

Electromagnetic Compatibility Test Report

Tests Performed on an I.D.-ology

Handheld RFID Reader, Model ISO Cane Reader

Radiometrics Document RP-5399

Product Detail:

FCC ID: SYAICR04

Equipment type: Low power Transmitter

Test Standards:

US CFR Title 47, Chapter I, FCC Part 15 Subpart C

FCC Part 15 CFR Title 47: 2004

Industry Canada RSS-210, Issue 5 as required for Category I Equipment

This report concerns: Original Grant for Certification

FCC Part 15.247 & 15.209

Tests Performed For:

I.D.-ology

1324 West Clairemont Ave.

Eau Claire, WI 54701

Test Facility:

Radiometrics Midwest Corporation

12 East Devonwood Romeoville, IL 60446 Phone: (815) 293-0772

e-mail: info@radiomet.com

Test Date(s): (Month-Day-Year)
Jan 19 to Feb 10, 2005

Document RP-5399 Revisions:

Rev.	Issue Date	Affected Pages	Revised By	Authorized Signature for Revision
0	February 15, 2005			
1	March 1, 2005	3, 10-12, 14	Joseph Strzelecki	Joseph Strzelecki

Testing of the I.D.-ology, Model ISO Cane Reader, Handheld RFID Reader for Animal ISO Tags

Table of Contents

1 ADMINISTRATIVE DATA	3
2 TEST SUMMARY AND RESULTS	3
2.1 RF Exposure Compliance Requirements	4
3 EQUIPMENT UNDER TEST (EUT) DETAILS	4
3.1 EUT Description	4
3.2 Related Submittals	
4 TESTED SYSTEM DETAILS	
4.1 Tested System Configuration	4
4.2 Special Accessories	
4.3 Equipment Modifications	5
5 TEST SPECIFICATIONS AND RELATED DOCUMENTS	5
6 RADIOMETRICS' TEST FACILITIES	
7 DEVIATIONS AND EXCLUSIONS FROM THE TEST SPECIFICATIONS	5
8 CERTIFICATION	6
9 TEST EQUIPMENT TABLE	6
10 TEST SECTIONS	
10.1 AC Conducted Emissions; Section 15.207	
10.2 Carrier Frequency Separation	
10.3 Number of Hopping Frequencies	
10.4 Time of Occupancy (Dwell Time)	
10.5 Occupied Bandwidth (20 dB)	
10.6 Peak Output Power	
10.7 Band-edge Compliance of RF Conducted Emissions	
10.8 Spurious RF Conducted Emissions	
10.9 Spurious Radiated Emissions (Restricted Band)	
10.9.1 Radiated Emissions Field Strength Sample Calculation	
10.9.2 Spurious Radiated Emissions Test Results (Restricted Band)	
10.10 Magnetic Field Measurements and Decay Factor Calculations	
10.10.1 Magnetic Field Radiated Emissions Results (0.009 to 30 MHz)	
10.11 Card Reader Occupied Bandwidth (20 dB)	28

Notice: This report must not be reproduced (except in full) without the written approval of Radiometrics Midwest Corporation.

RP-5399 Rev. 0 Page 2 of 28

Testing of the I.D.-ology, Model ISO Cane Reader, Handheld RFID Reader for Animal ISO Tags

1 ADMINISTRATIVE DATA

Equipment Under Test: An I.Dology, Handheld RFID Reader for Animal ISO Tags Model: ISO Cane Reader; Serial Number: None This will be referred to as the EUT in this Report					
Date EUT Received at Radiometrics: (Month-Day-Year) Jan 19, 2005	Test Date(s): (Month-Day-Year) Jan 19 to Feb 10, 2005				
Test Report Written By: Joseph Strzelecki Senior EMC Engineer	Test Witnessed By: The tests were not witnessed by I.Dology				
Radiometrics' Personnel Responsible for Test: Surgelechi	Test Report Approved By Chri W. Carlson				
Joseph Strzelecki Senior EMC Engineer NARTE EMC-000877-NE	Chris W. Carlson Director of Engineering NARTE EMC-000921-NE				

2 TEST SUMMARY AND RESULTS

The EUT (Equipment Under Test) is a Handheld RFID Reader for Animal ISO Tags, Model ISO Cane Reader, manufactured by I.D.-ology. The detailed test results are presented in a separate section. The following is a summary of the test results.

Emissions Tests Results

Environmental Phenomena	Frequency Range	Basic Standard	Test Result
RF Radiated Emissions	30-25 GHz	RSS-210 & FCC Part 15	Pass
Conducted Emissions, AC Mains	0.15 - 30 MHz	RSS-210 & FCC Part 15	Pass
RF Radiated Emissions H-Field	0.009 – 30 MHz	RSS-210 & FCC Part 15	Pass

Frequency Hopping Spread Spectrum Transmitter Requirements

Environmental Phenomena	Frequency Range	FCC Section	RSS-210	Test Result
			Section	
Carrier Frequency Separation	2.4-2.483 GHz	15.247 a	6.2.2 (o) (a)	Pass
Number of Hopping Frequencies	2.4-2.483 GHz	15.247 a	6.2.2 (o) (a)	Pass
Time of Occupancy (Dwell Time)	2.4-2.483 GHz	15.247 a	6.2.2 (o) (a)	Pass
20 dB Bandwidth Test;	2.4-2.483 GHz	15.247 a	6.2.2 (o) (a)	Pass
Peak Output Power	2.4-2.483 GHz	15.247 b	6.2.2 (o) (a)	Pass
Band-edge Compliance of RF	2.4-2.483 GHz	15.247 c	6.2.2 (o) (e)	Pass
Conducted Emissions				
Spurious RF Conducted Emissions	30-25000 MHz	15.247 c	6.2.2 (o) (e1)	Pass
Spurious Radiated Emissions	30-25000 MHz	15.247 c	6.2.2 (o) (a)	Pass

RP-5399 Rev. 0 Page 3 of 28

2.1 RF Exposure Compliance Requirements

The Effective Radiated power output is 158 mW at 2.48 GHz and 1mW at 134 kHz. The EUT meets the FCC requirement for RF exposure. Since it is less than 200 mW, it is exempt from RSS-102. There are no power level adjustments and the antenna is permanently attached. The detailed calculations for RF Exposure are presented in a separate document.

3 EQUIPMENT UNDER TEST (EUT) DETAILS

3.1 EUT Description

The EUT is a Handheld RFID Reader for Animal ISO Tags, Model ISO Cane Reader, manufactured by I.D.-ology. The EUT was in good working condition during the tests, with no known defects.

