

Leviton Mfg Co, Inc

Zigbee BLE Module C0945

FCC 15.247:2021 2.4 GHz DTS Radio

Report: LEVT0137.2 Rev. 1, Issue Date: April 25, 2022

This report must not be used to claim product certification, approval, or endorsement by A2LA or any agency of the U.S. Government. This Report shall not be reproduced, except in full without written approval of the laboratory.

EAR-Controlled Data - This document contains technical data whose export and reexport/retransfer is subject to control by the U.S. Department of Commerce under the Export Administration Act and the Export Administration Regulations. The Department of Commerce's prior written approval may be required for the export or reexport/retransfer of such technical data to any foreign person, foreign entity or foreign organization whether in the United States or abroad.

CERTIFICATE OF TEST

Last Date of Test: November 10, 2021 Leviton Mfg Co, Inc EUT: Zigbee BLE Module C0945

Radio Equipment Testing

Standards

Specification	Method
FCC 15.207:2021	ANSI C63.10:2013, KDB 558074
FCC 15.247:2021	ANSI C03.10.2013, KDB 330074

Results

Method Clause	Test Description	Applied	Results	Comments
6.2	Powerline Conducted Emissions	Yes	Pass	
11.6	Duty Cycle	Yes	N/A	Characterization of radio operation
11.8.2	DTS Bandwidth	Yes	Pass	
11.9.1.1	Output Power	Yes	Pass	
11.9.1.1	Equivalent Isotropic Radiated Power	Yes	Pass	
11.10.2	Power Spectral Density	Yes	Pass	
11.11	Band Edge Compliance	Yes	Pass	
11.11	Spurious Conducted Emissions	Yes	Pass	
11.12.1, 11.13.2, 6.5, 6.6	Spurious Radiated Emissions	Yes	Pass	

Deviations From Test Standards

None

Approved By:

Kyle Holgate, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

REVISION HISTORY

Revision Number	Description	Date (yyyy-mm-dd)	Page Number
	Changed Duty Cycle Results from Pass to N/A, add comments: "Characterization of radio operation"	2022-04-21	2
	Updated receipt date of samples	2022-04-21	10
	Channel naming convention is now consistent throughout the data module.	2022-04-21	50-53
	Remove "and power setting" from comments section	2022-04-21	51
	Updated the serial number from none to sample 1	2022-04-21	53-56
01	Added mid channel to the operating mode.	2022-04-21	55
	Removed reference of the 99% occupied bandwidth measurement from the test description.	2022-04-21	2, 23-26
	Changed the title of the data module to DTS bandwidth, and updated the certificate of test to reference DTS bandwidth.	2022-04-21	2, 23-26
	Updated block diagrams with the correct sample formulas have been added to the test report.	2022-04-21	8, 52-56
	The power settings have been updated to show 19dBm	2022-04-21	11

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Each laboratory is accredited by A2LA to ISO / IEC 17025, and as a product certifier to ISO / IEC 17065 which allows Element to certify transmitters to FCC and IC specifications.

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB) and as a CAB for the acceptance of test data.

European Union

European Commission - Recognized as an EU Notified Body validated for the EMCD and RED Directives.

United Kingdom

BEIS - Recognized by the UK as an Approved Body under the UK Radio Equipment and UK EMC Regulations.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA - Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC - Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA - Recognized by OFCA as a CAB for the acceptance of test data.

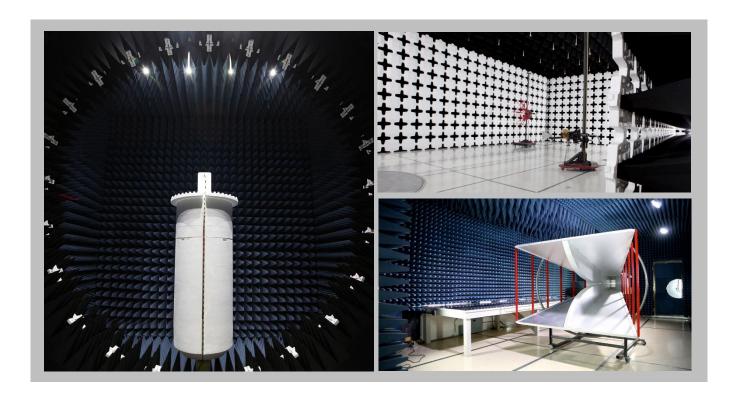
Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit:

<u>California</u> <u>Minnesota</u> <u>Oregon</u> <u>Texas</u> <u>Washington</u>


FACILITIES

California	Minnesota	Oregon	Texas	Washington	
Labs OC01-17	Labs MN01-11	Labs EV01-12	Labs TX01-09	Labs NC01-05	
41 Tesla	9349 W Broadway Ave.	6775 NE Evergreen Pkwy #400	3801 E Plano Pkwy	19201 120 th Ave NE	
Irvine, CA 92618	Brooklyn Park, MN 55445	Hillsboro, OR 97124	Plano, TX 75074	Bothell, WA 98011	
(949) 861-8918	(612)-638-5136	(503) 844-4066	(469) 304-5255	(425)984-6600	
		A2LA			
Lab Code: 3310.04	Lab Code: 3310.05	Lab Code: 3310.02	Lab Code: 3310.03	Lab Code: 3310.06	
Innovation, Science and Economic Development Canada					
2834B-1, 2834B-3	2834E-1, 2834E-3	2834D-1	2834G-1	2834F-1	
BSMI					
SL2-IN-E-1154R	SL2-IN-E-1152R	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R	
VCCI					
A-0029	A-0109	A-0108	A-0201	A-0110	
Recognized Phase I CAB for ISED, ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA					
US0158	US0175	US0017	US0191	US0157	

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

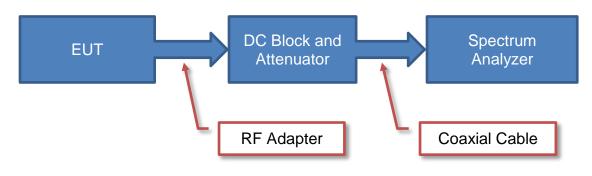
When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found in the table below. A lab specific value may also be found in the applicable test description section. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	- MU
Frequency Accuracy	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	1.2 dB	-1.2 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	3.2 dB	-3.2 dB

TEST SETUP BLOCK DIAGRAMS

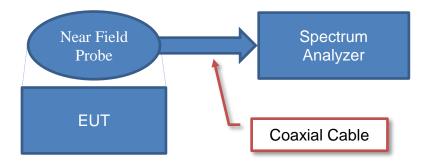


Measurement Bandwidths

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

Unless otherwise stated, measurements were made using the bandwidths and detectors specified. No video filter was used.

Antenna Port Conducted Measurements



Sample Calculation (logarithmic units)

Measured Value Measured Level Coffset

71.2 = 42.6 + 28.6

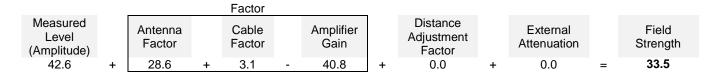
Near Field Test Fixture Measurements

Sample Calculation (logarithmic units)

Measured Value Measured Level Coffset

71.2 = 42.6 + 28.6

TEST SETUP BLOCK DIAGRAMS


Flush Mounted Turn table, Non-reflective foam table to support EUT

Fully anechoic shielded enclosure above 1 GHz. Semi-anechoic below 1 GHz (No absorber on the floor). Preamp and Filters Measurement Antenna Spectrum Analyzer

Sample Calculation (logarithmic units)

Radiated Emissions:

Conducted Emissions:



TEST SETUP BLOCK DIAGRAMS

Bore Sighting (>1GHz)

The diameter of the illumination area is the dimension of the line tangent to the EUT formed by 3 dB beamwidth of the measurement antenna at the measurement distance. At a 3 meter test distance, the diameter of the illumination area was 3.8 meters at 1 GHz and greater than 2.1 meters up to 6 GHz. Above 1 GHz, when required by the measurement standard, the antenna is pointed for both azimuth and elevation to maintain the receive antenna within the cone of radiation from the EUT. The specified measurement detectors were used for comparison of the emissions to the peak and average specification limits.

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Leviton Mfg Co, Inc
Address:	PO Box 10600
City, State, Zip:	Melville, OR 11747-3138
Test Requested By:	Dmitriy Moskovkin
EUT:	Zigbee BLE Module C0945
First Date of Test:	September 27, 2021
Last Date of Test:	November 10, 2021
Receipt Date of Samples:	September 27, 2021
Equipment Design Stage:	Prototype
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:	
Bluetooth LE and Zigbee radio module	

Testing Objective:

To demonstrate compliance of the 2.4 GHz DTS radio to FCC 15.247 requirements.

POWER SETTINGS AND ANTENNAS

The power settings, antenna gain value(s) and cable loss (if applicable) used for the testing contained in this report were provided by the customer and will affect the validity of the results. Element assumes no responsibility for the accuracy of this information.

