FCC TEST REPORT						
	FCC ID: 2A4K9-K3					
Report No.	: <u>SSP24050122-2E</u>					
Applicant	: YABER TECHNOLOGIES CO.,LIMITED					
Product Name	: Projector					
Model Name	: <u>K3</u>					
Test Standard	: FCC Part 15.247					
Date of Issue	: 2024-09-09					
	CCUT					
	nzhen CCUT Quality Technology Co., Ltd.					
1F, Building 35, Changxing Technology Industrial Park, Yutang Street, Guangming District, Shenzhen, Guangdong, China; (Tel.:+86-755-23406590 website: www.ccuttest.com)						
This test report is limited to the above client company and the product model only. It may not be duplicated without prior permitted by Shenzhen CCUT Quality Technology Co., Ltd.						

Test Report Basic Information

Applicant	YABER TECHNOLOGIES CO.,LIMITED				
Address of Applicant	Room 406,4 Floor, B Building, BanTian International Center, HuanCheng				
Address of Applicant	South Road, BanTian Street, LongGang District, Shenzhen, China				
Manufacturer	YABER TECHNOLOGIES CO.,LIMITED				
	Room 406,4 Floor, B Building, BanTian International Center, HuanCheng				
Address of Manufacturer:	South Road, BanTian Street, LongGang District, Shenzhen, China				
Product Name	Projector				
Brand Name:	Yaber				
Main Model	КЗ				
Series Models	K3 Plus, K3 Pro				
	FCC Part 15 Subpart C				
	ANSI C63.4-2014				
Test Standard	ANSI C63.10-2013				
Date of Test	2024-05-17 to 2024-07-30				
Test Result	Passed				
Tested By	Lorrix Lua (Lorzix Luo) Coulity Tech				
Reviewed By	Lorrix Lua (Lorzix Luo) Lieber Ouyang (Lieber Ouyang)				
Authorized Signatory	Lahm Peng (Lahm Peng)				
•	to the above client company and the product model only. It may not be				
duplicated without prior permitted by Shenzhen CCUT Quality Technology Co., Ltd All test data presented in					
this test report is only applicabl	e to presented test sample.				

CONTENTS

	5
1.1 Product Information	5
1.2 Test Setup Information	
1.3 Compliance Standards	
1.4 Test Facilities	
1.5 List of Measurement Instruments	
1.6 Measurement Uncertainty	
2. Summary of Test Results	
3. Antenna Requirement	
3.1 Standard and Limit	
3.2 Test Result	
4. Conducted Emissions	
4.1 Standard and Limit	
4.2 Test Procedure	
4.3 Test Data and Results	
5. Radiated Emissions	
5.1 Standard and Limit	
5.2 Test Procedure	
5.3 Test Data and Results	
6. Band-edge Emissions(Radiated)	
6.1 Standard and Limit	
6.2 Test Procedure 6.3 Test Data and Results	
7. Frequency Hopping System	
7.1 Standard and Limit 7.2 Test Procedure	
7.2 Test Procedure	
8. Dwell Time	
8.1 Standard and Limit	
8.2 Test Procedure	
8.3 Test Data and Results	27
8.3 Test Data and Results	27 30
 8.3 Test Data and Results 9. Maximum Peak Conducted Output Power 9.1 Standard and Limit 	27 30 30
8.3 Test Data and Results	
 8.3 Test Data and Results 9. Maximum Peak Conducted Output Power	
 8.3 Test Data and Results	
 8.3 Test Data and Results 9. Maximum Peak Conducted Output Power	
 8.3 Test Data and Results 9. Maximum Peak Conducted Output Power 9.1 Standard and Limit 9.2 Test Procedure 9.3 Test Data and Results 10. Occupied Bandwidth(-20dB) 10.1 Standard and Limit 	
 8.3 Test Data and Results 9. Maximum Peak Conducted Output Power 9.1 Standard and Limit. 9.2 Test Procedure. 9.3 Test Data and Results 10. Occupied Bandwidth(-20dB) 10.1 Standard and Limit. 10.2 Test Procedure. 	27 30 30 30 30 30 30 33 33 33 33 33
 8.3 Test Data and Results	
 8.3 Test Data and Results	
 8.3 Test Data and Results	27 30 30 30 30 30 33 33 33 33 33
 8.3 Test Data and Results	27 30 30 30 30 30 33 33 33 33 33
 8.3 Test Data and Results 9. Maximum Peak Conducted Output Power	
 8.3 Test Data and Results	27 30 30 30 30 33 33 33 33 33 33
 8.3 Test Data and Results	
 8.3 Test Data and Results	
 8.3 Test Data and Results	27 30 30 30 30 30 33 33 33 33 33
 8.3 Test Data and Results 9. Maximum Peak Conducted Output Power 9.1 Standard and Limit. 9.2 Test Procedure. 9.3 Test Data and Results 10. Occupied Bandwidth(-20dB) 10.1 Standard and Limit. 10.2 Test Procedure. 10.3 Test Data and Results 11. Carrier Frequencies Separation. 11.1 Standard and Limit. 11.2 Test Procedure. 11.3 Test Data and Results 12. Number of Hopping Channel. 12.1 Standard and Limit. 12.2 Test Procedure. 13.3 Test Data and Results 	27 30 30 30 30 30 33 33 33 33 33
 8.3 Test Data and Results 9. Maximum Peak Conducted Output Power 9.1 Standard and Limit. 9.2 Test Procedure. 9.3 Test Data and Results 10. Occupied Bandwidth(-20dB) 10.1 Standard and Limit. 10.2 Test Procedure. 10.3 Test Data and Results 11. Carrier Frequencies Separation. 11.1 Standard and Limit. 11.2 Test Procedure. 11.3 Test Data and Results 12. Number of Hopping Channel. 12.1 Standard and Limit. 12.2 Test Procedure. 13. Test Data and Results 13. Band-edge Emission(Conducted). 13. Standard and Limit. 13. Test Data and Results. 	27 30 30 30 30 33 33 33 33 33 33
 8.3 Test Data and Results 9. Maximum Peak Conducted Output Power 9.1 Standard and Limit. 9.2 Test Procedure. 9.3 Test Data and Results 10. Occupied Bandwidth(-20dB) 10.1 Standard and Limit. 10.2 Test Procedure. 10.3 Test Data and Results 11. Carrier Frequencies Separation. 11.1 Standard and Limit. 11.2 Test Procedure. 11.3 Test Data and Results 12. Number of Hopping Channel. 12.1 Standard and Limit. 12.2 Test Procedure. 13.3 Test Data and Results 13. Band-edge Emission(Conducted). 13.3 Test Data and Results 14. Conducted RF Spurious Emissions. 	27 30 30 30 30 33 33 33 33 33 33
 8.3 Test Data and Results	
 8.3 Test Data and Results 9. Maximum Peak Conducted Output Power 9.1 Standard and Limit. 9.2 Test Procedure. 9.3 Test Data and Results 10. Occupied Bandwidth(-20dB) 10.1 Standard and Limit. 10.2 Test Procedure. 10.3 Test Data and Results 11. Carrier Frequencies Separation. 11.1 Standard and Limit. 11.2 Test Procedure. 11.3 Test Data and Results 12. Number of Hopping Channel. 12.1 Standard and Limit. 12.2 Test Procedure. 13.3 Test Data and Results 13. Band-edge Emission(Conducted). 13.3 Test Data and Results 14. Conducted RF Spurious Emissions. 	27 30 30 30 30 33 33 33 33 33 33

Revision History

Revision	Issue Date	Description	Revised By	
V1.0	2024-09-09	Initial Release	Lahm Peng	

1. General Information

1.1 Product Information

Product Name:	Projector		
Trade Name:	Yaber		
Main Model:	КЗ		
Series Models:	K3 Plus, K3 Pro		
Rated Voltage:	AC 100-240V~50/60Hz, Rated Power: 300W		
Power Adapter:	N/A		
Test Sample No:	SSP24050122-1		
Hardware Version:	V1.0		
Software Version:	V1.0.0.22		
Note 1: The test data is gathered from a production sample, provided by the manufacturer.			