3.2 Related Submittals

I.D.-ology is not submitting any other products simultaneously for equipment authorization related to the EUT.

4 TESTED SYSTEM DETAILS

4.1 Tested System Configuration

The system was configured for testing in a typical fashion. The EUT was placed on an 80-cm high, nonconductive test stand. The testing was performed in conditions as close as possible to installed conditions. Wiring was consistent with manufacturer's recommendations.

Power was supplied at 115 VAC, 60 Hz single-phase to its external power supply. Power was supplied with a fully charged battery. The EUT was tested as a stand-alone device. The only cable connected to the EUT is a 6-foot power cord.

Tested System Configuration List

	Item	Description Typ	e*	Manufacturer	Model Number	Serial Number
-	1	Handheld RFID Reader for Animal ISO Tags	Е	I.Dology	ISO Cane Reader	11
-	2	AC Adaptor	Ε	CUI Inc	KSAFD1200125W1U S	None

^{*} Type: E = EUT

4.2 Special Accessories

No special accessories were used during the tests in order to achieve compliance.

RP-5399 Rev. 0 Page 4 of 28

Testing of the I.D.-ology, Model ISO Cane Reader, Handheld RFID Reader for Animal ISO Tags

4.3 Equipment Modifications

No modifications were made to the EUT at Radiometrics' test facility in order to comply with the standards listed in this report.

5 TEST SPECIFICATIONS AND RELATED DOCUMENTS

Document	Date	Title
FCC CFR Title 47	2004	Code of Federal Regulations Title 47, Chapter 1, Federal Communications Commission, Part 15 - Radio Frequency Devices
ANSI C63.4-2001	2001	Methods of Measurement of Radio Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
IC RSS-210 Issue 5	2001	Low Power Licence-Exempt Radiocommunication Devices (All Frequency Bands)
IC RSS-212 Issue 1	1998	Test Methods For Radio Equipment
FCC DA 00-705	2000	Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems

The test procedures used are in accordance with the FCC DA 00-75, Industry Canada RSS-212 and ANSI document C63.4-2001, "Methods of Measurement of Radio Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz". The specific procedures are described herein. Radiated testing was performed at an antenna to EUT distance of 3 meters. The antenna was raised and lowered from 1 to 4 meters.

6 RADIOMETRICS' TEST FACILITIES

The results of these tests were obtained at Radiometrics Midwest Corp. in Romeoville, Illinois, USA. Radiometrics is accredited by A2LA (American Association for Laboratory Accreditation) to conform to ISO/IEC 17025: 1999 "General Requirements for the Competence of Calibration and Testing Laboratories". Radiometrics' Lab Code is 121191 and Certification Number is 1495.01. Radiometrics' scope of accreditation includes all of the test methods listed herein. A copy of the accreditation can be accessed on our web site (www.radiomet.com). Radiometrics accreditation status can be verified at A2LA's web site (www.a2la2.net).

Open Area Test Site (OATS): Is located on 8625 Helmar Road in Newark, Illinois, USA and measures 56' L X 24' W X 17' H. The entire open field test site has a metal ground screen. The FCC has accepted these sites as test site number 31040/SIT 1300F2. The FCC test site Registration Number is 90897. Details of the site characteristics are on file with the Industry Canada as file number IC3124.

A complete list of the test equipment is provided herein. The calibration due dates are indicated on the equipment list. The equipment is calibrated in accordance to ANSI/NCSL Z540-1 with traceability to the National Institute of Standards and Technology (NIST).

7 DEVIATIONS AND EXCLUSIONS FROM THE TEST SPECIFICATIONS

There were no deviations or exclusions from the test specifications.

RP-5399 Rev. 0 Page 5 of 28

Testing of the I.D.-ology, Model ISO Cane Reader, Handheld RFID Reader for Animal ISO Tags

8 CERTIFICATION

Radiometrics Midwest Corporation certifies that the data contained herein was taken under conditions that meet or exceed the requirements of the test specification. The results relate only to the EUT listed herein. Any modifications made to the EUT subsequent to the indicated test date will invalidate the data and void this certification.

9 TEST EQUIPMENT TABLE

					Frequency	Cal	Cal
RMC ID	Manufacturer	Description	Model No.	Serial No.	Range	Period	Date
AMP-05	RMC/Celeritek	Pre-amplifier	MW110G	1001	1.0-12GHz	12 Mo.	12/07/04
AMP-20	Avantek	Pre-amplifier	SF8-0652	15221	8-18GHz	12 Mo	12/07/04
AMP-22	Anritsu	Pre-amplifier	MH648A	M23969	0.1-1200MHz	12 Mo.	12/07/04
AMP-29	Hewlett-	Amplifier	11975A	2304A00158	2-8 GHz	12 Mo.	07/21/04
	Packard						
AMP-29	Hewlett-	Amplifier for 18-26	11975A	2304A00158	2-8 GHz	12 Mo.	07/21/04
	Packard	GHz Mixer					
ANT-13	EMCO	Horn Antenna	3115	2502	1.0-18GHz	24 Mo.	10/13/04
ANT-48	RMC	Std Gain Horn	HW2020	1001	18-26 GHz	12 Mo.	10/13/04
ANT-42	EMCO	Bicon Antenna	3104C	9512-4713	25-300MHz	12 Mo.	12/02/04
ANT-44	Impossible	Super Log Antenna	SL-20M2G	1002	20-2000MHz	24 Mo.	06/15/04
	Machine						
HPF-01	Solar	High Pass Filter	7930-100	HPF-1	0.15-30MHz	24 Mo.	12/31/03
HPF-03	Mini-Circuits	High Pass Filter	VHP-39	HPF-03	3-10 GHz	12 Mo.	08/03/04
LSN-03	Farnell	50 uH LISN	1EXLSN30B	000314	0.01-30MHz	24 Mo.	04/08/03
MXR-01	HP	Harmonic Mixer	11970K	3003A02243	18.6-26.5GHz	12 Mo.	01/06/05
REC-01	Hewlett	Spectrum Analyzer	8566A	2106A02115,	30Hz-22GHz	12 Mo.	08/17/04
	Packard			2209A01349			
REC-07	Anritsu	Spectrum Analyzer	MS2601A	MT53067	0.01-2200MHz	12 Mo.	01/04/05
THM-01	Extech Inst.	Temp/Humid Meter	4465CF	001106557	N/A	24 Mo.	01/28/04

Note: All calibrated equipment is subject to periodic checks.

