

TESTREPORT

Applicant Name :

Address :

FCC ID:

IC:

FCC: Hatch Baby, Inc. IC: HATCH BABY, INC. FCC: 3525 Alameda De Las Pulgas, Suite D, Menlo Park, California, 94025 United States IC: 3525 Alameda De Las Pulgas, Suite D Menlo Park CA 94025 United States Of America (Excluding The States Of Alaska RA221101-50887E-RFA 2AFYZ-RESTORE04 23920-RESTORE04

Test Standard (s)

Report Number:

FCC PART 15.247; RSS-GEN ISSUE 5, FEBRUARY 2021 AMENDMENT 2; RSS-247, ISSUE 2, FEBRUARY 2017

Sample Description

Product Type:	Hatch Restore – Sound Machine and Night Light
Model No.:	RESTORE04
Multiple Model(s) No.:	N/A
Trade Mark:	Hatch
Date Received:	2022/11/01
Report Date:	2022/12/06

Test Result:

Nick Fang

Nick Fang EMC Engineer Pass*

* In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:

Candy . Li

Approved By:

Candy Li EMC Engineer

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "* ".

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data. This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to

the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Shenzhen Accurate Technology Co., Ltd.

 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China

 Tel: +86 755-26503290
 Fax: +86 755-26503396
 Web: www.atc-lab.com

Version 15: 2021-11-09

Page 1 of 72

FCC-BT; RSS-BT

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
Test Methodology Measurement Uncertainty	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	6
DESCRIPTION OF TEST CONFIGURATION	6
EUT EXERCISE SOFTWARE	
SPECIAL ACCESSORIES.	
Equipment Modifications Support Equipment List and Details	
External I/O Cable	6
BLOCK DIAGRAM OF TEST SETUP	7
SUMMARY OF TEST RESULTS	8
TEST EQUIPMENT LIST	9
FCC §15.247 (I) & §1.1307 (B) (3) & §2.1091- RF EXPOSURE	
APPLICABLE STANDARD	
RESULT	
RSS-102 § 4 –EXPOSURE LIMITS	13
APPLICABLE STANDARD	
FCC §15.203 & RSS-GEN §6.8 – ANTENNA REQUIREMENT	15
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.207 (A) & RSS-GEN § 8.8 – AC LINE CONDUCTED EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP EMI Test Receiver Setup	
Test Procedure	
CORRECTED FACTOR & MARGIN CALCULATION	
TEST DATA	
FCC §15.209, §15.205 & §15.247(D) & RSS-247§ 5.5 - SPURIOUS EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP EMI Test Receiver & Spectrum Analyzer Setup	
Test Procedure	
FACTOR & MARGIN CALCULATION	
TEST DATA	_
FCC §15.247(A) (1) & RSS-247 § 5.1 (B) -CHANNEL SEPARATION TEST	
APPLICABLE STANDARD	
Test Procedure Test Data	

Version 15: 2021-11-09

FCC-BT; RSS-BT

FCC §15.247(A) (1) & RSS-247 § 5.1 (A), RSS-GEN § 6.7 – 20 DB EMISSION BANDWIDTH & 99%	
OCCUPIED BANDWIDTH	
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	
FCC §15.247(A) (1) (III) & RSS-247 § 5.1 (D) - QUANTITY OF HOPPING CHANNEL TEST	41
APPLICABLE STANDARD	41
Test Procedure	
ТЕЅТ DATA	41
FCC §15.247(A) (1) (III) & RSS-247 § 5.1 (D) - TIME OF OCCUPANCY (DWELL TIME)	42
APPLICABLE STANDARD	42
Test Procedure	42
TEST DATA	42
FCC §15.247(B) (1) & RSS-247§ 5.1(B) &§ 5.4(B) - PEAK OUTPUT POWER MEASUREMENT	43
APPLICABLE STANDARD	43
Test Procedure	
TEST DATA	43
FCC §15.247(D) & RSS-247 § 5.5 - BAND EDGES TESTING	44
APPLICABLE STANDARD	44
Test Procedure	44
TEST DATA	45
APPENDIX	46
APPENDIX A: 20DB EMISSION BANDWIDTH	46
APPENDIX B: OCCUPIED CHANNEL BANDWIDTH	50
APPENDIX C: MAXIMUM CONDUCTED PEAK OUTPUT POWER	
APPENDIX D: CARRIER FREQUENCY SEPARATION	
APPENDIX E: TIME OF OCCUPANCY	
APPENDIX F: NUMBER OF HOPPING CHANNELS	
APPENDIX G: BAND EDGE MEASUREMENTS	

