

RF TEST REPORT

FCC ID: 2AZ6O-C800

Equipment: Wireless Intercom System

Brand Name : Chtoocy
Test Model : C800
Series Model : N/A

Applicant: Shenzhen Weiguo Times Technology Co.,Ltd

Address : 8th Floor, Block C, Wanguo City Pingji Avenue, Nanwan Street,

Longgang District Shenzhen 518000 China

Manufacturer : Shenzhen Todakj Co., Ltd.

Address : No. 40 Huan Dong Road, Tie Gang Industrial District,

Baoan, Shenzhen, China

Date of Receipt : 2022.11-23

Date of Test : 2022.11-23-2022.12-01

Issued Date : 2022.12-01 **Report Version** : V1.0

Test Sample : Engineering Sample No.: AIT22112201-1

Standard(s) : FCC Part 95 Rules

Lab: Dongguan Yaxu (AiT) Technology Limited

Add: No.22, Jinqianling 3rd Street, Jitigang, Huangjiang, Dongguan,

Guangdong, China

Tel.: +86-769-8202 0499 Fax.: +86-769-8202 0495

This device described above has been tested by Dongguan Yaxu (AiT) Technology Limited and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

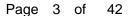
Note: This report shall not be reproduced except in full, without the written approval of Dongguan Yaxu (AiT) Technology Limited, this document may be altered or revised by Dongguan Yaxu (AiT) Technology Limited, personal only, and shall be noted in the revision of the document. This test report must not be used by the client to claim product endorsement.

Reviewed by:

Simba huang

Approved by:

Seal Chen


Seal-Cherr

Report No.: AIT22112201W1

REPORT REVISE RECORD

Report Version Revise Time Issued Date		Valid Version	Notes	
V1.0	V1.0 / 2022-12-01		Valid	Initial Release

TABLE OF CONTENTS

1.	GENERAL INFORMATION	5
2.	PRODUCT INFORMATION	6
	2.1 PRODUCT TECHNICAL DESCRIPTION	6
	2.2 TEST FREQUENCY LIST	7
	2.3 TEST METHODOLOGY	7
	2.4 CALCULATION OF EMISSION INDICATORS	8
	2.5 SPECIAL ACCESSORIES	8
	2.6 EQUIPMENT MODIFICATIONS	8
	2.8 ANTENNA REQUIREMENT	9
3.	TEST ENVIRONMENT	10
	3.1. TEST FACILITY	10
	3.3 ENVIRONMENTAL CONDITIONS	11
	3.4 MEASUREMENT UNCERTAINTY	11
	3.5 LIST OF EQUIPMENTS USED	12
4.5	SYSTEM TEST CONFIGURATION	14
	4.1 EUT CONFIGURATION	14
	4.2 EUT EXERCISE	14
	4.3 CONFIGURATION OF TESTED SYSTEM	14
	4.4 EQUIPMENT USED IN TESTED SYSTEM	14
	4.5 SUMMARY OF TEST RESULTS	15
5.	DESCRIPTION OF TEST MODES	16
6.F	FREQUENCY STABILITY	17
	6.1 PROVISIONS APPLICABLE	17
	6.2 MEASUREMENT PROCEDURE	17
	6.3 MEASUREMENT SETUP	17
	6.4 MEASUREMENT RESULTS	18
7.	EMISSION BANDWIDTH	19
	7.1 PROVISIONS APPLICABLE	19
	7.2 MEASUREMENT PROCEDURE	19
	7.3 MEASUREMENT SETUP	19
	7.4 MEASUREMENT RESULTS	20
8. 9	SPURIOUS RATIATED EMISSION	21
	8.1 PROVISIONS APPLICABLE	21
	8.2 MEASUREMENT PROCEDURE	21
	8.3 MEASUREMENT SETUP	22

Report No.: AIT22112201W1

8.4 MEASUREMENT RESULTS	23
8.5 EMISSION MASK PLOT	30
9. MAXIMUMN TRANSMITTER POWER	32
9.1 PROVISIONS APPLICABLE	32
9.2 MEASUREMENT METHOD	32
9.3 MEASUREMENT SETUP	32
9.4 MEASUREMENT RESULTS	34
10.MODULATION CHARACTERISTICS	35
10.1 PROVISIONS APPLICABLE	35
10.2 MEASUREMENT METHOD	35
10.3 MEASUREMENT SETUP	35
10.4 MEASUREMENT RESULTS	
11. LINE CONDUCTED EMISSION TEST	38
11.1. LIMITS OF LINE CONDUCTED EMISSION TEST	38
11.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST	38
11.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST	39
11.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST	39
11.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST	40
APPENDIX I: PHOTOGRAPHS OF TEST SETUP	42
APPENDIX II: PHOTOGRAPHS OF TEST EUT	42

1. GENERAL INFORMATION

Applicant	Shenzhen Weiguo Times Technology Co.,Ltd
Address	8th Floor,Block C, Wanguo City Pingji Avenue, Nanwan Street, Longgang District Shenzhen 518000 China
Manufacturer	Shenzhen Todakj Co., Ltd.
Address	No. 40 Huan Dong Road, Tie Gang Industrial District, Baoan,Shenzhen,China
Product Designation	Wireless Intercom System
Brand Name	Chtoocy
Test Model	C800
Operation Mode	Push to talk
Rated Output Power	0.1119W (It was fixed by the manufacturer, any individual can't arbitrarily change it.)
Antenna Designation	Detachable
Power Supply	DC 5V by Adapter
Test Result	Pass

Note: For more details, refer to the user's manual of the EUT.

2. PRODUCT INFORMATION

2.1 PRODUCT TECHNICAL DESCRIPTION

Hardware Version	N/A			
Software Version	N/A			
Communication Type	Voice / Tone only			
	462.5625 - 462.7125MHz (1~7 channel)			
Operation Frequency Range	467.5625 - 467.7125MHz (8~14 channel)			
	462.5500 - 462.7250MHz (15~22 channel)			
Modulation Type	FM			
Channel Separation	12.5 KHz			
Emission Bandwidth	10.44 KHz			
Emission Designator	10K4F3E			
Number of Channels:	22 Channels			
Rated Output Power	01119W/0.086W (It was fixed by the manufacturer, any individual can't arbitrarily change it.)			
Maximum Transmitter Power	FRS: 20.49dBm (2W-12.5KHz) FRS: 19.59dBm (0.5W-12.5KHz)			
Antenna Designation	Inseparable			
Antenna Gain	1.0dBi			
Frequency Tolerance	1.011ppm			

2.2 TEST FREQUENCY LIST

According to ANSI C63.26 section 5.1.2.1:

Measurements of transmitters shall be performed and, if required, reported for each frequency band in which the EUT can be operated with the device transmitting at the number of frequencies in each band specified in Table 2.