10 TEST SECTIONS

10.1 AC Conducted Emissions; Section 15.207

A computer-controlled analyzer was used to perform the conducted emissions measurements. The frequency range was divided into 500 subranges equally spaced on a logarithmic scale. The computer recorded the peak of each subrange. This data was then plotted on semi-log graph paper generated by the computer and plotter. Adjusting the positions of the cables and orientation of the test system then maximizes the highest emissions.

RP-5399 Rev. 0 Page 6 of 28

Testing of the I.D.-ology, Model ISO Cane Reader, Handheld RFID Reader for Animal ISO Tags

Mains Conducted emission measurements were performed using a 50 Ohm/50 uH Line Impedance Stabilization Network (LISN) as the pick-up device. Measurements were repeated on both leads within the power cord. If the EUT power cord exceeded 80 cm in length, the excess length of the power cord was made into a 30 to 40 cm bundle near the center of the cord. The LISN was placed on the floor at the base of the test platform and electrically bonded to the ground plane.

Broadband conducted emissions may exceed the following limits by no more than 13 dB. An emission is defined as broadband if the average detector amplitude is 6 dB or more under the quasi-peak detector amplitude.

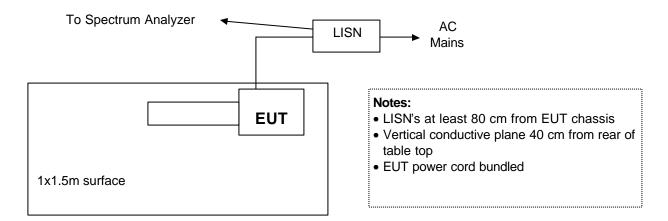
FCC Limits of Conducted Emissions at the AC Mains Ports

Frequency Range	Class B Lir	nits (dBuV)		
(MHz)	Quasi-Peak	Average		
0.150 - 0.50*	66 - 56	56 - 46		
0.5 - 5.0	56	46		
5.0 - 30 60 50				
* The limit decreases linearly with the logarithm of the frequency in this range.				

The initial step in collecting conducted data is a peak detector scan and the plotting of the measurement range. Significant peaks are then marked as shown on the following table, and these signals are then measured with the quasi-peak detector. The following represents the worst case emissions from power cord, after testing all modes of operation. The Amplitude is the final corrected value with cable and LISN Loss.

Test Date : Jan 19, 2005

Lead Tested	Frequency MHz	QP Amplitude	QP Limit	Average Amplitude	Average Limit
AC Neutral	0.15	53.75	65.94	29.37	55.94
AC Neutral	0.25	49.99	61.71	36.74	51.71
AC Neutral	0.38	46.72	58.18	35.95	48.18
AC Neutral	29.90	51.22	60.00	48.40	50.00
AC Hot	0.27	49.55	60.98	40.04	50.98
AC Hot	0.41	44.32	57.68	36.23	47.68
AC Hot	29.93	50.54	60.00	47.41	50.00


The above are the worst case results with three test frequencies.

Judgment: Passed by 1.6 dB

RP-5399 Rev. 0 Page 7 of 28

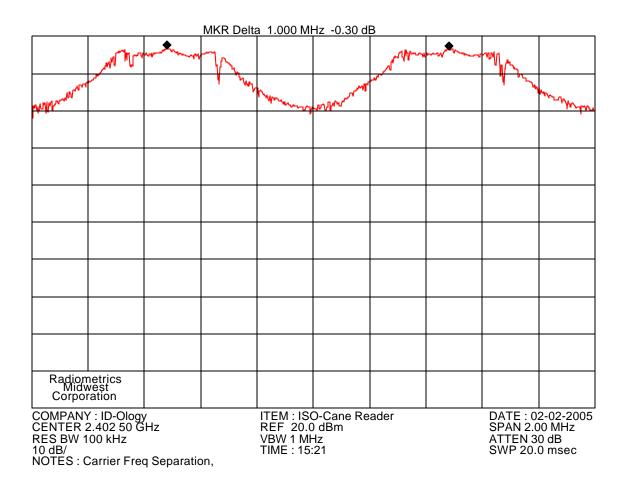
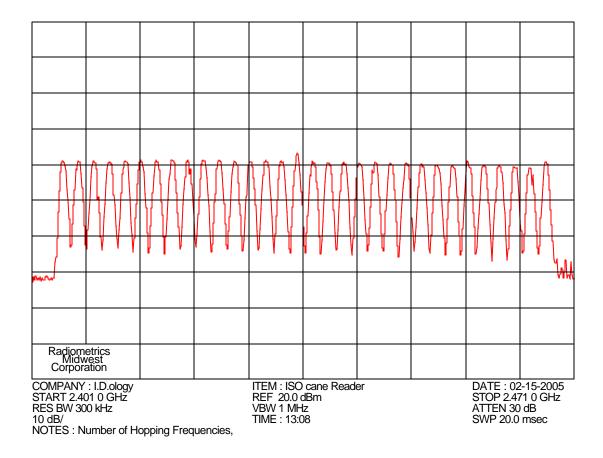

^{*} QP readings are quasi-peak with a 9 kHz bandwidth and no video filter.

Figure 1. Conducted Emissions Test Setup

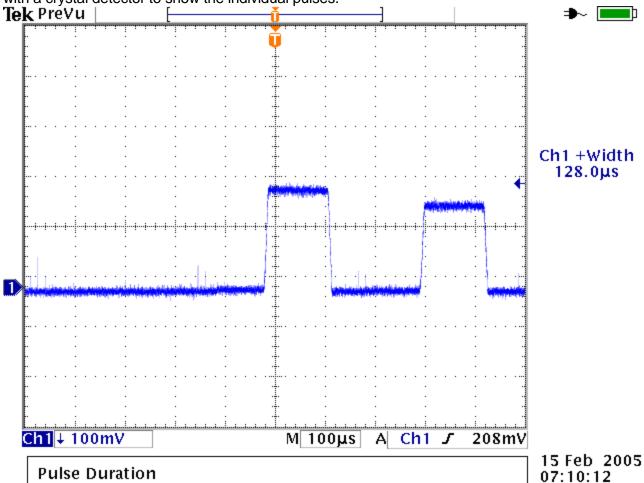
10.2 Carrier Frequency Separation


The EUT has its hopping function enabled. The spectrum analyzer was set to the MAX HOLD mode to read peak emissions. The sweep was set to AUTO. The trace was allowed to stabilize. The marker-delta function was used to determine the separation between the peaks of the adjacent channels.

RP-5399 Rev. 0 Page 8 of 28

10.3 Number of Hopping Frequencies

The EUT has its hopping function enabled. The spectrum analyzer was set to the MAX HOLD mode to read peak emissions. The sweep was set to AUTO. The trace was allowed to stabilize. The plots show 32 Channels.

