

FCC RADIO TEST REPORT

FCC ID	P4Q-TG2A001
Equipment	Internet Gateway
Brand Name	Amazon, AWS, SKF, 💛
Model Name	TG2A001,
	TG2A001YYYY (Y= 10 characters, Y can be 0-9, a-z, A-Z, "-", "_" or blank for marketing purpose and no impact safety related critical components and constructions.)
Applicant	Mitac Digital Technology Corp. 4F., NO. 1, R&D ROAD 2, HSINCHU SCIENCE PARK, HSINCHU 30076, TAIWAN, R.O.C.
Standard	FCC Part 15 Subpart C §15.247

The product was received on Jun. 18, 2024 and testing was performed from Jun. 19, 2024 to Dec. 11, 2024. We, Sporton International Inc. Wensan Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this partial report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. Wensan Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Approved by: Louis Wu

Sporton International Inc. Wensan Laboratory

No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.)

TEL : 886-3-327-0868	
FAX : 886-3-327-0855	
Report Template No.: BU5-FR15CWLAC MA Vers	sion 2.4

Page Number: 1 of 17Issue Date: Dec. 25, 2024Report Version: 03

Table of Contents

Hi	story o	of this test report	3
Sι	ımmar	y of Test Result	4
1	Gene	ral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Modification of EUT	5
	1.3	Testing Location	6
	1.4	Applicable Standards	6
2	Test	Configuration of Equipment Under Test	7
	2.1	Carrier Frequency and Channel	7
	2.2	Test Mode	7
	2.3	Connection Diagram of Test System	8
	2.4	Support Unit used in test configuration and system	8
	2.5	EUT Operation Test Setup	8
3	Test	Result	9
	3.1	Output Power Measurement	9
	3.2	Radiated Band Edges and Spurious Emission Measurement	10
	3.3	Antenna Requirements	14
4	List o	f Measuring Equipment	15
5	Meas	urement Uncertainty	17
Aŗ	opendi	x A. Conducted Test Results x B. Radiated Spurious Emission Test Data x C. Duty Cycle Plots	

Appendix D. Setup Photographs

History of this test report

Report No.	Version	Description	Issue Date
FR430401C	01	Initial issue of report	Nov. 29, 2024
FR430401C	02	 Revise Summary of Test Result, Applicable Standards, Radiated Band Edges and Spurious Emission Measurement, and List of Measuring Equipment Revise Appendix B, C, and D This report is an updated version, replacing the report issued on Nov. 29, 2024. 	Dec. 13, 2024
FR430401C	03	Revise Product Feature of Equipment Under Test This report is an updated version, replacing the report issued on Dec. 13, 2024.	Dec. 25, 2024

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
-	15.247(a)(2)	6dB Bandwidth	Pass	See Note
-	2.1049	99% Occupied Bandwidth	Pass	See Note
3.1	15.247(b)	Power Output Measurement	Pass	-
-	15.247(e)	Power Spectral Density	Pass	See Note
	15.247(d)	Conducted Band Edges	Pass	See Note
-		Conducted Spurious Emission	Pass	See Note
3.2	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	Pass	1.36 dB under the limit at 2485.32 MHz
-	15.207	AC Conducted Emission	Pass	See Note
3.3	15.203	Antenna Requirement	Pass	-

Note:

- 1. For host device, Radiated Spurious Emission is verified and complies with the limit in this test report.
- 2. For host device, the Conducted Output Power is no difference after compared to module (Model: AW-XM553).
- 3. Spot-check testing on unwanted (spurious) radiated emissions is carried out on the worst-case modulation and channel per frequency range as shown in original module's filing.
- 4. Radiated Spurious Emission is verified and complies with the limit in this test report.

Conformity Assessment Condition:

- The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.
- 2. The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty".

Disclaimer:

 The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.
 The purpose of different brand name is for marketing segmentation.

Reviewed by: Sheng Kuo Report Producer: Rebecca Wu

1 General Description

1.1 Product Feature of Equipment Under Test

Product Feature

General Specs

Bluetooth, Wi-Fi 2.4GHz 802.11b/g/n/ac/ax, Wi-Fi 5GHz 802.11a/n/ac/ax, and Sub 1GHz.

Antenna Type

WLAN: PIFA Antenna Bluetooth: PIFA Antenna Sub 1G: PIFA Antenna

	Antenna information		
2400 MHz ~ 2483.5 MHz	Peak Gain (dBi)	2.89	

	SKU List							
SKU	Variant num	Wifi/BT	BLE	Sub GHz	Sound			
1	1	х	x	х	х			
2	2	х	x	х	-			
3	3	х	x	-	х			
4	4	х	х	-	-			
5	5	х	-	х	х			
6	6	х	-	х	-			
7	7	-	-	х	х			
8	8	-	-	х	-			

Remark:

- 1. The EUT's information above is declared by manufacturer. Please refer to Disclaimer in report summary.
- 2. The RF related hardware (including WLAN, Bluetooth, Sub 1Ghz module, and Sound) of all models are identical. The RF feature differences are controlled by the embedded software.

1.2 Modification of EUT

No modifications made to the EUT during the testing.