Note 2: The complimentary accessories and model name of series models listed are different from the main model, but the circuit and the electronic construction are the same, declared by the manufacturer.

Wireless Specification	
Wireless Standard:	Bluetooth BR/EDR
Operating Frequency:	2402MHz ~2480MHz
RF Output Power:	1.29dBm (Conducted)
Number of Channel:	79
Channel Separation:	1MHz
Modulation:	GFSK, π/4 DQPSK, 8DPSK
Antenna Gain:	5.47dBi
Type of Antenna:	FPCB Antenna
Type of Device:	Portable Device Mobile Device Modular Device

1.2 Test Setup Information

List of Test Modes							
Test Mode	De	escription		Remark			
TM1	Low	est Channel		2402MHz(DH5/2DH5/3DH5)			
TM2	Mide	dle Channel		2441MHz(DH5/2DH5/3DH5)			
TM3	High	est Channel		2480MHz(DH5/2D	H5/3DH5)		
TM4	ł	lopping		2402MHz~248	30MHz		
List and Detai	List and Details of Auxiliary Cable						
Descrip	otion	Length (cm)		Shielded/Unshielded	With/Without Ferrite		
-		-		-	-		
-			-	-			
List and Detai	List and Details of Auxiliary Equipment						
Descrip	otion	Manufacturer Model Serial Nur		Serial Number			
-		-		-		-	-
-		-		-	-		

List of Channels							
No. of	Frequency	No. of	Frequency	No. of	Frequency	No. of	Frequency
Channel	(MHz)	Channel	(MHz)	Channel	(MHz)	Channel	(MHz)
01	2402	21	2422	41	2442	61	2462
02	2403	22	2423	42	2443	62	2463
03	2404	23	2424	43	2444	63	2464
04	2405	24	2425	44	2445	64	2465
05	2406	25	2426	45	2446	65	2466
~	~	~	~	~	~	~	~
16	2417	36	2437	56	2457	76	2477
17	2418	37	2438	57	2458	77	2478
18	2419	38	2439	58	2459	78	2479
19	2420	39	2440	59	2460	79	2480
20	2421	40	2441	60	2461		

1.3 Compliance Standards

Compliance Standards			
FCC Dont 15 Subport C	FEDERAL COMMUNICATIONS COMMISSION, RADIO FREQUENCY DEVICES,		
FCC Part 15 Subpart C	Intentional Radiators		
All measurements contained in this	report were conducted with all above standards		
According to standards for test	nethodology		
ECC Dout 15 Subport C	FEDERAL COMMUNICATIONS COMMISSION, RADIO FREQUENCY DEVICES,		
FCC Part 15 Subpart C	Intentional Radiators		
	American National Standard for Methods of Measurement of Radio-Noise Emissions		
ANSI C63.4-2014	from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40		
	GHz.		
ANSI C63.10-2013	American National Standard of Procedures for Compliance Testing of Unlicensed		
ANSI C03.10-2015	Wireless Devices		
Maintenance of compliance is the responsibility of the manufacturer or applicant. Any modification of the product, which			
result is lowering the emission, should be checked to ensure compliance has been maintained.			

1.4 Test Facilities

	Shenzhen CCUT Quality Technology Co., Ltd.			
Laboratory Name:	1F, Building 35, Changxing Technology Industrial Park, Yutang Street,			
	Guangming District, Shenzhen, Guangdong, China			
CNAS Laboratory No.:	L18863			
A2LA Certificate No.:	6893.01			
FCC Registration No:	CN1373			
ISED Registration No.:	CN0164			
All measurement facilities used to collect the measurement data are located at 1F, Building 35, Changxing				
Technology Industrial Park, Yutang Street, Guangming District, Shenzhen, Guangdong, China.				

1.5 List of Measurement Instruments

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date	
Conducted Emissions						
AMN	ROHDE&SCHWARZ	ENV216	101097	2023-10-21	2024-10-20	
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	100242	2023-07-31	2024-07-30	
Test Cable	N/A	Cable 5	N/A	2023-07-31	2024-07-30	
EMI Test Software	FARA	EZ-EMC	EMEC-3A1+	N/A	N/A	
	1	Radiated Emission	IS			
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	100154	2023-07-31	2024-07-30	
Spectrum Analyzer	KEYSIGHT	N9020A	MY48030972	2023-07-31	2024-07-30	
Spectrum Analyzer	ROHDE&SCHWARZ	FSV40-N	101692	2023-07-31	2024-07-30	
Amplifier	SCHWARZBECK	BBV 9743B	00251	2023-07-31	2024-07-30	
Amplifier	HUABO	YXL0518-2.5-45		2023-07-31	2024-07-30	
Amplifier	COM-MW	DLAN-18G-4G-02	10229104	2023-07-31	2024-07-30	
Loop Antenna	DAZE	ZN30900C	21104	2023-08-07	2024-08-06	
Broadband Antenna	SCHWARZBECK	VULB 9168	01320	2023-08-07	2024-08-06	
Horn Antenna	SCHWARZBECK	BBHA 9120D	02553	2023-08-07	2024-08-06	
Horn Antenna	COM-MW	ZLB7-18-40G-950	12221225	2023-08-07	2024-08-06	
Attenuator	QUANJUDA	6dB	220731	2023-08-07	2024-08-06	
Test Cable	N/A	Cable 1	N/A	2023-07-31	2024-07-30	
Test Cable	N/A	Cable 2	N/A	2023-07-31	2024-07-30	
Test Cable	N/A	Cable 3	N/A	2023-07-31	2024-07-30	
Test Cable	N/A	Cable 4	N/A	2023-07-31	2024-07-30	
Test Cable	N/A	Cable 8	N/A	2023-07-31	2024-07-30	
Test Cable	N/A	Cable 9	N/A	2023-07-31	2024-07-30	
EMI Test Software	FARA	EZ-EMC	FA-03A2 RE+	N/A	N/A	
		Conducted RF Testi	ng			
RF Test System	MWRFTest	MW100-RFCB	220418SQS-37	2023-07-31	2024-07-30	
Spectrum Analyzer	KEYSIGHT	N9020A	ATO-90521	2023-07-31	2024-07-30	
RF Test Software	MWRFTest	MTS 8310	N/A	N/A	N/A	
Laptop	Lenovo	ThlnkPad E15 Gen 3	SPPOZ22485	N/A	N/A	
DUT Test Software	VanDyke Software	SecureCRT	N/A	N/A	N/A	

1.6 Measurement Uncertainty

Test Item	Conditions	Uncertainty
Conducted Emissions	9kHz ~ 30MHz	±1.64 dB
	9kHz ~ 30MHz	±2.88 dB
	30MHz ~ 1GHz	±3.32 dB
Radiated Emissions	1GHz ~ 18GHz	±3.50 dB
	18GHz ~ 40GHz	±3.66 dB
Conducted Output Power	9kHz ~ 26GHz	±0.50 dB
Occupied Bandwidth	9kHz ~ 26GHz	±4.0 %
Conducted Spurious Emission	9kHz ~ 26GHz	±1.32 dB

2. Summary of Test Results

FCC Rule	Description of Test Item	Result
FCC Part 15.203	Antenna Requirement	Passed
FCC Part 15.247(i)	RF Exposure(see the RF exposure report)	Passed
FCC Part 15.207	Conducted Emissions	Passed
FCC Part 15.209, 15.247(d)	Radiated Emissions	Passed
FCC Part 15.247(d)	Band-edge Emissions(Radiated)	Passed
FCC Part 15.247(a)(1), (g), (h)	Frequency Hopping System	Passed
FCC Part 15.247(a)(1)(iii)	Dwell Time	Passed
FCC Part 15.247(b)(1)	Maximum Peak Conducted Output Power	Passed
FCC Part 15.215(c)	Occupied Bandwidth(-20dB)	Passed
FCC Part 15.247(a)(1)	Carrier Frequencies Separation	Passed
FCC Part 15.247(a)(1)(iii)	Number of Hopping Channel	Passed
FCC Part 15.247(d)	Band-edge Emissions(Conducted)	Passed
FCC Part 15.247(d)	Conducted RF Spurious Emissions	Passed
Passed: The EUT complies with the esse	•	I
Failed: The EUT does not comply with t N/A: Not applicable	he essential requirements in the standard	

3. Antenna Requirement

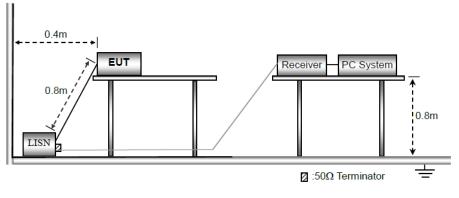
3.1 Standard and Limit

According to FCC Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.2 Test Result

This product has an FPCB antenna, fulfill the requirement of this section.

