

FCC PART 15C TEST REPORT FOR CERTIFICATION On Behalf of

Jingheng Tengwei (Huizhou) Electronic Technology Co., Ltd.

Mechanical keyboard

Model Number: RK M87

Additional Model: 772

FCC ID: 2A4MQ-RKM87

Applicant	Jingheng Tengwei (Huizhou) Electronic Technology Co., Ltd.				
Address:	No. 8 Minying 1 Road, Yuanzhou Town, Boluo County,				
	Huizhou City, Guangdong Province, China				
Prepared By: EST Technology Co., Ltd.					
Chilingxiang, Qishantou, Santun, Houjie, Dongguan, Guangdong, China					
Tel: 86-769-83081888-808					

Report Number:	ESTE-R2408048
Date of Test:	May. 15, 2024~ Aug. 12, 2024
Date of Report:	Aug. 14, 2024

TABLE OF CONTENTS

Description				
TEST F	REPORT VERIFICATION	3		
1.	GENERAL INFORMATION	5		
	1.1. Description of Device (EUT)	5		
	1.2. Antenna Information			
	1.3. Information of RF Cable			
2.	SUMMARY OF TEST	6		
	2.1. Summary of test result			
	2.2. Test Facilities			
	2.3. Measurement uncertainty			
	2.4. Assistant equipment used for test			
	2.5. Block Diagram			
	2.6. Test Mode	9		
	2.7. Power Setting of Test Software	9		
	2.8. Channel List	9		
	2.9. Test Equipment List	10		
3.	FIELD STRENGTH OF FUNDAMENTAL	12		
	3.1. Limit	12		
	3.2. Test Setup	12		
	3.3. Spectrum Analyzer Setting	12		
	3.4. Test Procedure	13		
	3.5. Test Result	14		
4.	RADIATED SPURIOUS EMISSIONS AND BAND EDGE	21		
	4.1. Limit	21		
	4.2. Test Setup	23		
	4.3. Spectrum Analyzer Setting	24		
	4.4. Test Procedure	25		
	4.5. Test Result	26		
5.	20dB Bandwidth	38		
	5.1. Limit	38		
	5.2. Test Setup	38		
	5.3. Spectrum Analyzer Setting	38		
	5.4. Test Procedure	38		
	5.5. Test Condition	39		
	5.6. Test Result	39		
6.	AC Power Line Conducted Emissions	41		
	6.1. Limit	41		
	6.2. Test Setup	41		
	6.3. Spectrum Analyzer Setting			
	6.4. Test Procedure	41		
	6.5. Test Result	42		
7.	ANTENNA REQUIREMENTS	44		
	7.1. Limit	44		
	7.2. Test Result	44		
8.	TEST SETUP PHOTO			
•				

9. EUT PHOTO	47

Jingheng Tengwei (Huizhou) Electronic Technology Co., Ltd. No. 8 Minying 1 Road, Yuanzhou Town, Boluo County, Huizhou City, Guangdong Province, China				
Jingheng Tengwei (Huizhou) Electronic Technology Co., Ltd. No. 8 Minying 1 Road, Yuanzhou Town, Boluo County, Huizhou City, Guangdong Province, China				
Jingheng Tengwei (Huizhou) Electronic Technology Co., Ltd. No. 8 Minying 1 Road, Yuanzhou Town, Boluo County, Huizhou City, Guangdong Province, China				
Mechanical keyboard				
RK M87	y -	, , ,		
772 Note: They are identical	except model n	ame.		
DC 5V, 1000mA; DC 3.7V From Battery				
RKmorre	Serial No.:			
May. 15, 2024	Date of Test:	May. 15, 2024~ Aug. 12, 2024		
FCC Part 15 Subpart C (15.249) ANSI C63.10:2013				
The device described above is tested by EST Technology Co., Ltd. The measurement results were contained in this test report and EST Technology Co., Ltd. was assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT to be technically compliance with the FCC Rules and Regulations Part 15 Subpart C requirements. This report applies to above tested sample only and shall not be reproduced in part without written approval of EST Technology Co., Ltd.				
Date: Aug 194/ 2024				
Sur		Iceman Hu/Manager		
sed fail/F=failed n.a/N	N=not applicable	E.U.T=equipment under tested		
	No. 8 Minying 1 Road, Neuizhou City, Guangdor Jingheng Tengwei (Huizhou 8 Minying 1 Road, Neuizhou City, Guangdor Jingheng Tengwei (Huizhou 8 Minying 1 Road, Neuizhou City, Guangdor Mechanical keyboard RK M87 772 Note: They are identical DC 5V, 1000mA; DC 3.7V From Battery May. 15, 2024 FCC Part 15 Subpart C ANSI C63.10:2013 The device described a measurement results Technology Co., Ltd. wand completeness of the EUT to be technology Co., Ltd. wand completeness of the E	No. 8 Minying 1 Road, Yuanzhou Town, Huizhou City, Guangdong Province, Chi Jingheng Tengwei (Huizhou) Electronic No. 8 Minying 1 Road, Yuanzhou Town, Huizhou City, Guangdong Province, Chi Jingheng Tengwei (Huizhou) Electronic No. 8 Minying 1 Road, Yuanzhou Town, Huizhou City, Guangdong Province, Chi Mechanical keyboard RK M87 772 Note: They are identical except model n DC 5V, 1000mA; DC 3.7V From Battery Serial No.: May. 15, 2024 Date of Test: FCC Part 15 Subpart C (15.249) ANSI C63.10:2013 The device described above is tested by measurement results were contained Technology Co., Ltd. was assumed ful and completeness of these measurement the EUT to be technically compliar Regulations Part 15 Subpart C requirem This report applies to above tested reproduced in part without written approximated.		

This test report is based on a single evaluation of one sample of above mentioned products ,lt is not permitted to be duplicated in extracts without written approval of EST Technology Co., Ltd.

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

Product Name	:	Mechanical keyboard
Model Number	:	RK M87
Software Version	:	N/A
Hardware Version	:	N/A
Operation frequency	:	2402MHz-2480MHz
Number of channel	:	16
Field Strength of Fundamental	:	95.05dBµV/m
Modulation Type	:	GFSK
Sample Type	:	Prototype production

Note: For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

1.2. Antenna Information

Ant No.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	-	-	Internal	-	1.2
Note:					

1.The antenna gain is declared by the customer and the laboratory is not responsible for the accuracy of the antenna gain.

2. The test results of this report only apply to the sample as received.

1.3. Information of RF Cable

Cable Loss(dB)	Provided by
1.0	Jingheng Tengwei (Huizhou) Electronic Technology Co., Ltd.
Note:	

- 1.The customer declared the loss value of the RF Cable. and the test results of this report only apply to the sample as received.
- 2. The laboratory is not responsible for the accuracy of the cable loss.

2. SUMMARY OF TEST

2.1. Summary of test result

No.	Description of Test Item	FCC Standard Section	Results
1	Field Strength of Fundamental	15.249(a)	PASS
2	Radiated Spurious Emissions and Band Edge	15.205 15.209 15.249(a)(c)(d)(e) 15.35(b)	PASS
3	20dB Bandwidth	15.215	PASS
4	AC Power Line Conducted Emissions	15.207	PASS
5	Antenna Requirement	15.203	PASS

Note: "N/A" denotes test is not applicable in this test report.

2.2. Test Facilities

EMC Lab : Accredited by CNAS, CHINA

Registration No.: L5288

This Accreditation is valid until: November 12, 2029

Recognized by FCC, USA Designation Number: CN1215

This Recognition is valid until: January 31, 2026

Accredited by A2LA, USA Registration No.: 4366.01

This Accreditation is valid until: January 31, 2026

Recognized by Industry Canada CAB identifier No.: CN0035

This Recognition is valid until: January 31, 2026

Recognized by VCCI, Japan

Registration No.:C-14103; T-20073; R-13663;

R-20103; G-20097

Date of registration: Apr. 20, 2020

This Recognition is valid until: Apr. 19, 2026

Recognized by TUV Rheinland, Germany Registration No.: UA 50413872 0001 Date of registration: July 31, 2018

Recognized by Intertek

Registration No.: 2011-RTL-L2-64

Date of registration: November 08, 2018

Name of Firm : EST Technology Co., Ltd.