ANTENNA GAIN (dBi)

Type	Provided by:	Frequency Range (MHz)	Gain (dBi)
Ceramic Chip	Manufacturer	2400 – 2500	1.5

The EUT was tested using the power settings provided by the manufacturer:

SETTINGS FOR ALL TESTS IN THIS REPORT

Modulation Types	Position	Power Setting
	Low Channel 2405 MHz	19 dBm
OQPSK	Mid Channel 2440 MHz	19 dBm
	High Channel 2480 MHz	17 dBm

Configuration LEVT0137-1

Software/Firmware Running During Test	
Description	Version
Rail Test App	2.8.1.0

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
BLE / ZigBee Module	Leviton MFG Co Inc.	C0945	Sample 1

Peripherals in Test Setup Boundary				
Description	Manufacturer	Model/Part Number	Serial Number	
Host PCB	Leviton MFG Co Inc.	B2183	Sample 1	
Switch Mode Power Supply	V-Infinity	EMSA050100	None	

Remote Equipment Outside of Test Setup Boundary				
Description	Manufacturer	Model/Part Number	Serial Number	
Laptop	HP	Probook 640 G3	5CG72466R3	

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
USB	Yes	1.5 m	No	Host PCB	Switch Mode Power Supply

Configuration LEVT0137- 2

Software/Firmware Running During Test			
Description	Version		
Rail Test App	2.8.1.0		

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
BLE / ZigBee Module	Leviton MFG Co Inc.	C0945	Sample 2

Peripherals in Test Setup Boundary				
Description	Manufacturer	Model/Part Number	Serial Number	
Host PCB	Leviton MFG Co Inc.	B2183	Sample 1	
Host PCB	Leviton MFG Co Inc.	B2183	Sample 2	

Remote Equipment Outside of Test Setup Boundary				
Description	Manufacturer	Model/Part Number	Serial Number	
Switch Mode Power Supply	V-Infinity	EMSA050100	None	
Laptop	HP	Probook 640 G3	5CG72466R3	

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
FTDI	Yes	1.5 m	No	Host PCB	Laptop
USB	Yes	1.5 m	No	Host PCB	Switch Mode Power Supply

Configuration LEVT0137-3

Software/Firmware Running During Test				
Description	Version			
Rail Test App	2.8.1.0			

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
BLE / ZigBee Module	Leviton MFG Co Inc.	C0945	Sample 1

Peripherals in Test Setup Boundary				
Description	Manufacturer	Model/Part Number	Serial Number	
Host PCB	Leviton MFG Co Inc.	B2183	Sample 1	

Remote Equipment Outside of Test Setup Boundary				
Description	Manufacturer	Model/Part Number	Serial Number	
Laptop	HP	Probook 640 G3	5CG72466R3	

Configuration LEVT0136-1

Software/Firmware Running During Test	
Description	Version
Rail Test App	2.8.1.0

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
BLE / ZigBee Module	Leviton MFG Co Inc.	C0945	Sample 1

Peripherals in Test Setup Boundary						
Description Manufacturer Model/Part Number Serial Number						
Host PCB	Leviton MFG Co Inc.	B2183	Sample 1			
Switch Mode Power Supply	V-Infinity	EMSA050100	None			

Remote Equipment Outside of Test Setup Boundary						
Description Manufacturer Model/Part Number Serial Number						
Laptop	HP	Probook 640 G3	5CG72466R3			

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
USB	Yes	1.5 m	No	Host PCB	Switch Mode Power Supply

MODIFICATIONS

Equipment Modifications

		1			D (5115
Item	Date	Test	Modification	Note	Disposition of EUT
		Spurious	Tested as	No EMI suppression	EUT remained at
1	2021-09-27	Radiated	delivered to	devices were added or	Element following the
		Emissions	Test Station.	modified during this test.	test.
		DTS	Tested as	No EMI suppression	EUT remained at
2	2021-11-10	Bandwidth	delivered to	devices were added or	Element following the
		Danuwium	Test Station.	modified during this test.	test.
			Tested as	No EMI suppression	EUT remained at
3	2021-11-10	Output Power	delivered to	devices were added or	Element following the
			Test Station.	modified during this test.	test.
		Equivalent	Tested as	No EMI suppression	EUT remained at
4	2021-11-10	Isotropic	delivered to	No EMI suppression devices were added or	
4	2021-11-10	Radiated			Element following the
		Power	Test Station.	modified during this test.	test.
		Power	Tested as	No EMI suppression	EUT remained at
5	2021-11-10	Spectral	delivered to	devices were added or	Element following the
		Density	Test Station.	modified during this test.	test.
		Dand Edge	Tested as	No EMI suppression	EUT remained at
6	2021-11-10	Band Edge	delivered to	devices were added or	Element following the
		Compliance	Test Station.	modified during this test.	test.
-		Spurious	Tested as	No EMI suppression	EUT remained at
7	2021-11-10	Conducted	delivered to	devices were added or	Element following the
		Emissions	Test Station.	modified during this test.	test.
		Powerline	Tested as	No EMI suppression	Sahadulad taating
8	2021-11-10	Conducted	delivered to	devices were added or	Scheduled testing
		Emissions	Test Station.	modified during this test.	was completed.

POWERLINE CONDUCTED EMISSIONS

TEST DESCRIPTION

Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Per the standard, an insulating material was also added to ground plane between the EUT's power and remote I/O cables. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 50ohm measuring port is terminated by a 50ohm EMI meter or a 50ohm resistive load. All 50ohm measuring ports of the LISN are terminated by 50ohm. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Receiver	Gauss Instruments	TDEMI 30M	ARN	2021-04-06	2022-04-06
Cable - Conducted Cable Assembly	Northwest EMC	EVG, HHD, RKT	EVGA	2021-01-05	2022-01-05
LISN	Solar Electronics	9252-50-R-24-BNC	LIR	2021-09-10	2022-09-10
Power Supply - DC	Topward	TPS-2000	TPD	NCR	NCR

MEASUREMENT UNCERTAINTY

Description		
Expanded k=2	3.2 dB	-3.2 dB

CONFIGURATIONS INVESTIGATED

LEVT0137-3

MODES INVESTIGATED

Tx - ZigBee, OQPSK, Mid Ch = 2440 MHz

EUT:	Zigbee BLE Module C0945	Work Order:	LEVT0137
Serial Number:	Sample 1	Date:	2021-11-10
Customer:	Leviton Mfg Co, Inc	Temperature:	22.3°C
Attendees:	Vikas Asthana	Relative Humidity:	39.6%
Customer Project:	None	Bar. Pressure (PMSL):	1029 mb
Tested By:	Jeff Alcoke	Job Site:	EV07
Power:	3.3VDC via 110VAC/60Hz	Configuration:	LEVT0137-3

TEST SPECIFICATIONS

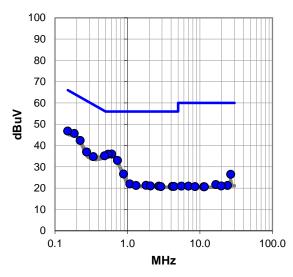
Specification:	Method:
FCC 15.207:2021	ANSI C63.10:2013

TEST PARAMETERS

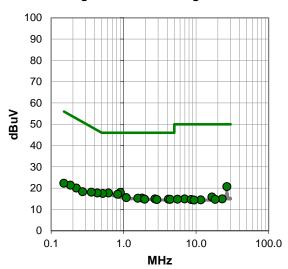
Run #:	4	Line:	Neutral	Add. Ext. Attenuation (dB):	0
--------	---	-------	---------	-----------------------------	---

COMMENTS

Measuring AC mains of lab DC power supply.


EUT OPERATING MODES

Tx - ZigBee, OQPSK, Mid Ch = 2440 MHz


DEVIATIONS FROM TEST STANDARD

None

Quasi Peak Data - vs - Quasi Peak Limit

Average Data - vs - Average Limit

POWERLINE CONDUCTED EMISSIONS

RESULTS - Run #4

Quasi Peak Data - vs - Quasi Peak Limit

Quasi Peak Data - vs - Quasi Peak Limit							
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)		
0.185	25.6	20.1	45.7	64.3	-18.6		
0.150	26.7	20.1	46.8	66.0	-19.2		
0.606	16.0	20.0	36.0	56.0	-20.0		
0.542	15.9	20.0	35.9	56.0	-20.1		
0.223	22.3	20.1	42.4	62.7	-20.3		
0.484	15.2	20.0	35.2	56.3	-21.1		
0.730	13.0	20.0	33.0	56.0	-23.0		
0.274	17.0	20.0	37.0	61.0	-24.0		
0.338	14.8	20.0	34.8	59.3	-24.5		
0.885	6.6	20.0	26.6	56.0	-29.4		
26.609	5.4	21.1	26.5	60.0	-33.5		
1.078	2.0	20.0	22.0	56.0	-34.0		
1.804	1.3	20.0	21.3	56.0	-34.7		
1.314	1.2	20.0	21.2	56.0	-34.8		
2.076	1.0	20.0	21.0	56.0	-35.0		
2.706	0.9	20.0	20.9	56.0	-35.1		
4.160	0.8	20.0	20.8	56.0	-35.2		
4.390	0.7	20.1	20.8	56.0	-35.2		
2.900	0.7	20.0	20.7	56.0	-35.3		
16.630	1.1	20.6	21.7	60.0	-38.3		
24.011	0.2	21.0	21.2	60.0	-38.8		
19.764	0.2	20.8	21.0	60.0	-39.0		
5.548	0.7	20.2	20.9	60.0	-39.1		
6.934	0.7	20.2	20.9	60.0	-39.1		
8.571	0.5	20.2	20.7	60.0	-39.3		