4. Conducted Emissions


4.1 Standard and Limit

According to the rule FCC Part 15.207, Conducted emissions limit, the limit for a wireless device as below:

Frequency of Emission	Conducted emissions (dBuV)					
(MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56	56 to 46				
0.5-5	56	46				
5-30	60	50				
Note 1: Decreases with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz						
Note 2: The lower limit applies	s at the band edges					

4.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.2.

Test Setup Block Diagram

a) The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

b) The following is the setting of the receiver
Attenuation: 10dB
Start Frequency: 0.15MHz
Stop Frequency: 30MHz
IF Bandwidth: 9kHz

c) The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

d) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

e) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

f) LISN is at least 80 cm from nearest part of EUT chassis.

g) For the actual test configuration, please refer to the related Item - photographs of the test setup.

4.3 Test Data and Results

All of the GFSK, $\pi/4$ DQPSK and 8DPSK modes have been tested, the EUT complied with the FCC Part 15.207 standard limit for a wireless device, and with the worst case GFSK_2402MHz as below: Remark: Level = Reading + Factor, Margin = Level - Limit

Test	Plots ar	nd Data o	of Conduct	ed Emissi	ions									
Teste	ed Mode	e:	TM1											
Test	Voltage	:	AC 12	20V/60Hz	Z									
Test	Power	Line:	Neut	ral										
Rema	ark:													
90.0	dBuV													
80														
70														
60			3											
50 2		m	A when	5 « ¹ ////////////////////////////////////	1 minthe March	1 minuter and the	un jute danse	n and the second second	add and a start of the start of	**************************************	Treate at			
40 30	W	v	V Ymm	, And the second second second	eller and a second	n	O Viyawa Wata	pullimension	and a state of the	12 - Minganya-u	- Charles	Monus Labor	the second se	
20												~	$ \rightarrow $	peak AVG
10														
0														
-10														
0.1	150		0.50	0		(MHz)		5.0)00				30.00)0
No		quency MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Rema	ark			
1	0	.1500	45.33	9.25	54.58	66.00	-11.42	QP	Ρ					
2	_	.1500	34.35	9.25	43.60	56.00	-12.40	AVG	Ρ					
3	_	.3704	43.30	9.39	52.69	58.49	-5.80	QP	Ρ					
4		.3704	32.19	9.39	41.58	48.49	-6.91	AVG	Ρ					
5		.6180	39.00	9.37	48.37	56.00	-7.63	QP	P					
6		.6180	27.71	9.37	37.08	46.00	-8.92	AVG	Ρ					
7	_	.9825	38.06	9.42	47.48	56.00	-8.52	QP	Ρ					
8		.9825	27.18	9.42	36.60	46.00	-9.40	AVG	Ρ					
9	_	.3909	38.09	9.47	47.56	56.00	-8.44	QP	Р					
10		.3909	26.41	9.47	35.88	46.00	-10.12	AVG	Ρ					
11	_	.1385	37.79	9.57	47.36	60.00	-12.64	QP	P P					
12	/	.1385	28.27	9.57	37.84	50.00	-12.16	AVG						

Test Plo	ots and Data o	of Conduct	ed Emissi	ons						
Tested	Mode:	TM1								
Test Vo	ltage:	AC 12	120V/60Hz							
Test Po	wer Line:	Live	re							
Remarl	k:									
90.0	dBuV									
50.0										
80 -										
70										
<u> </u>										
60										
50	- Mar	3	5	Aught Jac	1 mon walked		9 ****			
40	mind	1 Mar	my the first	A Marke - Holes	work and the state of the state	ur have	10	and the second	12	
40	with	mm	Anna	att war man and the	WHITE MAN	Marrian	Million and	A14-1-44/114	and and a second and a second and	mandara
30										
20										peak
										AVG
10										
0										
-10										
0.150)	0.50	0		(MHz)		5.0)00		30.000
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark	
1	0.1500	43.84	9.42	53.26	66.00	-12.74	QP	Ρ		
2	0.1500	31.65	9.42	41.07	56.00	-14.93	AVG	Ρ		
3	0.4425	39.49	9.57	49.06	57.01	-7.95	QP	Ρ		
4	0.4425	28.52	9.57	38.09	47.01	-8.92	AVG	P		
5 * 6	0.6090	40.61 28.46	9.57 9.57	50.18 38.03	56.00 46.00	-5.82 -7.97	QP AVG	P P		
7	1.3245	39.54	9.63	49.17	46.00 56.00	-6.83	QP	P		
8	1.3245	27.58	9.63	37.21	46.00	-8.79	AVG	P		
9	3.8760	39.13	9.72	48.85	56.00	-7.15	QP	P		
10	3.8760	29.04	9.72	38.76	46.00	-7.24	AVG	Р		
11	7.1520	38.61	9.76	48.37	60.00	-11.63	QP	Ρ		
12	7.1520	29.14	9.76	38.90	50.00	-11.10	AVG	P		

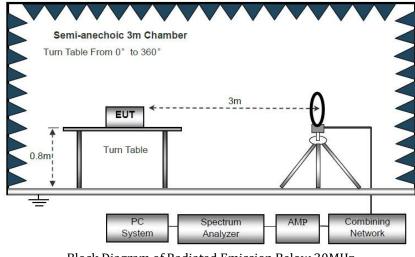
5. Radiated Emissions

5.1 Standard and Limit

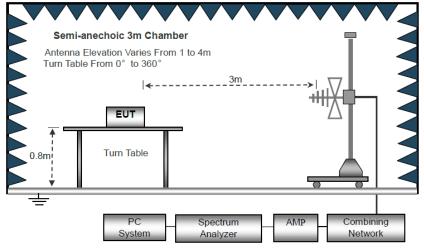
According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.205(c)).

Frequency of emission (MUL)	Radiated emissions (3m)
Frequency of emission (MHz)	Quasi-peak (dBuV/m)
30-88	40
88-216	43.5
216-960	46
Above 960	54

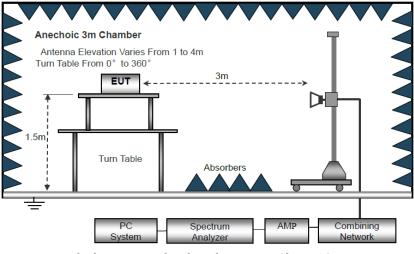
According to the rule FCC Part 15.209, Radiated emission limit for a wireless device as below:


The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply. Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.

Note: Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.


5.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.3 to 6.6.


Note: The more stringent limit applies at transition frequencies.