Site Location : Chilingxiang, Qishantou, Santun, Houjie, Dongguan,

Guangdong, China

2.3. Measurement uncertainty

Test Item	Uncertainty
Uncertainty for Conduction emission test	±3.48dB
Uncertainty for spurious emissions test (Below 30MHz)	±1.62 dB
Uncertainty for spurious emissions test	±4.60 dB(Polarize: H)
(30MHz-1GHz)	±4.68 dB(Polarize: V)
Uncertainty for spurious emissions test (1GHz to 18GHz)	±4.96dB
Uncertainty for radio frequency	7×10 ⁻⁸
Uncertainty for conducted RF Power	1.08dB
Uncertainty for Power density test	0.26dB

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2.4. Assistant equipment used for test

Item	Equipment	Brand	Model Name/Type No.	FCC ID	Series No.
-	-	-	-	-	-

Item	Shielded Type	Ferrite Core	Length	Note
-	-		-	-

2.5. Block Diagram

For radiated emissions test: EUT was placed on a turn table, which is 0.8 (or 1.5) meter high above ground. EUT was beset into test mode by software before test.

EUT

DC 3.7V From Battery

(EUT: Mechanical keyboard)

2.6. Test Mode

The test mode was selected for the final test as listed below.

Test Item	Test Mode	Test Channel
Field Strength of Fundamental	TX	Low/Middle/High
Radiated Spurious Emissions	TX	Low/Middle/High
20dB Bandwidth	TX	Low/Middle/High
AC Power Line Conducted Emissions	TX	Low/Middle/High

Note:In radiated measurement,the EUT had been pre-scan on the positioned of each 3 axis(X,Y,Z), the worst case was found when positioned on **X-plane**.

2.7. Power Setting of Test Software

Software Name	N/A				
Frequency(MHz)	2402	2440	2480		
Setting	default	default	default		

Note: This information is provided by the applicant.

2.8. Channel List

Channal	Frequency	Channel	Frequency	Channal	Frequency
Channel	(MHz)	Chamei	(MHz)	Channel	(MHz)
1	2402	7	2445	13	2419
2	2426	8	2466	14	2439
3	2440	9	2414	15	2453
4	2463	10	2436	16	2480
5	2407	11	2459		-
6	2422	12	2473	-	-

2.9. Test Equipment List

For conducted emission test										
Equipment	Manufacturer	Manufacturer Model No. Serial No. Calibration Body Last 0								
EMI Test Receiver	Rohde & Schwarz	ESRP3	EST-E070	LISAI	June 11,24	June 10,25				
Artificial Mains Network	Rohde & Schwarz	ENV216	EST-E048	LISAI	June 11,24	June 10,25				
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	EST-E078	LISAI	June 11,24	June 10,25				
Test Software	Audix	e3-6.111221a	N/A	N/A	N/A	N/A				

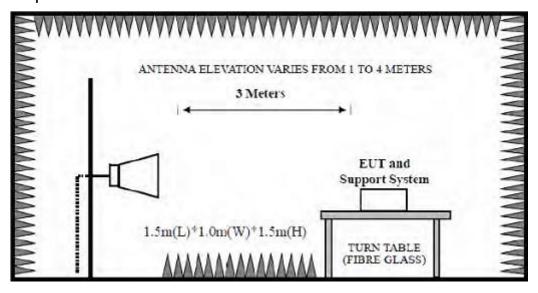
For radiated emission test(9kHz-30MHz)									
Equipment	Manufacturer	Manufacturer Model No. Serial No. Calibration Body Last Cal. Next Cal.							
EMI Test Receiver	Rohde & Schwarz	ESR7	EST-E047	LISAI	June 11,24	June 10,25			
Active Loop Antenna	SCHWAREBE CK	FMZB 1519B	EST-E054	LISAI	June 11,24	June 10,25			
Test Software	Audix	e3-6.111221a	N/A	N/A	N/A	N/A			
9kHz-30MHz Cable	N/A	EST-001	N/A	N/A	N/A	N/A			

For radiated emissions test (30MHz-1000MHz)									
Equipment	Manufacturer Model No. Serial No. Calibration Body Last Cal. Next Cal.								
EMI Test Receiver	Rohde & Schwarz	ESR7	EST-E047	LISAI	June 11,24	June 10,25			
Bilog Antenna	Teseq	CBL 6111D	EST-E034	LISAI	June 11,24	June 10,25			
Test Software	Audix	e3-6.111221a	N/A	N/A	N/A	N/A			
30-1000MHz Cable	N/A	EST-002	N/A	N/A	N/A	N/A			

For radiated emission test(Above 1000MHz)									
Equipment	Manufacturer	Model No.	Serial No.	Calibration Body	Last Cal.	Next Cal.			
Horn Antenna	SCHWARZBE CK	BBHA9120D	EST-E144	LISAI	June 12,23& June 11,24	June 11,24& June 10,25			
Horn Antenna	Com-Power	AHA-840	EST-E133	LISAI	June 12,23& June 11,24	June 11,24& June 10,25			
Low Noise Amplifier	RF	TRLA-010180 G45N	EST-E142	LISAI	June 12,23& June 11,24	June 11,24& June 10,25			
Spectrum Analyzer	Rohde &Schwarz	FSV40	EST-E069	LISAI	June 12,23& June 11,24	June 11,24& June 10,25			
Test Software	Audix	e3-6.111221a	N/A	N/A	N/A	N/A			
Above 1GHz Cable	N/A	EST-003	N/A	N/A	N/A	N/A			

For connect EUT antenna terminal test									
Equipment	Manufacturer Model No. Serial No. Calibration Body Last Cal. No.								
TS 1120	Tonscend	/	1	/	/	/			
Test Software	Tonscend	TS1120-3	3.3.38	/	/	/			
RF Control Unit	Tonscend	JS0806-2	EST-E134	LISAI	June 12,23& June 11,24	June 11,24& June 10,25			
Signal and Spectrum Analyzer	Keysight	N9010B	EST-E141	LISAI	June 12,23& June 11,24	June 11,24& June 10,25			

3. FIELD STRENGTH OF FUNDAMENTAL


3.1. Limit

Fundamental Field strength of fundamental@3m (millivolts/meter)		Average Limit@3m dBµV/m	Peak Limit@3m dBµV/m
902-928MHz	50	94	114
2400-2483.5MHz	50	94	114
5725-5875MHz	50	94	114
24.0-24.25	250	108	128

Note:

- 1. Average Limit $(dB\mu V/m)=20 \times log[1000 \times Field Strength (mV/m)]$.
- 2. Peak Limit (dBµV/m)= Average Limit (dBµV/m)+20dB

3.2. Test Setup

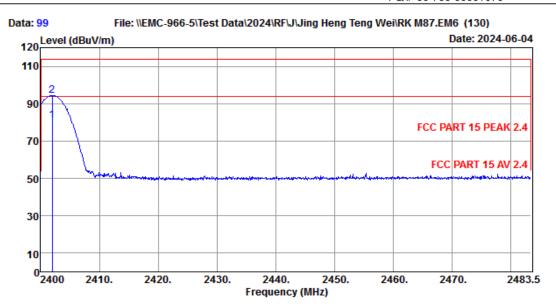
3.3. Spectrum Analyzer Setting

Spectrum Parameters	Setting
RBW	≥OBW
VBW	3×RBW
Start frequency	2402MHz
Stop frequency	2480MHz
Sweep Time	Auto
Detector	PEAK/AVG
Trace Mode	Max Hold

3.4. Test Procedure

- a. EUT was placed on a turn table, which is 1.5 meter high above the ground.
- b. EUT is set 3 meters away from the receiving antenna, which is mounted on a antenna tower.
- c. Spectrum analyzer setting parameters in accordance with section 3.3.
- d. Set the EUT transmit continuously with maximum output power.
- e. The turn table can rotate 360 degrees to determine the position of the maximum emission level.
- f. The antenna can be moved up and down between 1 meter and 4 meters to find out the maximum emission level. Both horizontal and vertical polarization of the antenna are set on test, record the average and peak value.
- g. Repeat above procedures until all channels were measured.
- h. Record the results in the test report.