Average Data - vs - Average Limit										
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)					
0.902	-2.1	20.0	17.9	46.0	-28.1					
0.620	-2.3	20.0	17.7	46.0	-28.3					
0.516	-2.5	20.0	17.5	46.0	-28.5					
0.827	-2.9	20.0	17.1	46.0	-28.9					
26.609	-0.4	21.1	20.7	50.0	-29.3					
0.434	-2.3	20.0	17.7	47.2	-29.5					
1.091	-4.5	20.0	15.5	46.0	-30.5					
0.359	-1.9	20.0	18.1	48.8	-30.7					
1.802	-4.7	20.0	15.3	46.0	-30.7					
1.571	-4.8	20.0	15.2	46.0	-30.8					
2.704	-5.1	20.0	14.9	46.0	-31.1					
1.958	-5.2	20.0	14.8	46.0	-31.2					
4.160	-5.2	20.0	14.8	46.0	-31.2					
4.390	-5.4	20.1	14.7	46.0	-31.3					
2.881	-5.4	20.0	14.6	46.0	-31.4					
0.223	-0.1	20.1	20.0	52.7	-32.7					
0.272	-1.7	20.0	18.3	51.1	-32.8					
0.185	1.3	20.1	21.4	54.3	-32.9					
0.150	2.2	20.1	22.3	56.0	-33.7					
16.630	-4.8	20.6	15.8	50.0	-34.2					
6.934	-5.3	20.2	14.9	50.0	-35.1					
23.028	-6.0	20.9	14.9	50.0	-35.1					
5.545	-5.4	20.2	14.8	50.0	-35.2					
18.388	-6.0	20.7	14.7	50.0	-35.3					
8.569	-5.6	20.2	14.6	50.0	-35.4					

CONCLUSION

Pass

Tested By

EUT:	Zigbee BLE Module C0945	Work Order:	LEVT0137
Serial Number:	Sample 1	Date:	2021-11-10
Customer:	Leviton Mfg Co, Inc	Temperature:	22.3°C
Attendees:	Vikas Asthana	Relative Humidity:	39.6%
Customer Project:	None	Bar. Pressure (PMSL):	1029 mb
Tested By:	Jeff Alcoke	Job Site:	EV07
Power:	3.3VDC via 110VAC/60Hz	Configuration:	LEVT0137-3

TEST SPECIFICATIONS

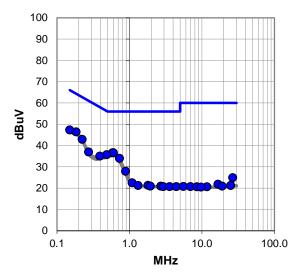
Specification:	Method:
FCC 15.207:2021	ANSI C63.10:2013

TEST PARAMETERS

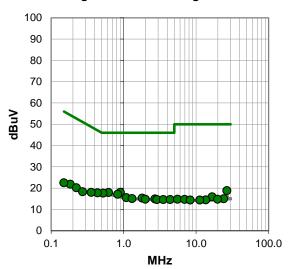
Run #:	5	Line:	High Line	Add. Ext. Attenuation (dB):	0

COMMENTS

Measuring AC mains of lab DC power supply.


EUT OPERATING MODES

Tx - ZigBee, OQPSK, Mid Ch = 2440 MHz


DEVIATIONS FROM TEST STANDARD

None

Quasi Peak Data - vs - Quasi Peak Limit

Average Data - vs - Average Limit

POWERLINE CONDUCTED EMISSIONS

RESULTS - Run #5

Quasi Peak Data - vs - Quasi Peak Limit

Quasi Peak Data - vs - Quasi Peak Limit										
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)					
0.184	26.3	20.1	46.4	64.3	-17.9					
0.150	27.2	20.1	47.3	66.0	-18.7					
0.586	16.6	20.0	36.6	56.0	-19.4					
0.600	16.6	20.0	36.6	56.0	-19.4					
0.223	22.8	20.1	42.9	62.7	-19.8					
0.486	15.7	20.0	35.7	56.2	-20.5					
0.728	14.0	20.0	34.0	56.0	-22.0					
0.390	15.0	20.0	35.0	58.1	-23.1					
0.274	17.0	20.0	37.0	61.0	-24.0					
0.884	7.9	20.0	27.9	56.0	-28.1					
1.090	2.5	20.0	22.5	56.0	-33.5					
1.802	1.3	20.0	21.3	56.0	-34.7					
1.314	1.2	20.0	21.2	56.0	-34.8					
1.952	0.9	20.0	20.9	56.0	-35.1					
2.704	0.9	20.0	20.9	56.0	-35.1					
26.609	3.8	21.1	24.9	60.0	-35.1					
2.925	0.7	20.0	20.7	56.0	-35.3					
3.582	0.7	20.0	20.7	56.0	-35.3					
4.447	0.5	20.2	20.7	56.0	-35.3					
16.635	1.2	20.6	21.8	60.0	-38.2					
24.958	0.2	21.0	21.2	60.0	-38.8					
18.997	0.2	20.7	20.9	60.0	-39.1					
5.545	0.6	20.2	20.8	60.0	-39.2					
6.934	0.5	20.2	20.7	60.0	-39.3					
8.496	0.4	20.2	20.6	60.0	-39.4					

Average Data - vs - Average Limit									
Freq	Amp.	Factor	Adjusted	Spec. Limit	Margin				
(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)				
0.902	-2.0	20.0	18.0	46.0	-28.0				
0.618	-2.1	20.0	17.9	46.0	-28.1				
0.522	-2.4	20.0	17.6	46.0	-28.4				
0.827	-2.9	20.0	17.1	46.0	-28.9				
0.435	-2.2	20.0	17.8	47.2	-29.4				
1.088	-4.5	20.0	15.5	46.0	-30.5				
1.802	-4.7	20.0	15.3	46.0	-30.7				
0.358	-2.0	20.0	18.0	48.8	-30.8				
1.311	-4.9	20.0	15.1	46.0	-30.9				
2.704	-5.1	20.0	14.9	46.0	-31.1				
1.996	-5.2	20.0	14.8	46.0	-31.2				
26.609	-2.3	21.1	18.8	50.0	-31.2				
2.881	-5.4	20.0	14.6	46.0	-31.4				
3.539	-5.4	20.0	14.6	46.0	-31.4				
4.390	-5.5	20.1	14.6	46.0	-31.4				
0.184	1.7	20.1	21.8	54.3	-32.5				
0.223	0.1	20.1	20.2	52.7	-32.5				
0.272	-1.7	20.0	18.3	51.1	-32.8				
0.150	2.4	20.1	22.5	56.0	-33.5				
16.635	-4.7	20.6	15.9	50.0	-34.1				
24.011	-6.0	21.0	15.0	50.0	-35.0				
5.545	-5.4	20.2	14.8	50.0	-35.2				
19.833	-6.0	20.8	14.8	50.0	-35.2				
6.934	-5.5	20.2	14.7	50.0	-35.3				
13.580	-6.0	20.5	14.5	50.0	-35.5				

CONCLUSION

Pass

Tested By

DUTY CYCLE

TEST DESCRIPTION

The Duty Cycle (x) were measured for each of the EUT operating modes. The measurements were made using a zero span on the spectrum analyzer to see the pulses in the time domain. The transmit power was set to its default maximum.

The duty cycle was calculated by dividing the transmission pulse duration (T) by the total period of a single on and total off time.

The EUT operates at 100% Duty Cycle.

XMit 2020.12.30.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

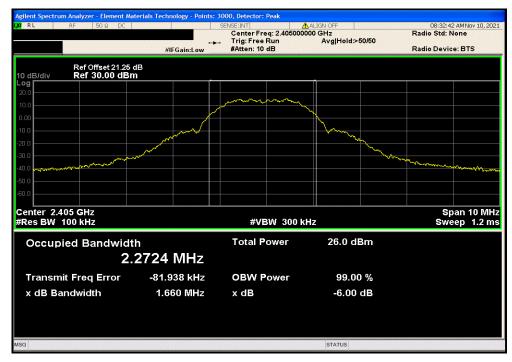
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	N5181A	TIG	2020-04-16	2023-04-16
Cable	Micro-Coax	UFD150A-1-0720-200200	EVH	2021-03-14	2022-03-14
Attenuator	Fairview Microwave	SA26B-20	TWJ	2021-03-14	2022-03-14
Block - DC	Fairview Microwave	SD3379	AMX	2021-03-14	2022-03-14
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFI	2020-12-08	2021-12-08

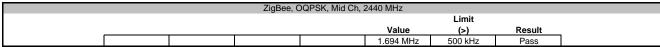
TEST DESCRIPTION

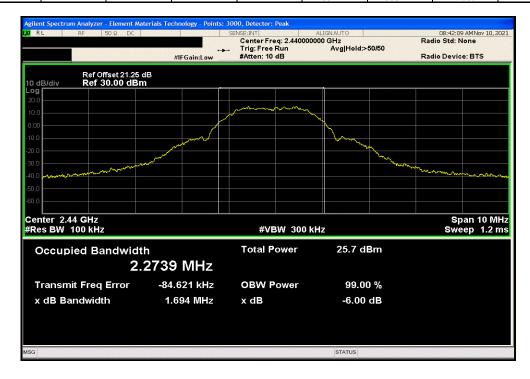
The EUT was set to the channels and modes listed in the datasheet.