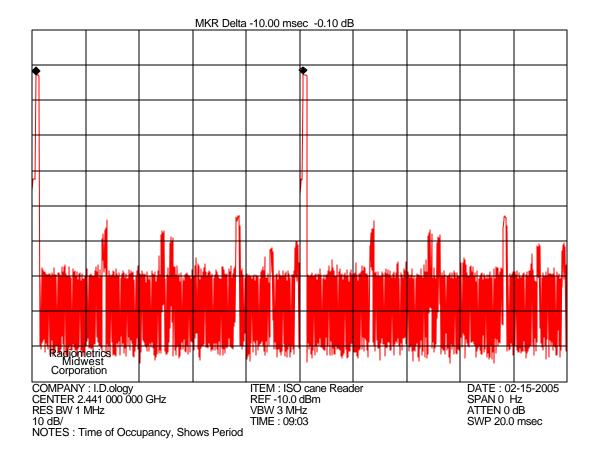


The EUT has its hopping function enabled. The spectrum analyzer was set to the MAX HOLD mode to read peak emissions. The sweep was set to AUTO. The trace was allowed to stabilize. The plots show 79 Channels.

RP-5399 Rev. 0 Page 9 of 28

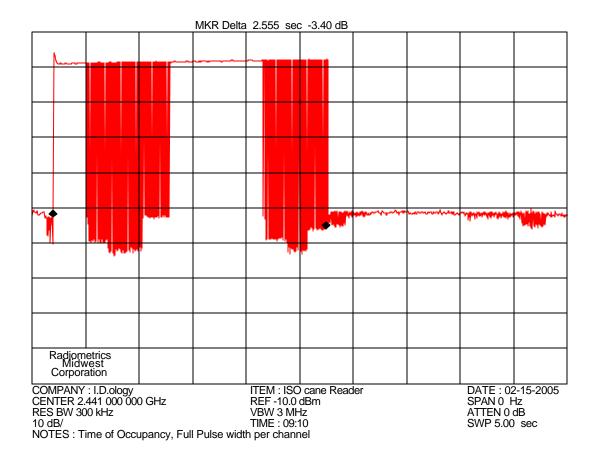
10.4 Time of Occupancy (Dwell Time)

The EUT has its hopping function enabled. This shows the the individual pulses. A scope was used with a crystal detector to show the individual pulses.



The total duration for each pulse is 128uSec x 2 or 256 uSec.

RP-5399 Rev. 0 Page 10 of 28


Testing of the I.D.-ology, Model ISO Cane Reader, Handheld RFID Reader for Animal ISO Tags

The following plots were made with a spectrum analyzer with the span was set to zero. The markerdelta function is used to determine the period between pulses. This is used to determine the number of pulses per transmission.

RP-5399 Rev. 0 Page 11 of 28

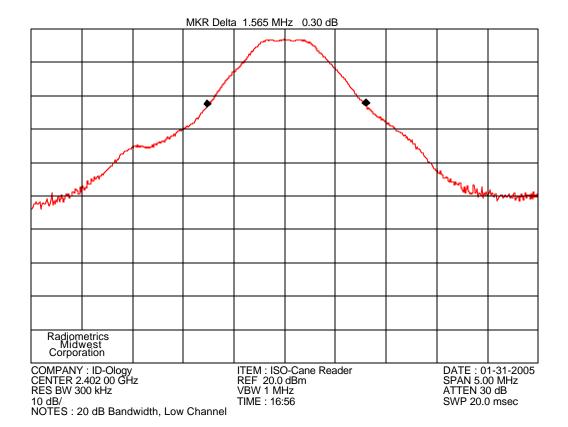
The following plot shows the total on time per channel for the Bluetooth.

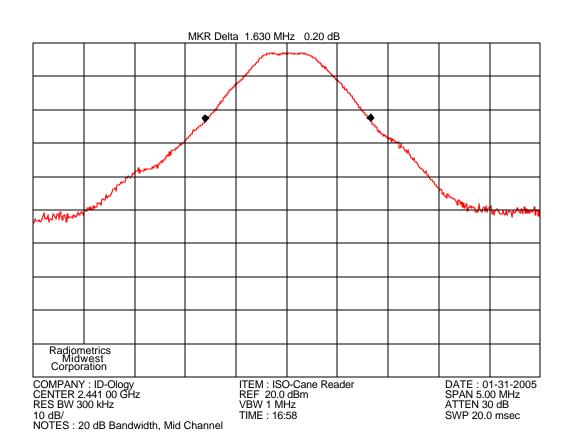
The previous three plots were made to show the total time of occupancy.

Each pair of pulses is 256 uSec. This is from the first plot (128uSec x 2).

The pulse pair is repeated every 10 mSec for 2.55 seconds. There are (2.55/0.01) or 255 pulses at each channel. Therefore the total time of occupancy per channel is as follows:

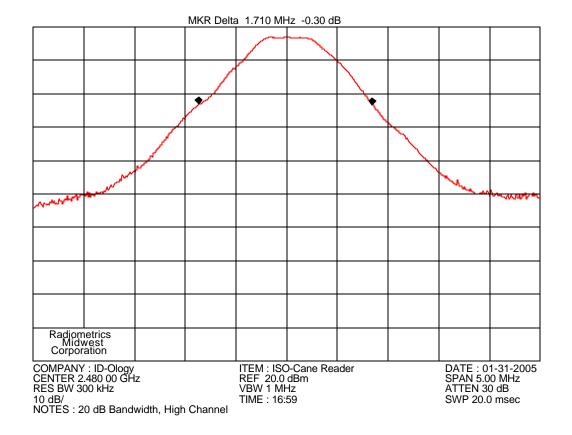
255 * 256 uSec = 65280uSec = 0.06528 seconds. (This is the time of Occupancy per channel)


10.5 Occupied Bandwidth (20 dB)


The spectrum analyzer was set to the MAX HOLD mode to record the worst case of the modulation. The EUT was transmitting at its maximum data rate. The trace was allowed to stabilize.

The marker-to-peak function was set to the peak of the emission. Then the marker-delta function was used to measure 20 dB down one side of the emission. The marker-delta function was reset and then moved to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth of the emission.

