1. RF Exposure Requirements

1.1 General Information

Client Information

Applicant: Pro Design, LLC

Address of applicant: 1151 Campus Dr. N/AStowOhioUnited States

Manufacturer: Pro Design, LLC

Address of manufacturer: 1151 Campus Dr. N/AStowOhioUnited States

General Description of EUT:

Product Name: Single-channel transmitter

Trade Name: /

Model No.: DD2700H

Adding Model(s):

Rated Voltage: DC 3V

Power Adaptor: /

FCC ID: 2BMF4DD2700H Equipment Type: Portable device

Technical Characteristics of EUT:

Frequency Range: 433.92MHz

Max. Field Strength: 75.63dBuV/m(3m)

Data Rate: /

Modulation: FSK

Antenna Type: PCB Antenna

Antenna Gain: 0dBi

1.2 RF Exposure Exemption

According to §1.1307(b)(3) and KDB 447498 D04 Interim General RF Exposure Guidance v01, system operating under the provisions of this section shall be operating in a manner that the public is not exposed to radio frequency energy level in excess limit for maximum permissible exposure.

Option A: FCC Rule Part 1.1307 (b)(3)(i)(A):The available maximum time-averaged power is no more than 1mW, regardless of separation distance.

Option B: FCC Rule Part 1.1307 (b)(3)(i)(B): The available maximum time-averaged power or effective radiated power (ERP), whichever is greater, is less than or equal to the threshold P_{th} (mW) described in the following formula. P_{th} is given by:

$$P_{th} \text{ (mW)} = \begin{cases} ERP_{20 cm} (d/20 \text{ cm})^x & d \le 20 \text{ cm} \\ ERP_{20 cm} & 20 \text{ cm} < d \le 40 \text{ cm} \end{cases}$$

Where

$$x = -\log_{10}\left(\frac{60}{ERP_{20\ cm}\sqrt{f}}\right) \text{ and } f \text{ is in GHz};$$

and

$$ERP_{20\;cm}\;(\text{mW}) = \begin{cases} 2040f & 0.3\;\text{GHz} \le f < 1.5\;\text{GHz} \\ \\ 3060 & 1.5\;\text{GHz} \le f \le 6\;\text{GHz} \end{cases}$$

d = the separation distance (cm);

Option C: FCC Rule Part 1.1307 (b)(3)(i)(C): The minimum separation distance (R in meters) from the body of a nearby person for the frequency (f in MHz) at which the source operates, the ERP (watts) is no more than the calculated value prescribed for that frequency. R must be at least $\lambda/2\pi$, where λ is the free-space operating wavelength in meters.

Single RF Sources Subject to Routine Environmental Evaluation				
RF Source frequency (MHz)	Threshold ERP (watts)			
0.3-1.34	1,920 R ²			
1.34-30	3,450 R ² /f ²			
30-300	3.83 R ²			
300-1,500	0.0128 R ² f			
1,500-100,000	19.2R ²			

For Multiple RF sources: FCC Rule Part 1.1307(b)(3)(ii):

- (A) The available maximum time-averaged power of each source is no more than 1 mW and there is a separation distance of two centimeters between any portion of a radiating structure operating and the nearest portion of any other radiating structure in the same device, except if the sum of multiple sources is less than 1 mW during the time-averaging period, in which case they may be treated as a single source (separation is not required).
- (B) In the case of fixed RF sources operating in the same time-averaging period, or of multiple mobile or portable RF sources within a device operating in the same time averaging period, if the sum of the fractional contributions to the applicable thresholds is less than or equal to 1 as indicated in the following equation.

$$\sum_{i=1}^{a} \frac{P_i}{P_{th,i}} + \sum_{j=1}^{b} \frac{ERP_j}{ERP_{th,j}} + \sum_{k=1}^{c} \frac{Evaluated_k}{Exposure\ Limit_k} \le 1$$

1.3 Calculated Result

Radio Access	Prediction Frequency	Max. Field Strength	Antenna Gain	Output Power	Tune-Up Power	ERP	
Technology	(MHz)	(dBuV/m)	(dBi)	(dBm)	(dBm)	(dBm)	
SRD	433.92	75.63	0	-19.63	-19.00	-21.15	

	Frequency	Ontion	Min. Distance	Max.	Power	Exposure Limit	Ratio	Result
	(MHz) Option	(cm)	(dBm)	(mW)	(mW)	Kallo	Pass/Fail	
Ī	433.92	В	0.5	-19.00	0.01	23.17	0.01	Pass

Note: 1. EIRP= E-104.8+20logD; Output Power=EIRP- Antenna Gain; ERP=EIRP-2.15dB

- 2. Option A, B and C refers as clause 1.2.
- 3. For option B, Max (time-averaged power, effective radiated power (ERP)) converts to Max. Power. For option C, ERP converts to Max. Power;
- 4. For option B, P_{th} (mW) converts to Exposure Limit (mW); For option C, ERP (W) converts to Exposure Limit (mW).
 - 5. Ratio= Tune-Up ERP (mW)/ Exposure Limit (mW)

Mode for Simultaneous Multi-band Transmission:

Radio Access Technology	Ratio 1	Ratio 2	Ratio 3	Simultaneous	Limit	Result	
	Ratio 1	Ratio 2		Ratio		Pass/Fail	
1	1	/	/	/	1	1	

Result: Pass