GENERAL INFORMATION

HVIN	RESTORE04
Frequency Range	Bluetooth: 2402~2480MHz
Transmit Peak Power	11.34dBm
Modulation Technique	Bluetooth: GFSK, π/4-DQPSK, 8DPSK
Antenna Specification*	3.42dBi (It is provided by the applicant)
Voltage Range DC 24V from adapter	
Sample serial number	10JY-1 for Conducted Emissions & Radiated Emissions Test 10K0-3 for RF Conducted Test (Assigned by ATC)
Sample/EUT Status	Good condition
Adapter information	Model: XH2400-1500W Input: AC 100-240V, 50/60Hz, 0.8A Output: DC 24V, 1.5A

Product Description for Equipment under Test (EUT)

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commissions rules and RSS-247, Issue 2, February 2017, RSS-GEN Issue 5, Feb. 2021Amendment 2 of the Innovation, Science and Economic Development Canada rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices and RSS-247, Issue 2, February 2017, RSS-GEN Issue 5, Feb. 2021Amendment 2 of the Innovation, Science and Economic Development Canada rules.

All emissions measurement was performed at Shenzhen Accurate Technology Co., Ltd. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Each test item follows test standards and with no deviation.

Measurement Uncertainty

Parameter		Uncertainty
Occupied Char	nnel Bandwidth	5%
RF Fre	equency	$0.082*10^{-7}$
RF output po	wer, conducted	0.73dB
Unwanted Emi	ssion, conducted	1.6dB
AC Power Lines C	onducted Emissions	2.72dB
	9kHz - 30MHz	2.66dB
	30MHz - 1GHz	4.28dB
Emissions, Radiated	1GHz - 18GHz	4.98dB
Radiated	18GHz - 26.5GHz	5.06dB
	26.5GHz- 40GHz	4.72dB
Temperature		1 °C
Hun	nidity	6%
Supply	voltages	0.4%

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358, the FCC Designation No.: CN1189.

Accredited by American Association for Laboratory Accreditation (A2LA). The Certificate Number is 4297.01

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0016. The Registration Number is 5077A.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode.

Note: the device installed two identical BT/Wi-Fi module(please refer to EUT photo), the two module is identical schematic and with same parameter setting, both the two module was tested beside RF conducted test only performed on module 1.

EUT Exercise Software

"EspRFTestTool_v2.8*" exercise software was used and the power level is 8*. The power level was provided by the manufacturer.

Special Accessories

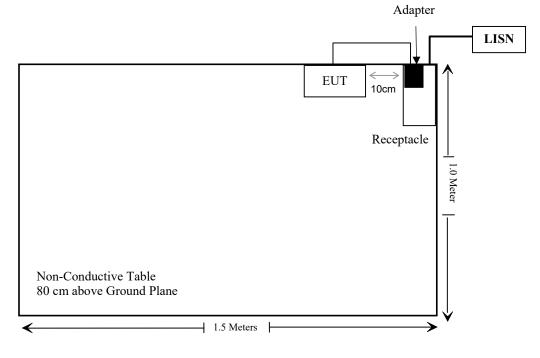
No special accessory.

Equipment Modifications

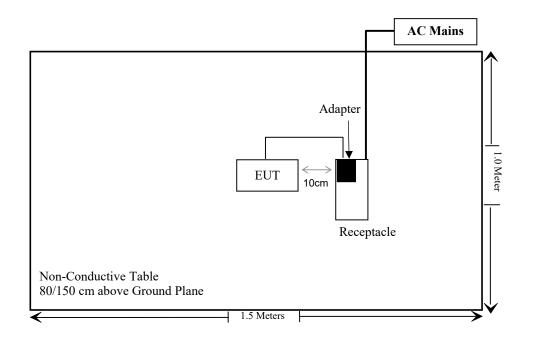
No modification was made to the EUT tested.

