
1	EMI Test Receiver	Rohde&schwarz	ESCI7	100853	2024-01-08	2025-01-07
2	Artificial power network	Schwarzbeck	NSLK812 7	8127-01096	2024-01-08	2025-01-07
3	8-wire Impedance Stabilization Network	Schwarzbeck	NTFM 8158	8158-00337	2024-01-08	2025-01-07
4	Artificial power network	Schwarzbeck	ENV216	1	2024-01-08	2025-01-07

Radiat	Radiated emissions (Below 1GHz)						
Item	Equipment name	Manufacturer	Model	Serial No.	Calibration date	Due date	
1	EMI Test Receiver	Rohde&schwarz	ESCI7	100853	2024-01-08	2025-01-07	
2	Broadband antenna	schwarabeck	VULB916 3	9163-1436	2024-01-08	2025-01-07	
3	Amplifier	Tonscend	TAP9K3G 40	AP23A806027 0	2024-01-08	2025-01-07	

5. TEST RESULTS

5.1. Emission Test Results (EMI)

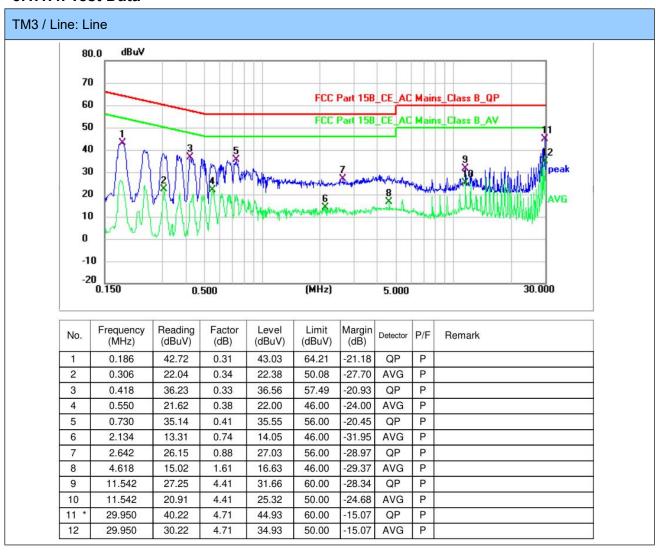

5.1.1. Conducted emissions on AC mains

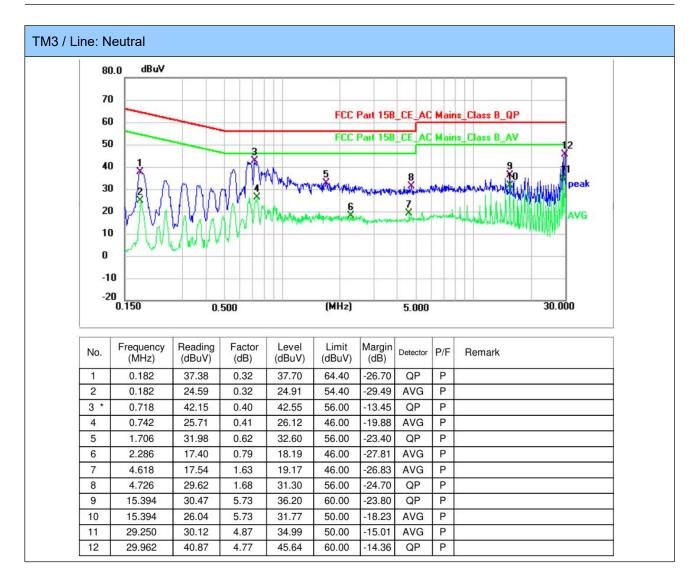
Test Requirement:	15.107, Class B						
	Frequency of emission (MHz)	Conducted limit (dBµV)					
		Quasi-peak	Average				
Test Limit:	0.15-0.5	66 to 56*	56 to 46*				
lest Lillit.	0.5-5	56	46				
	5-30	60	50				
	*Decreases with the logarithm of t	he frequency.					
Test Method:	ANSI C63.4-2014						
Procedure:	1. The EUT was setup according to 2. The EUT was placed on a plat fo above the conducting ground plane cm to the rear of the EUT. All other other grounded conducting surface 3. The EUT and simulators are con impedance stabilization network (LI coupling impedance for the measur 4. The peripheral devices are also (Please refer to the block diagram of 5. Each current-carrying conductor (safety) conductor was individually source. 6. The excess length of the power of were folded back and forth at the coupling to 30MHz using a receiver bandwid emissions were maximized by cable	rm of nominal size, 1 m by the transport of EUT were at less and the surfaces of EUT were at less. The LISN provides a ring equipment, connected to the main power the test setup and photogof the EUT power cord, expected through a LISN cord between the EUT and the stigated over the frequency the found the lead to form a lest gated over the frequency the found the lead to form a lest gated over the frequency the found the lead to form a lest gated over the frequency the found the lead to form a lest gated over the frequency the found the lead to form a lest gated over the frequency the	lane was located 40 ast 80 cm from any hrough a line 500hm / 50uH er through a LISN. graphs) cept the ground to the input power the LISN receptacle bundle not exceeding range from 0.15MHz				