Frequency range Over which EUT operates	Number of Frequencies	Location in frequency range of operation	
1 MHz or less	1	Middle	
1 MHz to 10 MHz	2	1 near top and 1 near bottom	
More than 10 MHz	3	1 near top, 1 near middle, and 1 near bottom	

Operation Frequency Each of Channel						
FRS FRS			FRS	FRS		
Channel	Frequency	Channel Frequency		Channel	Frequency	
1	462.5625 MHz	8	467.5625 MHz	15	462.5500 MHz	
2	462.5875 MHz	9	467.5875 MHz	16	462.5750 MHz	
3	462.6125 MHz	10	467.6125 MHz	17	462.6000 MHz	
4	462.6375 MHz	11	467.6375 MHz	18	462.6250 MHz	
5	462.6625 MHz	12	467.6625 MHz	19	462.6500 MHz	
6	462.6875 MHz	13	467.6875 MHz	20	462.6750 MHz	
7	462.7125 MHz	14	467.7125 MHz	21	462.7000 MHz	
				22	462.7250 MHz	

2.3 TEST METHODOLOGY

The tests were performed according to following standards:

No.	Identity	Document Title		
1	FCC 47 CFR Part 95	Personal Radio Services		
2	FCC 47 CFR Part 2	Frequency allocations and radio treaty matters; general rules and regulations		
3	ANSI C63.26-2015	C63.26-2015 American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services		
4	ANSI/TIA-603-E-2016	Land Mobile FM or PM Communications Equipment Measurement and Performance Standards		
5	KDB 888861 D01	888861 D01 Part 95 GMRS FRS v01		

2.4 CALCULATION OF EMISSION INDICATORS

FCC Rules and Regulations Part 2.202: Necessary Bandwidth and Emission Bandwidth

For FM Mode (ChannelSpacing: 12.5kHz)

Emission Designator 11K0F3E

In this case, the maximum modulating frequency is 3.0 kHz with a 2.5 kHz deviation.

BW = 2(M+D) = 2*(3.0 kHz + 2.5 kHz) = 11 kHz = 11K0

F3E portion of the designator represents an FM voice transmission.

Therefore, the entire designator for 12.5 kHz channel spacing FM mode is 11K0F3E.

2.5 SPECIAL ACCESSORIES

Not available for this EUT intended for grant.

2.6 EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

2.8 ANTENNA REQUIREMENT

Excerpt from §95.587 of the FCC Rules/Regulations:

The antenna of each FRS transmitter type must meet the following requirements.

- (1) The antenna must be a non-removable integral part of the FRS transmitter type.
- (2) The gain of the antenna must not exceed that of a half-wave dipole antenna.
- (3) The antenna must be designed such that the electric field of the emitted waves is vertically polarized when the unit is operated in the normal orientation.
- The antenna of this device is **permanently attached**.
- There are no provisions for connection to an external antenna.

Conclusion: The unit complies with the requirement of §95.587.

3. TEST ENVIRONMENT

3.1. TEST FACILITY

The test facility is recognized, certified, or accredited by the following organizations:

CNAS- Registration No: L6177

Dongguan Yaxu (AiT) technology Limited is accredited to ISO/IEC 17025:2017 general Requirements for the competence of testing and calibration laboratories (CNAS-CL01 Accreditation Criteria for the competence of testing and calibration laboratories) on April 17, 2022

FCC-Registration No.: 703111 Designation Number: CN1313

Dongguan Yaxu (AiT) technology Limited has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC —Registration No.: 6819A CAB identifier: CN0122

The 3m Semi-anechoic chamber of Dongguan Yaxu (AiT) technology Limited has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 6819A

A2LA-Lab Cert. No.: 6317.01

Dongguan Yaxu (AiT) technology Limited has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

3.3 ENVIRONMENTAL CONDITIONS

	NORMAL CONDITIONS	EXTREME CONDITIONS			
Temperature range (°C)	15 - 35	-20 - 55			
Relative humidty range	20 % - 75 %	20 % - 75 %			
Pressure range (kPa)	86 - 106	86 - 106			
Power supply	DC 4.5V	LV DC 3.82V/HV DC 5.18V			
Note: The Cuttome Temporative and Cuttome Valleges declared by the magnifectures					

Note: The Extreme Temperature and Extreme Voltages declared by the manufacturer.

3.4 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y ±U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

Test Items	Measurement Uncertainty		
Frequency stability	±0.5%		
Transmitter power conducted	±0.8dB		
Transmitter power Radiated	±1.3dB		
Conducted spurious emission 9kHz-40 GHz	±2.7dB		
Conducted Emission	±3.2 dB		
Radiated Emission below 1GHz	±3.9 dB		
Radiated Emission above 1GHz	±4.8 dB		
Occupied Channel Bandwidth	±2 %		
FM deviation	±2 %		
Audio level	±0.98dB		
Low Pass Filter Response	±0.65dB		
Modulation Limiting	0.42 %		
Transient Frequency Behavior	6.8 %		

3.5 LIST OF EQUIPMENTS USED

No	Test Equipment	Manufacturer	Model No	Serial No	Cal. Date	Cal. Due Date
140	rest Equipment	Manadatarer	model No	Oction NO	Odi. Date	oui. Due Dute
1	Spectrum Analyzer	R&S	FSV40	101470	2022.09.02	2023.09.01
2	EMI Measuring Receiver	R&S	ESR	101660	2022.09.02	2023.09.01
3	Low Noise Pre Amplifier	HP	HP8447E	1937A01855	2022.09.02	2023.09.01
4	Low Noise Pre Amplifier	Tsj	MLA-0120-A02- 34	2648A04738	2022.09.02	2023.09.01
5	Passive Loop	ETS	6512	00165355	2022.09.04	2024.09.03
6	TRILOG Super Broadband test Antenna	SCHWARZBECK	VULB9160	9160-3206	2021.08.29	2024.08.28
7	Broadband Horn Antenna	SCHWARZBECK	BBHA9120D	452	2021.08.29	2024.08.28
8	SHF-EHF Horn Antenna 15-40GHz	SCHWARZBECK	BBHA9170	BBHA917036 7d	2020.11.24	2023.11.23
9	EMI Test Receiver	R&S	ESCI	100124	2022.09.02	2023.09.01
10	LISN	Kyoritsu	KNW-242	8-837-4	2022.09.02	2023.09.01
11	LISN	R&S	ESH3-Z2	0357.8810.54- 101161-S2	2022.09.02	2023.09.01
12	Pro.Temp&Humi.chamber	MENTEK	MHP-150-1C	MAA0811250 1	2022.09.02	2023.09.01
13	RF Automatic Test system	MW	MW100-RFCB	21033016	2022.09.02	2023.09.01
14	Signal Generator	Agilent	N5182A	MY50143009	2022.09.02	2023.09.01
15	Wideband Radio communication tester	R&S	CMW500	1201.0002K5 0	2022.09.02	2023.09.01
16	RF Automatic Test system	MW	MW100-RFCB	21033016	2022.09.02	2023.09.01
17	DC power supply	ZHAOXIN	RXN-305D-2	2807000255 9	N/A	N/A
18	RE Software	EZ	EZ-EMC_RE	Ver.AIT-03A	N/A	N/A
19	CE Software	EZ	EZ-EMC_CE	Ver.AIT-03A	N/A	N/A
20	RF Software	MW	MTS 8310	2.0.0.0	N/A	N/A
21	temporary antenna connector(Note)	NTS	R001	N/A	N/A	N/A
22	Aglient	N9020A	M785556H02	21033028	2022.09.02	2023.09.01