3.5. Test Result


Test frequency (MHz)	Fundamental frequency	fundame	Field strength of fundamental level (dBµV/m)		Limit (dBµV/m)		Antenna Pole
	(MHz)	Avg	Peak	Avg	Peak		(H/V)
2402	2402.00	81.18	94.35	94	114	Pass	V
2402	2402.00	80.32	91.34	94	114	Pass	Н
2440	2440.08	81.58	93.74	94	114	Pass	V
2440	2440.80	80.75	89.95	94	114	Pass	Н
0.400	2479.99	81.66	95.05	94	114	Pass	V
2480	2479.99	80.65	92.89	94	114	Pass	Н

Low Channel(2402MHz)

EST Technology

Chilingxiang, Qishantou, Santun, Houjie, Dongguan, Guangdong, China Tel:+86-769-83081888 Fax:+86-769-83081878

Site no. : 5# 966 Chamber Data no. : 99
Dis. / Ant. : 3m BBHA9120D-2667 Ant. pol. : VERTICAL

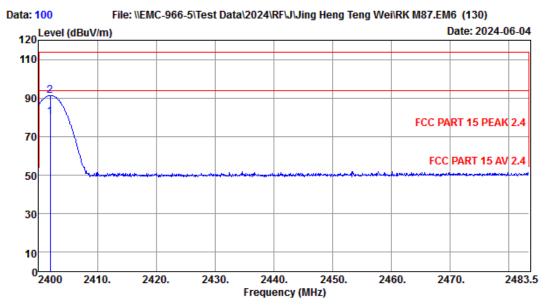
Limit : FCC PART 15 PEAK 2.4

Env. / Ins. : Temp:19.5°C;Humi:50%;Press:101.55kPa

Engineer : Aron

EUT : Mechanical keyboard Power : DC 3.7V From Battery

M/N : RK M87 Test Mode : TX 2402MHz


	Freq. (MHz)		_	Reading (dBuV)	Emission Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Remark
1 2	2402.00 2402.00	 		94.48 107.65	81.18 94.35	94.00 114.00	12.82 19.65	Average Peak

- 2. Margin= Limit Emission Level.
- The emission levels that are 20dB below the official limit are not reported.

Chilingxiang, Qishantou, Santun, Houjie, Dongguan, Guangdong, China Tel:+86-769-83081888

Fax:+86-769-83081878

Data no. : 100 Ant. pol. : HORIZONTAL Site no. : 5# 966 Chamber Dis. / Ant. : 3m BBHA9120D-2667

: FCC PART 15 PEAK 2.4 Limit

Env. / Ins. : Temp:19.5°C; Humi:50%; Press:101.55kPa

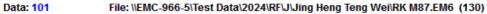
Engineer : Aron

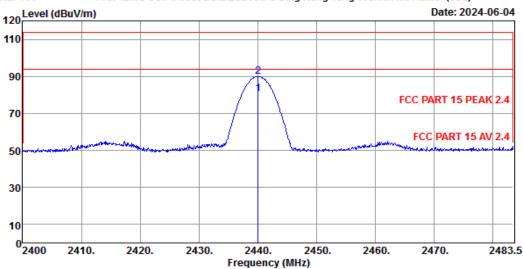
: Mechanical keyboard EUT Power : DC 3.7V From Battery

: RK M87 M/N Test Mode : TX 2402MHz

	Freq.		-	Reading (dBuV)	Emission Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Remark
_	2402.00 2402.00	 		93.62 104.64	80.32 91.34	94.00 114.00	13.68 22.66	Average Peak

- 2. Margin= Limit Emission Level.
- 3. The emission levels that are 20dB below the official limit are not reported.




Middle Channel(2440MHz)

EST Technology

Chilingxiang, Qishantou, Santun, Houjie, Dongguan, Guangdong, China Tel:+86-769-83081888

Fax:+86-769-83081878

Site no. : 5# 966 Chamber Data no. : 101

Dis. / Ant. : 3m BBHA9120D-2667 Ant. pol. : HORIZONTAL

: FCC PART 15 PEAK 2.4 Limit

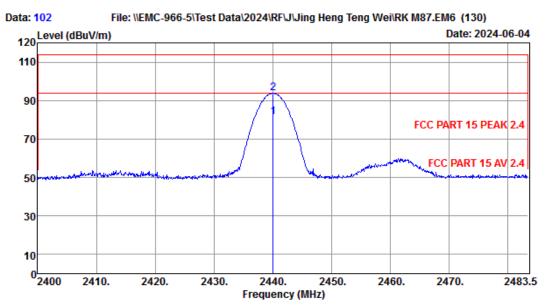
Env. / Ins. : Temp:19.5°C;Humi:50%;Press:101.55kPa

Engineer : Aron

EUT : Mechanical keyboard : DC 3.7V From Battery Power

M/N : RK M87 Test Mode : TX 2440MHz

req. F		Amp Factor (dB)		Emission Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Remark
40.08 2 40.08 2	 	44.96 44.96	93.86 103.06	80.75 89.95		13.25 24.05	Average Peak


Remarks: 1. Emission Level= Antenna Factor + Cable Loss - Amp Factor + Reading. 2. Margin= Limit - Emission Level.

- 3. The emission levels that are 20dB below the official limit are not reported.

Chilingxiang, Qishantou, Santun, Houjie, Dongguan, Guangdong, China Tel:+86-769-83081888

Fax:+86-769-83081878

Site no. : 5# 966 Chamber Data no. : 102
Dis. / Ant. : 3m BBHA9120D-2667 Ant. pol. : VERTICAL

Limit : FCC PART 15 PEAK 2.4

Env. / Ins. : Temp:19.5°C;Humi:50%;Press:101.55kPa

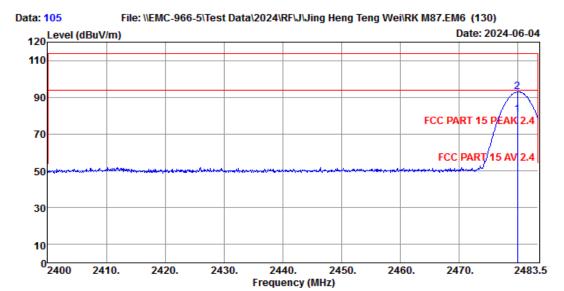
Engineer : Aron

EUT : Mechanical keyboard
Power : DC 3.7V From Battery

M/N : RK M87 Test Mode : TX 2440MHz

	Freq. (MHz)		-	Reading (dBuV)	Emission Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Remark
1 2	2440.08 2440.08		44.96 44.96	94.69 106.85	81.58 93.74	94.00 114.00	12.42 20.26	Average Peak

- 2. Margin= Limit Emission Level.
- The emission levels that are 20dB below the official limit are not reported.



High Channel(2480MHz)

EST Technology

Chilingxiang, Qishantou, Santun, Houjie, Dongguan, Guangdong, China Tel:+86-769-83081888

Fax:+86-769-83081878

: 5# 966 Chamber Site no.

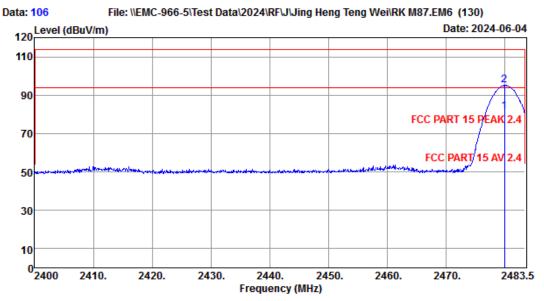
Data no. : 105 Ant. pol. : HORIZONTAL Dis. / Ant. : 3m BBHA9120D-2667 Limit : FCC PART 15 PEAK 2.4

Env. / Ins. : Temp:19.5°C; Humi:50%; Press:101.55kPa

: Aron Engineer

EUT : Mechanical keyboard Power : DC 3.7V From Battery

: RK M87 Test Mode : TX 2480MHz


	Freq. (MHz)	Cable Loss (dB)	-	Reading (dBuV)	Emission Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Remark
1 2	2479.99 2479.99	 4.30 4.30	44.93 44.93	93.59 105.83	80.65 92.89	94.00 114.00	13.35 21.11	Average Peak

- 2. Margin= Limit Emission Level.
- 3. The emission levels that are 20dB below the official limit are not reported.

Chilingxiang, Qishantou, Santun, Houjie, Dongguan, Guangdong, China Tel:+86-769-83081888

Fax:+86-769-83081878

Site no. : 5# 966 Chamber Data no. : 106
Dis. / Ant. : 3m BBHA9120D-2667 Ant. pol. : VERTICAL

Limit : FCC PART 15 PEAK 2.4

Env. / Ins. : Temp:19.5°C;Humi:50%;Press:101.55kPa

Engineer : Aron

EUT : Mechanical keyboard
Power : DC 3.7V From Battery

M/N : RK M87
Test Mode : TX 2480MHz

	Freq. (MHz)	Cable Loss (dB)	_	Reading (dBuV)	Emission Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Remark
1 2	2479.99 2479.99	 	44.93 44.93	94.60 107.99	81.66 95.05	94.00 114.00	12.34 18.95	Average Peak

- 2. Margin= Limit Emission Level.
- The emission levels that are 20dB below the official limit are not reported.