Support Equipment List and Details

Manufacturer	Description Model		Serial Number	
/	/	/	/	


External I/O Cable

Cable Description	Length (m)	From Port	То
Un-shielding Un-Detachable DC Cable	1.0	EUT	Adapter


Report No.: RA221101-50887E-RFA

Block Diagram of Test Setup

For conducted emission:

For radiated emission:

SUMMARY OF TEST RESULTS

Rules	Description of Test	Result
FCC §15.247 (i) & §2.1091	RF Exposure	Compliant
RSS-102 § 4	EXPOSURE LIMITS	Compliant
FCC §15.203 RSS-Gen §6.8	Antenna Requirement	Compliant
FCC §15.207(a) RSS-Gen §8.8	AC Line Conducted Emissions	Compliant
FCC §15.205, §15.209, §15.247(d) RSS-247 § 5.5, RSS-GEN § 8.10	Radiated Emissions	Compliant
FCC §15.247(a)(1) RSS-247 § 5.1(a), RSS-GEN § 6.7	20 dB Emission Bandwidth & 99% Occupied Bandwidth	Compliant
FCC §15.247(a)(1) RSS-247 § 5.1 (b)	Channel Separation Test	Compliant
FCC §15.247(a)(1)(iii) RSS-247 § 5.1 (d)	Time of Occupancy (Dwell Time)	Compliant
FCC §15.247(a)(1)(iii) RSS-247 § 5.1 (d)	Quantity of hopping channel Test	Compliant
FCC §15.247(b)(1) RSS-247 § 5.1(b) &§ 5.4(b)	Peak Output Power Measurement	Compliant
FCC §15.247(d) RSS-247 § 5.5	Band edges	Compliant

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date			
	Conducted Emissions Test							
Rohde& Schwarz	EMI Test Receiver	ESCI	100784	2021/12/13	2022/12/12			
Rohde & Schwarz	L.I.S.N.	ENV216	101314	2021/12/13	2022/12/12			
Anritsu Corp	50 Coaxial Switch	MP59B	6100237248	2021/12/13	2022/12/12			
Unknown	RF Coaxial Cable	No.17	N0350	2021/12/14	2022/12/13			
Conducted Emission	Test Software: e3 19821	b (V9)						
	Radiate	d Emissions Test	(30MHz-1GHz)					
Rohde& Schwarz	Test Receiver	ESR	102725	2021/12/13	2022/12/12			
Rohde&Schwarz	Spectrum Analyzer	FSV40	101949	2021/12/13	2022/12/12			
SONOMA INSTRUMENT	Amplifier	310 N	186131	2022/11/08	2023/11/07			
A.H. Systems, inc.	Preamplifier	PAM-0118P	135	2022/11/08	2023/11/07			
Quinstar	Amplifier	QLW- 18405536-J0	15964001002	2022/11/08	2023/11/07			
Schwarzbeck	Bilog Antenna	VULB9163	9163-323	2021/07/06	2024/07/05			
Schwarzbeck	Horn Antenna	BBHA9120D	9120D-1067	2020/01/05	2023/01/04			
Schwarzbeck	HORN ANTENNA	BBHA9170	9170-359	2020/01/05	2023/01/04			
Radiated Emission T	est Software: e3 19821b	(V9)						
	Radiate	ed Emissions Tes	t (Above 1GHz)					
Unknown	RF Coaxial Cable	No.10	N050	2021/12/14	2022/12/13			
Unknown	RF Coaxial Cable	No.11	N1000	2021/12/14	2022/12/13			
Unknown	RF Coaxial Cable	No.12	N040	2021/12/14	2022/12/13			
Unknown	RF Coaxial Cable	No.13	N300	2021/12/14	2022/12/13			
Unknown	RF Coaxial Cable	No.14	N800	2021/12/14	2022/12/13			
Unknown	RF Coaxial Cable	No.15	N600	2021/12/14	2022/12/13			
Unknown	RF Coaxial Cable	No.16	N650	2021/12/14	2022/12/13			
Wainwright	High Pass Filter	WHKX3.6/18 G-10SS	5	2021/12/14	2022/12/13			