Page 13 of 42 Report No.: AIT22112201W1

23	Fliter-UHF	Microwave	N25155H9	21033029	2022.09.02	2023.09.01
24	Fliter-VHF	Microwave	N26460M5	21033029	2022.09.02	2023.09.01

Note: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

4.SYSTEM TEST CONFIGURATION

4.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

4.2 EUT EXERCISE

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

4.3 CONFIGURATION OF TESTED SYSTEM

Fig. 2-1 Configuration of Tested System

EUT

Table 2-1 Equipment Used in Tested System

4.4 EQUIPMENT USED IN TESTED SYSTEM

The Following Peripheral Devices And Interface Cables Were Connected During The Measurement:

☐ Test Accessories Come From The Laboratory
☐ Test Accessories Come From The Manufacturer

Item	Equipment	Model No.	Identifier	Note
1	Battery	18650	DC 4.5V	Accessories

4.5 SUMMARY OF TEST RESULTS

Item	FCC Rules	Description of Test	Result
1	FCC 47 CFR PART 95	Antenna Equipment	Pass
2	§ 95.567& 2.1046(a)	Maximum Transmitter Power	Pass
3	§95.575& 2.1047(a) (b)	Modulation Limit	Pass
4	§95.575& 2.1047(a)	Audio Frequency Response	Pass
5	§95.573& 2.1049	Emission Bandwidth	Pass
6	§95.579& 2.1049	Emission Mask	Pass
7	§95.565& 2.1055(a) (1)	Frequency Stability	Pass
8	§95.579& 2.1053	Spurious Ratiated Emission	Pass
9	15.207	Line Conducted Emission	Pass

5. DESCRIPTION OF TEST MODES

The EUT (**Two-way radio**) has been tested under normal operating condition. (FRS TX) are chosen for testing at each channel separation.

NO.	TEST MODE DESCRIPTION	CHANNEL SEPARATION
1	FRS TX CHANNEL 4	12.5 kHz
2	FRS TX CHANNEL 11	12.5 kHz
3	FRS TX CHANNEL 19	12.5 kHz

Note:

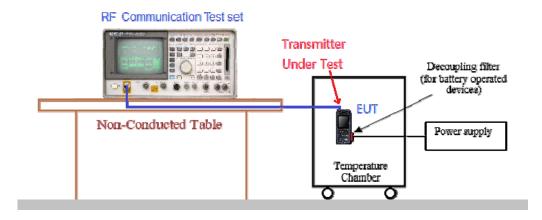
- 1. Only the result of the worst case was recorded in the report, if no other cases.
- 2. The battery is full-charged during the test.
- 3. For Radiated Emission, 3axis were chosen for testing for each applicable mode.
- 4. Manufacturers use computer PC programming software to switch and operate frequency points, refer to the instructions for details

6.FREQUENCY STABILITY

6.1 PROVISIONS APPLICABLE

Each FRS transmitter type must be designed such that the carrier frequencies remain within ±2.5 parts-per-million (ppm) of the channel center frequencies specified in §95.563 during normal operating conditions.

6.2 MEASUREMENT PROCEDURE


6.2.1 Frequency stability versus environmental temperature

- 1. Setup the configuration per figure 1 for frequencies measurement inside an environment chamber, Install new battery in the EUT.
- Turn on EUT and set SA center frequency to the EUT radiated frequency. Set SA Resolution Bandwidth to 1kHz and Video Resolution Bandwidth to 1kHz and Frequency Span to 50kHz.Record this frequency as reference frequency.
- 3. Set the temperature of chamber to 50°C. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. While maintaining a constant temperature inside the chamber, turn the EUT on and measure the EUT operating frequency.
- 4. Repeat step 2 with a 10℃ decreased per stage until the lowest temperature -30℃ is measured, record all measured frequencies on each temperature step.

6.2.2 Frequency stability versus input voltage

- 1. Setup the configuration per figure 1 for frequencies measured at temperature if it is within 15℃ to 25℃. Otherwise, an environment chamber set for a temperature of 20℃ shall be used. The EUT shall be powered by DC 5 V.
- 2. Set SA center frequency to the EUT radiated frequency. Set SA Resolution Bandwidth to 1 kHz and Video Resolution Bandwidth to 1kHz. Record this frequency as reference frequency.
- 3. Supply the EUT primary voltage at the operating end point which is specified by manufacturer and record the frequency.

6.3 MEASUREMENT SETUP

6.4 MEASUREMENT RESULTS

	12.5 kHz Cl	nannel Separation, F	FM modulation, Ass	igned Frequency	For FRS	
Test conditions		F	requency error (ppr	n)		
Voltage	Temp	Te	est Frequency (MH	z)	Limit (ppm)	Result
(V)	(℃)	462.6375	467.6375	462.6500	(PPIII)	
	-30	0.947	0.455	0.986		
	-20	0.588	0.331	1.014		
	-10	0.529	0.443	0.665		
	0	0.772	0.445	0.744		
5 V	10	0.932	0.672	0.697		
	20	0.691	0.826	0.687	2.5	Pass
	30	0.718	0.608	0.666		
	40	0.787	0.885	1.023		
	50	0.832	0.742	0.943		
5.18V	20	0.88	0.808	0.673		
3.82V	20	0.546	0.546	0.812		

7. EMISSION BANDWIDTH

7.1 PROVISIONS APPLICABLE

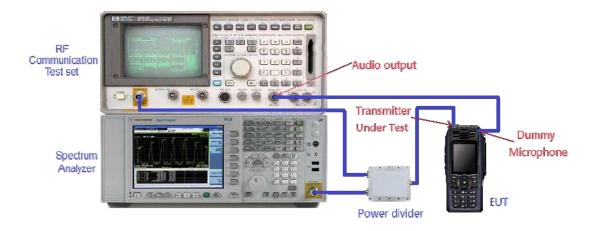
FCC Part 95.573: FRS: The authorized bandwidth for an FRS unit is 12.5 kHz.

Occupied Bandwidth (Section 2.1049, 95.573): The EUT was connected to the audio signal generator and the spectrum analyzer via the main RF connector, and through an appropriate attenuator. The EUT was controlled to transmit its maximum power. Then the bandwidth of 99% power can be measured by the spectrum analyzer.

7.2 MEASUREMENT PROCEDURE

1.The EUT was modulated by 2.5kHz sine wave audio signal; the level of the audio signal employed is 16dB greater than that necessary to produce 50% of rated system deviation.

Rated system deviation is 2.5 kHz for 12.5kHz channel spacing).