4. RADIATED SPURIOUS EMISSIONS AND BAND EDGE

4.1. Limit

(a) The field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental frequency	Field strength of harmonics@3m (microvolts/meter)	Average Limit@3m dBµV/m	Peak Limit@3m dBµV/m
902-928MHz	500	54	74
2400-2483.5MHz	500	54	74
5725-5875MHz	500	54	74
24.0-24.25	2500	68	88

- (b) Field strength limits are specified at a distance of 3 meters.
- (c) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

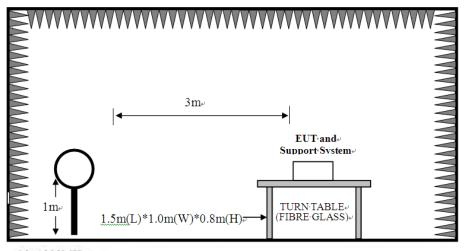
15.209 Radiated emission limits

Frequency (MHz)	Field Strength(µV/m)	Distance(m)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

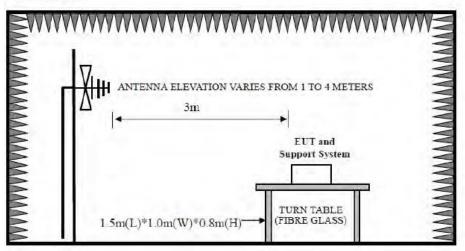
15.205 Restricted frequency band

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)

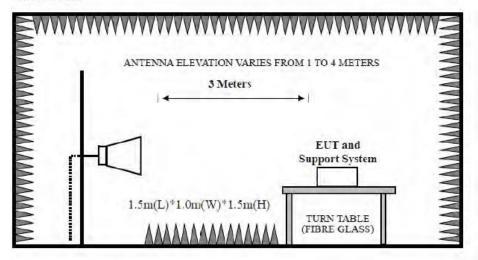
(d)	As	shown	in	§15.35(b)), for	frequencies	above	1000	MHz,	the	field	strength	limits	in
	para	agraphs	(a)	of this se	ction	are based on	averag	e limit	s. How	ever	the i	peak field	streng	gth
	of a	ny emis	sio	n shall no	t exce	eed the maxir	num pe	rmitted	d avera	ıge li	mits s	specified a	above	by
	mor	e than 2	20 c	IB under a	any co	ondition of mo	dulation	า						


Note:

- (1) Emission level $dB\mu V = 20 log Emission level <math>\mu V/m$.
- (2) The smaller limit shall apply at the cross point between two frequency bands.
- (3) Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.



4.2. Test Setup


9kHz~30MHz4

30~1000MHz

Above 1GHz

4.3. Spectrum Analyzer Setting

For 9KHz-150KHz

Spectrum Parameters	Setting
RBW	300Hz(for Peak&AVG)/CISPR 200Hz(for QP)
VBW	300Hz(for Peak&AVG)/CISPR 200Hz(for QP)
Start frequency	9KHz
Stop frequency	150KHz
Sweep Time	Auto
Detector	PEAK/QP/AVG
Trace Mode	Max Hold

For 150KHz-30MHz

Spectrum Parameters	Setting
RBW	9KHz
VBW	9KHz
Start frequency	150KHz
Stop frequency	30MHz
Sweep Time	Auto
Detector	QP
Trace Mode	Max Hold

For 30MHz-1000MHz

Spectrum Parameters	Setting
RBW	120KHz
VBW	300KHz
Start frequency	30MHz
Stop frequency	1000MHz
Sweep Time	Auto
Detector	QP
Trace Mode	Max Hold

For Above 1GHz

Spectrum Parameters	Setting
RBW	1MHz
VBW	3MHz
Start frequency	1GHz
Stop frequency	10 Times Carrier Frequency
Sweep Time	Auto
Detector	PEAK
Trace Mode	Max Hold

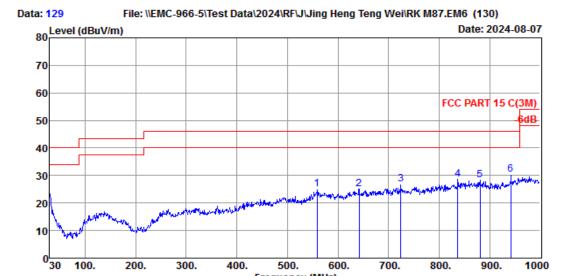
4.4. Test Procedure

- a. EUT was placed on a turn table, which is 0.8 meter high above ground for below 1GHz test, and which is 1.5 meter high above ground for above 1GHz test.
- b. EUT is set 3 meters away from the receiving antenna, which is mounted on a antenna tower.
- c. Set the EUT transmit continuously with maximum output power.
- d. The turn table can rotate 360 degrees to determine the position of the maximum emission level.
- e. The antenna can be moved up and down between 1 meter and 4 meters to find out the maximum emission level. Both horizontal and vertical polarization of the antenna are set on test.
- f. Spectrum analyzer setting parameters in accordance with section 4.3.
- g. Repeat above procedures until all channels were measured.
- h. Record the results in the test report.

Note:

- 1. For emissions above 1GHz, if peak level comply with average limit, then the average level is deemed to comply with average limit.
- 2. The frequency 2402MHz/2440MHz/2480MHz are fundamental frequency.

4.5. Test Result


Radiated Emissions Below 1GHz

EST Technology

Chilingxiang, Qishantou, Santun, Houjie, Dongguan, Guangdong, China Tel:+86-769-83081888 Fax:+86-769-83081878

1000

900.

500.

Frequency (MHz)

600.

700.

800.

: 5# 966 Chamber Data no. : 129 Dis. / Ant. : 3m 54681 Ant. pol. : VERTICAL

300.

400.

: FCC PART 15 C (3M) Limit

100.

Env. / Ins. : Temp:22.6°C;Humi:51.5%;Press:101.55kPa

Engineer : Aron

EUT : Mechanical keyboard : DC 3.7V From Battery Power

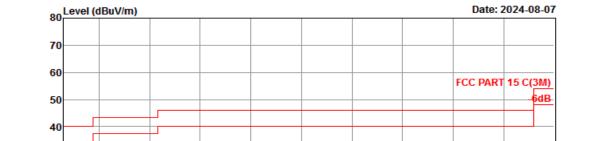
200.

: RK M87 M/N Test Mode : TX Mode

		ANT	Cable		Emission			
	Freq. (MHz)	Factor (dB/m)	Loss (dB)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	558.65	20.32	4.23	0.55	25.10	46.00	20.90	QP
2	642.07	20.46	4.55	0.23	25.24	46.00	20.76	QP
3	724.52	21.10	4.86	0.81	26.77	46.00	19.23	QP
4	837.04	22.44	5.27	1.07	28.78	46.00	17.22	QP
5	880.69	22.68	5.42	0.10	28.20	46.00	17.80	QP
6	941.80	24.14	5.62	0.67	30.43	46.00	15.57	QP

- 2. Margin= Limit Emission Level.
- 3. The emission levels that are 20dB below the official limit are not reported.

Data: 130


30

20 10

0<mark>30</mark>

Chilingxiang, Qishantou, Santun, Houjie, Dongguan, Guangdong, China Tal: 486-769-83081888

Tel:+86-769-83081888 Fax:+86-769-83081878

500. 60 Frequency (MHz)

File: \\EMC-966-5\Test Data\2024\RF\J\Jing Heng Teng Wei\RK M87.EM6 (130)

600.

700.

800.

900.

1000

Site no. : 5# 966 Chamber Data no. : 130
Dis. / Ant. : 3m 54681 Ant. pol. : HORIZONTAL

400.

300.

Limit : FCC PART 15 C(3M)

100.

Env. / Ins. : Temp:22.6°C; Humi:51.5%; Press:101.55kPa

Engineer : Aron

EUT : Mechanical keyboard Power : DC 3.7V From Battery

200.