1.3 Testing Location

Test Site	Sporton International Inc. Wensan Laboratory			
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855			
Test Site No.	Sporton Site No.			
1651 Sile NO.	TH05-HY, 03CH16-HY			

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW3786

1.4 Applicable Standards

According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 15.247 Meas Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01.
- ANSI C63.10-2013

Remark:

- 1. All the test items were validated and recorded in accordance with the standards without any modification during the testing.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.
- 3. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

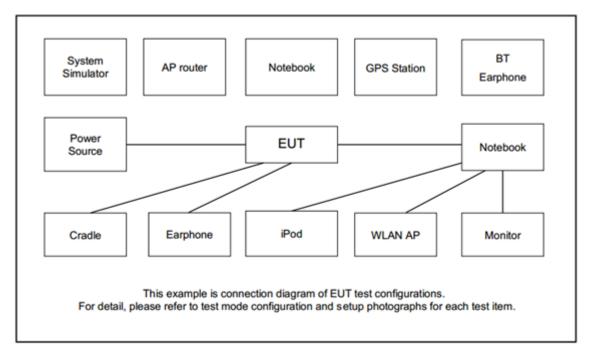
a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiation emission (9 kHz to the 18GHz). For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape), and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and only the worst case emissions were reported in this report.

-							
Fr	equency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)		
		1	2412	7	2442		
		2	2417	8	2447		
24	00 2492 5 MU-	3	2422	9	2452		
24	2400-2483.5 MHz	4	2427	10	2457		
		5	2432	11	2462		
		6	2437				

2.1 Carrier Frequency and Channel

2.2 Test Mode

The final test modes include the worst data rates for each modulation shown in the table below.


Modulation			C	ata Rate
	802.11b			1 Mbps
802.11g				6 Mbps
802.11ax HE40				MCS0
Ch. #	2400-2483.5 MHz			
Cii. #	802.11b		802.11g	802.11ax HE40
Low	01		01	-
Middle	-		-	06
High	-		-	-

Remark:

- 1. For Radiated Test Cases, the tests were performed with SKU 1 (E).
- 2. For radiation spurious emission, the modulation and the data rate picked for testing are determined by the Max. RF conducted power.

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

Item	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Notebook	Lenovo	L570	N/A	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m

2.5 EUT Operation Test Setup

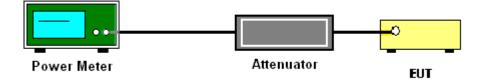
The RF test items, utility "Tera Term 4.95" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

3 Test Result

3.1 Output Power Measurement

3.1.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5 MHz, the limit for output power is 30 dBm. If transmitting antenna with directional gain greater than 6 dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.


3.1.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.1.3 Test Procedures

- 1. For Average Power, the testing follows ANSI C63.10 Section 11.9.2.3.2 Method AVGPM-G
- 2. The RF output of EUT is connected to the power meter by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Measure the conducted output power and record the results in the test report.

3.1.4 Test Setup

3.1.5 Test Result of Average Output Power

Please refer to Appendix A.

3.2 Radiated Band Edges and Spurious Emission Measurement

3.2.1 Limit of Radiated band edge and Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device is measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

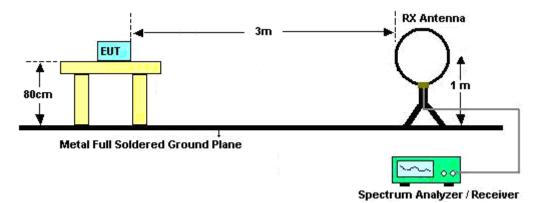
3.2.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.2.3 Test Procedures

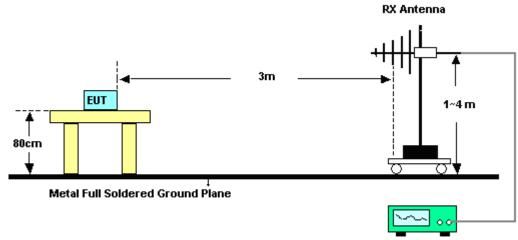
- 1. The testing follows the ANSI C63.10 Section 11.12.1 Radiated emission measurements.
- 2. The EUT is arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT is placed on a turntable with 1.5 meter for frequency above 1 GHz respectively above ground.
- 4. The EUT is set 3 meters away from the receiving antenna, which is mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. Radiated testing below 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading. When there is no suspected emission found and the emission level is with at least 6 dB margin against QP limit line, the position is marked as "-".

FCC RADIO TEST REPORT

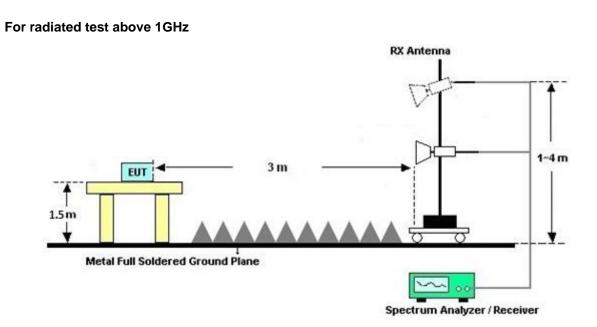

- 7. Radiated testing above 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading for scanning all frequencies. When there is no suspected emission found and the harmonic emission level is with at least 6 dB margin against average limit line, the position is marked as "-".
- 8. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW = 100 kHz for f < 1 GHz; VBW \ge RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3 MHz for $f \geq$ 1 GHz for peak measurement.