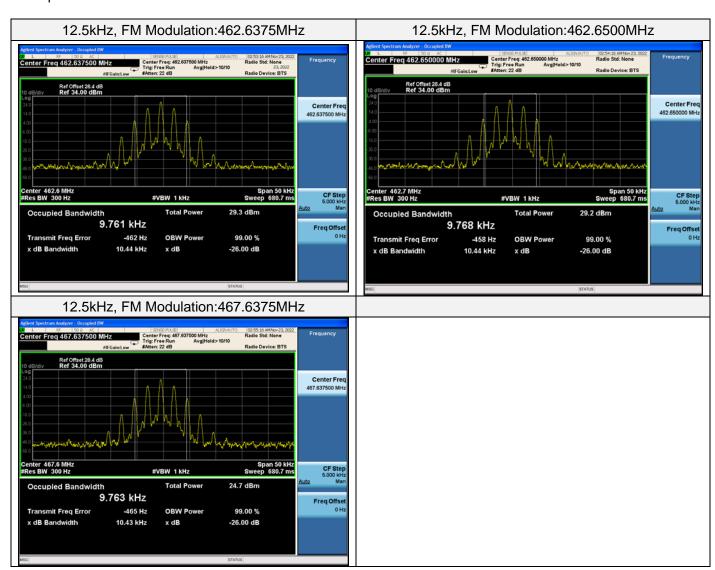

2. Spectrum set as follow:

Centre frequency = fundamental frequency, span=50kHz for 12.5kHz channel spacing, RBW=300Hz, VBW=1KHz, Sweep = auto,

Detector function = peak, Trace = max hold

- 3.Set 99% Occupied Bandwidth and 26dB Occupied Bandwidth.
- 4. Measure and record the results in the test report.

7.3 MEASUREMENT SETUP



7.4 MEASUREMENT RESULTS

Emission Bandwidth Measurement Result-FRS									
Operating Frequency		12.5 kHz Channel Separation							
Operating Frequency	Occupied Bandwidth Emission Bandwidth		Limits	Result					
462.6375 MHz	9.761 kHz	10.44 kHz	12.5 kHz	Pass					
462.6500 MHz	9.768kHz	10.44 kHz	12.5 kHz	Pass					
467.6375 MHz	9.763 kHz 10.43 kHz 12.5 kHz Pass								

Test plot as follows:

8. SPURIOUS RATIATED EMISSION

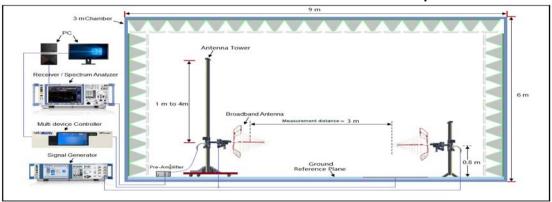
8.1 PROVISIONS APPLICABLE

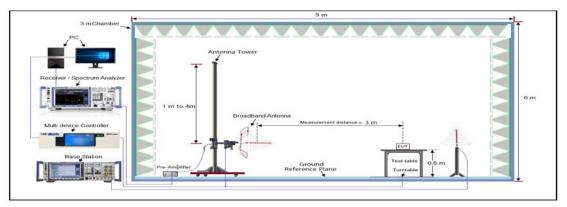
Standard Applicable [FCC Part 95.579] According to FCC section 95.579, the unwanted emission should be attenuated below TP by at least 43+10 log (Transmit Power) Db.

Each FRS transmitter type must be designed to satisfy the applicable unwanted emissions limits in this paragraph.

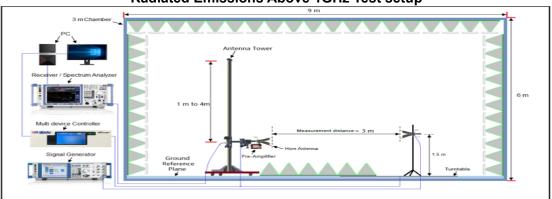
- (a) Attenuation requirements. The power of unwanted emissions must be attenuated below the carrier power output in Watts (P) by at least:
- (1) 25 dB (decibels) in the frequency band 6.25 kHz to 12.5 kHz removed from the channel center frequency.
- (2) 35 dB in the frequency band 12.5 kHz to 31.25 kHz removed from the channel center frequency.
- (3) 43 + 10 log (P) dB in any frequency band removed from the channel center frequency by more than 31.25 kHz

8.2 MEASUREMENT PROCEDURE

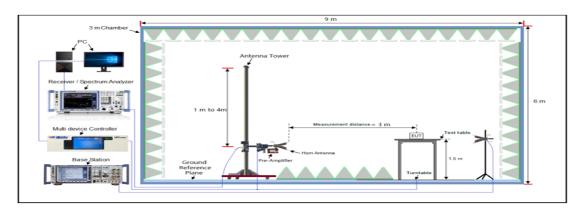

- 1) EUT was placed on a 0.8 or 1.5meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The disturbance of the transmitter was maximized on the test receiver display by raising and lowering from 1m to 4m the receive antenna and by rotating through 360° the turntable. After the fundamental emission was maximized, a field strength measurement was made. The radiated emission measurements of all transmit frequencies in all channels were measured with peak detector.
- 2) A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 3) The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum RBW=1MHz, VBW=3MHz for above 1GHz and RBW=100kHz, VBW=300kHz for 30MHz to 1GHz, And the maximum value of the receiver should be recorded as (Pr).
- 4) The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- 5) A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (PcI) ,the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test



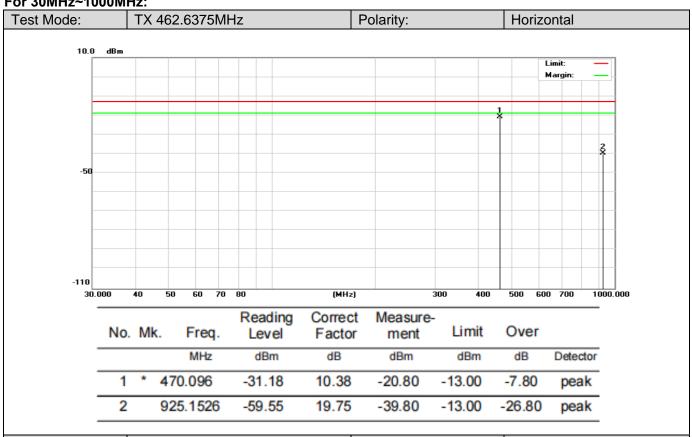
- 6) The measurement results are obtained as described below: Power(EIRP)=PMea- PAg Pcl Ga The measurement results are amend as described below:Power(EIRP)=PMea- Pcl Ga
- 7) This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 8) ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.
- 9) Test the EUT in the lowest channel, the middle channel the Highest channel