M/N : RK M87 Test Mode : TX Mode

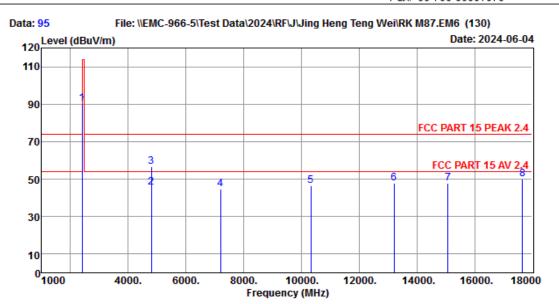
	Freq. (MHz)	Factor (dB/m)	Loss (dB)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	_
1	574.17	20.10	4.29	1.32	25.71	46.00	20.29	QP	
2	722.58	21.06	4.86	2.45	28.37	46.00	17.63	QP	
3	758.47	21.93	4.98	0.32	27.23	46.00	18.77	QP	
4	827.34	22.06	5.23	0.88	28.17	46.00	17.83	QP	
5	867.11	22.90	5.37	0.13	28.40	46.00	17.60	QP	
6	912.70	23.00	5.52	0.28	28.80	46.00	17.20	QP	
5	867.11	22.90	5.37	0.13	28.40	46.00	17.60	QP QP	

Remarks: 1. Emission Level= Antenna Factor + Cable Loss + Reading.

2. Margin= Limit - Emission Level.

3. The emission levels that are 20dB below the official limit are not reported.

Note:


- 1. The amplitude of 9KHz to 30MHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.
- 2. All channels had been pre-test, only the worst case was reported.

Radiated Emissions Above 1G

EST Technology

Chilingxiang, Qishantou, Santun, Houjie, Dongguan, Guangdong, China Tel:+86-769-83081888 Fax:+86-769-83081878

Site no. : 5# 966 Chamber Data no. : 95
Dis. / Ant. : 3m BBHA9120D-2667 Ant. pol. : VERTICAL

Limit : FCC PART 15 PEAK 2.4

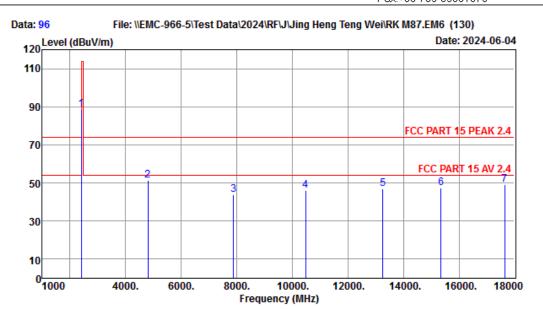
Env. / Ins. : Temp:19.5°C; Humi:50%; Press:101.55kPa

Engineer : Aron

EUT : Mechanical keyboard Power : DC 3.7V From Battery

M/N : RK M87 Test Mode : TX 2402MHz

	Freq. (MHz)	Ant. Factor (dB/m)	Cable Loss (dB)	Amp Factor (dB)	Reading (dBuV)	Emission Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Remark
1	2402.00	27.47	4.24	45.01	103.80	90.50	114.00	23.50	Peak
2	4804.00	32.39	6.01	44.49	51.69	45.60	54.00	8.40	Average
3	4804.00	32.39	6.01	44.49	62.79	56.70	74.00	17.30	Peak
4	7205.00	36.16	7.47	44.08	45.05	44.60	74.00	29.40	Peak
5	10333.00	38.43	9.15	43.53	42.66	46.71	74.00	27.29	Peak
6	13206.00	39.76	10.37	40.80	38.67	48.00	74.00	26.00	Peak
7	15076.00	39.37	11.04	43.36	40.87	47.92	74.00	26.08	Peak
8	17660.00	40.48	12.00	43.21	40.88	50.15	74.00	23.85	Peak


Remarks: 1. Emission Level= Antenna Factor + Cable Loss - Amp Factor + Reading.

2. Margin= Limit - Emission Level.

The emission levels that are 20dB below the official limit are not reported.

Chilingxiang, Qishantou, Santun, Houjie, Dongguan, Guangdong, China Tel:+86-769-83081888 Fax:+86-769-83081878

Site no. : 5# 966 Chamber Data no. : 96

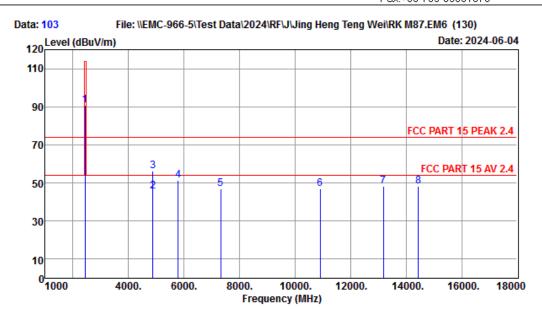
Dis. / Ant. : 3m BBHA9120D-2667 Ant. pol. : HORIZONTAL

Limit : FCC PART 15 PEAK 2.4

Env. / Ins. : Temp:19.5°C; Humi:50%; Press:101.55kPa

Engineer : Aron

EUT : Mechanical keyboard Power : DC 3.7V From Battery


M/N : RK M87
Test Mode : TX 2402MHz

Freq. (MHz)	Ant. Factor (dB/m)	Cable Loss (dB)	Amp Factor (dB)	Reading (dBuV)	Emission Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Remark
2402.00	27.47	4.24	45.01	101.82	88.52	114.00	25.48	Peak
4804.00	32.39	6.01	44.49	57.67	51.58	74.00	22.42	Peak
7885.00	36.71	7.82	44.01	43.22	43.74	74.00	30.26	Peak
10486.00	38.54	9.23	43.41	41.48	45.84	74.00	28.16	Peak
13257.00	39.78	10.38	40.80	37.73	47.09	74.00	26.91	Peak
15348.00	38.91	11.14	43.58	40.78	47.25	74.00	26.75	Peak
17643.00	40.42	12.00	43.23	39.89	49.08	74.00	24.92	Peak
	2402.00 4804.00 7885.00 10486.00 13257.00 15348.00	Freq. Factor (MHz) (dB/m) 2402.00 27.47 4804.00 32.39 7885.00 36.71 10486.00 38.54 13257.00 39.78 15348.00 38.91	Freq. Factor Loss (MHz) (dB/m) (dB) 2402.00 27.47 4.24 4804.00 32.39 6.01 7885.00 36.71 7.82 10486.00 38.54 9.23 13257.00 39.78 10.38 15348.00 38.91 11.14	Freq. Factor Loss Factor (MHz) (dB/m) (dB) (dB) 2402.00 27.47 4.24 45.01 4804.00 32.39 6.01 44.49 7885.00 36.71 7.82 44.01 10486.00 38.54 9.23 43.41 13257.00 39.78 10.38 40.80 15348.00 38.91 11.14 43.58	Freq. Factor Loss Factor Reading (MHz) (dB/m) (dB) (dB) (dBuV) 2402.00 27.47 4.24 45.01 101.82 4804.00 32.39 6.01 44.49 57.67 7885.00 36.71 7.82 44.01 43.22 10486.00 38.54 9.23 43.41 41.48 13257.00 39.78 10.38 40.80 37.73 15348.00 38.91 11.14 43.58 40.78	Freq. Factor Loss Factor Reading Level (MHz) (dB/m) (dB) (dB) (dBuV) (dBuV/m) 2402.00 27.47 4.24 45.01 101.82 88.52 4804.00 32.39 6.01 44.49 57.67 51.58 7885.00 36.71 7.82 44.01 43.22 43.74 10486.00 38.54 9.23 43.41 41.48 45.84 13257.00 39.78 10.38 40.80 37.73 47.09 15348.00 38.91 11.14 43.58 40.78 47.25	Freq. Factor Loss Factor Reading Level Limits (MHz) (dB/m) (dB) (dB) (dBuV) (dBuV/m) (dBuV/m) 2402.00 27.47 4.24 45.01 101.82 88.52 114.00 4804.00 32.39 6.01 44.49 57.67 51.58 74.00 7885.00 36.71 7.82 44.01 43.22 43.74 74.00 10486.00 38.54 9.23 43.41 41.48 45.84 74.00 13257.00 39.78 10.38 40.80 37.73 47.09 74.00 15348.00 38.91 11.14 43.58 40.78 47.25 74.00	Freq. Factor Loss Factor Reading Level Limits Margin (MHz) (dB/m) (dB) (dB) (dBuV) (dBuV/m) (dBuV/m) (dB) 2402.00 27.47 4.24 45.01 101.82 88.52 114.00 25.48 4804.00 32.39 6.01 44.49 57.67 51.58 74.00 22.42 7885.00 36.71 7.82 44.01 43.22 43.74 74.00 30.26 10486.00 38.54 9.23 43.41 41.48 45.84 74.00 28.16 13257.00 39.78 10.38 40.80 37.73 47.09 74.00 26.91 15348.00 38.91 11.14 43.58 40.78 47.25 74.00 26.75

- 2. Margin= Limit Emission Level.
- The emission levels that are 20dB below the official limit are not reported.