RP-5399 Rev. 0 Page 12 of 28


Testing of the I.D.-ology, Model ISO Cane Reader, Handheld RFID Reader for Animal ISO Tags

RP-5399 Rev. 0 Page 13 of 28

Testing of the I.D.-ology, Model ISO Cane Reader, Handheld RFID Reader for Animal ISO Tags

10.6 Peak Output Power

The spectrum analyzer was set to the following settings:

Span = 2 MHz (centered on a hopping channel)

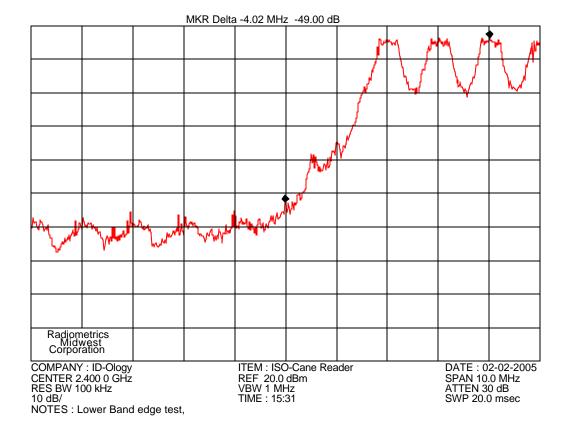
RBW = 3 MHz (> the 20 dB bandwidth of the emission being measured)

VBW = 3 MHz

Sweep = auto

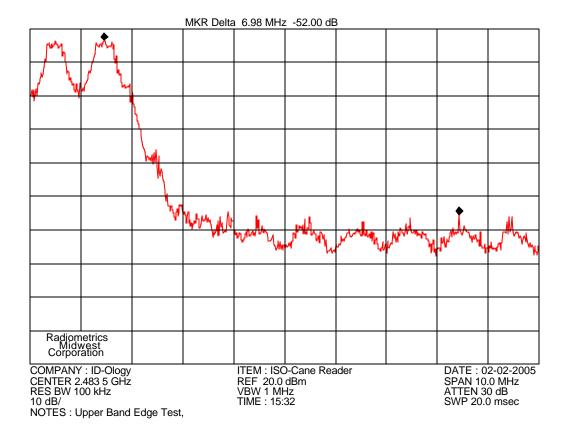
Detector function = peak

Trace = max hold


The trace was allowed to stabilize. The marker-to-peak function was used to measure the peak of the emission. The indicated level is the peak output power. Note 30 dBm = 1 watt. Since the gain of the antenna is always less than 6dB, the limit is not reduced.

Frequency	Reading	Cable Loss	Total Power	r (dBm)	Lir	nit
(MHz)	(dBm)	(dB)	dBm	Watts	Watts	(dBm)
2402	17.8	0.1	17.9	0.062	0.125	21.0
2441	17.5	0.1	17.5	0.058	0.125	21.0
2480	17.4	0.1	17.4	0.056	0.125	21.0

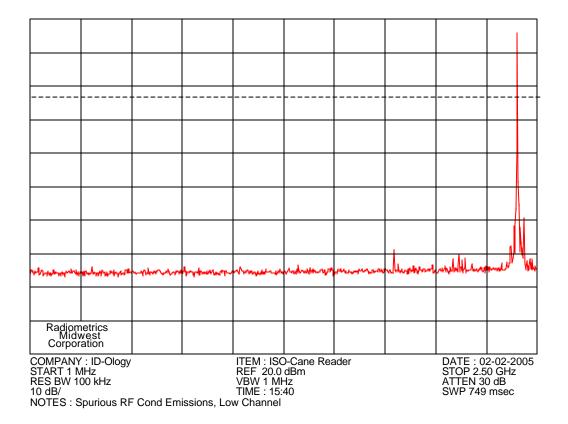
RP-5399 Rev. 0 Page 14 of 28


10.7 Band-edge Compliance of RF Conducted Emissions

The spectrum analyzer was set to the MAX HOLD mode to record the worst case of the modulation at the band-edge, with the EUT set to the lowest frequency. The trace was allowed to stabilize.

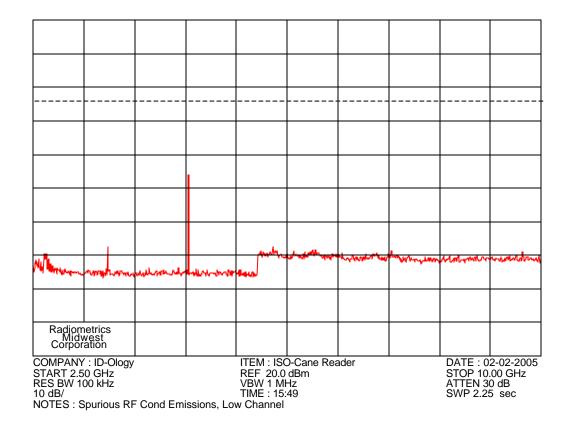
RP-5399 Rev. 0 Page 15 of 28

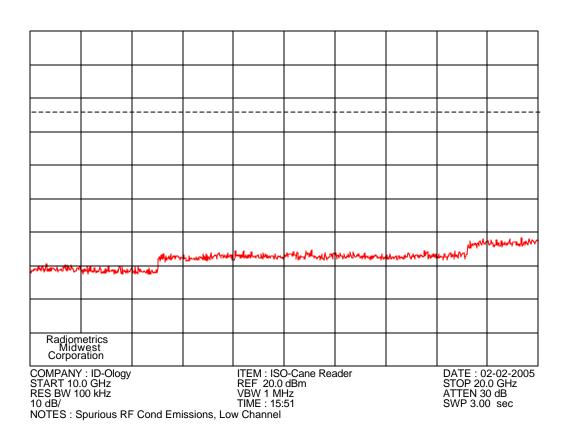
Testing of the I.D.-ology, Model ISO Cane Reader, Handheld RFID Reader for Animal ISO Tags



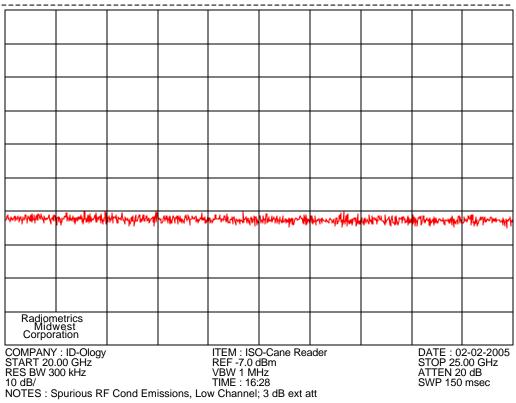
RP-5399 Rev. 0 Page 16 of 28

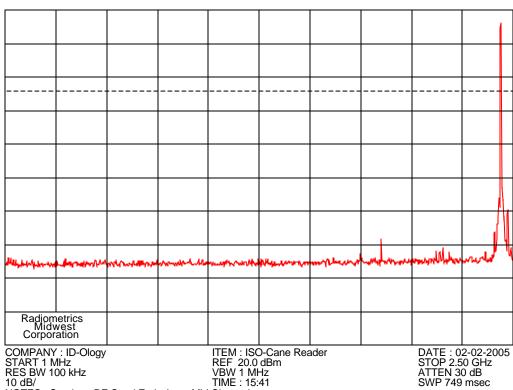
10.8 Spurious RF Conducted Emissions


The spectrum analyzer was set to the MAX HOLD mode to record all spurious emissions from the lowest frequency generated in the EUT up through the 10th harmonic. The trace was allowed to stabilize. The first two plots were made while stepping through three frequencies (Low middle and high). Each frequency was on for 30 seconds. The last two plots were made with hopping enabled.