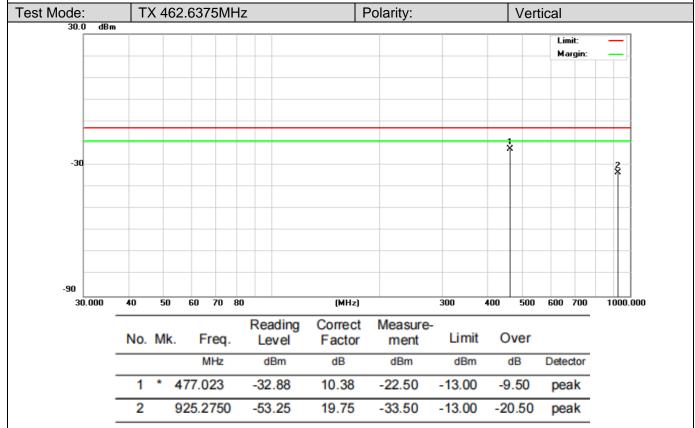

8.3 MEASUREMENT SETUP

Radiated Emissions 30MHz to 1GHz Test setup

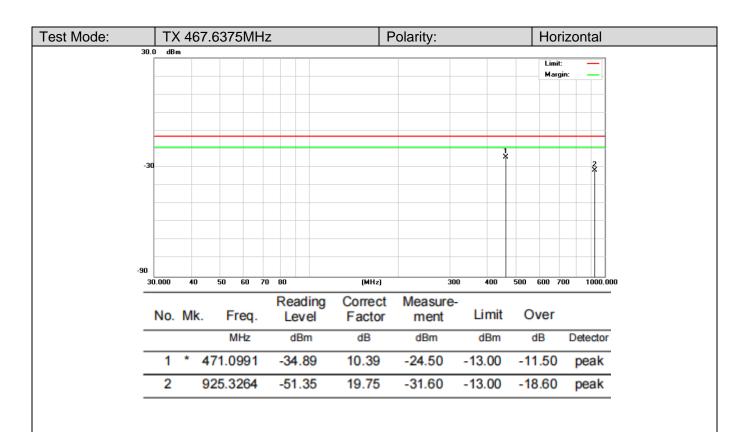


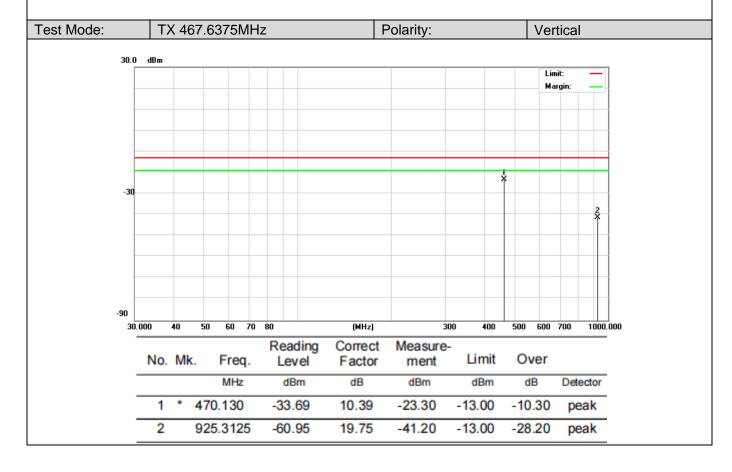
Radiated Emissions Above 1GHz Test setup

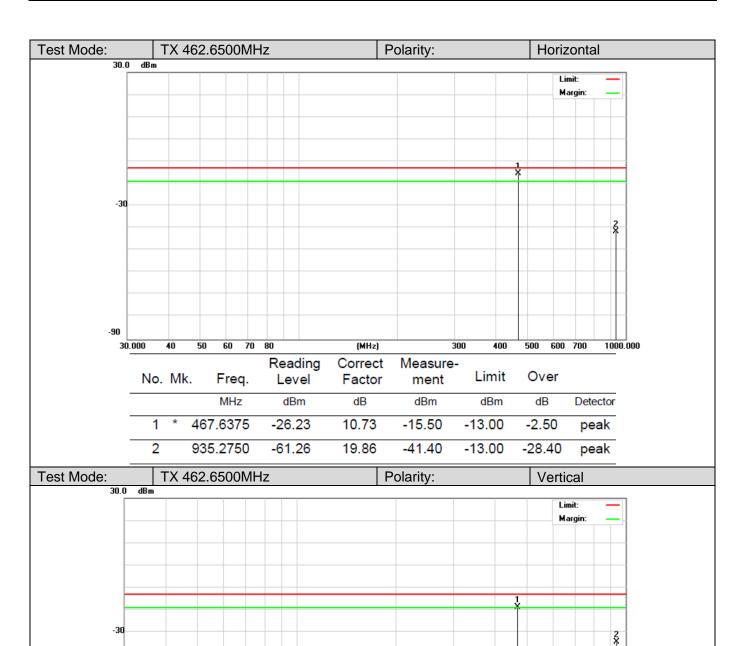

8.4 MEASUREMENT RESULTS

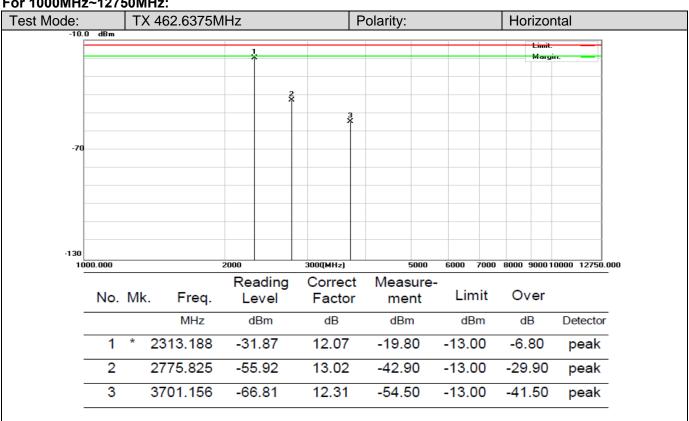

Preliminary calculation	Final Result
At least 43+10 log (P) =43+10log (2) =46.01 (dB)	Limit=P- Preliminary calculation=33.01-46.01=-13 dBm
At least 43+10 log (P) =43+10log (0.5) =39.99 (dB)	Limit=P- Preliminary calculation=26.99-39.99=-13 dBm

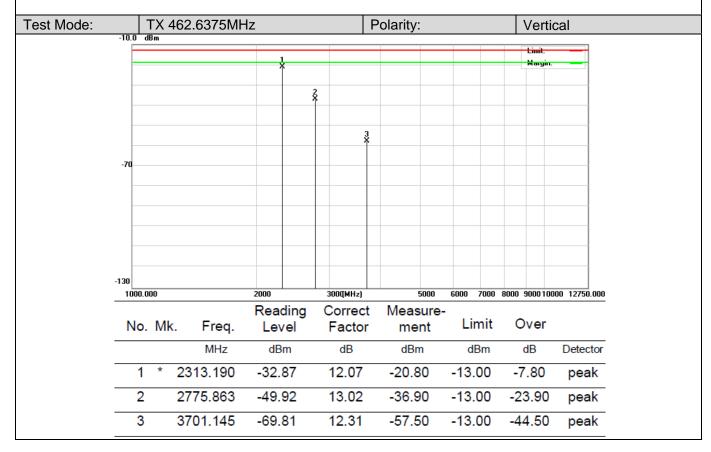
- Factor=Antenna Factor + Cable loss. (Below 1GHz)
 Factor=Antenna Factor+ Cable loss -Pre-amplifier. (Above 1 GHz)
- 3. Margin=Limit- Level