Chilingxiang, Qishantou, Santun, Houjie, Dongguan, Guangdong, China Tel:+86-769-83081888 Fax:+86-769-83081878

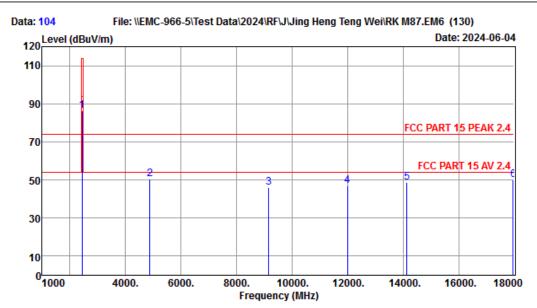
Site no. : 5# 966 Chamber Data no. : 103
Dis. / Ant. : 3m BBHA9120D-2667 Ant. pol. : VERTICAL

Limit : FCC PART 15 PEAK 2.4

Env. / Ins. : Temp:19.5°C; Humi:50%; Press:101.55kPa

Engineer : Aron

EUT : Mechanical keyboard Power : DC 3.7V From Battery


M/N : RK M87 Test Mode : TX 2440MHz

	Freq.	Ant. Factor (dB/m)	Cable Loss (dB)	Amp Factor (dB)	Reading (dBuV)	Emission Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Remark
1	2440.00	27.58	4.27	44.96	103.69	90.58	114.00	23.42	Peak
2	4880.00	32.55	6.05	44.42	51.49	45.67	54.00	8.33	Average
3	4880.00	32.55	6.05	44.42	61.95	56.13	74.00	17.87	Peak
4	5794.00	33.67	6.64	44.14	55.32	51.49	74.00	22.51	Peak
5	7324.00	36.26	7.54	44.07	47.37	47.10	74.00	26.90	Peak
6	10911.00	38.84	9.43	43.07	41.57	46.77	74.00	27.23	Peak
7	13189.00	39.76	10.36	40.80	39.14	48.46	74.00	25.54	Peak
8	14447.00	39.78	10.81	41.90	39.68	48.37	74.00	25.63	Peak

- 2. Margin= Limit Emission Level.
- The emission levels that are 20dB below the official limit are not reported.

Chilingxiang, Qishantou, Santun, Houjie, Dongguan, Guangdong, China Tel:+86-769-83081888 Fax:+86-769-83081878

Site no. : 5# 966 Chamber Data no. : 104
Dis. / Ant. : 3m BBHA9120D-2667 Ant. pol. : HORIZONTAL

Limit : FCC PART 15 PEAK 2.4

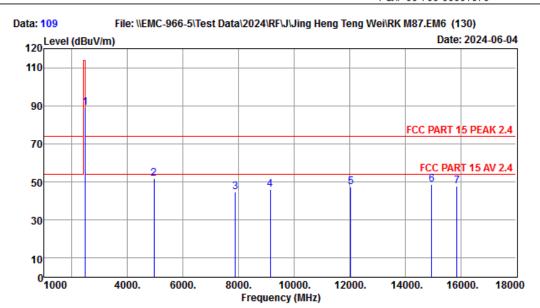
Env. / Ins. : Temp:19.5°C; Humi:50%; Press:101.55kPa

Engineer : Aron

EUT : Mechanical keyboard Power : DC 3.7V From Battery

M/N : RK M87
Test Mode : TX 2440MHz

	Freq.	Ant. Factor (dB/m)	Cable Loss (dB)	Amp Factor (dB)	Reading (dBuV)	Emission Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Remark
1	2440.00	27.58	4.27	44.96	99.47	86.36	114.00	27.64	Peak
2	4880.00	32.55	6.05	44.42	56.45	50.63	74.00	23.37	Peak
3	9160.00	38.03	8.55	43.46	42.96	46.08	74.00	27.92	Peak
4	11999.00	38.80	9.90	42.20	40.65	47.15	74.00	26.85	Peak
5	14141.00	39.93	10.71	41.14	39.20	48.70	74.00	25.30	Peak
6	17966.00	41.49	12.11	42.75	39.22	50.07	74.00	23.93	Peak


Remarks: 1. Emission Level= Antenna Factor + Cable Loss - Amp Factor + Reading.

2. Margin= Limit - Emission Level.

The emission levels that are 20dB below the official limit are not reported.

Chilingxiang, Qishantou, Santun, Houjie, Dongguan, Guangdong, China Tel:+86-769-83081888 Fax:+86-769-83081878

Site no. : 5# 966 Chamber Data no. : 109
Dis. / Ant. : 3m BBHA9120D-2667 Ant. pol. : HORIZONTAL

Limit : FCC PART 15 PEAK 2.4

Env. / Ins. : Temp:19.5°C; Humi:50%; Press:101.55kPa

Engineer : Aron

EUT : Mechanical keyboard Power : DC 3.7V From Battery

M/N : RK M87 Test Mode : TX 2480MHz

	Freq.	Ant. Factor (dB/m)	Cable Loss (dB)	Amp Factor (dB)	Reading (dBuV)	Emission Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Remark
1	2480.00	27.69	4.30	44.93	101.78	88.84	114.00	25.16	Peak
2	4960.00	32.72	6.11	44.33	57.34	51.84	74.00	22.16	Peak
3	7885.00	36.71	7.82	44.01	44.35	44.87	74.00	29.13	Peak
4	9143.00	38.03	8.55	43.46	42.91	46.03	74.00	27.97	Peak
5	12050.00	38.85	9.91	42.13	40.56	47.19	74.00	26.81	Peak
6	14957.00	39.52	10.99	43.17	41.25	48.59	74.00	25.41	Peak
7	15875.00	38.01	11.36	44.00	42.37	47.74	74.00	26.26	Peak

- 2. Margin= Limit Emission Level.
- The emission levels that are 20dB below the official limit are not reported.

Chilingxiang, Qishantou, Santun, Houjie, Dongguan, Guangdong, China Tel:+86-769-83081888 Fax:+86-769-83081878

10000.

Frequency (MHz)

12000.

14000.

16000.

18000

Site no. : 5# 966 Chamber Data no. : 110
Dis. / Ant. : 3m BBHA9120D-2667 Ant. pol. : VERTICAL

6000.

8000.

Limit : FCC PART 15 PEAK 2.4

4000.

Env. / Ins. : Temp:19.5°C;Humi:50%;Press:101.55kPa

Engineer : Aron

0<mark>1000</mark>

EUT : Mechanical keyboard
Power : DC 3.7V From Battery
M/N : RK M87

M/N : RK M87 Test Mode : TX 2480MHz

	Freq.	Ant. Factor (dB/m)	Cable Loss (dB)	Amp Factor (dB)	Reading (dBuV)	Emission Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Remark
1	2480.00	27.69	4.30	44.93	103.34	90.40	114.00	23.60	Peak
2	4960.00	32.72	6.11	44.33	56.07	50.57	74.00	23.43	Peak
3	7443.00	36.35	7.60	44.06	45.66	45.55	74.00	28.45	Peak
4	9874.00	38.17	8.92	43.75	42.73	46.07	74.00	27.93	Peak
5	11234.00	38.88	9.57	42.81	41.12	46.76	74.00	27.24	Peak
6	14515.00	39.74	10.84	42.07	40.91	49.42	74.00	24.58	Peak
7	16334.00	37.97	11.52	44.13	41.49	46.85	74.00	27.15	Peak

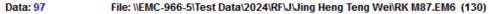
Remarks: 1. Emission Level= Antenna Factor + Cable Loss - Amp Factor + Reading.

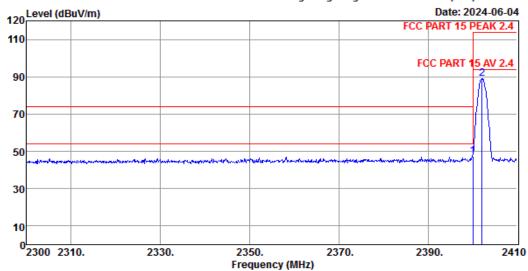
2. Margin= Limit - Emission Level.

The emission levels that are 20dB below the official limit are not reported.