Block Diagram of Radiated Emission Below 30MHz

Block Diagram of Radiated Emission From 30MHz to 1GHz

Block Diagram of Radiated Emission Above 1GHz

a) The EUT is placed on a turntable, which is 0.8m above ground plane for test frequency range blew 1GHz, and 1.5m above ground plane for test frequency range above 1GHz.

b) EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.

c) Use the following spectrum analyzer settings: Span = wide enough to fully capture the emission being measured RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz, 10kHz for f < 30MHz VBW \ge RBW, Sweep = auto Detector function = peak Trace = max hold

d) Follow the guidelines in ANSI C63.4-2014 with respect to maximizing the emission by rotating the EUT, adjusting the measurement antenna height and polarization, etc. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, submit this data. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.

e) The peak level, once corrected, must comply with the limit specified in Section 15.209. Set the RBW = 1MHz, VBW = 10Hz, Detector = PK for AV value, while maintaining all of the other instrument settings.

f) For the actual test configuration, please refer to the related item - EUT test photos.

5.3 Test Data and Results

All of the GFSK, $\pi/4$ DQPSK and 8DPSK modes have been tested, the EUT complied with the FCC Part 15.247 standard limit for a wireless device, and with the worst case GFSK_2402MHz as below:

Remark: Level = Reading + Factor, Margin = Level - Limit

TM1	 `M1						
AC 120V/60Hz							
ization: Horizontal							
	4 × 5 5 × 5						
1 3							
	What is a second second when the second s						
i i i i i i i i i i i i i i i i i i i	" "MANNER IN JACKAMANNA"						
www.www.www.www.www.www.	ward and the ward ward ward						
and the second and the se	and the start of t						
www.www.www.www.www.u.u.u.	where whether here where we have the second s						
www.www.www.www.www.u.u.u.							
www.www.www.www.www.u.u.u.	1000.C						
60.00 (MHz) 300.00							
60.00 (MHz) 300.00 Reading Factor Level Limit Margin Datastar He							
Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) Margin (dBuV/m) Detector (c	ight Azimuth D/E Demosile						
60.00 Factor (dBuV) Level (dBuV/m) Limit (dBuV/m) Margin (dBuV/m) Detector (dB) He (c 45.57 -10.11 35.46 43.50 -8.04 QP 1 43.64 -10.23 33.41 46.00 -12.59 QP 1	eight mm Azimuth (deg.) P/F Remark 00 278 P 00 11 P						
60.00 Factor (dBuV) Level (dB/m) Limit (dBuV/m) Margin (dBuV/m) Detector (dB) He (c 43.64 -10.23 33.41 46.00 -12.59 QP 1	eight cmm Azimuth (deg.) P/F Remark 00 278 P 00 11 P 00 349 P						
60.00 (MHz) 300.00 60.00 (MHz) 300.00 60.00 (MHz) 300.00 80.00 (MHz) 10.00 80.00 (MHz) 10.00 80.00 (MHz) 10.00 80.00 (ABUV) (ABUV) 80.00 -10.11 35.46 80.00 -8.04 QP 43.64 -10.23 33.41 46.00 -12.59 QP 10.00 -7.61 36.39 80.00 -9.61 QP 91.00 -7.61 44.66 46.00 -1.34 QP	i i						
60.00 (MHz) 300.00 60.00 (MHz) 300.00 60.00 (MHz) 300.00 60.00 (MHz) 300.00 60.00 Eactor (dBw/m) Level (dBw/m) Limit (dBw/m) Margin (dB) Detector He (control of the control of the contro	eight cm) Azimuth (deg.) P/F Remar 00 278 P 00 11 P 00 349 P						

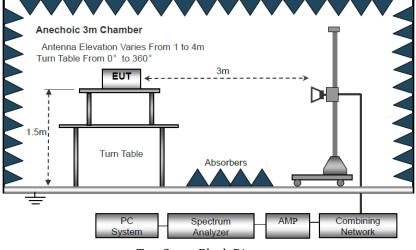
Radi	ated	Emiss	sion T	lest Da	ata (30M	Hz to	1GHz)								
Teste	ed Mo	de:				TM1	M1									
Test	Volta	ge:				AC 1	C 120V/60Hz									
Test	Ante	ına P	olariz	zation	:	Vert	ical									
Rem	ark:															
80.0	dB	ıV/m														-
70																-
60																-
																1
50																
40														×	ox X	
			1			2						3				
30	M. Ju	M	A L		uller,	×.			total.				<u> </u>		with managements	
	"Wywm	ŗγ	~~W	M. /		ų,	M.W.	M. Mark	A ALLAND	Munch	ul	human	" WAAR	Mar	Constant March	
20				14.1			- 14	"had "			Mann .					1
10																
10																1
0.0	000														1000	
30).000			60	.00				(MHz)		30	0.00			1000	.000
No). F	reque (MH:		Read (dBu			ictor 3/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark	
1		45.69	47	41.	20	-8	.28	32.92	40.00	-7.08	QP	100	113	Р		
2		71.83		44.	54	-11	1.92	32.62	40.00	-7.38	QP	100	52	Р		
3		370.70		41.4			.60	34.82	46.00	-11.18	QP	100	349	Ρ		
4		556.77		46.			.60	43.52	46.00	-2.48	QP	100	124	P		
5		742.25 929.00		42.2			.77 .89	42.98 43.34	46.00 46.00	-3.02 -2.66	QP QP	100 100	231 242	P P		
0	! `	929.00	101	40.4	40	Z.	.09	43.34	40.00	-2.00		100	242			

Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector
MHz	dBuV/m	dB/m	dBuV/m	dBuV/m	dB	H/V	PK/AV
		Lo	west Channel (GFSK_2402M	Hz)		·
4804	75.32	-14.72	60.6	74	-13.4	Н	РК
4804	60.9	-14.72	46.18	54	-7.82	Н	AV
7206	64.88	-8.41	56.47	74	-17.53	Н	РК
7206	45.53	-8.41	37.12	54	-16.88	Н	AV
4804	74.27	-14.72	59.55	74	-14.45	V	РК
4804	60.78	-14.72	46.06	54	-7.94	V	AV
7206	63.7	-8.41	55.29	74	-18.71	V	РК
7206	49.3	-8.41	40.89	54	-13.11	V	AV
		Mi	ddle Channel (GFSK_2441M	Hz)		
4882	76.59	-14.64	61.95	74	-12.05	Н	РК
4882	62.51	-14.64	47.87	54	-6.13	Н	AV
7323	62.54	-8.28	54.26	74	-19.74	Н	РК
7323	48.51	-8.28	40.23	54	-13.77	Н	AV
4882	73.39	-14.64	58.75	74	-15.25	V	РК
4882	59.97	-14.64	45.33	54	-8.67	V	AV
7323	65.82	-8.28	57.54	74	-16.46	V	РК
7323	45.18	-8.28	36.9	54	-17.1	V	AV
		Hig	ghest Channel	(GFSK_2480M	Hz)		
4960	77.24	-14.53	62.71	74	-11.29	Н	РК
4960	61.96	-14.53	47.43	54	-6.57	Н	AV
7440	63.36	-8.13	55.23	74	-18.77	Н	РК
7440	45.54	-8.13	37.41	54	-16.59	Н	AV
4960	74.01	-14.53	59.48	74	-14.52	V	РК
4960	60.85	-14.53	46.32	54	-7.68	V	AV
7440	63.13	-8.13	55	74	-19	V	РК
7440	46.86	-8.13	38.73	54	-15.27	V	AV

Note 1: All of the GFSK, $\pi/4$ DQPSK and 8DPSK modes have been tested. This EUT was tested in 3 orthogonal positions and the worst case position data of GFSK was reported.

Note 2: Testing is carried out with frequency rang 9kHz to the tenth harmonics. The measurements greater than 20dB below the limit from 9kHz to 30MHz.

Note 3: Other emissions are attenuated 20dB below the limits from 9kHz to 30MHz, so it does not recorded report, 18GHz-26GHz not recorded for no spurious point have a margin of less than 6 dB with respect to the limits.


6. Band-edge Emissions(Radiated)

6.1 Standard and Limit

According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.205(c)).

6.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.3 to 6.6 and section 6.10.