Report No.: RA221101-50887E-RFA

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
RF Conducted Test					
Rohde&Schwarz	Spectrum Analyzer	FSV-40	101590	2022/01/19	2023/01/18
Tonscend	RF Control Unit	JS0806-2	19G8060182	2022/10/24	2023/10/23
WEINSCHEL	10dB Attenuator	5324	AU 3842	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.31	RF-01	Each time	/

* **Statement of Traceability:** Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §15.247 (I) & §1.1307 (B) (3) & §2.1091- RF EXPOSURE

Applicable Standard

According to subpart 15.247 (i) and subpart 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

According to KDB 447498 D04 Interim General RF Exposure Guidance

MPE-Based Exemption:

General frequency and separation-distance dependent MPE-based effective radiated power(ERP) thresholds are in Table B.1 [Table 1 of § 1.1307(b)(1)(i)(C)] to support an exemption from further evaluation from 300 kHz through 100 GHz.

Table 1 to § 1.1307(b)(3)(i)(C) - Single RF Sources Subject to Routine Environmental Evaluation					
RF Source frequency (MHz)	Threshold ERP (watts)				
0.3-1.34	1,920 R ² .				
1.34-30	3,450 R ² /f ² .				
30-300	3.83 R ² .				
300-1,500	0.0128 R ² f.				
1,500-100,000	19.2R ² .				

Ris the minimum separation distance in meters f = frequency in MHz

For multiple RF sources: Multiple RF sources are exempt if:

in the case of fixed RF sources operating in the same time-averaging period, or of multiple mobile or portable RF sources within a device operating in the same time averaging period, if the sum of the fractional contributions to the applicable thresholds is less than or equal to 1 as indicated in the following equation:

$$\sum_{i=1}^{a} \frac{P_i}{P_{th,i}} + \sum_{j=1}^{b} \frac{ERP_j}{ERP_{th,j}} + \sum_{k=1}^{c} \frac{Evaluated_k}{Exposure\ Limit_k} \le 1$$

Result

Mode	Frequency (MHz)	Tune up conducted power	Antenna Gain ERP Evaluation Distance		Antenna Gain		ERP Limit	
	()	(dBm)	(dBi)	(dBd)	(dBm)	(W)	(m)	(W)
Wi-Fi	2412-2462	21	3.42	1.27	22.27	0.169	0.2	0.768
BT	2402-2480	12.0	3.42	1.27	13.27	0.021	0.2	0.768
BLE	2402-2480	9.0	3.42	1.27	10.27	0.011	0.2	0.768

Note: 1. The tune up conducted power and antenna gain was declared by the applicant.

2. The device installed two identical BT/Wi-Fi module, the BT/BLE/Wi-Fi of same module cannot transmit at same time, but the two module transmit at same time.

Simultaneous transmitting consideration (worst case):

The ratio= $ERP_{module 1}/limit+ERP_{module 2}/limit=0.169/0.768+0.169/0.768=0.440 \le 1.0$, so simultaneous exposure is compliant.

To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 20cm from nearby persons.

Result: Compliant.

RSS-102 § 4 – EXPOSURE LIMITS

Applicable Standard

According to RSS-102 §4:

Table 4: RF Field	Strength Limits for D	Devices Used by the Gen	eral Public (Uncontroll	ed Environment)
Frequency Range (MHz)	Electric Field (V/m rms)	Magnetic Field (A/m rms)	Power Density (W/m²)	Reference Perioo (minutes)
0.003-10 ²¹	83	90	-	Instantaneous*
0.1-10	-	0.73/ f	-	6**
1.1-10	87/ f ^{0.5}	-	-	6**
10-20	27.46	0.0728	2	6
20-48	58.07/ f ^{0.25}	0.1540/ f ^{0.25}	8.944/ f ^{0.5}	6
48-300	22.06	0.05852	1.291	6
300-6000	3.142 f ^{0.3417}	0.008335 f ^{0.3417}	0.02619 f ^{0.6834}	6
6000-15000	61.4	0.163	10	6
15000-150000	61.4	0.163	10	616000/ f ^{1.2}
150000-300000	0.158 f ^{0.5}	4.21 x 10 ⁻⁴ f ^{0.5}	6.67 x 10 ⁻⁵ f	616000/f ^{1.2}

Note: f is frequency in MHz.