5.1.1.1. E.U.T. Operation

Operating Environment:						
Temperature: 23.4 °C Humidity: 55.3 % Atmospheric Pressure: 102 kPa						
Pre test mode: TM2, TM3						
Final test mode	э:	All of the listed pre-test mode were tested, only the data of the worst mode (TM3) is recorded in the report				

5.1.1.2. Test Setup Diagram



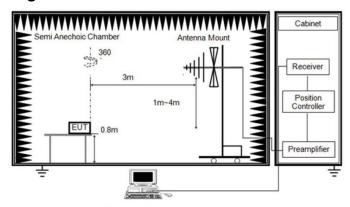

5.1.1.3. Test Result

Pass

5.1.1.4. Test Data

Note:

Level= Read Level+ Cable Loss+ LISN Factor

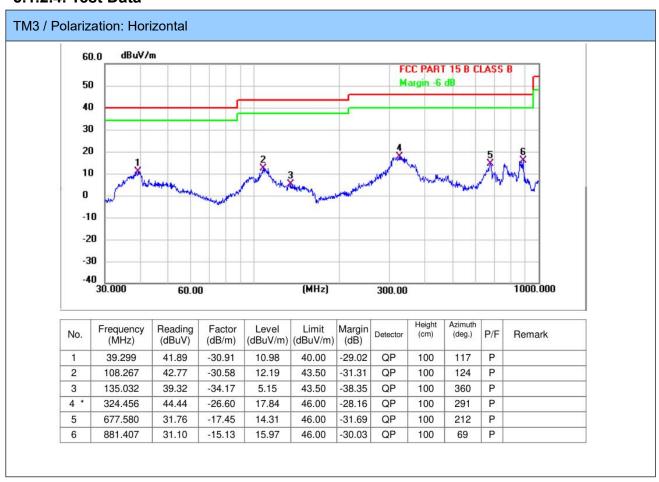

5.1.2. Radiated emissions (Below 1GHz)

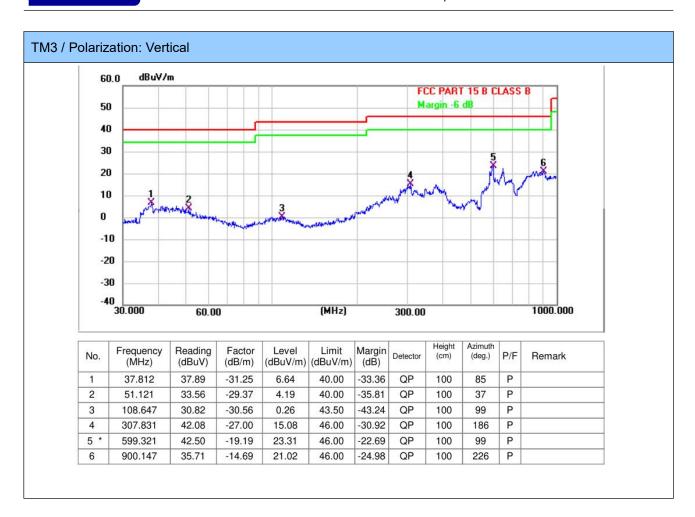
Test Requirement:	15.109, Class B						
	Except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:						
	Frequency of emission Field strength @3m		Field strength @10m				
Test Limit:		(uV/m)	(dBuV/ m)	(uV/m)	(dBuV/m)		
	30 – 88	100	40	30	29.5		
	88 – 216	150	43.5	45	33.1		
	216 – 960	200	46	60	35.6		
	Above 960	500	54	150	43.5		
Test Method:	ANSI C63.4-2014						
Procedure:	An initial pre-scan was performed in the chamber using the spectrum analyser in peak detection mode. Quasi-peak measurements were conducted based on the peak sweep graph. The EUT was measured by BiConiLog antenna with 2 orthogonal polarities. Remark: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor						