Test Setup Block Diagram

As the radiated emissions testing, set the Lowest and Highest Transmitting Channel, observed the outside band of 2310MHz to 2400MHz and 2483.5MHz to 2500MHz, than mark the higher-level emission for comparing with the FCC rules.

6.3 Test Data and Results

All of the GFSK, $\pi/4$ DQPSK and 8DPSK modes have been tested, the EUT complied with the FCC Part 15.247 standard limit, and with the worst case GFSK as below:

Test Mode	Frequency	Limit	Result	
Test Mode	MHz	dBuV/dBc		
Louroat	2310.00	<54 dBuV	Pass	
Lowest	2390.00	<54 dBuV	Pass	
Uighost	2483.50	<54 dBuV	Pass	
Highest	2500.00	<54 dBuV	Pass	

Radiated Em	ission Test Dat	ta (Band edge	emissions)						
Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector		
MHz	dBuV/m	dB/m	dBuV/m	dBuV/m	dB	H/V	PK/AV		
Lowest Channel (GFSK_2402MHz)									
2310	68.95	-21.34	47.61	74	-26.39	Н	РК		
2310	52.02	-21.34	30.68	54	-23.32	Н	AV		
2390	65.17	-20.96	44.21	74	-29.79	Н	РК		
2390	52.57	-20.96	31.61	54	-22.39	Н	AV		
2400	69.8	-20.91	48.89	74	-25.11	Н	РК		
2400	52.12	-20.91	31.21	54	-22.79	Н	AV		
2310	69.94	-21.34	48.6	74	-25.4	V	РК		
2310	49.87	-21.34	28.53	54	-25.47	V	AV		
2390	64.25	-20.96	43.29	74	-30.71	V	РК		
2390	50.16	-20.96	29.2	54	-24.8	V	AV		
2400	70.88	-20.91	49.97	74	-24.03	V	РК		
2400	53.1	-20.91	32.19	54	-21.81	V	AV		
		Hig	hest Channel	(GFSK_2480M	Hz)				
2483.50	68.93	-20.51	48.42	74	-25.58	Н	РК		
2483.50	54.14	-20.51	33.63	54	-20.37	Н	AV		
2500	65.61	-20.43	45.18	74	-28.82	Н	РК		
2500	50.64	-20.43	30.21	54	-23.79	Н	AV		
2483.50	67.65	-20.51	47.14	74	-26.86	V	РК		
2483.50	52.67	-20.51	32.16	54	-21.84	V	AV		
2500	65.89	-20.43	45.46	74	-28.54	V	РК		
2500	49.64	-20.43	29.21	54	-24.79	V	AV		

Remark: Level = Reading + Factor, Margin = Level - Limit

7. Frequency Hopping System

7.1 Standard and Limit

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

(g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.

(h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

7.2 Test Procedure

This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock.

Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for DA 00-705 and FCC Part 15.247 rule.

7.3 Test Data and Results

Pseudorandom Frequency Hopping Sequence Table as below:

Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

8. Dwell Time

8.1 Standard and Limit

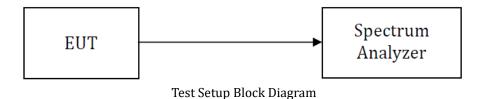
According to 15.247 (a)(1)(iii), Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

8.2 Test Procedure

1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.

2) Spectrum Setting: RBW=1MHz, VBW=3MHz, Span=0Hz, Detector=Peak

3) Use video trigger with the trigger level set to enable triggering only on full pulses.


4) Sweep Time is more than once pulse time.

5) Set the center frequency on any frequency would be measure and set the frequency span to zero span.

6) Measure the maximum time duration of one single pulse.

7) Set the EUT for packet transmitting.

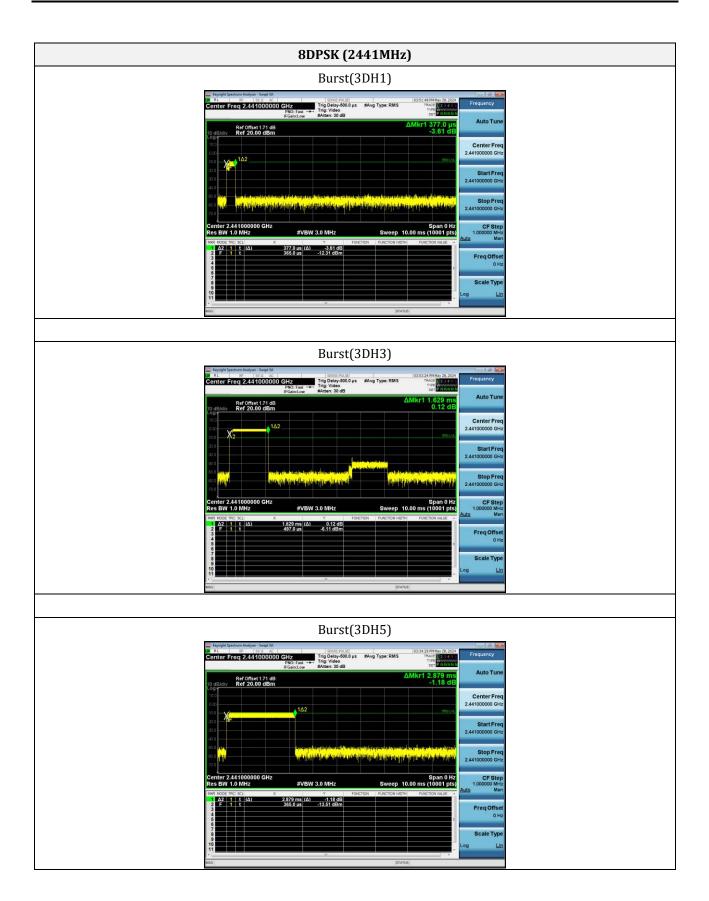
- 8) Measure the maximum time duration of one single pulse.
- 9) The EUT was set to the Hopping Mode for Dwell Time Test.

FCC Test Report

8.3 Test Data and Results

Test Mode	Data Packet	Channel (MHz)	Pulse Duration (ms)	Dwell Time (ms)	Limit (ms)	Result
	DH1	2441	0.368	117.76	<400	Pass
GFSK	DH3	2441	1.624	259.84	<400	Pass
	DH5	2441	2.872	306.35	<400	Pass
	2DH1	2441	0.377	120.64	<400	Pass
Pi/4 DQPSK	2DH3	2441	1.629	260.64	<400	Pass
	2DH5	2441	2.878	306.99	<400	Pass
	3DH1	2441	0.377	120.64	<400	Pass
8DPSK	3DH3	2441	1.629	260.64	<400	Pass
	3DH5	2441	2.879	307.09	<400	Pass

Note:


1. A period time = 0.4 (s) * 79 = 31.6(s)

2. DH1 time slot = Pulse Duration * (1600/(2*79)) * A period time DH3 time slot = Pulse Duration * (1600/(4*79)) * A period time

DH5 time slot = Pulse Duration * (1600/(6*79)) * A period time

3. For GFSK, $\pi/4$ -DQPSK and 8DPSK: The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

GFSK(2441MHz)	Pi/4 DQPSK (2441MHz)
Burst(DH1)	Burst(2DH1)
Intervent and the second of t	Statute
Burst(DH3)	Burst(2DH3)
Register Statution Analysis - Sound SA. Concernence of the sound SA. Center Freq 2.441000000 GHz The Delaysis of the SA. Ref Offset 3.71 dB Concernence of the SA. Output Statution Concernence	Exception <
Burst(DH5)	Burst(2DH5)
Ref Offset 171 db Stock PALM Contor Freq 2.441000000 GHz Frequency Ref Offset 171 db Ref Offset 171	Exception State Filler Fille

9. Maximum Peak Conducted Output Power

9.1 Standard and Limit

According to 15.247(b)(1). For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