Note:

1. The amplitude of 18GHz to 25GHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.




Radiated Band Edge

EST Technology

Chilingxiang, Qishantou, Santun, Houjie, Dongguan, Guangdong, China

Tel:+86-769-83081888 Fax:+86-769-83081878

Data no. : 97

Dis. / Ant. : 3m PP.... : 3m BBHA9120D-2667 Ant. pol. : HORIZONTAL

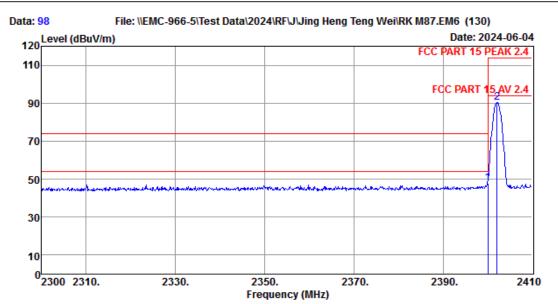
: FCC PART 15 PEAK 2.4 Limit

Env. / Ins. : Temp:19.5°C;Humi:50%;Press:101.55kPa

Engineer : Aron

EUT : Mechanical keyboard : DC 3.7V From Battery Power

: RK M87 M/N Test Mode : TX 2402MHz


	Freq.	Ant. Factor (dB/m)	-	Reading (dBuV)	Emission Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Remark
1 2	2400.00 2402.08		 	60.47 102.21	47.16 88.91	74.00 114.00	26.84 25.09	Peak Peak

- 2. Margin= Limit Emission Level.
 - 3. The emission levels that are 20dB below the official limit are not reported.

Chilingxiang, Qishantou, Santun, Houjie, Dongguan,Guangdong,China

Tel:+86-769-83081888 Fax:+86-769-83081878

Site no. : 5# 966 Chamber Data no. : 98
Dis. / Ant. : 3m BBHA9120D-2667 Ant. pol. : VERTICAL

Limit : FCC PART 15 PEAK 2.4

Env. / Ins. : Temp:19.5°C;Humi:50%;Press:101.55kPa

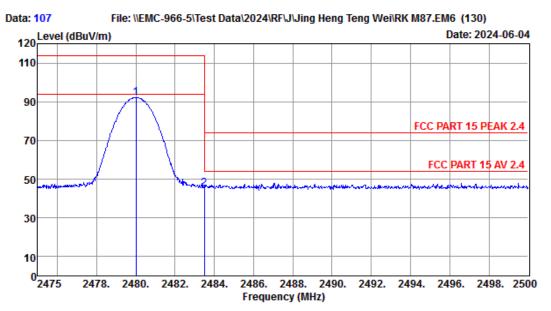
Engineer : Aron

EUT : Mechanical keyboard Power : DC 3.7V From Battery

M/N : RK M87
Test Mode : TX 2402MHz

Freq.	Ant. Factor (dB/m)	-	Reading (dBuV)	Emission Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Remark
	27.46 27.47		61.28 103.55	47.97 90.25	74.00 114.00	26.03 23.75	Peak Peak

Remarks: 1. Emission Level= Antenna Factor + Cable Loss - Amp Factor + Reading.


2. Margin= Limit - Emission Level.

The emission levels that are 20dB below the official limit are not reported.

Chilingxiang, Qishantou, Santun, Houjie, Dongguan, Guangdong, China Tel:+86-769-83081888

Fax:+86-769-83081878

Site no. : 5# 966 Chamber Data no. : 107
Dis. / Ant. : 3m BBHA9120D-2667 Ant. pol. : VERTICAL

Limit : FCC PART 15 PEAK 2.4

Env. / Ins. : Temp:19.5°C; Humi:50%; Press:101.55kPa

Engineer : Aron

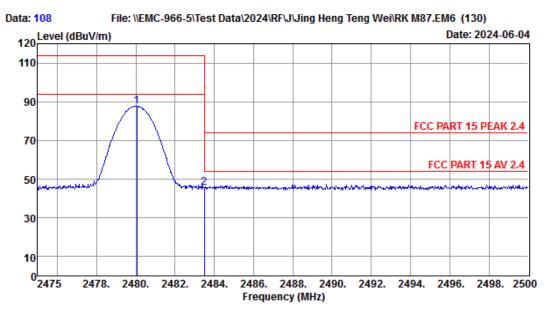
EUT : Mechanical keyboard
Power : DC 3.7V From Battery

M/N : RK M87 Test Mode : TX 2480MHz

	Freq.		-	Reading (dBuV)	Emission Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Remark
1	2480.00	 4.30	44.93	105.08	92.14	114.00	21.86	Peak
2	2483.50	4.31	44.93	58.30	45.38	74.00	28.62	Peak

Remarks: 1. Emission Level= Antenna Factor + Cable Loss - Amp Factor + Reading.

2. Margin= Limit - Emission Level.


The emission levels that are 20dB below the official limit are not reported.

EST Technology

Chilingxiang, Qishantou, Santun, Houjie, Dongguan,Guangdong,China

Tel:+86-769-83081888 Fax:+86-769-83081878

Site no. : 5# 966 Chamber Data no. : 108
Dis. / Ant. : 3m BBHA9120D-2667 Ant. pol. : HORIZONTAL

Limit : FCC PART 15 PEAK 2.4

Env. / Ins. : Temp:19.5°C; Humi:50%; Press:101.55kPa

Engineer : Aron

EUT : Mechanical keyboard
Power : DC 3.7V From Battery

M/N : RK M87 Test Mode : TX 2480MHz

	Freq.		-	Reading (dBuV)	Emission Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Remark
1 2	2480.05 2483.50	 4.30 4.31	44.93 44.93	100.63 58.56	87.69 45.64	114.00 74.00	26.31 28.36	Peak Peak

Remarks: 1. Emission Level= Antenna Factor + Cable Loss - Amp Factor + Reading.

2. Margin= Limit - Emission Level.

The emission levels that are 20dB below the official limit are not reported.

5. 20DB BANDWIDTH

5.1. Limit

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. In the case of intentional radiators operating under the provisions of subpart E, the emission bandwidth may span across multiple contiguous frequency bands identified in that subpart. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

5.2. Test Setup

5.3. Spectrum Analyzer Setting

Spectrum Parameters	Setting			
RBW	1%~5% OBW			
VBW	3×RBW			
Span	two times and five times the OBW			
Sweep Time	Auto			
Detector	Peak			
Trace Mode	Max Hold			

5.4. Test Procedure

- a. Connect EUT antenna terminal to the spectrum analyzer with RF cable.
- b. Spectrum analyzer setting parameters in accordance with section 5.3.
- c. Set the EUT transmit continuously with maximum output power.
- d. Allow trace to stabilize, measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission.
- e. Repeat above procedures until all modes and channels were measured.
- f. Record the results in the test report.

5.5. Test Condition

Temperature	24.5℃	Relative Humidity	56%	Test Voltage	DC 3.7V
-------------	-------	-------------------	-----	--------------	---------

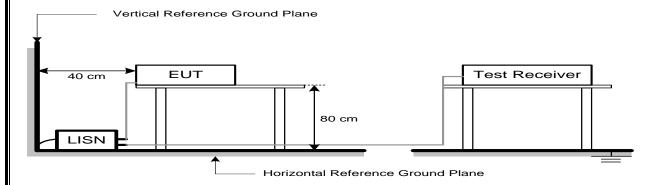
5.6. Test Result

Test Frequency (MHz)	20dB Bandwidth (MHz)	Result	
2402	1.125	Pass	
2440	1.146	Pass	
2480	1.125	Pass	


Low Channel (2402MHz)

Middle Channel(2440MHz)

6. AC Power Line Conducted Emissions


6.1. Limit

	Maximum RF Line Voltage			
Frequency	Quasi-Peak Level	Average Level		
	dB(μV)	$dB(\muV)$		
150kHz ~ 500kHz	66 ~ 56*	56 ~ 46*		
500kHz ~ 5MHz	56	46		
5MHz ~ 30MHz	60	50		

Note:

- 1. * Decreasing linearly with logarithm of frequency.
- 2. The lower limit shall apply at the transition frequencies.

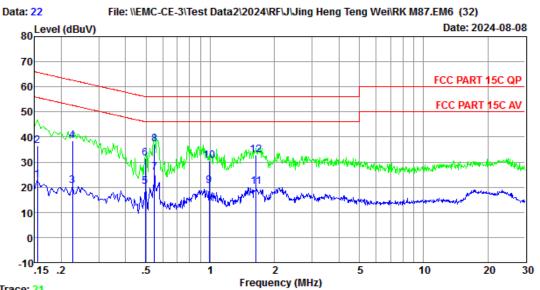
6.2. Test Setup

6.3. Spectrum Analyzer Setting

Spectrum Parameters	Setting		
RBW	9KHz		
VBW	9KHz		
Start frequency	150KHz		
Stop frequency	30MHz		
Sweep Time	Auto		
Detector	QP/AVG		
Trace Mode	Max Hold		

6.4. Test Procedure

- a. The EUT was placed on a non-metallic table, 80cm above the ground plane.
- b. The EUT Power connected to the power mains through a line impedance stabilization network.
- c. Provides a 50 ohm coupling impedance for the EUT (Please refer the block diagram of the test setup and photographs).
- d. Set the EUT transmit continuously with maximum output power.
- e. Spectrum analyzer setting parameters in accordance with section 6.3.
- f. The AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.10: 2013 on Conducted Emission Test.
- g. Record the results in the test report.