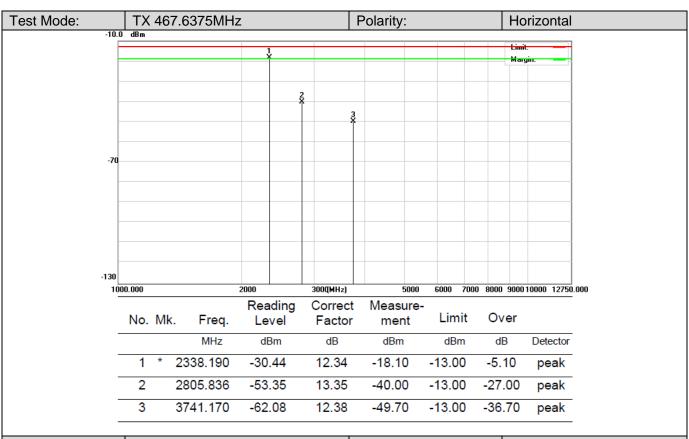


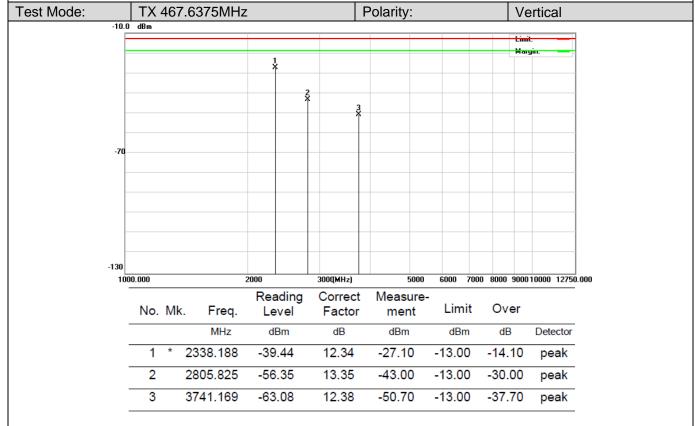

For 30MHz~1000MHz:



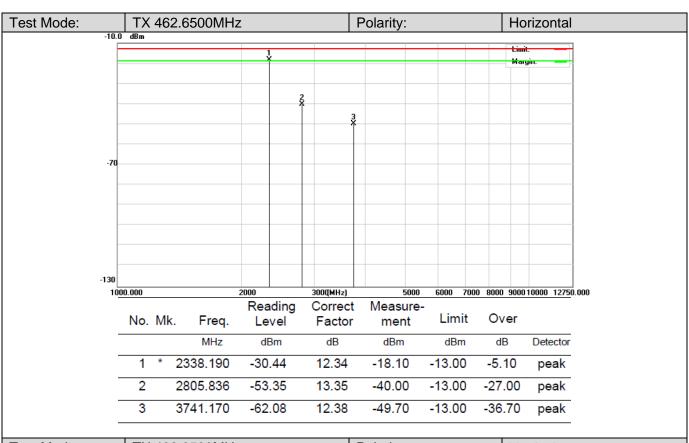


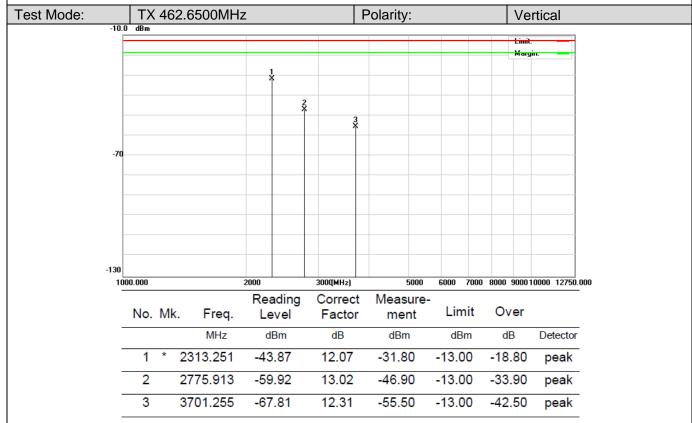

-90 30	.000	40	50	60	0	70	80				(MHz)		30	10	400	500	600	700	1000	0.000
-	No.	Mk		Fr	eq			eac .ev	ding el		orrec actor	Measu men			mit	0	ver			
				M	Hz			dBı	m		dB	dBm		dl	Bm	(ΙB	Det	tector	
	1	*	467	'.63	377	7	-2	9.	53	1	0.73	-18.80)	-13.	00	-5	.80	p	eak	
	2		935	5.65	541	1	-5	4.(07	1	9.87	-34.20)	-13.	00	-21	1.20	p	eak	•

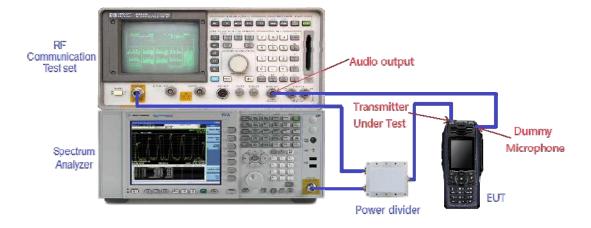

For 1000MHz~12750MHz:



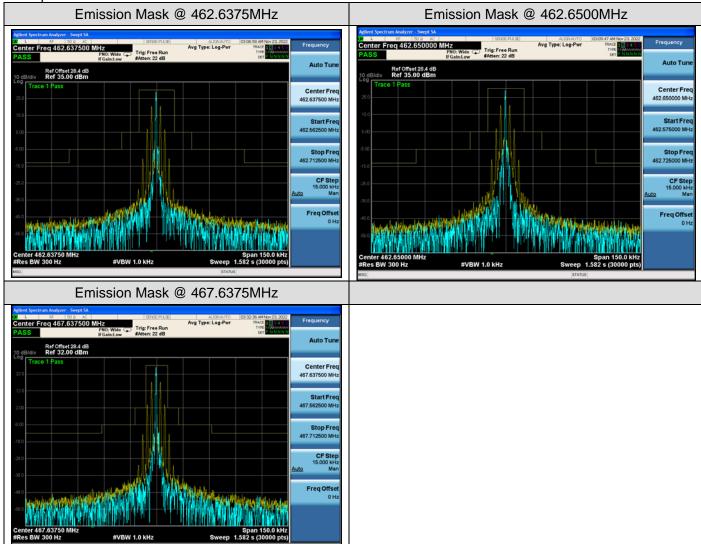
Page 27 of 42







8.5 EMISSION MASK PLOT


The detailed procedure employed for Emission Mask measurements are specified as following:

- -Connect the equipment as illustrated.
- -Spectrum set as follow:
- 1. Centre frequency = fundamental frequency, Span=150kHz for 12.5kHz , RBW=300Hz, VBW=1000Hz ;
- 2. Sweep = auto, Detector function = peak, Trace = max hold
- 3. Key the transmitter, and set the level of the unmodulated carrier to a full scale reference line. This is the 0dB reference for the measurement.
- 4. Modulate the transmitter with a 2500 Hz sine wave at an input level 16 dB greater than that necessary to produce 50% of rated system deviation (Rated system deviation is 2.5 kHz for 12.5kHz channel spacing).
 The input level shall be established at the frequency of maximum response of the audio modulating circuit.
- 5. Transmitters employing digital modulation techniques that bypass the limiter and the audio low-pass filter shall be modulated as specified by the manufacturer.
- 6. Measure and record the results in the test report.