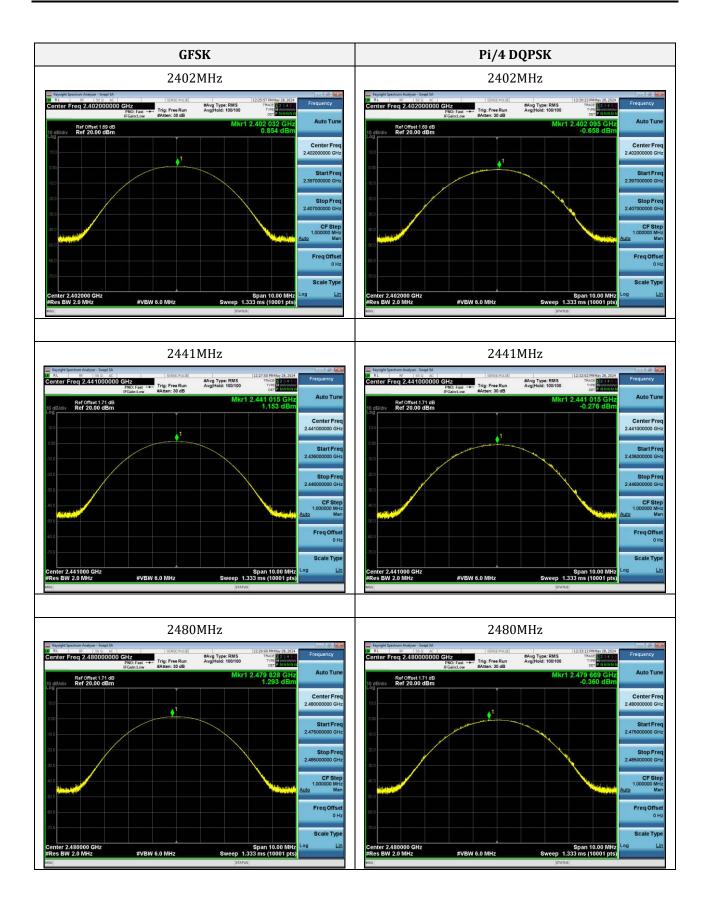
9.2 Test Procedure

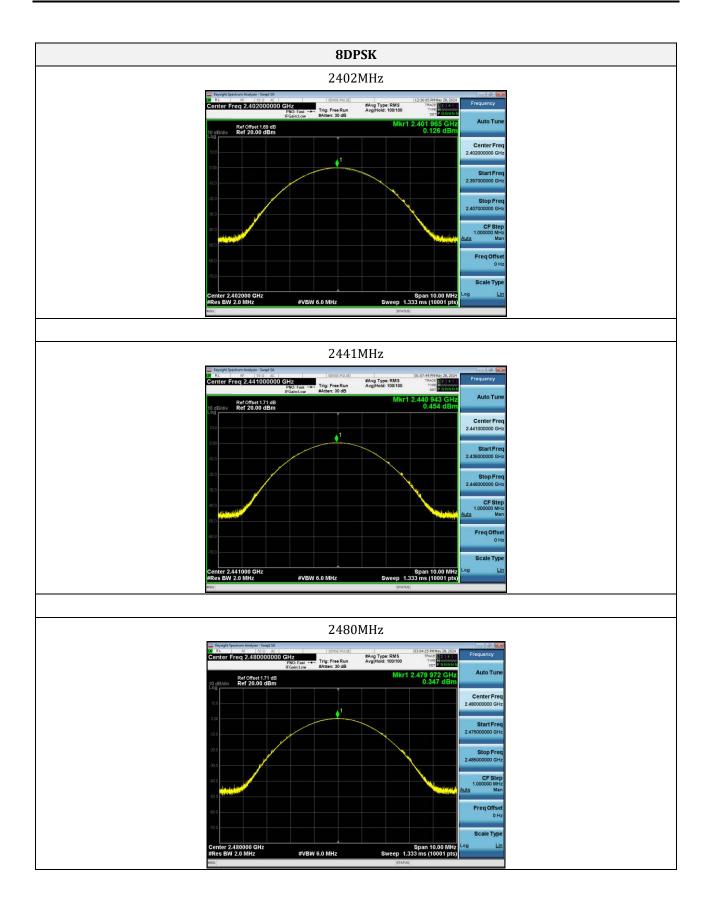

1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.

2) Set the spectrum analyzer to any one measured frequency within its operating range.

3) Set RBW = 2MHz, VBW = 6MHz, Sweep = Auto, Detector = peak.

4) Measure the highest amplitude appearing on spectral display and mark the value.


5) Repeat the above procedures until all frequencies measured were complete.



Test Setup Block Diagram

9.3 Test Data and Results

Test Mode	Test Channel MHz	Conducted Output Power (dBm)	Limit (dBm)	Test Result
	2402	0.85	21	Pass
GFSK	2441	1.15	21	Pass
	2480	1.29	21	Pass
	2402	-0.66	21	Pass
Pi/4 DQPSK	2441	-0.28	21	Pass
	2480	-0.36	21	Pass
	2402	0.13	21	Pass
8DPSK	2441	0.45	21	Pass
	2480	0.35	21	Pass

10. Occupied Bandwidth(-20dB)

10.1 Standard and Limit

According to 15.215 (c), intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

10.2 Test Procedure

According to the ANSI 63.10-2013, section 6.9, the emission bandwidth test method as follows.

1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.

2) Set the spectrum analyzer to any one measured frequency within its operating range.

3) Set RBW = 30kHz, VBW = 100kHz, Sweep = Auto.

4) Set a reference level on the measuring instrument equal to the highest peak value.

5) Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.

6) Repeat the above procedures until all frequencies measured were complete.

Test Setup Block Diagram

10.3 Test Data and Results

Test Mode	Test Channel	20dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(kHz)
GFSK	2402	0.939	829.28
	2441	0.824	774.4
	2480	0.824	758.42
Pi/4 DQPSK	2402	1.298	1238.8
	2441	1.301	1240.7
	2480	1.295	1233.7
8DPSK	2402	1.21	1046.3
	2441	1.284	1145
	2480	1.281	1157.1

11. Carrier Frequencies Separation

11.1 Standard and Limit

According to FCC 15.247(a)(1), frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, and frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

11.2 Test Procedure

1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.

2) Set the spectrum analyzer to any one measured frequency within its operating range.

3) Set RBW = 30kHz, VBW = 100kHz, Sweep = Auto, Detector = peak.

4) By using the Max Hold function, record the separation of two adjacent channels.

5) Measure the frequency difference of these two adjacent channels by spectrum analyzer mark function. and then plot the result on the screen of the spectrum analyzer.

6) Repeat above procedures until all frequencies measured were complete.

Test Setup Block Diagram

Test Mode	Test Channel	Test Freq. 1 (MHz)	Test Freq. 2 (MHz)	CFS (MHz)	Limit (MHz)
GFSK	Lowest	2402.05	2403	0.95	0.626
	Middle	2441.15	2441.992	0.842	0.549
	Highest	2479	2480.158	1.158	0.549
Pi/4 DQPSK	Lowest	2402.01	2402.998	0.988	0.865
	Middle	2440.974	2442.014	1.04	0.867
	Highest	2479.052	2479.992	0.94	0.863
8DPSK	Lowest	2402.152	2402.99	0.838	0.807
	Middle	2440.992	2441.998	1.006	0.856
	Highest	2479	2480.142	1.142	0.854

11.3 Test Data and Results

Note: CFS(Channel Frequency Separation) = Test Freq. 2 - Test Freq. 1

12. Number of Hopping Channel

12.1 Standard and Limit

According to FCC 15.247(a)(1), frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, and frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

12.2 Test Procedure

1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.

2) Set the spectrum analyzer to any one measured frequency within its operating range.

3) Set RBW = 100kHz, VBW = 300kHz, Sweep = Auto, Detector = peak.

4) Set the spectrum analyzer on Max hold mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.

5) Set the spectrum analyzer on View mode and then plot the result on the screen of the spectrum analyzer.

6) Repeat the above procedures until all frequencies measured were complete.