For average measurement:

- VBW = 10 Hz, when duty cycle is no less than 98 percent.
- VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.


3.2.4 Test Setup

For radiated emissions below 30MHz



For radiated emissions from 30MHz to 1GHz

Spectrum Analyzer / Receiver

3.2.5 Test Results of Radiated Spurious Emissions (9kHz ~ 30MHz)

The low frequency, which starts from 9 kHz to 30 MHz, is pre-scanned and the result which is 20 dB lower than the limit line is not reported.

There is adequate comparison measurement of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result comes out very similar.

3.2.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix B.

3.2.7 Duty Cycle

Please refer to Appendix C.

3.2.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix B.

3.3 Antenna Requirements

3.3.1 Standard Applicable

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §§ 15.211, 15.213, 15.217, 15.219, 15.221, or § 15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

3.3.2 Antenna Anti-Replacement Construction

Antenna permanently attached.

List of Measuring Equipment 4

Instrument	Brand Namo	Model No.	Sorial No.	Characteristics	Calibration	Test Date		Bomark
Instrument	Brand Name	Model No.	Serial No.	Characteristics	Date	Test Date	Due Date	Remark
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Sep. 12, 2023	Jul. 17, 2024~ Jul. 20, 2024	Sep. 11, 2024	Radiation (03CH16-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Aug. 29, 2024	Dec. 11, 2024	Aug. 28, 2025	Radiation (03CH16-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA9170	00993	18GHz-40GHz	Nov. 24, 2023	Jul. 17, 2024~ Jul. 20, 2024	Nov. 23, 2024	Radiation (03CH16-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA9170	00993	18GHz-40GHz	Nov. 18, 2024	Dec. 11, 2024	Nov. 17, 2025	Radiation (03CH16-HY)
EMI Test Receiver	Keysight	N9038A(MXE)	MY57290111	3Hz~26.5GHz	Dec. 04, 2023	Jul. 17, 2024~ Jul. 20, 2024	Dec. 03, 2024	Radiation (03CH16-HY)
EMI Test Receiver	Keysight	N9038A(MXE)	MY57290111	3Hz~26.5GHz	Nov. 22, 2024	Dec. 11, 2024	Nov. 21, 2025	Radiation (03CH16-HY)
Bilog Antenna	TESEQ	CBL 6111D & 00802N1D01N -06	47020 & 06	30MHz to 1GHz	Oct. 07, 2023	Jul. 17, 2024~ Jul. 20, 2024	Oct. 06, 2024	Radiation (03CH16-HY)
Bilog Antenna	TESEQ	CBL 6111D & 00802N1D01N -06	47020 & 06	30MHz to 1GHz	Oct. 05, 2024	Dec. 11, 2024	Oct. 04, 2025	Radiation (03CH16-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-1522	1G~18GHz	Mar. 28, 2024	Jul. 17, 2024~ Jul. 20, 2024	Mar. 27, 2025	Radiation (03CH16-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-1522	1G~18GHz	Mar. 28, 2024	Dec. 11, 2024	Mar. 27, 2025	Radiation (03CH16-HY)
Amplifier	SONOMA	310N	371607	9kHz~1GHz	Jul. 02, 2024	Jul. 17, 2024~ Dec. 11, 2024	Jul. 01, 2025	Radiation (03CH16-HY)
Preamplifier	Keysight	83017A	MY53270264	1GHz~26.5GHz	Dec. 07, 2023	Jul. 17, 2024~ Jul. 20, 2024	Dec. 06, 2024	Radiation (03CH16-HY)
Preamplifier	Keysight	83017A	MY53270264	1GHz~26.5GHz	Dec. 05, 2024	Dec. 11, 2024	Dec. 04, 2025	Radiation (03CH16-HY)
Preamplifier	EMEC	EM1G18G	060812	1GHz~18GHz	Dec. 25, 2023	Jul. 17, 2024~ Dec. 11, 2024	Dec. 24, 2024	Radiation (03CH16-HY)
Preamplifier	EMEC	EM18G40G	060872	18GHz~40GHz	Sep. 06, 2023	Jul. 17, 2024~ Jul. 20, 2024	Sep. 05, 2024	Radiation (03CH16-HY)
Preamplifier	EMEC	EM18G40G	060872	18GHz~40GHz	Nov. 29, 2024	Dec. 11, 2024	Nov. 28, 2025	Radiation (03CH16-HY)
Filter	Wainwright	WLK4-1000-15 30-8000-40SS	SN17	1.53GHz Low Pass Filter	Jan. 15, 2024	Jul. 17, 2024~ Dec. 11, 2024	Jan. 14, 2025	Radiation (03CH16-HY)
Filter	Wainwright	WHKX12-2700 -3000-18000-6 0ST	SN3	3GHz High Pass Filter	Jun. 28, 2024	Jul. 17, 2024~ Dec. 11, 2024	Jun. 27, 2025	Radiation (03CH16-HY)
Filter	Wainwright	WHKX8-5872. 5-6750-18000- 40ST	SN27	6.75GHz High Pass Filter	Nov. 13, 2023	Jul. 17, 2024~ Jul. 20, 2024	Nov. 12, 2024	Radiation (03CH16-HY)
Filter	Wainwright	WHKX8-5872. 5-6750-18000- 40ST	SN27	6.75GHz High Pass Filter	Nov. 12, 2024	Dec. 11, 2024	Nov. 11, 2025	Radiation (03CH16-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	803951/2	9K~30M	Mar. 06, 2024	Jul. 17, 2024~ Dec. 11, 2024	Mar. 05, 2025	Radiation (03CH16-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102/SUCOFLE X 104	EC-A5-300-5 757,805935/4 ,802434/4	30MHz~18GHz	Aug. 08, 2023	Jul. 17, 2024~ Jul. 20, 2024	Aug. 07, 2024	Radiation (03CH16-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102/SUCOFLE X 104	EC-A5-300-5 757,805935/4 ,802434/4	30MHz~18GHz	Aug. 07, 2024	Dec. 11, 2024	Aug. 06, 2025	Radiation (03CH16-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	804011/2,804 012/2	18-40GHz	Jan. 02, 2024	Jul. 17, 2024~ Dec. 11, 2024	Jan. 01, 2025	Radiation (03CH16-HY)