The 6dB occupied bandwidth was measured using 100 kHz resolution bandwidth and 300 kHz video bandwidth.

						TbtTx 2021.03.19.1	XMit 2020.12.30.0			
EUT:	Zigbee BLE Module C094	45			Work Order:	LEVT0137				
Serial Number:	Sample 2					10-Nov-21				
Customer:	Leviton Mfg Co, Inc		Temperature:							
	Vikas Asthana					39.8% RH				
Project:	None		Barometric Pres.:	1030 mbar						
	Jeff Alcoke		3.3VDC via 110VAC/60Hz	Job Site:	EV01					
TEST SPECIFICATI	ONS			Test Method						
FCC 15.247:2021				ANSI C63.10:2013						
COMMENTS										
		0 dB attenuator, and measurement cal	bie.							
	I TEST STANDARD									
None										
Configuration #	Configuration # 2 Signature									
						Limit				
	Value (>) Result									
ZigBee, OQPSK, Lo		-		-	1.66 MHz	500 kHz	Pass			
ZigBee, OQPSK, Mi					1.694 MHz	500 kHz	Pass			
ZigBee, OQPSK, Hig	gh Ch, 2480 MHz				1.663 MHz	500 kHz	Pass			

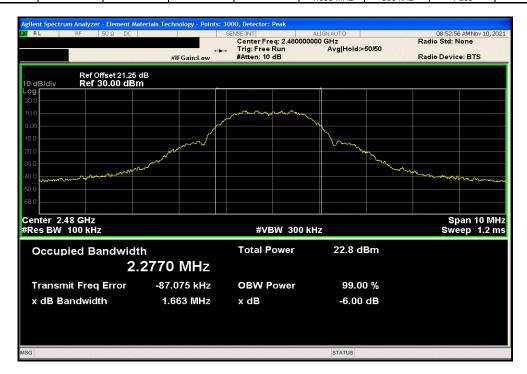



ZigBee, OQPSK, Low Ch, 2405 MHz


Limit

Value (>) Result

1.66 MHz 500 kHz Pass



ZigBee, OQPSK, High Ch, 2480 MHz

Limit

Value (-) Result

1.663 MHz 500 kHz Pass

XMit 2020.12.30.

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

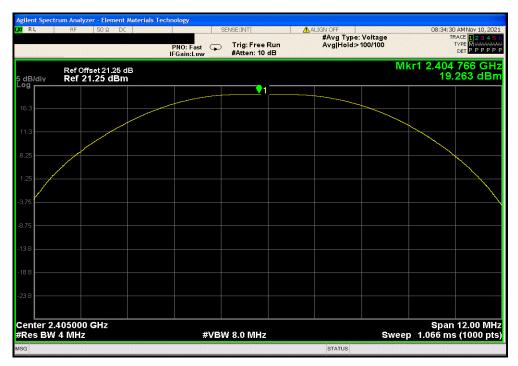
_						
	Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
	Generator - Signal	Agilent	N5181A	TIG	2020-04-16	2023-04-16
	Cable	Micro-Coax	UFD150A-1-0720-200200	EVH	2021-03-14	2022-03-14
	Attenuator	Fairview Microwave	SA26B-20	TWJ	2021-03-14	2022-03-14
	Block - DC	Fairview Microwave	SD3379	AMX	2021-03-14	2022-03-14
	Analyzer - Spectrum Analyzer	Agilent	N9010A	AFI	2020-12-08	2021-12-08

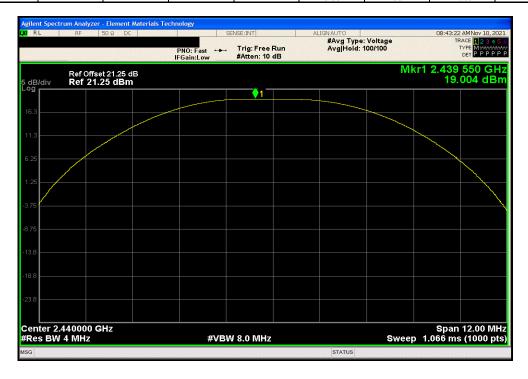
TEST DESCRIPTION

The transmit frequency was set to the required channels in each band. The transmit power was set to its default maximum.

Prior to measuring peak transmit power the DTS bandwidth (B) was measured.

The method found in ANSI C63.10:2013 Section 11.9.1.1 was used because the RBW on the analyzer was greater than the DTS Bandwidth of the radio.

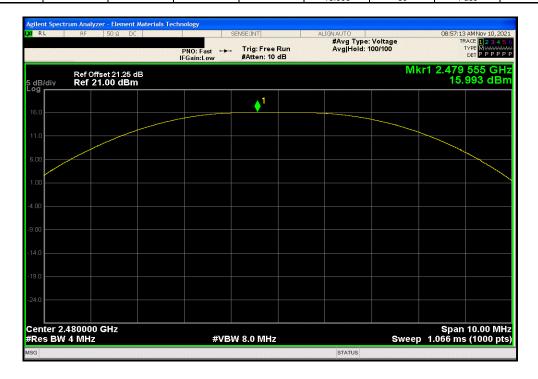

						TbtTx 2021.03.19.1	XMit 2020.12.30.0
EUT:	Zigbee BLE Module C094	5			Work Order	: LEVT0137	
Serial Number:	Sample 2				Date	: 10-Nov-21	
Customer:	Leviton Mfg Co, Inc		Temperature				
	Vikas Asthana			: 39.3% RH			
Project:					Barometric Pres.		
	Jeff Alcoke		Power:	3.3VDC via 110VAC/60Hz	Job Site	: EV01	
TEST SPECIFICATI	ONS			Test Method			
FCC 15.247:2021				ANSI C63.10:2013			
COMMENTS							
		dB attenuator, and measurement cab	ole.				
DEVIATIONS FROM	I IESI SIANDARD						
None			200				
Configuration #	2	Signature	lef				
					Out Pwr	Limit	
					(dBm)	(dBm)	Result
ZigBee, OQPSK, Lov	w Ch, 2405 MHz	_		_	19.263	30	Pass
ZigBee, OQPSK, Mic	d Ch, 2440 MHz				19.004	30	Pass
ZigBee, OQPSK, Hig	jh Ch, 2480 MHz				15.993	30	Pass


ZigBee, OQPSK, Low Ch, 2405 MHz

Out Pwr Limit
(dBm) (dBm) Result

19.263 30 Pass

	ZigBee, OQPSK, Mid Ch, 2440 MHz								
Out Pwr Limit									
					(dBm)	(dBm)	Result		
					19.004	30	Pass		



ZigBee, OQPSK, High Ch, 2480 MHz

Out Pwr Limit
(dBm) (dBm) Result

15.993 30 Pass

XMit 2020.12.30.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

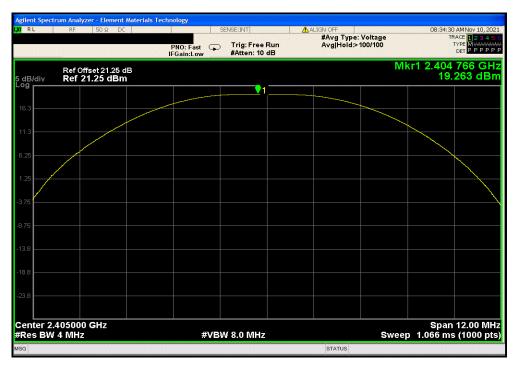
TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent N5181A		TIG	2020-04-16	2023-04-16
Cable	Micro-Coax	UFD150A-1-0720-200200	EVH	2021-03-14	2022-03-14
Attenuator	Fairview Microwave	SA26B-20	TWJ	2021-03-14	2022-03-14
Block - DC	Fairview Microwave	SD3379	AMX	2021-03-14	2022-03-14
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFI	2020-12-08	2021-12-08

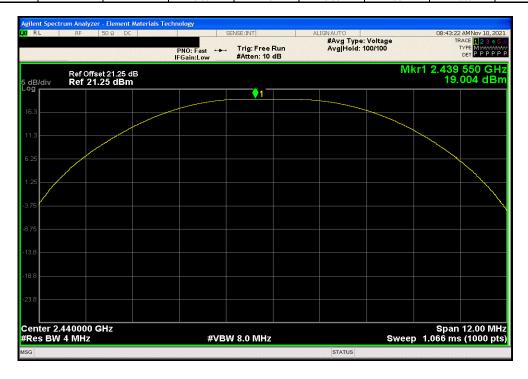
TEST DESCRIPTION

The transmit frequency was set to the required channels in each band. The transmit power was set to its default maximum.