Test Setup Block Diagram

12.3 Test Data and Results

Test Mode	Number of Hopping Channel	Limit	Test Result
GFSK	79	15	Pass
Pi/4 DQPSK	79	15	Pass
8DPSK	79	15	Pass

13. Band-edge Emission(Conducted)

13.1 Standard and Limit

According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.205(c)).

13.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.10.

1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.

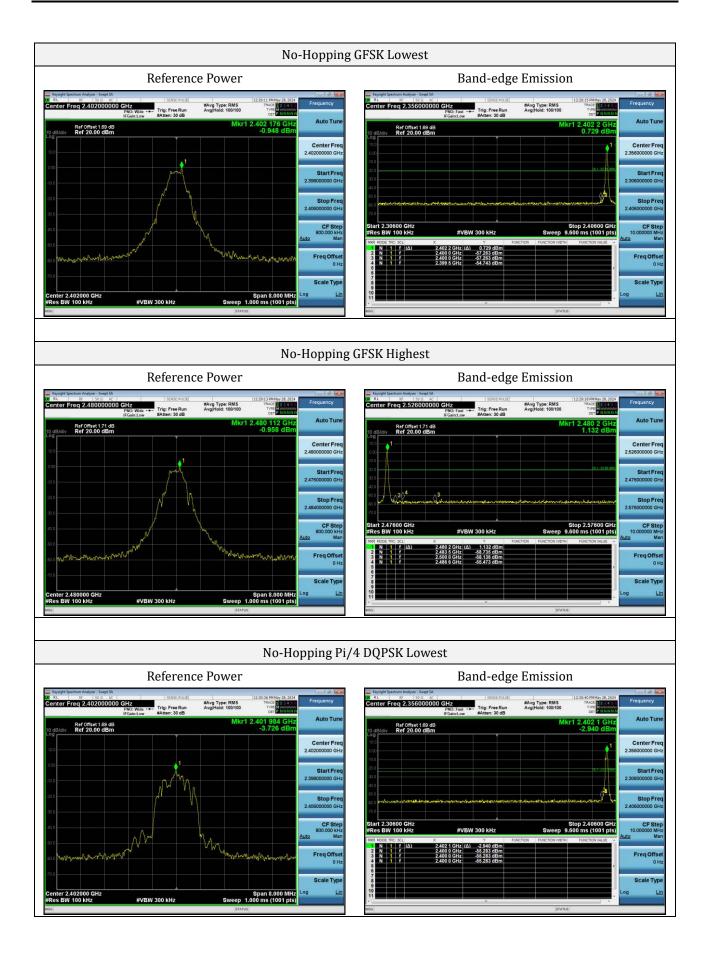
2) Set the spectrum analyzer to any one measured frequency within its operating range.

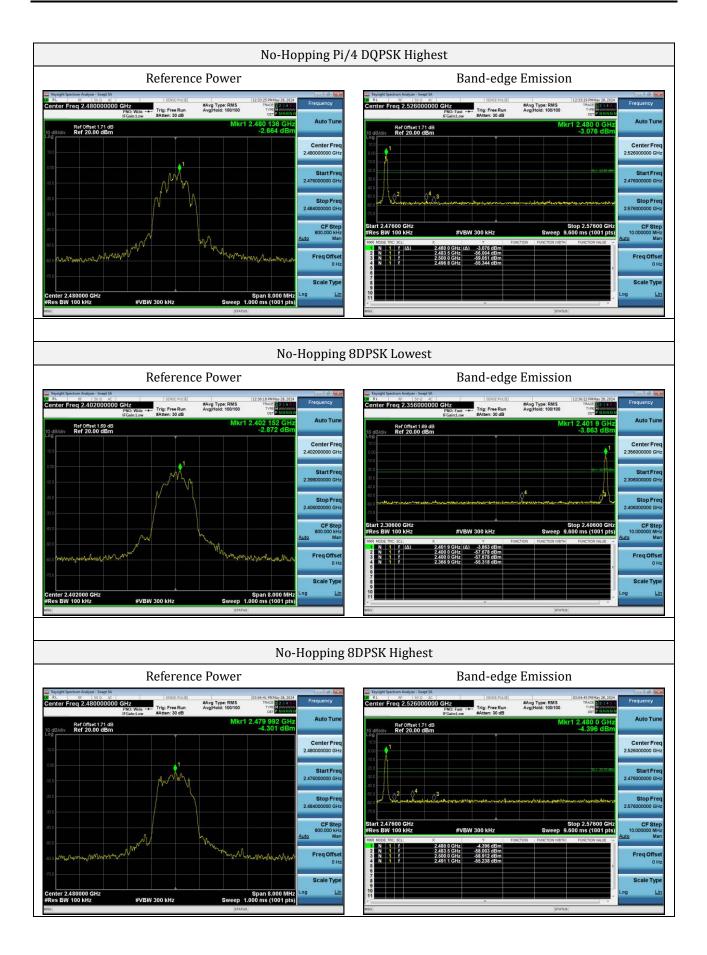
3) Set RBW = 100kHz, VBW = 300kHz, Sweep = Auto, Detector = peak.

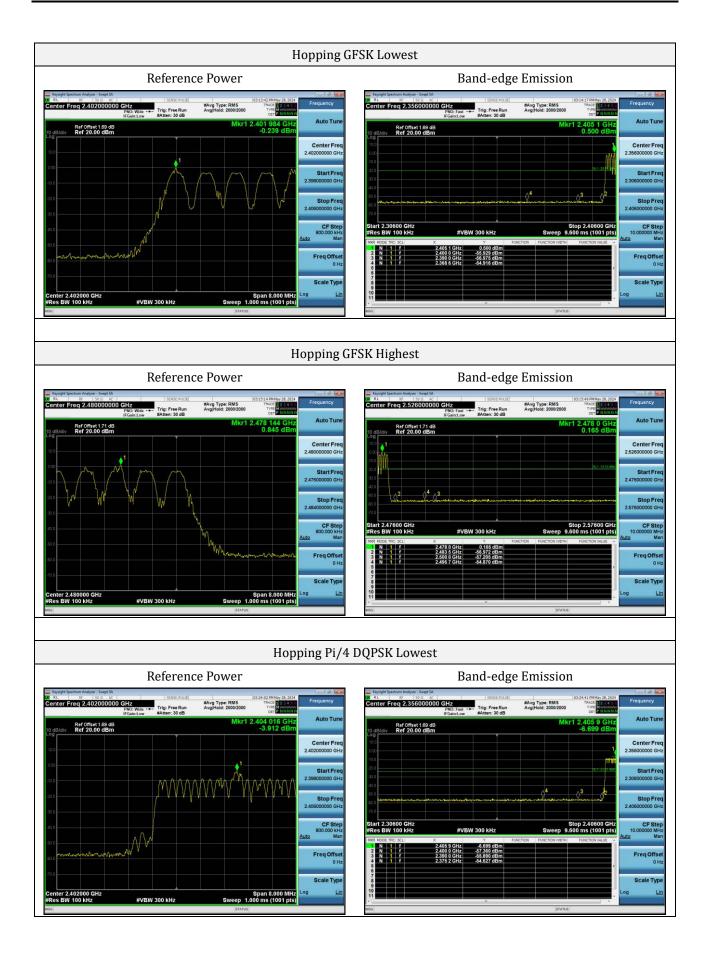
4) Measure the highest amplitude appearing on spectral display and set it as a reference level.

5) Set a convenient frequency span including 100 kHz bandwidth from band edge.

6) Measure the emission and marking the edge frequency.


7) Repeat above procedures until all frequencies measured were complete.