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Software	Audix	E3 230621 V9	RK-002393	N/A	N/A	Jul. 17, 2024~ Dec. 11, 2024	N/A	Radiation (03CH16-HY)
Controller	ChainTek	3000-1	N/A	Control Turn table & Ant Mast	N/A	Jul. 17, 2024~ Dec. 11, 2024	N/A	Radiation (03CH16-HY)
Antenna Mast	ChainTek	MBS-520-1	N/A	1m~4m	N/A	Jul. 17, 2024~ Dec. 11, 2024	N/A	Radiation (03CH16-HY)
Turn Table	ChainTek	T-200-S-1	N/A	0~360 Degree	N/A	Jul. 17, 2024~ Dec. 11, 2024	N/A	Radiation (03CH16-HY)
Hygrometer	TECPEL	DTM-303A	TP201996	N/A	Nov. 07, 2023	Jun. 19, 2024~ Jul. 23, 2024	Nov. 06, 2024	Conducted (TH05-HY)
Power Sensor	DARE	RPR3006W	15I00041SNO 10 (NO:248)	10MHz~6GHz	Jan. 10, 2024	Jun. 19, 2024~ Jul. 23, 2024	Jan. 09, 2025	Conducted (TH05-HY)
Signal Analyzer	Rohde & Schwarz	FSV3044	101466	10HZ~44GHZ	Jan. 24, 2024	Jun. 19, 2024~ Jul. 23, 2024	Jan. 23, 2025	Conducted (TH05-HY)
Switch Control Mainframe	EM Electronics	EMSW18SE	SW200302 (BOX9)	N/A	Mar. 08, 2024	Jun. 19, 2024~ Jul. 23, 2024	Mar. 07, 2025	Conducted (TH05-HY)
Software1	Sporton	BTWIFI_Final_ version:1.0(20 24-04-11)	N/A	Conducted Items	N/A	Jun. 19, 2024~ Jul. 23, 2024	N/A	Conducted (TH05-HY)

5 Measurement Uncertainty

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	6.5 dB
of 95% (U = 2Uc(y))	0.3 dB

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 6000 MHz)

Measuring Uncertainty for a Level of Confidence	4.9 dB
of 95% (U = 2Uc(y))	4.9 ab

Uncertainty of Radiated Emission Measurement (6000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	E 4 dD
of 95% (U = 2Uc(y))	5.1 dB

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Ju Chang	Temperature:	21~25	°C
Test Date:	2024/06/19 ~ 2024/07/23	Relative Humidity:	51~54	%

TEST RESULTS DATA Average Output Power

	2.4GHz Band Single Antenna															
Mod. Data Rate		NTX	CH.	Freq. (MHz)	Average Conducted Power (dBm)		Conducted Power Limit (dBm)		DG (dBi)		EIRP Power (dBm)		EIRP Power Limit (dBm)		Pass /Fail	
					Ant1	Ant2	SUM	Ant1	Ant2	Ant1	Ant2	Ant1	Ant2	Ant1	Ant2	
11b	1Mbps	1	1	2412	14.40	-		30.00	-	2.89	-	17.29	-	36.00	-	Pass
11g	6Mpbs	1	1	2412	13.60	-		30.00	-	2.89	-	16.49	-	36.00	-	Pass

Note: Measured power (dBm) has offset with cable loss.