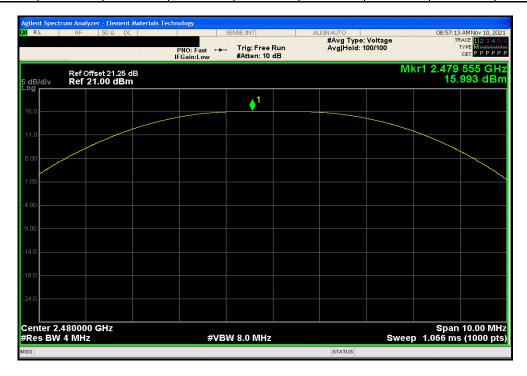
Prior to measuring peak transmit power the DTS bandwidth (B) was measured.


The method found in ANSI C63.10:2013 Section 11.9.1.1 was used because the RBW on the analyzer was greater than the DTS Bandwidth of the radio.

Equivalent Isotropic Radiated Power (EIRP) = Max Measured Power + Antenna gain (dBi)



								TbtTx 2021.03.19.1	XMit 2020.12.30.0
EUT: Zigbee BLE Module C0945							Work Order:	LEVT0137	
Serial Number: Sample 2							Date:	10-Nov-21	
Customer: Leviton Mfg Co, Inc							Temperature:	22 °C	
Attendees: Vikas Asthana							Humidity:	39.9% RH	
Project:	None				Barometric Pres.:	1030 mbar			
Tested by:	Jeff Alcoke		3.3VDC via 110VAC/60Hz			Job Site:	EV01		
TEST SPECIFICATI	ONS			Test Method					
FCC 15.247:2021			ANSI C63.10:2013						
COMMENTS									
		0 dB attenuator, and measuremen	nt cable.						
DEVIATIONS FROM	TEST STANDARD								
None									
Configuration #	2	Signature	Jeff						
				Out	t Pwr	Antenna	EIRP	EIRP Limit	
				(di	Bm)	Gain (dBi)	(dBm)	(dBm)	Result
ZigBee, OQPSK, Lov	19.	.263	1.5	20.763	36	Pass			
ZigBee, OQPSK, Mid Ch, 2440 MHz 19.004							20.504	36	Pass
ZigBee, OQPSK, Hic	th Ch, 2480 MHz	15.	.993	1.5	17.493	36	Pass		


	ZigBee, OQPSK, Mid Ch, 2440 MHz								
			Out Pwr	Antenna	EIRP	EIRP Limit			
			(dBm)	Gain (dBi)	(dBm)	(dBm)	Result		
1			19.004	1.5	20.504	36	Pass		

TbtTx 2021.03.19.1 XMit 2020.12.30.0

ZigBee, OQPSK, High Ch, 2480 MHz								
			Out Pwr	Antenna	EIRP	EIRP Limit		
			(dBm)	Gain (dBi)	(dBm)	(dBm)	Result	
			15.993	1.5	17.493	36	Pass	

POWER SPECTRAL DENSITY

XMit 2020.12.30.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	N5181A	TIG	2020-04-16	2023-04-16
Cable	Micro-Coax	UFD150A-1-0720-200200	EVH	2021-03-14	2022-03-14
Attenuator	Fairview Microwave	SA26B-20	TWJ	2021-03-14	2022-03-14
Block - DC	Fairview Microwave	SD3379	AMX	2021-03-14	2022-03-14
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFI	2020-12-08	2021-12-08

TEST DESCRIPTION

The maximum power spectral density measurements were measured using the channels and modes as called out on the following data sheets.

Per the procedure outlined in ANSI C63.10:2013, clause 11.10.2, the peak power spectral density was measured in a 3 kHz RBW.

POWER SPECTRAL DENSITY

						TbtTx 2021.03.19.1	XMit 2020.12.30.0			
EUT:	Zigbee BLE Module C094	15			Work Order:	: LEVT0137				
Serial Number:	Sample 2		Date:	: 10-Nov-21						
Customer:	Leviton Mfg Co, Inc		Temperature:							
	Vikas Asthana			: 39.9% RH						
Project:	None		Barometric Pres.:							
	Jeff Alcoke		Job Site:	: EV01						
TEST SPECIFICATIONS Test Method										
FCC 15.247:2021				ANSI C63.10:2013						
COMMENTS										
Reference level offset includes: DC Block, 20 dB attenuator, and measurement cable. DEVIATIONS FROM TEST STANDARD										
None	. 1201 017111071110									
Configuration #	2	Signature	last							
				•	Value	Limit				
					dBm/3kHz	< dBm/3kHz	Results			
ZigBee, OQPSK, Lov	w Ch, 2405 MHz		3.524	8	Pass					
ZigBee, OQPSK, Mic	d Ch, 2440 MHz		3.85	8	Pass					
ZigBee, OQPSK, Hig	gh Ch, 2480 MHz		0.365	8	Pass					

POWER SPECTRAL DENSITY

ZigBee, OQPSK, Low Ch, 2405 MHz

Value Limit

dBm/3kHz < dBm/3kHz Results

3.524 8 Pass

ZigBee, OQPSK, Mid Ch, 2440 MHz						
				Value	Limit	
				dBm/3kHz	< dBm/3kHz	Results
				3.85	8	Pass

POWER SPECTRAL DENSITY

ZigBee, OQPSK, High Ch, 2480 MHz

Value Limit

dBm/3kHz < dBm/3kHz Results

0.365 8 Pass

BAND EDGE COMPLIANCE

XMit 2020.12.30.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	N5181A	TIG	2020-04-16	2023-04-16
Cable	Micro-Coax	UFD150A-1-0720-200200	EVH	2021-03-14	2022-03-14
Attenuator	Fairview Microwave	SA26B-20	TWJ	2021-03-14	2022-03-14
Block - DC	Fairview Microwave	SD3379	AMX	2021-03-14	2022-03-14
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFI	2020-12-08	2021-12-08

TEST DESCRIPTION

The spurious RF conducted emissions at the edges of the authorized bands were measured with the EUT set to low and high transmit frequencies in each available band. The channels closest to the band edges were selected. The EUT was transmitting at the data rate(s) listed in the datasheet.

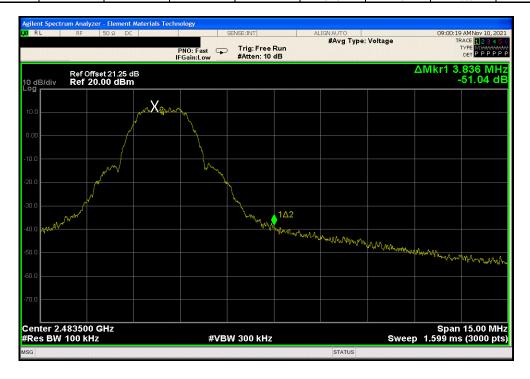
The spectrum was scanned below the lower band edge and above the higher band edge.

BAND EDGE COMPLIANCE

EUT: Zigbee BLE Module C0945
Serial Number: Sample 2
Customer: Leviton Mfg Co, Inc
Attendees: Vikas Asthana
Project: None
Tested by: Jeff Alcoke
TEST SPECIFICATIONS Work Order: LEVT0137
Date: 10-Nov-21
Temperature: 22 °C
Humidity: 40% RH
Barometric Press.: 1030 mbar Power: 3.3VDC via 110VAC/60Hz Test Method Job Site: EV01 FCC 15.247:2021 ANSI C63.10:2013 COMMENTS Reference level offset includes: DC Block, 20 dB attenuator, and measurement cable. DEVIATIONS FROM TEST STANDARD Configuration # 2 Signature Value (dBc) Result ≤ (dBc) ZigBee, OQPSK, Low Ch, 2405 MHz ZigBee, OQPSK, High Ch, 2480 MHz -51.04 Pass -20

BAND EDGE COMPLIANCE

 ZigBee, OQPSK, Low Ch, 2405 MHz


 Value
 Limit

 (dBc)
 ≤ (dBc)
 Result

 -56.2
 -20
 Pass

ZigBee, OQPSK, High Ch, 2480 MHz						
Value Limit						
				(dBc)	≤ (dBc)	Result
				-51.04	-20	Pass

XMit 2020.12.30.