Test plot as follows:

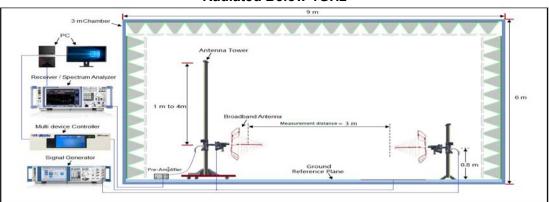
9. MAXIMUMN TRANSMITTER POWER

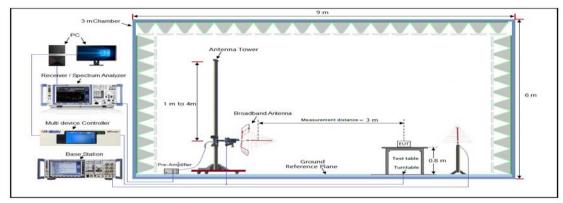
9.1 PROVISIONS APPLICABLE

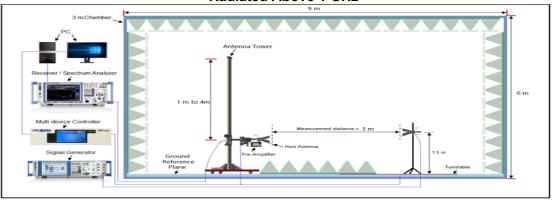
Each FRS transmitter type must be designed such that the effective radiated power (ERP) on channels 8 through 14 does not exceed 0.5 Watts and the ERP on channels 1 through 7 and 15 through 22 does not exceed 2.0 Watts.

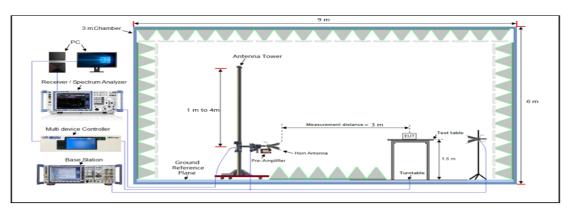
9.2 MEASUREMENT METHOD

- 1) EUT was placed on a 0.8 or 1.5meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The disturbance of the transmitter was maximized on the test receiver display by raising and lowering from 1m to 4m the receive antenna and by rotating through 360° the turntable. After the fundamental emission was maximized, a field strength measurement was made. The radiated emission measurements of all transmit frequencies in all channels were measured with peak detector.
- 2) A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 3) The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum RBW=1MHz, VBW=3MHz for above 1GHz and RBW=100kHz, VBW=300kHz for 30MHz to 1GHz, And the maximum value of the receiver should be recorded as (Pr).
- 4) The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- 5) A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (PcI) ,the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test
- 6) The measurement results are obtained as described below: Power(EIRP)=PMea- PAg Pcl Ga The measurement results are amend as described below:Power(EIRP)=PMea- Pcl Ga
- 7) This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.
- 9) Test the EUT in the lowest channel, the middle channel the Highest channel


9.3 MEASUREMENT SETUP


Effective Radiated Power:




Radiated Below 1GHz

Radiated Above 1 GHz

9.4 MEASUREMENT RESULTS

ERP RESULT:

Frequency	Reading Level	Antenna	S.G.	Cable Loss	An t.Gain	Emission Level	Emission Level	Limit	Margin
(MHz)	(dBuv/m)	Polarization	(dBm)	(dB)	(dBi)	(dBm)	(W)	(W)	(W)
			Channe	elSepara	tion:12.5KH	Ηz			
462.6375	87.56	V	20.72	1.42	1.0	20.3	0.1072	2	1.8928
462.6375	87.82	Н	20.91	1.42	1.0	20.49	0.1119	2	1.8881
462.6500	86.77	V	19.92	1.42	1.0	19.5	0.0891	2	1.9109
462.6500	86.06	Н	19.81	1.42	1.0	19.39	0.0869	2	1.9131
467.6375	86.93	V	20.01	1.42	1.0	19.59	0.0910	0.5	0.409
467.6375	86.41	Н	19.77	1.42	1.0	19.35	0.0861	0.5	0.4139

NOTE: 1. Calculation Formula: Emission Level(dBm) = S.G. (dBm)- Cable Loss(dB)+ Ant.Gain(dBi)

^{2.}The Ant. Gain including the correct factor 2.15 3.Margin (dB) = Limit(dBm)- Emission Level(dBm)

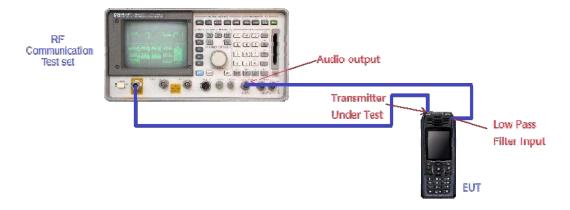
10.MODULATION CHARACTERISTICS

10.1 PROVISIONS APPLICABLE

According to FCC§2.1047 and §95.575, for Voice Modulation Communication Equipment, the frequency response of the audio modulation circuit over a range of 100 to 5000Hz shall be measured.

Each FRS transmitter type must be designed such that the peak frequency deviation does not exceed 2.5 kHz, and the highest audio frequency contributing substantially to modulation must not exceed 3.125 kHz.

10.2 MEASUREMENT METHOD

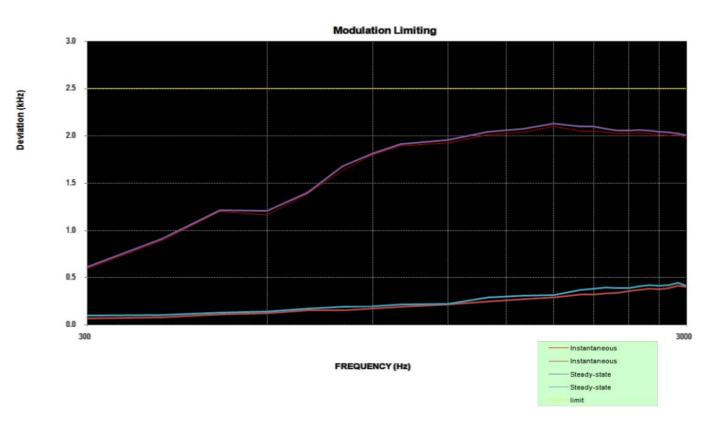

10.2.1 Modulation Limit

- (1). Configure the EUT as shown in figure 1, adjust the audio input for 60% of rated system deviation at 1kHz using this level as a reference (0dB) and vary the input level from -20 to +20dB. Record the frequency deviation obtained as a function of the input level.
- (2). Repeat step 1 with input frequency changing to 300, 1000, 1500 and 3000Hz in sequence.

10.2.2 Audio Frequency Response

- (1). Configure the EUT as shown in figure 1.
- (2). Adjust the audio input for 20% of rated system deviation at 1 kHz using this level as a reference (0 dB).
- (3). Vary the Audio frequency from 100 Hz to 10 kHz and record the frequency deviation.
- (4). Audio Frequency Response = 20log10 (Deviation of test frequency/Deviation of 1 kHz reference).