TEST RESULTS DATA Average Output Power

	2.4GHz Band Single Antenna																
Mod.	Mod. Data Rate NTX CH. Freq. RU (MHz) .		С	Average Conducted Power (dBm)		Conducted Power Limit (dBm)		DG (dBi)		EIRP Power (dBm)		EIRP Power Limit (dBm)		Pass /Fail			
						Ant1	Ant2	SUM	Ant1	Ant2	Ant1	Ant2	Ant1	Ant2	Ant1	Ant2	
HE40	MCS0	1	6	2437	Full	13.80	-		30.00	-	2.89	-	16.69	-	36.00	-	Pass

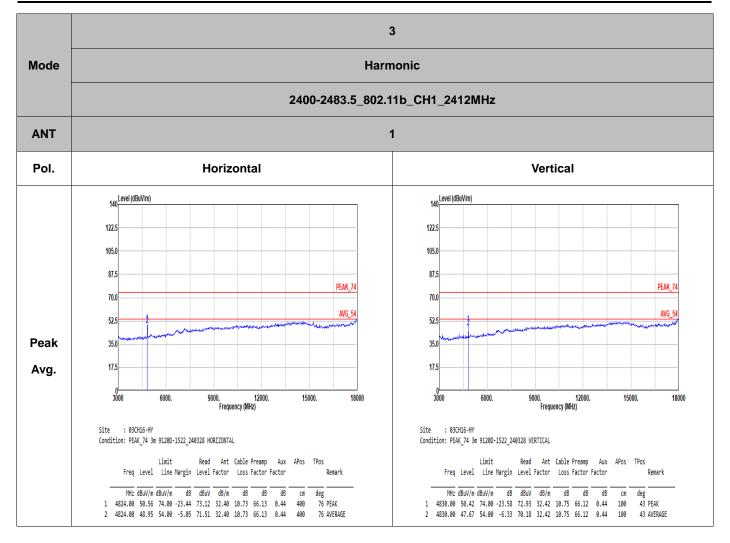
Note: Measured power (dBm) has offset with cable loss.

Appendix B. Radiated Spurious Emission Test Data

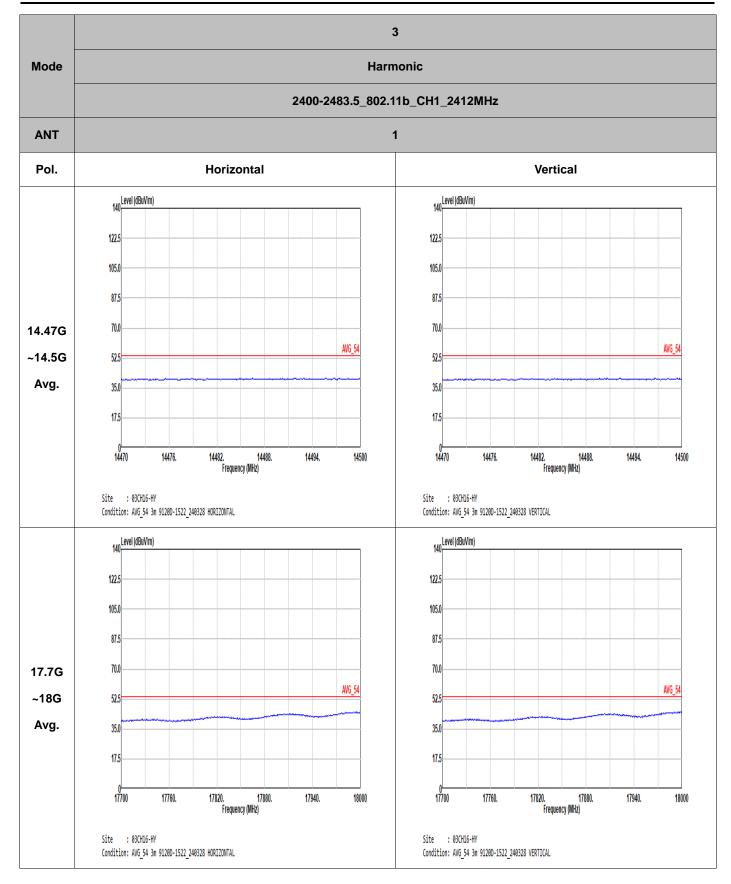
Test Engineer :	Bill Chang, Cary Cup, and Stavan Wu	Temperature :	18.2 ~ 20.2 ℃
	Bill Chang, Gary Guo, and Steven Wu	Relative Humidity :	54.2 ~ 56.1 %

Note symbol

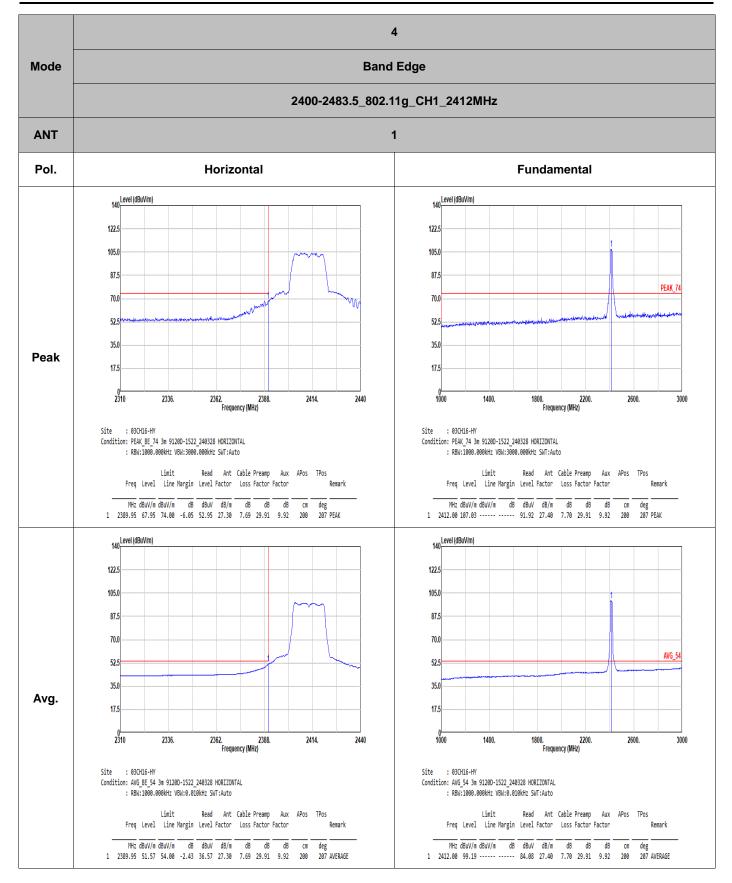
-L	Low channel location
-R	High channel location