* Based on nerve stimulation (NS). ** Based on specific absorption rate (SAR).

Calculated Formulary:

Predication of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$

S = power density (in appropriate units, e.g. mW/cm²)
 P = power input to the antenna (in appropriate units, e.g., mW).
 G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

For simultaneously transmit system, the calculated power density should comply with:

$$\sum_{i} \frac{S_{i}}{S_{Limit,i}} \leq 1$$

Mada	Frequency	Ante	Antenna Gain		p Power	Evaluation	Power	MPE Limit
Mode	(MHz)	(dBi)	(numeric)	(dBm)	(W)	Distance (m)	Density (W/m ²)	(W/m^2)
Wi-Fi	2412-2462	3.42	2.20	21.0	0.126	0.20	0.552	5.37
BT	2402-2480	3.42	2.20	12.0	0.016	0.20	0.070	5.35
BLE	2402-2480	3.42	2.20	9.0	0.008	0.20	0.035	5.35

Note: 1. The tune up conducted power and antenna gain was declared by the applicant. 2. The device installed two identical BT/Wi-Fi module, the BT/BLE/Wi-Fi of same module cannot transmit at same time, but the two module transmit at same time.

Simultaneous transmitting consideration (worst case):

The ratio=MPE_{Module 1}/limit+MPE_{Module 2}/limit= $0.552/5.37+0.552/5.37=0.206 \le 1.0$, so simultaneous exposure is compliant.

To maintain compliance with the ISEDC's RF exposure guidelines, place the equipment at least 20cm from nearby persons.

Result: Compliant.

FCC §15.203 & RSS-GEN §6.8 – ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

According to FCC § 15.203, the applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.

For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report (and in the notice to be included in the user manual, provided below).

When measurements at the antenna port are used to determine the RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna's manufacturer.

The test report shall state the RF power, output power setting and spurious emission measurements with each antenna type that is used with the transmitter being tested.

For licence-exempt equipment with detachable antennas, the user manual shall also contain the following notice in a conspicuous location:

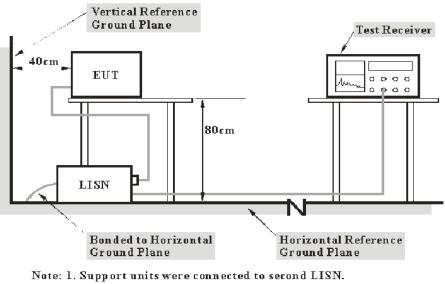
This radio transmitter [enter the device's ISED certification number] has been approved by Innovation, Science and Economic Development Canada to operate with the antenna types listed below, with the maximum permissible gain indicated. Antenna types not included in this list that have a gain greater than the maximum gain indicated for any type listed are strictly prohibited for use with this device. Immediately following the above notice, the manufacturer shall provide a list of all antenna types which can be used with the transmitter, indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna type.

Antenna Connector Construction

The EUT has one internal antenna arrangement which was permanently attached and the maximum antenna gain is 3.42dBi fulfill the requirement of this section. Please refer to the EUT photos.