6.5. Test Result

EST Technology

Chilingxiang, Qishantou, Santun, Houjie, Dongguan, Guangdong, China

Tel:+86-769-83081888 Fax:+86-769-83081878

Trace: 21

: 3#CE Shield Room

Site no Data no. Env. / Ins. : Temp:23.8°C; Humi:59%; Press:101.1kPa LINE Phase : LINE

: FCC PART 15C QP Limit

Engineer : Wind

EUT : Mechanical Keyboard

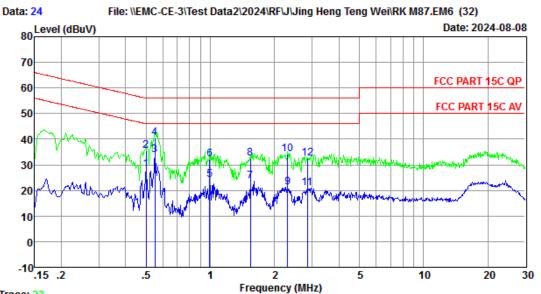
Power : DC 5V From Adapter Input AC 120V/60Hz

M/N : RK M87 Test Mode : TX Mode

	Freq.	LISN Factor (db)	Cable Loss (db)	Reading dBuV)	Emission Level (dBuv)	Limits (dBuv)	Margin (dB)	Remark
1	0.15	10.19	9.82	2.88	22.89	55.74	32.85	Average
2	0.15	10.19	9.82	16.59	36.60	65.74	29.14	QP
3	0.23	10.00	9.82	0.57	20.39	52.61	32.22	Average
4	0.23	10.00	9.82	18.53	38.35	62.61	24.26	QP
5	0.49	10.19	9.83	0.25	20.27	46.10	25.83	Average
6	0.49	10.19	9.83	11.43	31.45	56.10	24.65	QP
7	0.55	10.17	9.83	5.81	25.81	46.00	20.19	Average
8	0.55	10.17	9.83	17.30	37.30	56.00	18.70	QP
9	0.99	10.21	9.84	0.52	20.57	46.00	25.43	Average
10	0.99	10.21	9.84	10.54	30.59	56.00	25.41	QP
11	1.64	10.17	9.85	0.09	20.11	46.00	25.89	Average
12	1.64	10.17	9.85	12.82	32.84	56.00	23.16	QP

Remarks: 1. Emission Level= LISN Factor + Cable Loss + Reading.

2. Margin= Limit - Emission Level.


3. If the average limit is met when useing a quasi-peak detector, the EUT shall be deemed to meet both limits and measurement with average detector is unnecessary.

EST Technology

Chilingxiang, Qishantou, Santun, Houjie, Dongguan, Guangdong, China Tel:+86-769-83081888

Fax:+86-769-83081878

Trace: 23

Site no : 3#CE Shield Room Data no.

Env. / Ins. : Temp:23.8°C; Humi:59%; Press:101.1kPa LINE Phase : NEUTRAL

Limit : FCC PART 15C QP

: Wind Engineer

EUT : Mechanical Keyboard

Power : DC 5V From Adapter Input AC 120V/60Hz

M/N : RK M87 Test Mode : TX Mode

	Freq.	LISN Factor (db)	Cable Loss (db)	Reading dBuV)	Emission Level (dBuv)	Limits (dBuv)	Margin (dB)	Remark
1	0.50	10.16	9.83	8.31	28.30	46.01	17.71	Average
2	0.50	10.16	9.83	15.63	35.62	56.01	20.39	QP
3	0.55	10.14	9.83	14.01	33.98	46.00	12.02	Average
4	0.55	10.14	9.83	20.55	40.52	56.00	15.48	QP
5	0.99	10.15	9.84	4.31	24.30	46.00	21.70	Average
6	0.99	10.15	9.84	12.25	32.24	56.00	23.76	QP
7	1.54	10.19	9.85	3.61	23.65	46.00	22.35	Average
8	1.54	10.19	9.85	12.51	32.55	56.00	23.45	QP
9	2.31	10.23	9.85	1.21	21.29	46.00	24.71	Average
10	2.31	10.23	9.85	13.94	34.02	56.00	21.98	QP
11	2.85	10.24	9.86	0.94	21.04	46.00	24.96	Average
12	2.85	10.24	9.86	12.45	32.55	56.00	23.45	QP

Remarks: 1. Emission Level= LISN Factor + Cable Loss + Reading.
2. Margin= Limit - Emission Level.

3. If the average limit is met when useing a quasi-peak detector, the EUT shall be deemed to meet both limits and measurement with average detector is unnecessary.

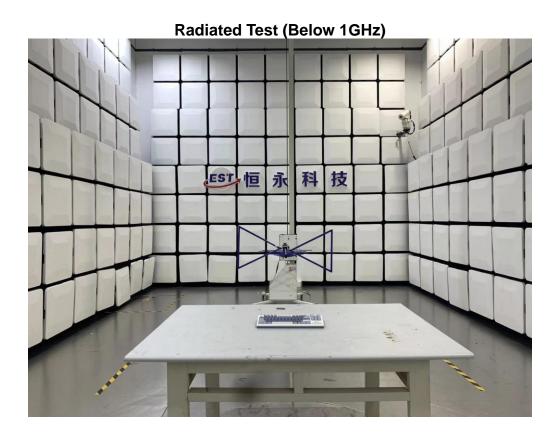
7. ANTENNA REQUIREMENTS

7.1. Limit

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §§15.211, 15.213, 15.217, 15.219, 15.221, or §15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

7.2. Test Result

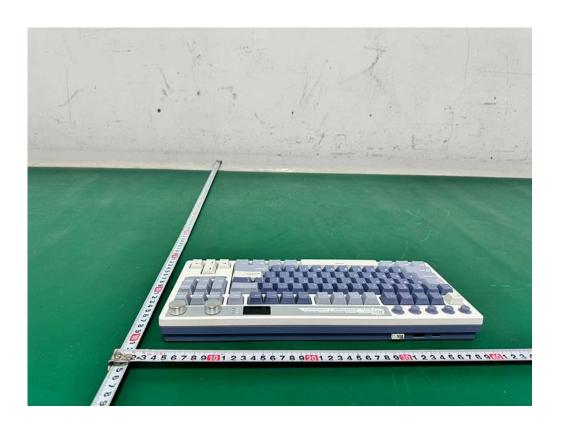
The antennas used for this product is internal antenna, so compliance with antenna requirements. (Please refer to the EUT photo for details)


8. TEST SETUP PHOTO



9. EUT PHOTO

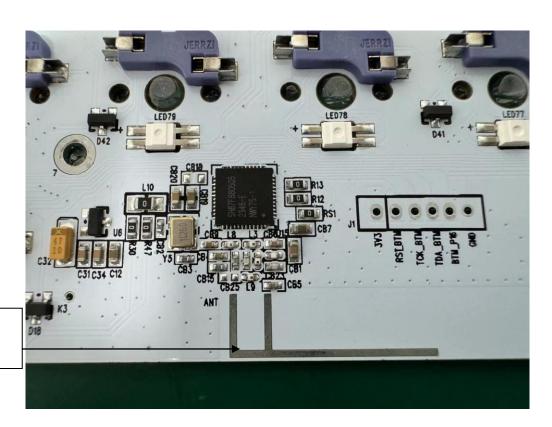
External Photos



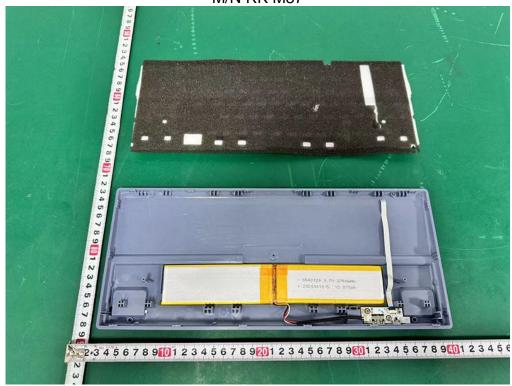
External Photos

External Photos

External Photos



Bluetooth Antenna







End of Test Report