5.1.2.1. E.U.T. Operation

Operating Environment:						
Temperature:	23.1 °C		Humidity:	56.3 %	Atmospheric Pressure:	102 kPa
Pre test mode:	TM1, TM2, TM3					
Final test mode:		All of the listed pre-test mode were tested, only the data of the worst mode (TM3) is recorded in the report				

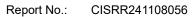
5.1.2.2. Test Setup Diagram


Below 1 GHz and above 30 MHz


5.1.2.3. Test Result

Pass

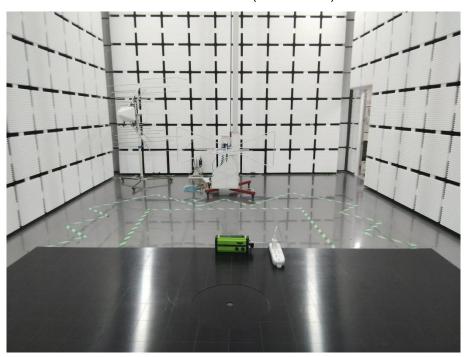
5.1.2.4. Test Data



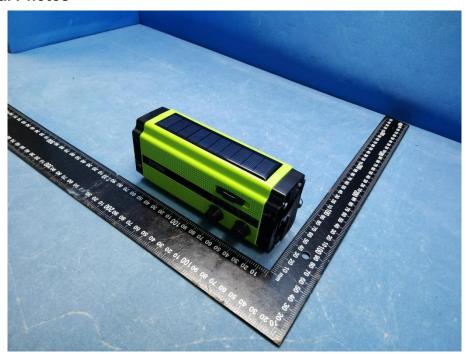
Note:

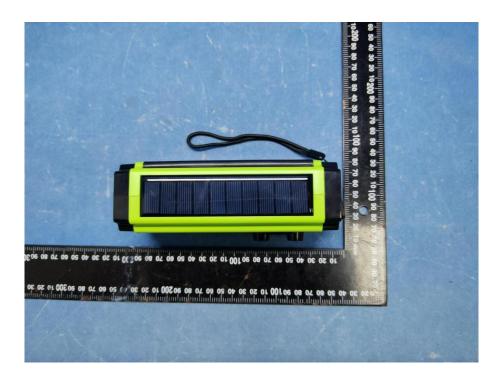
1) Level= Reading + Factor; Factor = Antenna Factor+ Cable Loss- Preamp Factor

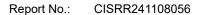
2) Margin = Limit - Level



6. TEST SETUP PHOTOS

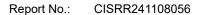

Radiated emissions (Below 1GHz)