Antenna Type	Antenna Gain	Impedance	Frequency Range	
РСВ	3.42dBi	50 Ω	2.4~2.5GHz	

Result: Compliance


Version 15: 2021-11-09

FCC §15.207 (a) & RSS-GEN § 8.8 – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a), RSS-GEN § 8.8

EUT Setup

Note: 1. Support units were connected to second LISN. 2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with ANSI C63.10-2013. The related limit was specified in FCC Part 15.207 & RSS-Gen.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W		
150 kHz – 30 MHz	9 kHz		

Test Procedure

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Corrected Factor & Margin Calculation

The Transd factor is calculated by adding LISN VDF (Voltage Division Factor) and Cable Loss. The basic equation is as follows:

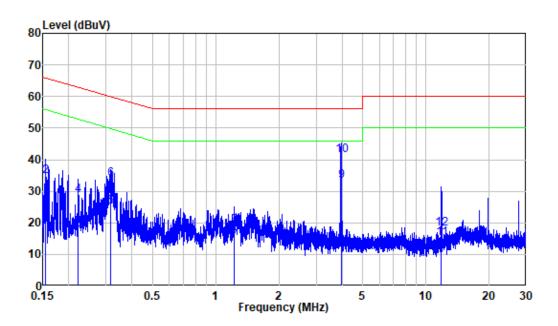
Transd Factor = LISN VDF + Cable Loss

The "**Over limit**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over limit of -7 dB means the emission is 7 dB below the limit. The equation for calculation is as follows:

Over Limit = Level – Limit Level = Read Level + Factor

Test Data

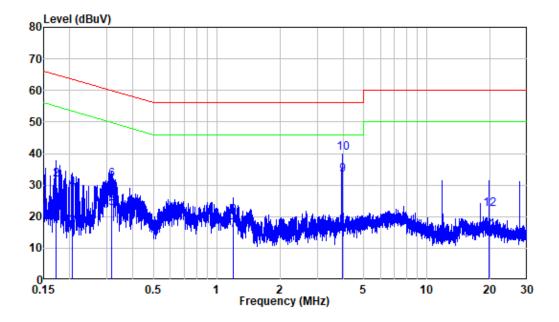
Environmental Conditions


Temperature:	23 °C
Relative Humidity:	60 %
ATM Pressure:	101.0 kPa

The testing was performed by Jason on 2022-11-16.

EUT operation mode: Transmitting (the worst case is 8DPSK Mode, High channel)

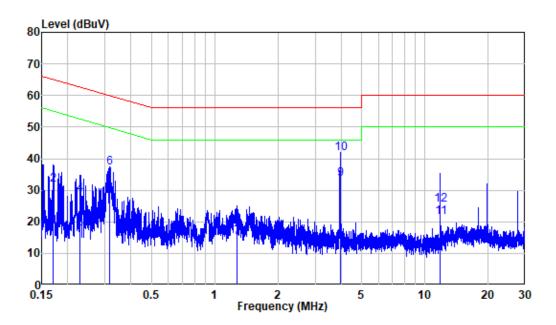
For Module 1


AC 120V/60 Hz, Line

Site	:	Shielding Room
Condition	:	Line
Job No.	:	RA221101-50887E-RF
Mode	:	BT (Module 1)
Power	:	AC 120V 60Hz

			Read		Limit	0ver	
	Freq	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.155	9.80	11.61	21.41	55.74	-34.33	Average
2	0.155	9.80	24.88	34.68	65.74	-31.06	QP
3	0.222	9.80	7.88	17.68	52.75	-35.07	Average
4	0.222	9.80	19.02	28.82	62.75	-33.93	QP
5	0.315	9.80	15.21	25.01	49.85	-24.84	Average
6	0.315	9.80	24.04	33.84	59.85	-26.01	QP
7	1.228	9.81	4.49	14.30	46.00	-31.70	Average
8	1.228	9.81	9.34	19.15	56.00	-36.85	QP
9	3.946	9.84	23.51	33.35	46.00	-12.65	Average
10	3.946	9.84	31.51	41.35	56.00	-14.65	QP
11	11.854	9.92	5.03	14.95	50.00	-35.05	Average
12	11.854	9.92	8.12	18.04	60.00	-41.96	QP