Test Setup Block Diagram

13.3 Test Data and Results

Test Mode	Band-edge	Test Channel (MHz)	Max. Value (dBc)	Limit (dBc)	Test Result		
No-Hopping							
GFSK	Lowest	2402	-53.79	-20	Pass		
	Highest	2480	-54.51	-20	Pass		
Pi/4 DQPSK	Lowest	2402	-51.55	-20	Pass		
	Highest	2480	-52.68	-20	Pass		
ODDCV	Lowest	2402	-52.44	-20	Pass		
8DPSK	Highest	2480	-50.93	-20	Pass		
Hopping							
GFSK	Lowest	2402	-54.67	-20	Pass		
	Highest	2480	-55.72	-20	Pass		
Pi/4 DQPSK	Lowest	2402	-50.71	-20	Pass		
	Highest	2480	-51.02	-20	Pass		
8DPSK	Lowest	2402	-50.81	-20	Pass		
	Highest	2480	-51.79	-20	Pass		

14. Conducted RF Spurious Emissions

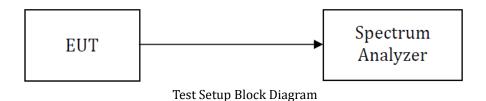
14.1 Standard and Limit

According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.205(c)).

14.2 Test Procedure

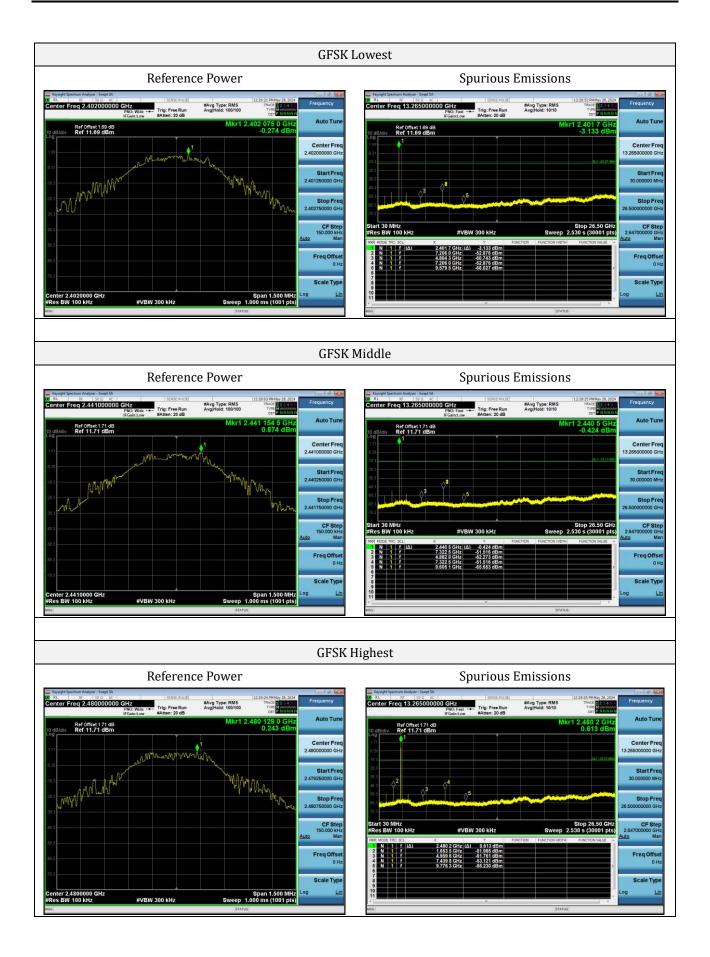
Test is conducting under the description of ANSI C63.10 - 2013 section 6.7.

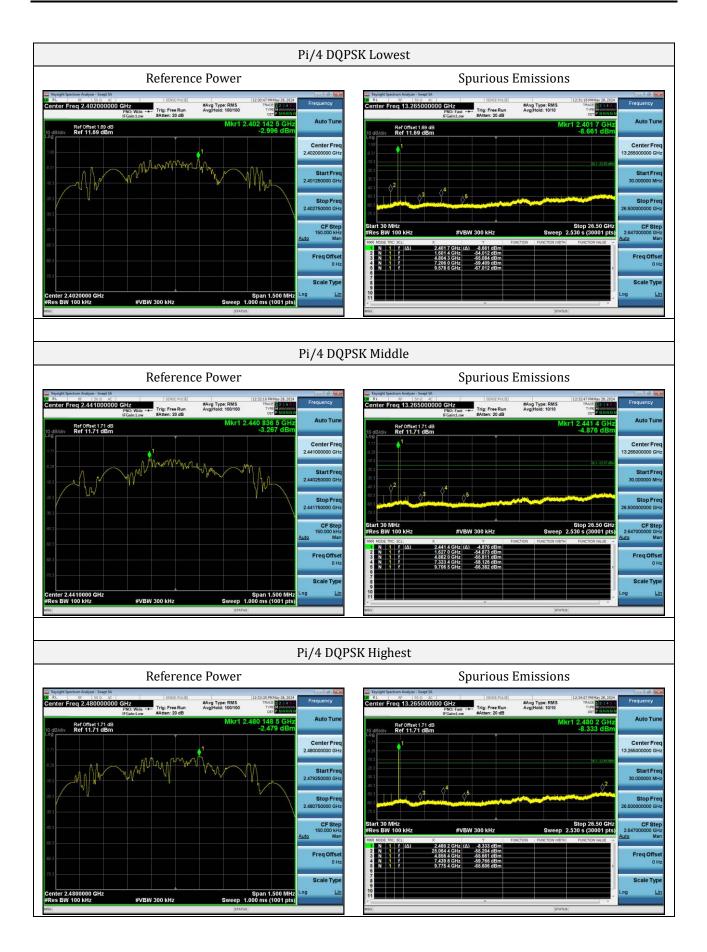
1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.

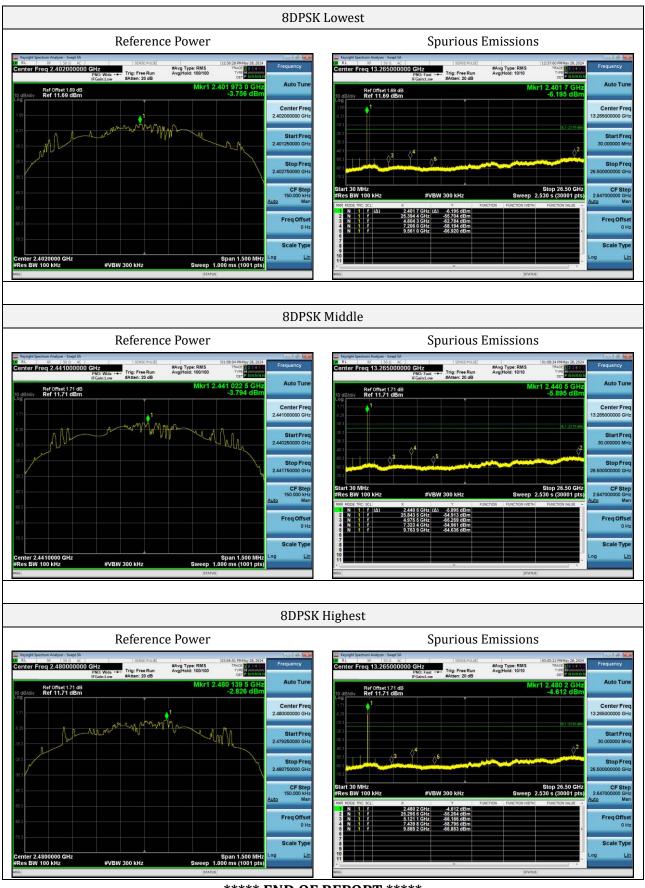

2) Set the spectrum analyzer to any one measured frequency within its operating range.

3) Set RBW = 100kHz, VBW = 300kHz, Sweep = Auto, Detector = peak.

4) Measure the highest amplitude appearing on spectral display and set it as a reference level.


5) Measure the spurious emissions with frequency range from 9kHz to 26.5GHz.


6) Repeat above procedures until all measured frequencies were complete.



14.3 Test Data and Results

Note: The measurement frequency range is from 9kHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions measurement data.

***** END OF REPORT *****