The dashed lines are 20 dB below the level of the fundamental.

RP-5399 Rev. 0 Page 17 of 28

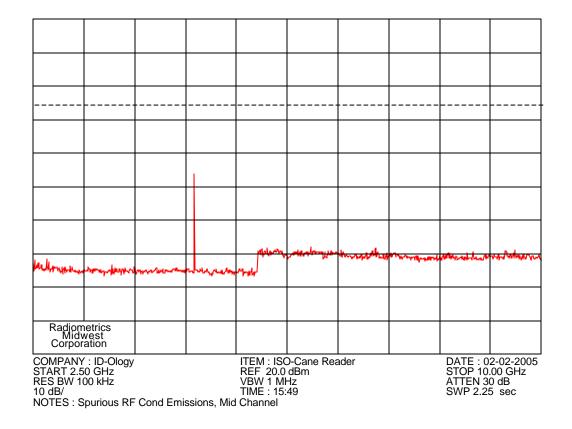

Testing of the I.D.-ology, Model ISO Cane Reader, Handheld RFID Reader for Animal ISO Tags

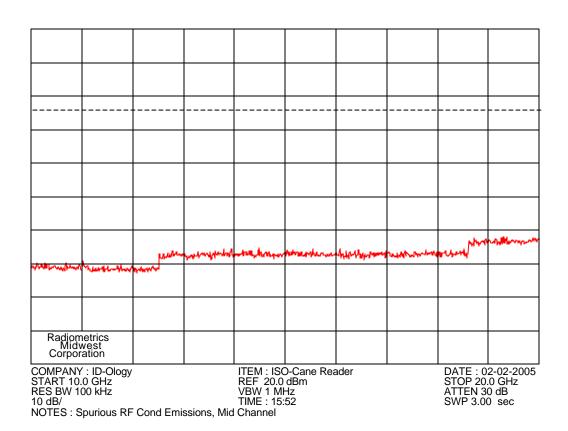

RP-5399 Rev. 0 Page 18 of 28

Testing of the I.D.-ology, Model ISO Cane Reader, Handheld RFID Reader for Animal ISO Tags

COMPANY : ID-Ology START 20.00 GHz RES BW 300 kHz 10 dB/

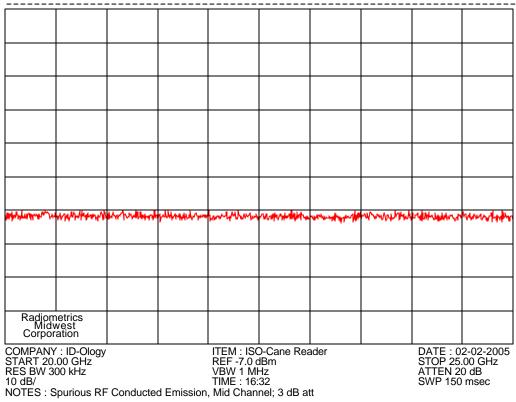
DATE: 02-02-2005 STOP 25.00 GHz ATTEN 20 dB SWP 150 msec

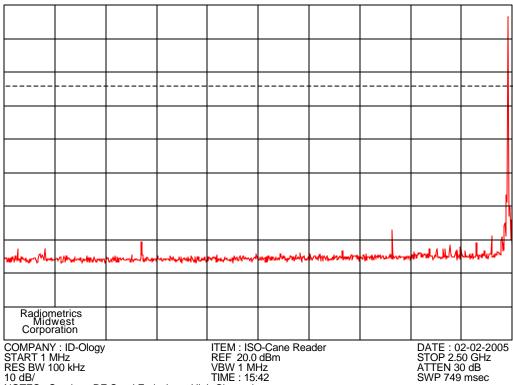



DATE: 02-02-2005 STOP 2.50 GHz ATTEN 30 dB SWP 749 msec

NOTES: Spurious RF Cond Emissions, Mid Channel

RP-5399 Rev. 0 Page 19 of 28

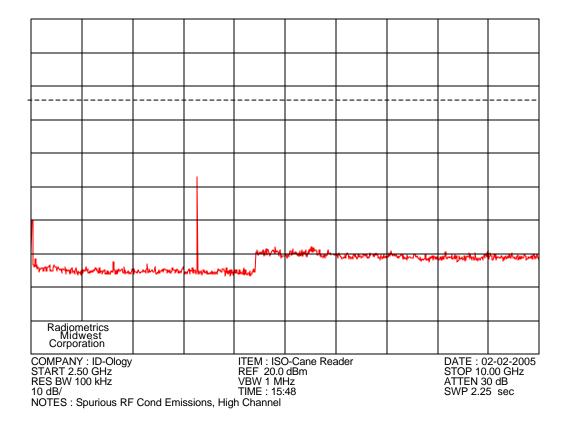

Testing of the I.D.-ology, Model ISO Cane Reader, Handheld RFID Reader for Animal ISO Tags

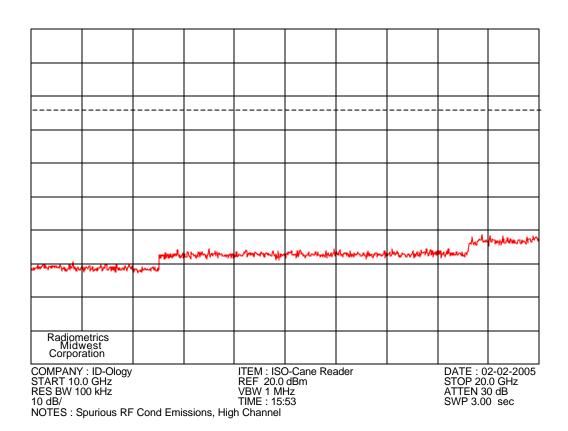

RP-5399 Rev. 0 Page 20 of 28

Testing of the I.D.-ology, Model ISO Cane Reader, Handheld RFID Reader for Animal ISO Tags