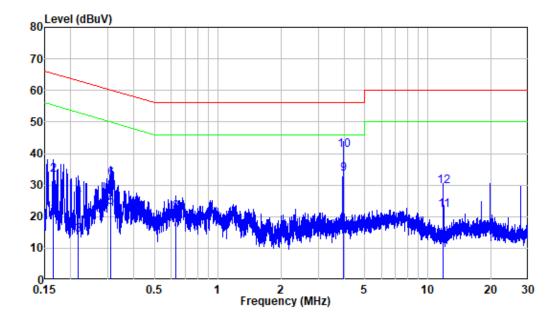
AC 120V/60 Hz, Neutral



Site	:	Shielding Room
Condition	:	Neutral
Job No.	:	RA221101-50887E-RF
Mode	:	BT (Module 1)
Power	:	AC 120V 60Hz

	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.171	9.80	9.84	19.64	54.89	-35.25	Average
2	0.171	9.80	21.95	31.75	64.89	-33.14	QP
3	0.205	9.80	7.15	16.95	53.42	-36.47	Average
4	0.205	9.80	18.84	28.64	63.42	-34.78	QP
5	0.315	9.80	12.81	22.61	49.84	-27.23	Average
6	0.315	9.80	21.98	31.78	59.84	-28.06	QP
7	1.202	9.81	5.80	15.61	46.00	-30.39	Average
8	1.202	9.81	10.29	20.10	56.00	-35.90	QP
9	3.946	9.84	23.33	33.17	46.00	-12.83	Average
10	3.946	9.84	30.36	40.20	56.00	-15.80	QP
11	19.727	10.10	5.68	15.78	50.00	-34.22	Average
12	19.727	10.10	12.38	22.48	60.00	-37.52	QP

For Module 2


AC 120V/60 Hz, Line

Site	:	Shielding Room
Condition	:	Line
Job No.	:	RA221101-50887E-RF
Mode	:	BT (Module 2)
Power	:	AC 120V 60Hz

			Read		Limit	Over	
	Freq	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.171	9.80	8.72	18.52	54.91	-36.39	Average
2	0.171	9.80	21.79	31.59	64.91	-33.32	QP
3	0.229	9.80	7.94	17.74	52.47	-34.73	Average
4	0.229	9.80	18.79	28.59	62.47	-33.88	QP
5	0.316	9.80	18.74	28.54	49.81	-21.27	Average
6	0.316	9.80	27.38	37.18	59.81	-22.63	QP
7	1.276	9.81	5.30	15.11	46.00	-30.89	Average
8	1.276	9.81	9.36	19.17	56.00	-36.83	QP
9	3.946	9.84	23.78	33.62	46.00	-12.38	Average
10	3.946	9.84	31.77	41.61	56.00	-14.39	QP
11	11.838	9.92	11.42	21.34	50.00	-28.66	Average
12	11.838	9.92	15.33	25.25	60.00	-34.75	QP

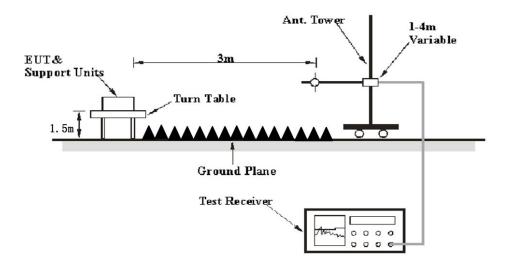
AC 120V/60 Hz, Neutral

Site	:	Shielding Room
Condition	:	Neutral
Job No.	:	RA221101-50887E-RF
Mode	:	BT (Module 2)
Power	:	AC 120V 60Hz

	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.166	9.80	10.67	20.47	55.18	-34.71	Average
2	0.166	9.80	23.52	33.32	65.18	-31.86	QP
3	0.217	9.80	4.34	14.14	52.92	-38.78	Average
4	0.217	9.80	16.35	26.15	62.92	-36.77	QP
5	0.309	9.80	13.14	22.94	49.99	-27.05	Average
6	0.309	9.80	22.19	31.99	59.99	-28.00	QP
7	0.632	9.81	6.26	16.07	46.00	-29.93	Average
8	0.632	9.81	11.69	21.50	56.00	-34.50	QP
9	3.951	9.84	23.60	33.44	46.00	-12.56	Average
10	3.951	9.84	31.22	41.06	56.00	-14.94	QP
11	11.846	10.02	11.95	21.97	50.00	-28.03	Average
12	11.846	10.02	19.68	29.70	60.00	-30.30	QP

FCC §15.209, §15.205 & §15.247(d) & RSS-247§ 5.5 - SPURIOUS EMISSIONS

Applicable Standard


FCC §15.205; §15.209; §15.247(d); RSS-247§ 5.5; RSS-GEN § 8.10

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10-2013 & RSS-Gen. The specification used was the FCC 15.209, and FCC 15.247/RSS-247 limits.