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

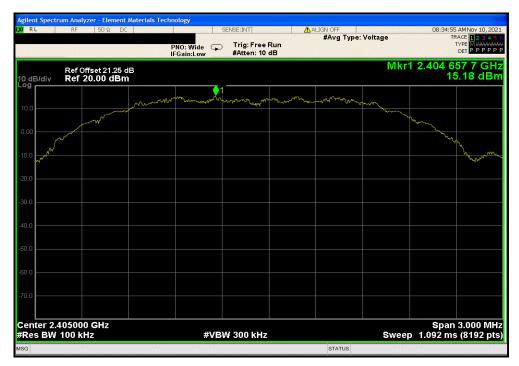
TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	N5181A	TIG	2020-04-16	2023-04-16
Cable	Micro-Coax	UFD150A-1-0720-200200	EVH	2021-03-14	2022-03-14
Attenuator	Fairview Microwave	SA26B-20	TWJ	2021-03-14	2022-03-14
Block - DC	Fairview Microwave	SD3379	AMX	2021-03-14	2022-03-14
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFI	2020-12-08	2021-12-08

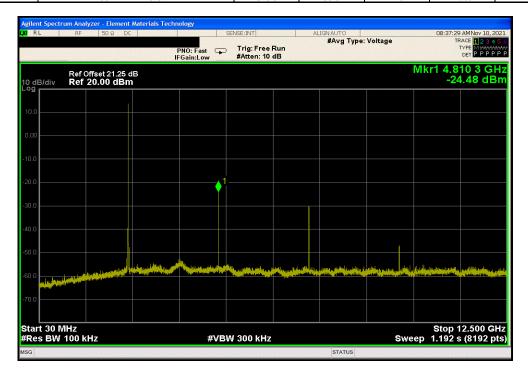
TEST DESCRIPTION

The spurious RF conducted emissions were measured with the EUT set to low, medium and high transmit frequencies. The EUT was transmitting at the data rate(s) listed in the datasheet. For each transmit frequency, the fundamental was measured with a 100 kHz resolution bandwidth and the highest value was recorded. The rest of the spectrum was then measured with a 100 kHz resolution bandwidth and the highest value was found. The difference between the value found on the fundamental and the rest of the spectrum was compared against the limit to determine compliance.

							TbtTx 2021.03.19.1	XMit 2020.12.30.
	bee BLE Module C0945					Work Order:		
Serial Number: Sar	mple 2						10-Nov-21	
Customer: Lev	viton Mfg Co, Inc					Temperature:	22.1 °C	
Attendees: Vik	as Asthana					Humidity:	39.7% RH	
Project: No	ne					Barometric Pres.:	1030 mbar	
Tested by: Jef	f Alcoke		Power:	3.3VDC via 110VAC/60Hz		Job Site:	EV01	
TEST SPECIFICATIONS	S			Test Method				
FCC 15.247:2021				ANSI C63.10:2013				
COMMENTS								
Reference level offset i	includes: DC Block, 20 dB	attenuator, and measur	rement cable.	•				
DEVIATIONS FROM TE	ST STANDARD							
None								
	_			1/2				
Configuration #	2	o: .	(/					
		Signature			Measured	Max Value	Limit	
				Frequency Range	Freq (MHz)	(dBc)	≤ (dBc)	Result
ZigBee, OQPSK, Low C	h 2405 MHz			Fundamental	2404.66	N/A	N/A	N/A
ZigBee, OQPSK, Low Ci				30 MHz - 12.5 GHz	4810.34	-39.67	-20	Pass
ZigBee, OQPSK, Low Ci				12.5 GHz - 25 GHz	24891.65	-65.74	-20	Pass
				Fundamental	2440.43	-65.74 N/A	-20 N/A	N/A
ZigBee, OQPSK, Mid Ch				30 MHz - 12.5 GHz				
ZigBee, OQPSK, Mid Ch					4878.85	-40.66	-20	Pass
ZigBee, OQPSK, Mid Ch				12.5 GHz - 25 GHz	24206.45	-66.94	-20	Pass
ZigBee, OQPSK, High C				Fundamental	2480.42	N/A	N/A	N/A
ZigBee, OQPSK, High C				30 MHz - 12.5 GHz	4959.54	-40.79	-20	Pass
ZigBee, OQPSK, High Ch, 2480 MHz 12.5 GHz - 25 GHz				24055.37	-64.07	-20	Pass	



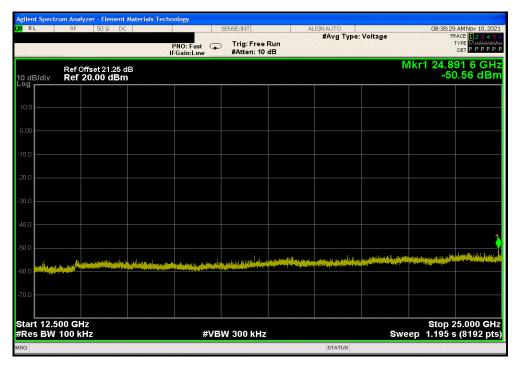
 ZigBee, OQPSK, Low Ch, 2405 MHz


 Frequency
 Measured
 Max Value
 Limit

 Range
 Freq (MHz)
 (dBc)
 ≤ (dBc)
 Result

 Fundamental
 2404.66
 N/A
 N/A
 N/A

	ZigBee, OQPSK, Low Ch, 2405 MHz					
	Frequency	Measured	Max Value	Limit		
	Range	Freq (MHz)	(dBc)	≤ (dBc)	Result	
1	30 MHz - 12.5 GHz	4810.34	-39.67	-20	Pass	



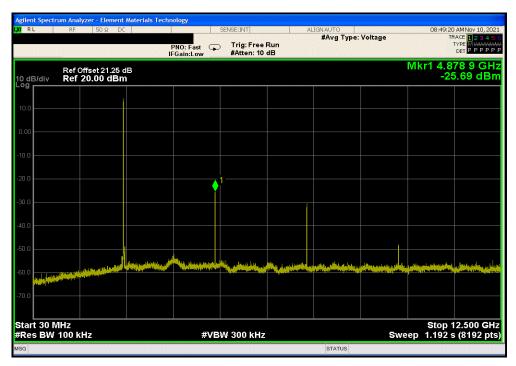
 ZigBee, OQPSK, Low Ch, 2405 MHz

 Frequency
 Measured
 Max Value
 Limit

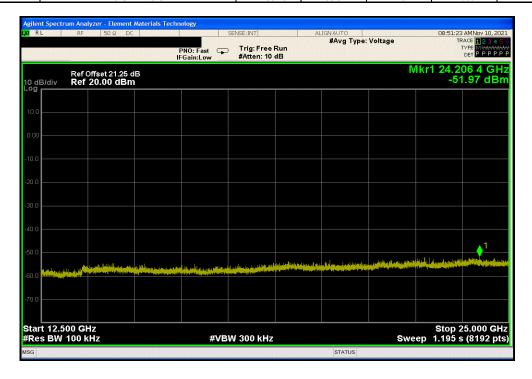
 Range
 Freq (MHz)
 (dBc)
 ≤ (dBc)
 Result

 12.5 GHz - 25 GHz
 24891.65
 -65.74
 -20
 Pass

ZigBee, OQPSK, Mid Ch, 2440 MHz					
Frequency	Measured	Max Value	Limit		
Range	Freq (MHz)	(dBc)	≤ (dBc)	Result	
Fundamental	2440.43	N/A	N/A	N/A	



 ZigBee, OQPSK, Mid Ch, 2440 MHz

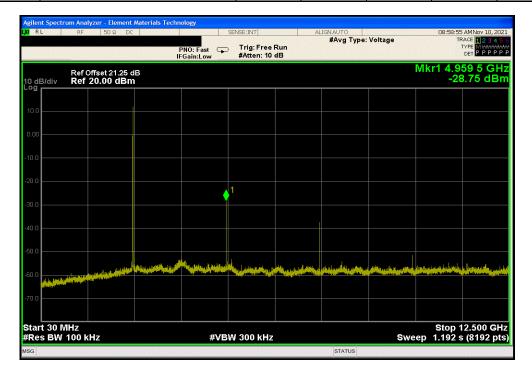

 Frequency
 Measured
 Max Value
 Limit

 Range
 Freq (MHz)
 (dBc)
 ≤ (dBc)
 Result

 30 MHz - 12.5 GHz
 4878.85
 -40.66
 -20
 Pass

	ZigBee, OQPSK, Mid Ch, 2440 MHz					
Frequency	Measured	Max Value	Limit			
Range	Freq (MHz)	(dBc)	≤ (dBc)	Result		
12.5 GHz - 25 GHz	z 24206.45	-66.94	-20	Pass		

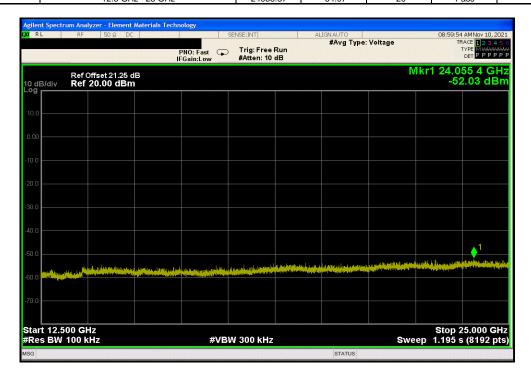
 ZigBee, OQPSK, High Ch, 2480 MHz


 Frequency
 Measured
 Max Value
 Limit

 Range
 Freq (MHz)
 (dBc)
 ≤ (dBc)
 Result

 Fundamental
 2480.42
 N/A
 N/A
 N/A

	ZigBee, OQPSK, High Ch, 2480 MHz					
	Frequency	Measured	Max Value	Limit		
_	Range	Freq (MHz)	(dBc)	≤ (dBc)	Result	
. [30 MHz - 12.5 GHz	4959.54	-40.79	-20	Pass	



 ZigBee, OQPSK, High Ch, 2480 MHz

 Frequency
 Measured
 Max Value
 Limit

 Range
 Freq (MHz)
 (dBc)
 ≤ (dBc)
 Result

 12.5 GHz - 25 GHz
 24055.37
 -64.07
 -20
 Pass

TEST DESCRIPTION

The highest gain antenna of each type to be used with the EUT was tested. The EUT was configured for the required transmit frequencies and the modes as showed in the data sheets.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis if required, and adjusting the measurement antenna height and polarization (per ANSI C63.10:2013). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector

PK = Peak Detector

AV = RMS Detector

Measurements were made to satisfy the specific requirements of the test specification for out of band emissions as well as the restricted band requirements.