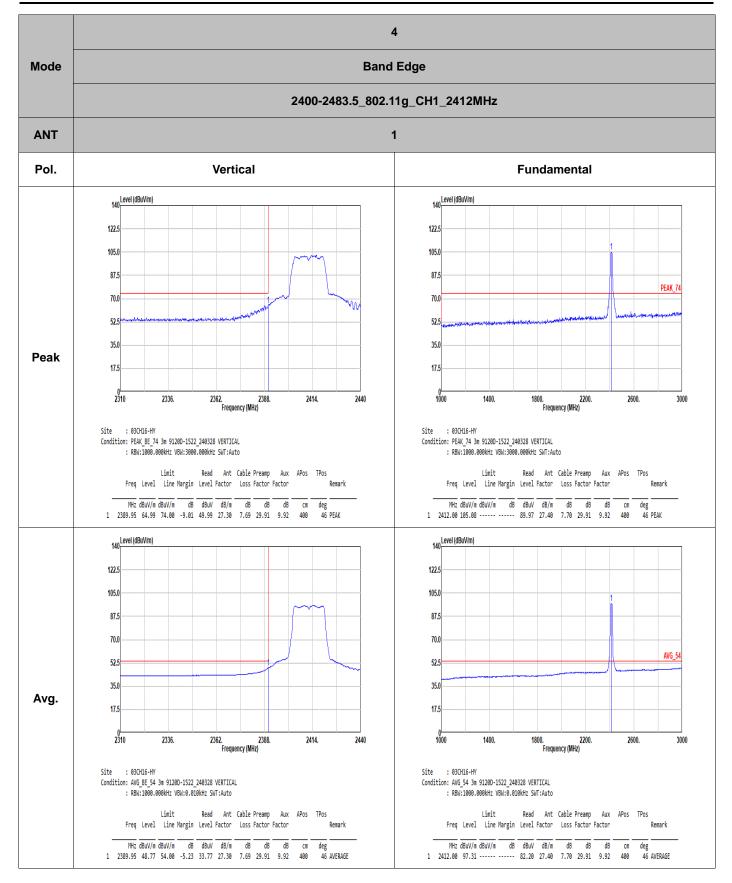

B1. Radiated Spurious Emission Test Modes

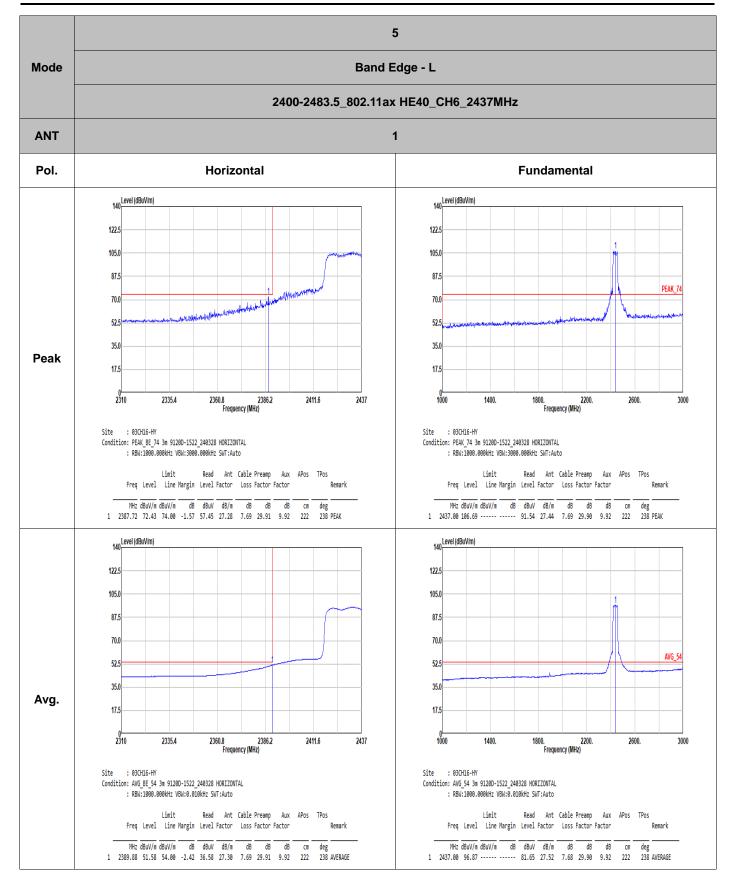
Mode	Band (MHz)	Antenna	Modulation	Channel	Frequency	Data Rate	RU	Remark
Mode 3	2400-2483.5	1	802.11b	1	2412	1Mbps	-	-
Mode 4	2400-2483.5	1	802.11g	1	2412	6Mbps	-	-
Mode 5	2400-2483.5	1	802.11ax HE40	6	2437	MCS0	-	-
Mode 7	2400-2483.5	1	802.11ax HE40	6	2437	MCS0	-	LF