COMPANY : ID-Ology START 20.00 GHz RES BW 300 kHz 10 dB/

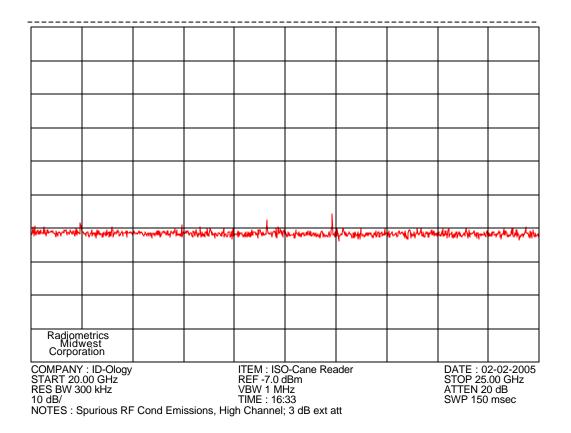
DATE: 02-02-2005 STOP 25.00 GHz ATTEN 20 dB SWP 150 msec




NOTES: Spurious RF Cond Emissions, High Channel

DATE: 02-02-2005 STOP 2.50 GHz ATTEN 30 dB SWP 749 msec

RP-5399 Rev. 0 Page 21 of 28


Testing of the I.D.-ology, Model ISO Cane Reader, Handheld RFID Reader for Animal ISO Tags

RP-5399 Rev. 0 Page 22 of 28

Testing of the I.D.-ology, Model ISO Cane Reader, Handheld RFID Reader for Animal ISO Tags

10.9 Spurious Radiated Emissions (Restricted Band)

Radiated emission measurements in the Restricted bands were performed with linearly polarized broadband antennas. The results obtained with these antennas can be correlated with results obtained with a tuned dipole antenna. Below 1 GHz, when a radiated emission is detected approaching the specification limit, the measurement of the emission is repeated using a tuned dipole antenna with a Roberts Balun. A 10 dB linearity check is performed prior to start of testing in order to determine if an overload condition exists.

From 30 to 1000 MHz, an Anritsu Spectrum analyzer and a MITEQ AM-1431 amplifier with a 10 dB attenuator connected to the input were used. The out of band emissions and the ambient emissions were below the level of input overload.

For tests from 1 to 25 GHz, an HP8566A spectrum analyzer was used with a preamplifier. A harmonic mixer was used from 20 to 25 GHz The out of band emissions and the ambient emissions were below the level of input overload (72 dBuV). In addition, a high pass filter was used to reduce the fundamental emission.

Radiated emission measurements are performed with linearly polarized broadband antennas. Measurements were performed using two antenna polarizations, (vertical and horizontal). The worst case emissions were recorded.

RP-5399 Rev. 0 Page 23 of 28

Testing of the I.D.-ology, Model ISO Cane Reader, Handheld RFID Reader for Animal ISO Tags

Final radiated emissions measurements were performed in the open area test site at a test distance of 3 meters. The entire frequency range from 30 MHz to 25 GHz was slowly scanned and the emissions in the restricted frequency bands were recorded. Measurements were performed using the peak detector function. The detected emission levels were maximized by rotating the EUT, adjusting the positions of all cables, and by scanning the measurement antenna from 1 to 4 meters above the ground. The open area test site used to collect the radiated data is located on 8625 Helmar Road in Newark, Illinois. The open field test site has a metal ground screen. All other tests are performed at 12 East Devonwood Ave. Romeoville, Illinois EMI test lab.

The was device was rotated through three orthogonal axis as per 13.1.4.1 of ANSI C63.4 during the prescans and during final radiated tests.

10.9.1 Radiated Emissions Field Strength Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and by subtracting the Amplifier Gain from the measured reading. The basic equation is as follows:

FS = RA + AF + CF - AG

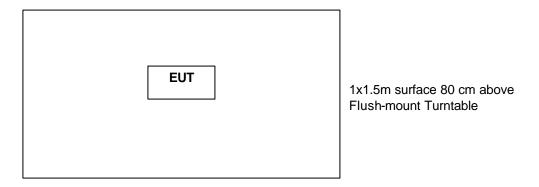
Where: FS = Field Strength

RA = Receiver Amplitude

AF = Antenna Factor

CF = Cable Attenuation Factor

AG = Amplifier Gain


HPF = High pass Filter Loss

PKA = Peak to Average Factor (This is zero for non-average measurements)

The Peak to average factor is used when average measurements are required. It is calculated by the highest duty cycle in percent over any 100mS transmission. The factor in dB is 20 * Log(Duty cycle/100).

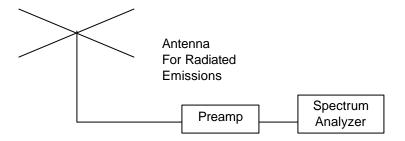

RP-5399 Rev. 0 Page 24 of 28

Figure 2. Drawing of Radiated Emissions Setup

Notes:

- AC outlet with low-pass filter at the base of the turntable
- Antenna height varied from 1 to 4 meters
- Distance from antenna to tested system is 3 meters
- Not to Scale

10.9.2 Spurious Radiated Emissions Test Results (Restricted Band)

The following spectrum analyzer settings were used.

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz

VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

A Video Bandwidth of 10 Hz was used for Average measurements above 1 GHz.

The peak emissions did not exceed the average Limit by more than 20 dB.

RP-5399 Rev. 0 Page 25 of 28

RADIOMETRICS MIDWEST CORPORATION - EMC Test Report Testing of the I.D.-ology, Model ISO Cane Reader, Handheld RFID Reader for Animal ISO Tags

Manufacturer	I.Dology	Specification	FCC Part 15 Subpart C & RSS-210			
Model	ISO Cane Reader	Test Date	¦ Jan 24, 2005			
Serial Number	None	Test Distance	3 Meters			
Abbreviations	Pol = Antenna Polarization; V = Vertical; H = Horizontal; BC = Biconical (ANT-3); LP					
	= Log-Periodic (ANT-6); HN = Horn (ANT-13) P = peak; Q = QP					
Notes	Corr. Factors = Cable Loss - Preamp Gain					