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

Measurements within 2 MHz of the allowable band may have been taken using the integration method from ANSI C63.10:2013, clause 11.13.3. This procedure uses the channel power feature of the spectrum analyzer to integrate the power of the emission within a 1 MHz bandwidth.

Where the radio test software does not provide for a duty cycle at continuous transmit conditions (> 98%) and the RMS (power average) measurements were made across the on and off times of the EUT transmissions, a duty cycle correction is added to the measurements using the formula of 10*log(1/dc).

TEST EQUIPMENT

1201 24011 1112111					
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFI	2020-12-08	2021-12-08
Antenna - Biconilog	EMCO	3142B	AXJ	2021-03-03	2023-03-03
Antenna - Double Ridge	EMCO	3115	AHC	2020-07-01	2022-07-01
Antenna - Standard Gain	ETS Lindgren	3160-07	AHU	NCR	NCR
Antenna - Standard Gain	ETS Lindgren	3160-08	AHV	NCR	NCR
Antenna - Standard Gain	ETS Lindgren	3160-09	AIV	NCR	NCR
Amplifier - Pre-Amplifier	Miteq	AM-1616-1000	AOL	2020-11-17	2021-11-17
Amplifier - Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	PAG	2020-11-17	2021-11-17
Amplifier - Pre-Amplifier	L-3 Narda-MITEQ	AMF-6F-08001200-30-10P	PAO	2020-11-18	2021-11-18
Amplifier - Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AVD	2020-11-18	2021-11-18
Amplifier - Pre-Amplifier	Miteq	AMF-6F-18002650-25-10P	AVU	2021-07-16	2022-07-16
Cable	N/A	Bilog Cables	EVA	2020-11-17	2021-11-17
Cable	N/A	Double Ridge Horn Cables	EVB	2020-11-17	2021-11-17
Cable	None	Standard Gain Horn Cables	EVF	2020-11-18	2021-11-18
Cable	ESM Cable Corp.	TTBJ141-KMKM-72	EVY	2021-07-16	2022-07-16
Attenuator	Coaxicom	3910-20	AXZ	2021-02-15	2022-02-15
Filter - Low Pass	Micro-Tronics	LPM50004	LFD	2021-02-15	2022-02-15
Filter - High Pass	Micro-Tronics	HPM50111	HFO	2020-11-17	2021-11-17

MEASUREMENT UNCERTAINTY

Description		
Expanded k=2	5.2 dB	-5.2 dB

FREQUENCY RANGE INVESTIGATED

30 MHz TO 26500 MHz

POWER INVESTIGATED

3.3VDC via 110VAC/60Hz

CONFIGURATIONS INVESTIGATED

LEVT0136-1 LEVT0137-1

MODES INVESTIGATED

Tx - Zigbee, 100% duty cycle, OQPSK, Low Ch = 2405 MHz, Mid Ch = 2440MHz, High Ch = 2480 MHz

EUT:	Zigbee BLE Module C0945	Work Order:	LEVT0136
Serial Number:	Sample 1	Date:	2021-09-27
Customer:	Leviton Mfg Co, Inc	Temperature:	23.1°C
Attendees:	Vikas Asthana	Relative Humidity:	49.1%
Customer Project:	None	Bar. Pressure (PMSL):	1013 mb
Tested By:	Jeff Alcoke	Job Site:	EV01
Power:	3.3VDC via 110VAC/60Hz	Configuration:	LEVT0136-1

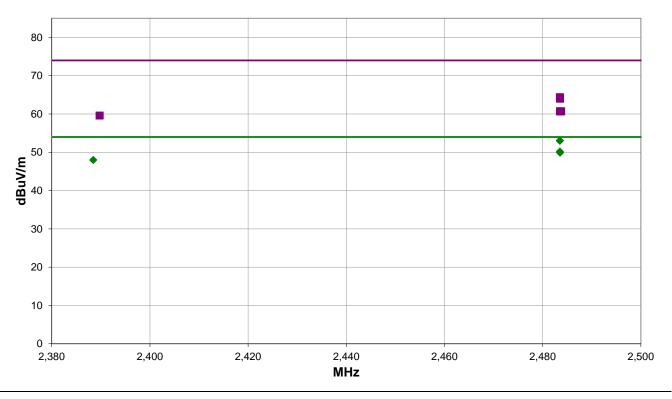
TEST SPECIFICATIONS

Specification:	Method:
FCC 15.247:2021	ANSI C63.10:2013

TEST PARAMETERS

Run #:	14	Test Distance (m):	3	Ant. Height(s) (m):	1 to 4(m)

COMMENTS


Bandedge - please reference data comments below for channel and EUT orientation.

EUT OPERATING MODES

Tx - Zigbee, 100% duty cycle, OQPSK, Low Ch = 2405 MHz, High Ch = 2480 MHz

DEVIATIONS FROM TEST STANDARD

None

Run #: 14

RESULTS - Run #14

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
2483.513	36.7	-3.6	1.26	104.0	3.0	20.0	Vert	AV	0.0	53.1	54.0	-0.9	High Ch, EUT Vert
2483.507	36.6	-3.6	1.29	263.0	3.0	20.0	Vert	AV	0.0	53.0	54.0	-1.0	High Ch, EUT on Side
2483.510	33.8	-3.6	3.57	199.0	3.0	20.0	Horz	AV	0.0	50.2	54.0	-3.8	High Ch, EUT on Side
2483.540	33.5	-3.6	3.07	232.0	3.0	20.0	Vert	AV	0.0	49.9	54.0	-4.1	High Ch, EUT Horz
2388.457	31.5	-3.5	1.5	360.0	3.0	20.0	Vert	AV	0.0	48.0	54.0	-6.0	Low Ch, EUT on Side
2483.510	48.0	-3.6	1.29	263.0	3.0	20.0	Vert	PK	0.0	64.4	74.0	-9.6	High Ch, EUT on Side
2483.543	47.6	-3.6	1.26	104.0	3.0	20.0	Vert	PK	0.0	64.0	74.0	-10.0	High Ch, EUT Vert
2483.767	44.3	-3.6	3.57	199.0	3.0	20.0	Horz	PK	0.0	60.7	74.0	-13.3	High Ch, EUT on Side
2483.520	44.3	-3.6	3.07	232.0	3.0	20.0	Vert	PK	0.0	60.7	74.0	-13.3	High Ch, EUT Horz
2389.753	43.1	-3.5	1.5	360.0	3.0	20.0	Vert	PK	0.0	59.6	74.0	-14.4	Low Ch, EUT on Side

CONCLUSION

Pass

Tested By

EUT:	Zigbee BLE Module C0945	Work Order:	LEVT0136
Serial Number:	Sample 1	Date:	2021-09-27
Customer:	Leviton Mfg Co, Inc	Temperature:	23.1°C
Attendees:	Vikas Asthana	Relative Humidity:	49.1%
Customer Project:	None	Bar. Pressure (PMSL):	1013 mb
Tested By:	Jeff Alcoke	Job Site:	EV01
Power:	3.3VDC via 110VAC/60Hz	Configuration:	LEVT0136-1

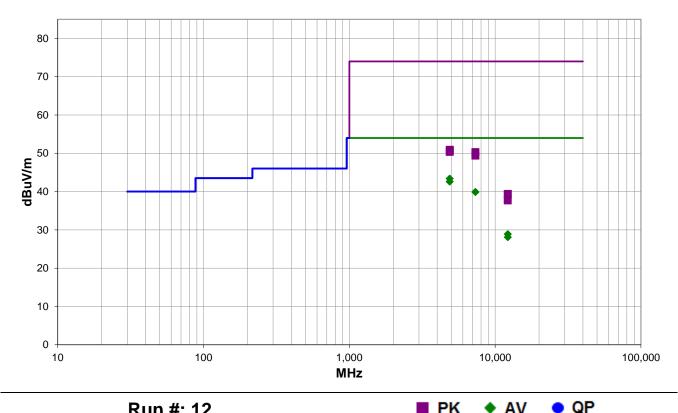
TEST SPECIFICATIONS

Specification:	Method:
FCC 15.247:2021	ANSI C63.10:2013

TEST PARAMETERS

Run #:	12	Test Distance (m):	3	Ant. Height(s) (m):	1 to 4(m)

COMMENTS


Please reference data comments below for channel and EUT orientation.