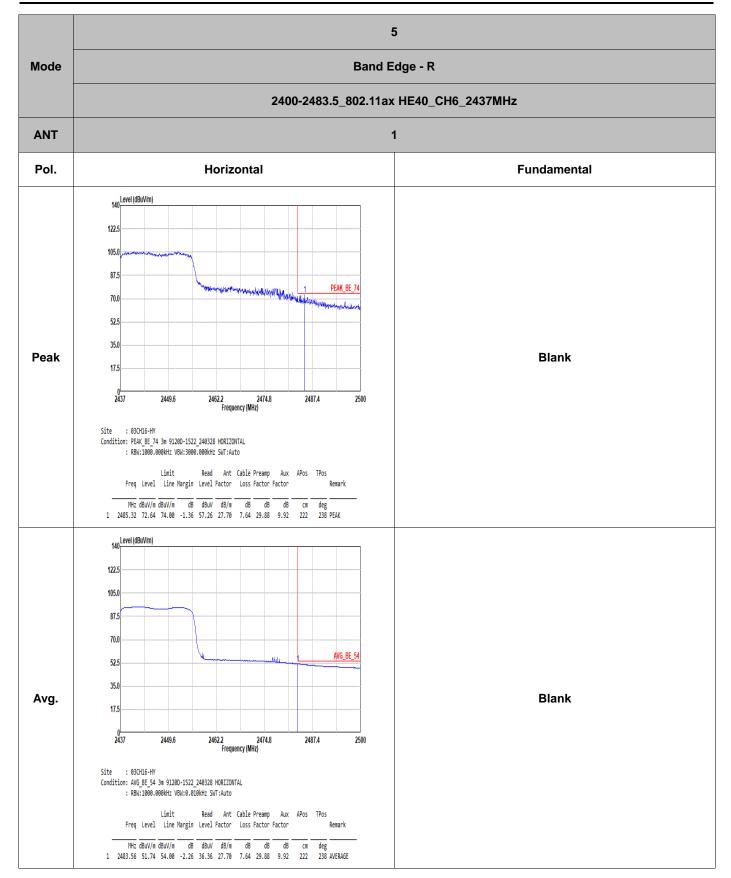

B2. Summary of each worse mode

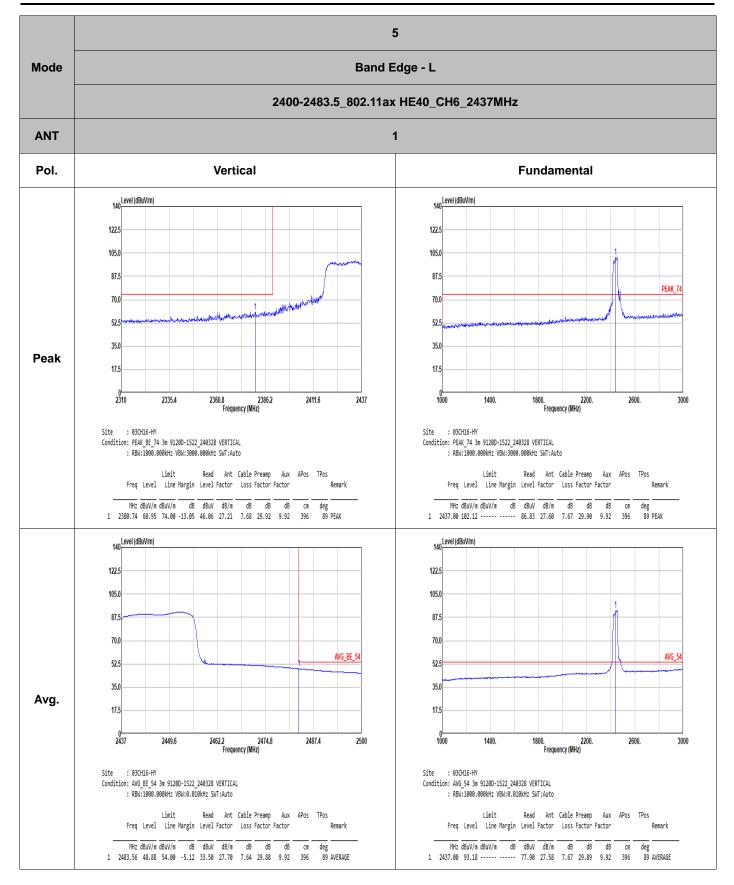
Mode	Modulation	Ch.	Freq.	Level	Limit	Margin	Del	Peak	Decult	RU	Remark	
wode	wodulation	CII.	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	Pol.	Avg.	Result	RU	Remark	
3	802.11b	1	4824.00	48.95	54.00	-5.05	Н	Avg.	Pass	-	Harmonic	
4	802.11g	1	2389.95	51.57	54.00	-2.43	Н	Avg.	Pass	-	Band Edge	
5	802.11ax HE40	6	2485.32	72.64	74.00	-1.36	Н	Peak	Pass	-	Band Edge	
7	802.11ax HE40	6	839.95	39.76	46.00	-6.24	Н	Peak	Pass	-	LF	