Emissions Below 1 GHz

Tested in FHSS Hopping mode with 134 kHz transmitter operating

	Meter Reading	Antenna Factor Pol/		Corr. Factors	Field S dBu	Margin Under Limit	
Freq. MHz	dBu√	dB	Type	dB	EUT	Limit	dB
130.1	38.3 P	9.9	H/44	-16.5	31.6	43.5	11.9
138.0	43.9 P	8.8	H/44	-16.5	36.2	43.5	7.3
400.9	28.9 P	16.0	H/44	-14.8	30.1	46.0	15.9
74.7	41.9 P	7.3	V/44	-17.1	32.1	40.0	7.9
74.9	39.5 P	7.2	V/44	-17.1	29.6	40.0	10.4
75.3	39.7 P	7.2	V/44	-17.1	29.8	40.0	10.2
115.4	36.4 P	12.3	V/44	-16.7	32.0	43.5	11.5
130.5	42.8 P	10.1	V/44	-16.5	36.4	43.5	7.1
133.4	46.1 P	10.0	V/44	-16.5	39.6	43.5	3.9
134.7	46.8 P	10.0	V/44	-16.5	40.3	43.5	3.2
141.3	49.4 Q	7.7	V/44	-16.4	40.7	43.5	2.8
250.3	33.2 P	12.8	V/44	-15.6	30.3	46.0	15.7
254.2	33.1 P	12.8	V/44	-15.6	30.3	46.0	15.7
279.8	35.7 P	12.8	V/44	-15.4	33.1	46.0	12.9
280.5	33.3 P	12.8	V/44	-15.4	30.7	46.0	15.3
331.1	30.3 P	14.3	V/44	-15.1	29.5	46.0	16.5

Emissions above 1 GHz

		Detector	Emission			Margin
Tx Freq	Ant Pol.	Function	Freq. MHz	dBuV/m	Limit	under limit
2402	V	Peak	4804	72.1	74	1.9
2402	Η	Peak	4804	70.5	74	3.5
2441	٧	Peak	4882	72.5	74	1.5
2441	٧	Peak	7323	56.4	74	17.6
2441	Ι	Peak	4882	70.8	74	3.2
2441	Τ	Peak	7323	56.0	74	18.0
2480	V	Peak	4960	73.0	74	1.0
2480	V	Peak	7440	57.5	74	16.5
2480	Η	Peak	4960	71.9	74	2.1
2480	Η	Peak	7440	56.4	74	17.6
2402	V	Ave	4804	45.3	54	8.7
2402	Η	Ave	4804	44.0	54	10.0
2441	٧	Ave	4882	46.4	54	7.6
2441	Τ	Ave	4882	44.4	54	9.6
2480	٧	Ave	4960	46.8	54	7.2
2480	H	Ave	4960	45.2	54	8.8

Judgment: Passed by 1.0 dB

No other emissions were detected in the restricted bands.

RP-5399 Rev. 0 Page 26 of 28

Testing of the I.D.-ology, Model ISO Cane Reader, Handheld RFID Reader for Animal ISO Tags

10.10 Magnetic Field Measurements and Decay Factor Calculations

Radiated emission measurements are performed with shielded loop antennas. An Empire LG-105 and an Empire LP-105 antenna were used. The antennas were rotated in order to find the maximize readings.

The decay exponent used is 2. The distance correction factor is calculated as follows:

Distance factor (dB) = 40*Log(TD/300)

TD is the actual test distance in meters. 300 meters is the specification distance. The actual Distance correction factor at 5 meters is –71.1 dB.

10.10.1 Magnetic Field Radiated Emissions Results (0.009 to 30 MHz)

Test Date	Jan 24, 2005					
Test Distance	3 Meters					
Specification	FCC 15 & RSS-210					
Notes	Corr. Factors = cable loss - preamp gain - distance factor.					
	Decay Exponent = 2					
	Shielded Loop Antennas were used for this test.					
Notes	All readings are using a peak detector					

Span = wide enough to fully capture the emission being measured

RBW = 10 kHz

VBW ≥ RBW

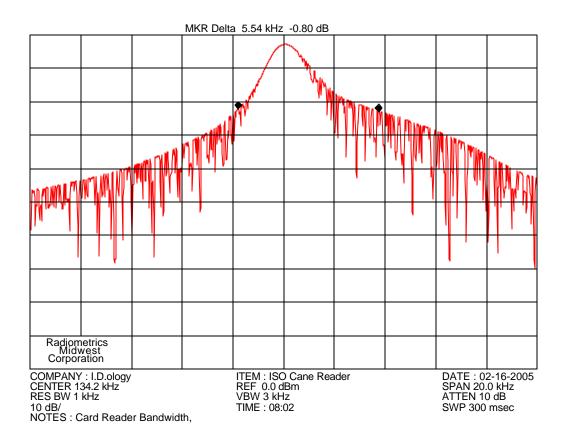
Sweep = auto

Detector function = peak

Trace = max hold

Freq (kHz)	Peak meter reading dBuV	Loop Ant Factor	Dist (m)	Decay exp	Cable Loss dB	dist factor dB	Amp Gain dB	Field Strength dBuV/m	15.209 Limit dBuV/m	Margin Under Limit dB
134.2	44.1	46.0	5.0	2.0	0.0	-71.1	0.0	19.0	25.0	6.0
268.4	19.0	56.0	3.0	2.0	0.0	-80.0	19.0	-24.0	19.0	43.0
402.6	27.5	57.9	3.0	2.0	0.1	-80.0	19.0	-13.5	15.5	29.0
536.8	20.0*	56.1	3.0	2.0	0.1	-40.0	19.0	17.2	33.6	16.4
671.0	20.0*	53.5	3.0	2.0	0.1	-40.0	19.0	14.6	31.1	16.5
939.4	20.0*	52.8	3.0	2.0	0.1	-40.0	19.0	13.9	28.1	14.2
1074	20.0*	52.0	3.0	2.0	0.1	-40.0	19.0	13.1	27.0	13.9
1208	20.0*	51.0	3.0	2.0	0.1	-40.0	29.0	2.1	26.0	23.9
1342	20.0*	49.0	3.0	2.0	0.1	-40.0	29.0	0.1	25.0	24.9

^{*}ambient emissions; No detectable emissions above 500 kHz.


Judgement: Passed by 6 dB.

RP-5399 Rev. 0 Page 27 of 28

10.11 Card Reader Occupied Bandwidth (20 dB)

The spectrum analyzer was set to the MAX HOLD mode to record the worst case of the modulation. The EUT was transmitting at its maximum data rate. The trace was allowed to stabilize.

The marker-to-peak function was set to the peak of the emission. Then the marker-delta function was used to measure 20 dB down one side of the emission. The marker-delta function was reset and then moved to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth of the emission.

RP-5399 Rev. 0 Page 28 of 28