EUT OPERATING MODES

Tx - Zigbee, 100% duty cycle, OQPSK, Mid Ch = 2440 MHz

DEVIATIONS FROM TEST STANDARD

None

Run #: 12

■ PK

AV

RESULTS - Run #12

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
4878.717	37.4	6.0	2.84	253.0	3.0	0.0	Horz	AV	0.0	43.4	54.0	-10.6	Mid Ch, EUT on Side
4878.800	36.6	6.0	1.01	319.0	3.0	0.0	Vert	AV	0.0	42.6	54.0	-11.4	Mid Ch, EUT Vert
7318.250	28.3	11.6	1.5	324.0	3.0	0.0	Vert	AV	0.0	39.9	54.0	-14.1	Mid Ch, EUT Vert
7319.350	28.2	11.7	1.5	192.0	3.0	0.0	Horz	AV	0.0	39.9	54.0	-14.1	Mid Ch, EUT on Side
4881.017	44.9	6.0	1.01	319.0	3.0	0.0	Vert	PK	0.0	50.9	74.0	-23.1	Mid Ch, EUT Vert
4878.417	44.4	6.0	2.84	253.0	3.0	0.0	Horz	PK	0.0	50.4	74.0	-23.6	Mid Ch, EUT on Side
7319.517	38.6	11.7	1.5	324.0	3.0	0.0	Vert	PK	0.0	50.3	74.0	-23.7	Mid Ch, EUT Vert
7321.767	37.7	11.7	1.5	192.0	3.0	0.0	Horz	PK	0.0	49.4	74.0	-24.6	Mid Ch, EUT on Side
12204.780	28.0	0.9	1.0	36.0	3.0	0.0	Horz	AV	0.0	28.9	54.0	-25.1	Mid Ch, EUT on Side
12204.980	27.2	0.9	2.85	157.0	3.0	0.0	Vert	AV	0.0	28.1	54.0	-25.9	Mid Ch, EUT Vert
12196.950	38.5	0.9	1.0	36.0	3.0	0.0	Horz	PK	0.0	39.4	74.0	-34.6	Mid Ch, EUT on Side
12195.830	36.8	0.9	2.85	157.0	3.0	0.0	Vert	PK	0.0	37.7	74.0	-36.3	Mid Ch, EUT Vert

CONCLUSION

Pass

Tested By

EUT:	Zigbee BLE Module C0945	Work Order:	LEVT0137
Serial Number:	Sample 1	Date:	2021-11-09
Customer:	Leviton Mfg Co, Inc	Temperature:	22.2°C
Attendees:	Vikas Asthana	Relative Humidity:	40.3%
Customer Project:	None	Bar. Pressure (PMSL):	1011.85 mb
Tested By:	Kam Robertson & Jeff Alcoke	Job Site:	EV01
Power:	3.3VDC via 110VAC/60Hz	Configuration:	LEVT0137-1

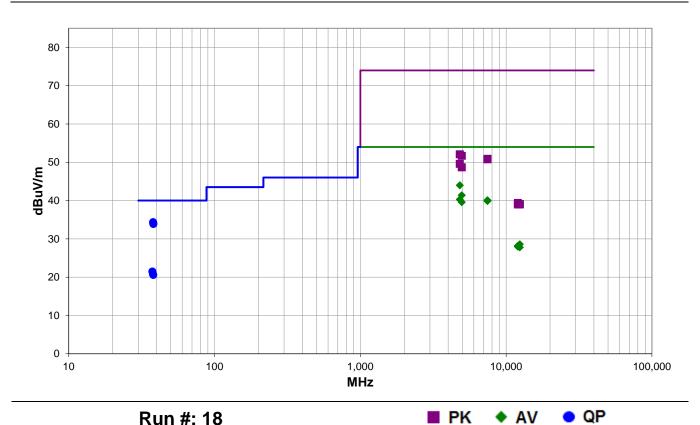
TEST SPECIFICATIONS

Specification:	Method:
FCC 15.247:2021	ANSI C63.10:2013

TEST PARAMETERS

Run #:	18	Test Distance (m):	3	Ant. Height(s) (m):	1 to 4(m)

COMMENTS


See comments below for channel and EUT orientation

EUT OPERATING MODES

Tx - Zigbee, 100% duty cycle, OQPSK, Low Ch = 2405 MHz, Mid Ch = 2440MHz, High Ch = 2480 MHz

DEVIATIONS FROM TEST STANDARD

None

RESULTS - Run #18

KESULI	o ita	11 # 10											
Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
37.879	38.4	-4.0	1.0	102.0	3.0	0.0	Vert	QP	0.0	34.4	40.0	-5.6	High Ch, EUT Horz
37.967	38.3	-4.1	1.01	137.0	3.0	0.0	Vert	QP	0.0	34.2	40.0	-5.8	Mid Ch, EUT Horz
38.021	38.0	-4.1	1.0	249.0	3.0	0.0	Vert	QP	0.0	33.9	40.0	-6.1	Low Ch, EUT Horz
4808.717	38.8	5.2	2.28	248.0	3.0	0.0	Horz	AV	0.0	44.0	54.0	-10.0	Low Ch, EUT on Side
4958.767	35.5	5.9	3.16	231.0	3.0	0.0	Vert	AV	0.0	41.4	54.0	-12.6	High Ch, EUT Horz
4808.792	35.1	5.2	1.12	149.0	3.0	0.0	Vert	AV	0.0	40.3	54.0	-13.7	Low Ch, EUT Horz
7438.050	27.9	12.2	1.5	337.0	3.0	0.0	Vert	AV	0.0	40.1	54.0	-13.9	High Ch, EUT Horz
7440.483	27.7	12.2	1.5	83.0	3.0	0.0	Horz	AV	0.0	39.9	54.0	-14.1	High Ch, EUT on Side
4958.775	33.7	5.9	2.13	133.0	3.0	0.0	Horz	AV	0.0	39.6	54.0	-14.4	High Ch, EUT on Side
37.442	25.3	-3.8	0.99	275.0	3.0	0.0	Horz	QP	0.0	21.5	40.0	-18.5	High Ch, EUT Horz
37.814	24.8	-4.0	1.0	297.0	3.0	0.0	Horz	QP	0.0	20.8	40.0	-19.2	Mid Ch, EUT Horz
38.001	24.7	-4.1	0.99	229.0	3.0	0.0	Horz	QP	0.0	20.6	40.0	-19.4	Low Ch, EUT Horz
4808.817	46.9	5.2	2.28	248.0	3.0	0.0	Horz	PK	0.0	52.1	74.0	-21.9	Low Ch, EUT on Side
4960.867	45.8	5.9	3.16	231.0	3.0	0.0	Vert	PK	0.0	51.7	74.0	-22.3	High Ch, EUT Horz
7440.525	38.7	12.2	1.5	83.0	3.0	0.0	Horz	PK	0.0	50.9	74.0	-23.1	High Ch, EUT on Side
7439.017	38.6	12.2	1.5	337.0	3.0	0.0	Vert	PK	0.0	50.8	74.0	-23.2	High Ch, EUT Horz
4808.325	44.4	5.2	1.12	149.0	3.0	0.0	Vert	PK	0.0	49.6	74.0	-24.4	Low Ch, EUT Horz
4958.742	42.8	5.9	2.13	133.0	3.0	0.0	Horz	PK	0.0	48.7	74.0	-25.3	High Ch, EUT on Side
12399.900	27.1	1.5	1.5	173.0	3.0	0.0	Horz	AV	0.0	28.6	54.0	-25.4	High Ch, EUT on Side
12027.440	27.0	1.2	1.18	197.0	3.0	0.0	Vert	AV	0.0	28.2	54.0	-25.8	Low Ch, EUT Horz
12026.920	26.8	1.2	1.02	218.0	3.0	0.0	Horz	AV	0.0	28.0	54.0	-26.0	Low Ch, EUT on Side
12399.810	26.3	1.5	1.05	47.0	3.0	0.0	Vert	AV	0.0	27.8	54.0	-26.2	High Ch, EUT Horz
12025.960	38.2	1.2	1.02	218.0	3.0	0.0	Horz	PK	0.0	39.4	74.0	-34.6	Low Ch, EUT on Side
12397.970	37.6	1.5	1.5	173.0	3.0	0.0	Horz	PK	0.0	39.1	74.0	-34.9	High Ch, EUT on Side
12026.860	37.8	1.2	1.18	197.0	3.0	0.0	Vert	PK	0.0	39.0	74.0	-35.0	Low Ch, EUT Horz
12399.430	37.5	1.5	1.05	47.0	3.0	0.0	Vert	PK	0.0	39.0	74.0	-35.0	High Ch, EUT Horz

CONCLUSION

Pass

Tested By

End of Test Report