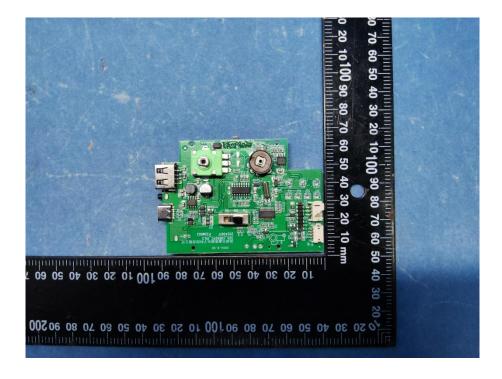


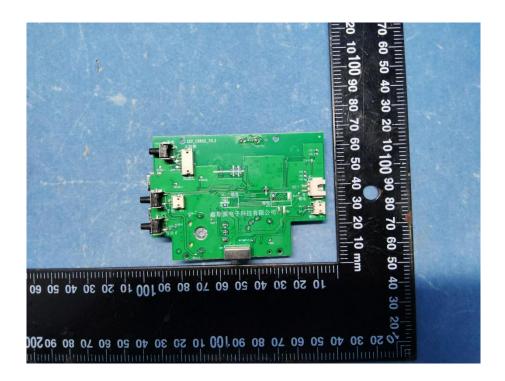
7. EXTERNAL AND INTERNAL PHOTOS

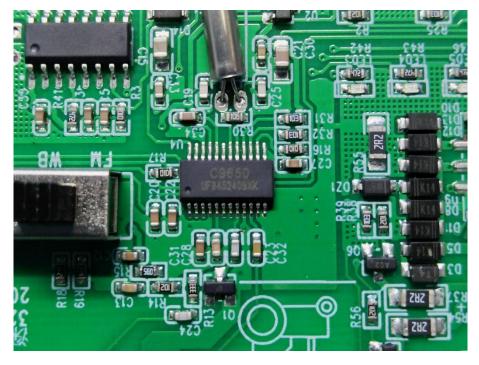
7.1. External Photos

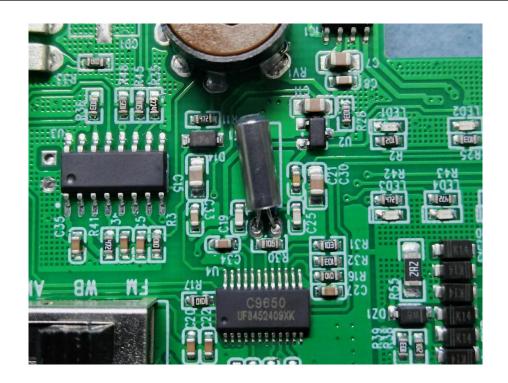


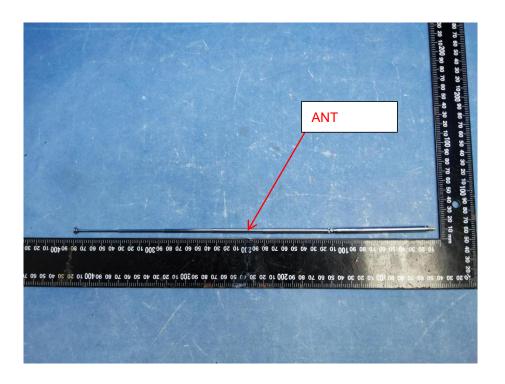


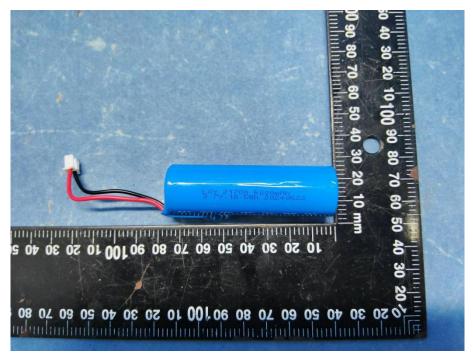


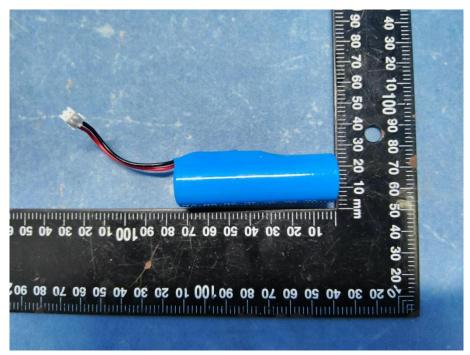



7.2. Internal Photos









----End of the report----