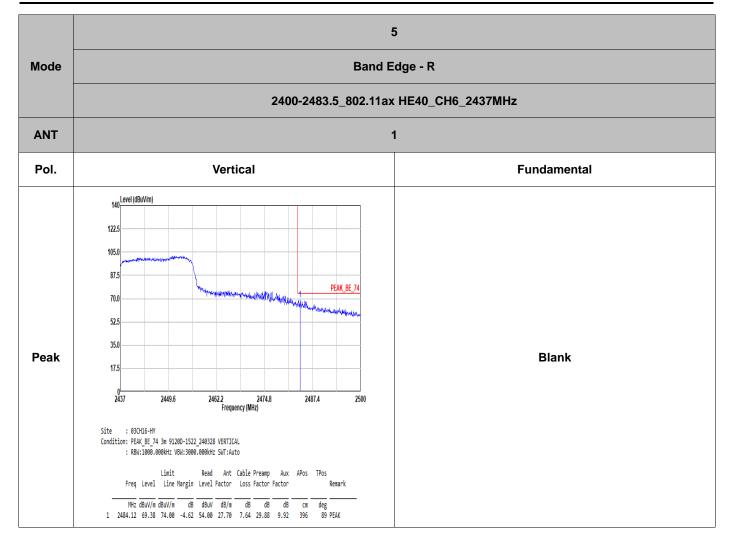


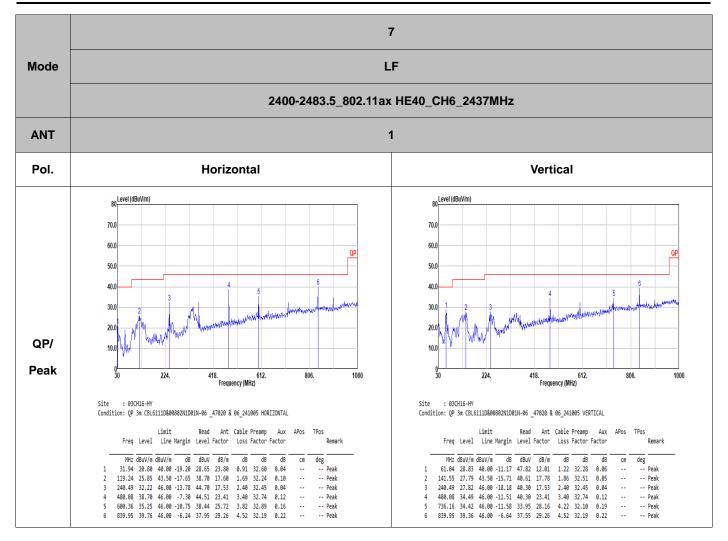


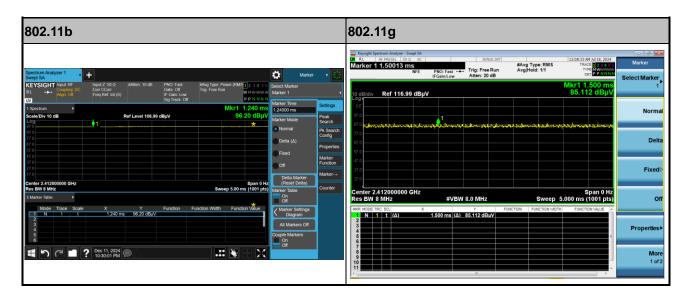












Appendix C. Duty Cycle Plots

Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting
802.11b	100.00	-	-	10Hz
802.11g	100.00	-	-	10Hz
2.4GHz 802.11ax HE40 Full RU	100.00	-	-	10Hz

	Hyzer - Swept SA		SENSE:INT			01:54:38 PM Jul 18, 2024	
arker 1 37.50	00 ms	D: Fast 🔸	Trig: Free Run	#Avg 1	Type: RMS	TRACE 2 3 4 5 6 TYPE DET P P N N N N	Marker
dB/div Ref	IFG	ain:Low	Atten: 20 dB			Mkr1 37.50 ms 89.39 dBµV	Select Marke
29 107 17.0	ور مان		1	الم معلكينية معالم	1940-1968-5-49-186	ما والدر من الدر من الدول	Norm
7.0							De
7.0							Fixed
enter 2.43700 es BW 8 MHz	0000 GHz	#VBW	8.0 MHz		Sweep 7	Span 0 Hz '5.00 ms (1001 pts)	,
KR MODE TRC SCL	× 37.5	0 ms	γ 89.39 dBμV	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	
3							Propertie
6							