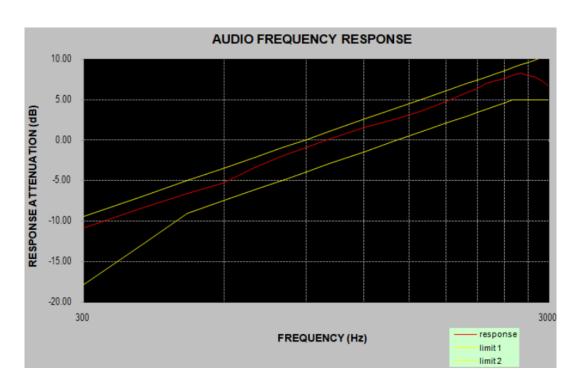
10.3 MEASUREMENT SETUP



10.4 MEASUREMENT RESULTS

(A). MODULATION LIMIT:

	12.5kHz, FM modulation, Assigned Frequency:462.6500MHz								
Modulation Level (dB)	Peak Freq. Deviation At 300 Hz (kHz)	Peak Freq. Deviation At 1000 Hz (kHz)	Peak Freq. Deviation At 1500 Hz (kHz)	Peak Freq. Deviation At 3000 Hz (kHz)					
-20	0.068	0.195	0.273	0.401					
-15	0.098	0.283	0.566	0.586					
-10	0.127	0.327	0.523	0.737					
-5	0.149	0.655	0.861	0.932					
0	0.188	0.992	1.156	1.188					
+5	0.225	1.137	1.273	1.375					
+10	0.283	1.355	1.589	1.553					
+15	0.372	1.592	1.806	1.991					
+20	0.597	1.896	2.036	1.975					



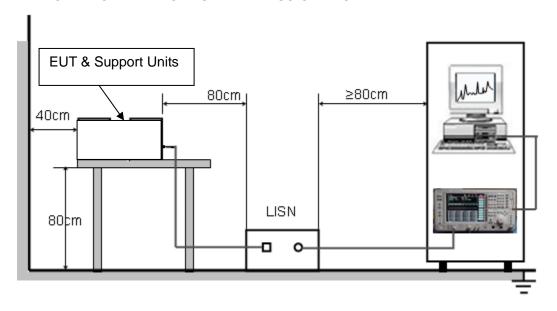
Note: All the modes had been tested, but only the worst data recorded in the report

(B). AUDIO FREQUENCY RESPONSE:

12.5kHz,	12.5kHz, FM modulation, Assigned Frequency:462.6500MHz							
Frequency (Hz)	Deviation (kHz)	Audio Frequency Response(dB)						
300	0.13	-15.45						
400	0.24	-10.13						
500	0.31	-7.90						
600	0.39	-5.91						
700	0.48	-4.10						
800	0.51	-3.58						
900	0.63	-1.74						
1000	0.77	0.00						
1200	0.84	0.76						
1400	1.03	2.53						
1600	1.11	3.18						
1800	1.25	4.21						
2000	1.38	5.07						
2400	1.47	5.62						
2500	1.55	6.08						
2800	1.78	7.52						
3000	1.83	6.28						

Note: All the modes had been tested, but only the worst data recorded in the report.

11. LINE CONDUCTED EMISSION TEST


11.1. LIMITS OF LINE CONDUCTED EMISSION TEST

Francos	Maximum RF	Line Voltage
Frequency	Q.P. (dBµV)	Average (dBμV)
150kHz~500kHz	66-56	56-46
500kHz~5MHz	56	46
5MHz~30MHz	60	50

Note:

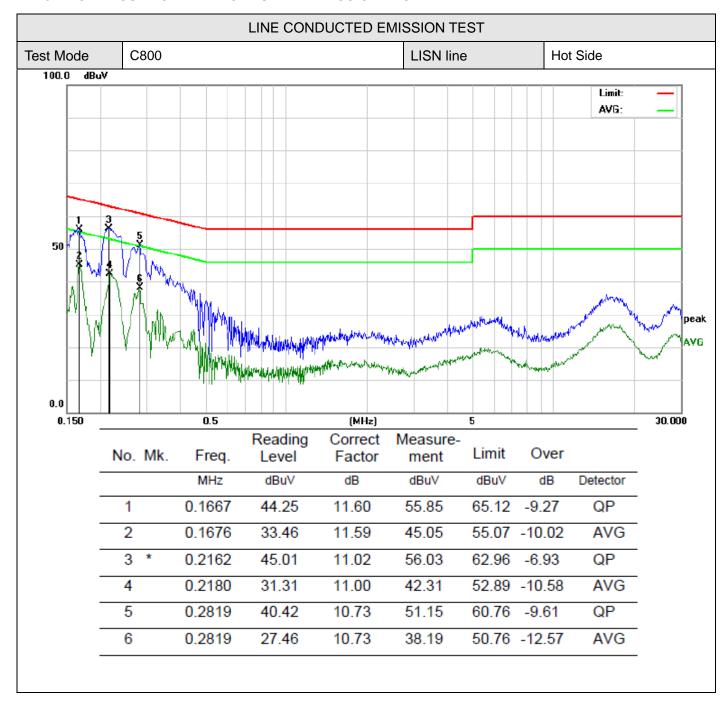
- 1. The lower limit shall apply at the transition frequency.
- 2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

11.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST

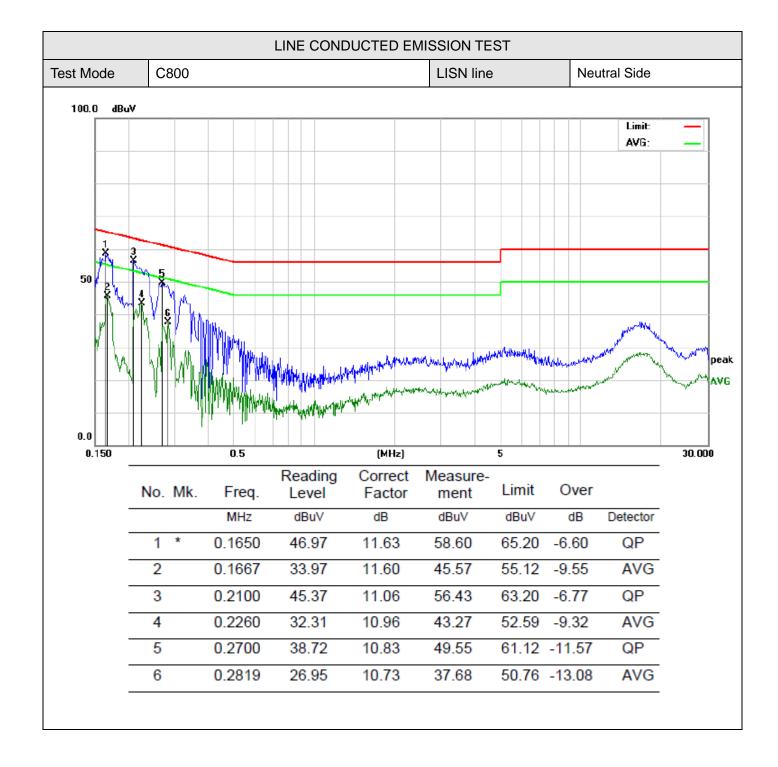
11.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. All support equipment received AC120V/60Hz power from a LISN, if any.
- 5. The EUT received DC 5V power from adapter which received AC120V/60Hz power from a LISN.
- 6. The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.
- 9. The test mode(s) were scanned during the preliminary test.

Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.


11.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST

- 1. EUT and support equipment was set up on the test bench as per step 2 of the preliminary test.
- 2. A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less –2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.
- 3. The test data of the worst case condition(s) was reported on the Summary Data page.



Page 40 of 42

11.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST

APPENDIX I: PHOTOGRAPHS OF TEST SETUP

Reference Test Setup Photos

APPENDIX II: PHOTOGRAPHS OF TEST EUT

Please refer to separated files for Internal / External Photos of the EUT

----END OF REPORT----