Version 15: 2021-11-09

EMI Test Receiver & Spectrum Analyzer Setup

The EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1 MHz	3 MHz	/	РК

For average measurement:

use the duty cycle factor correction factor method per 15.35(c). Duty cycle=On time/100milliseconds, On time=N1*L1+N2*L2+...Nn-1*Ln-1+Nn*Ln, where N1 is number of type 1 pulses, L1 is length of type 1 pulse, etc. Average Emission Level=Peak Emission Level+20*log(Duty cycle)

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode for frequency range of 30 MHz -1 GHz and peak and Average detection modes for frequencies above 1 GHz.

Factor & Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

Factor = Antenna Factor + Cable Loss - Amplifier Gain

The "**Over Limit/Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

Over Limit/Margin = Level / Corrected Amplitude – Limit Level / Corrected Amplitude = Read Level + Factor

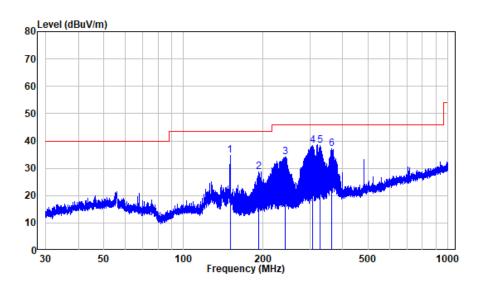
Test Data

Environmental Conditions

Temperature:	25~20 °C
Relative Humidity:	54~60 %
ATM Pressure:	101.0 kPa

The testing was performed by Jimi on 2022-11-18 for below 1GHz and Level Li from 2022-11-12 to 2022-12-06 for above 1GHz.

Version 15: 2021-11-09

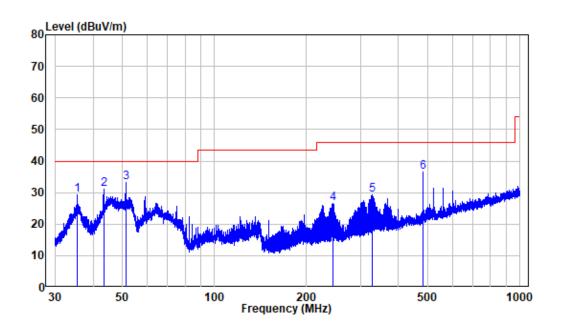

EUT operation mode: Transmitting (Pre-scan in the X,Y and Z axes of orientation, the worst case of X-axes orientation was recorded)

Below 1GHz: (the worst case is 8DPSK Mode, Middle channel)

Note: When the test result of Peak was more than 6dB below the limit of QP, just the Peak value was recorded.

For Module 1

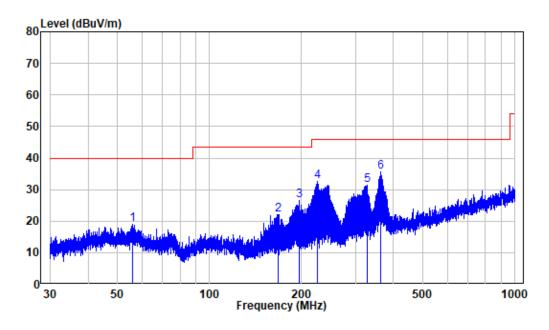
Horizontal



Site : chamber Condition: 3m HORIZONTAL Job No. : RA221101-50887E-RF Test Mode: BT Transmitting

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	149.945	-15.27	49.98	34.71	43.50	-8.79	Peak
2	191.997	-11.25	39.97	28.72	43.50	-14.78	Peak
3	241.994	-10.77	44.88	34.11	46.00	-11.89	Peak
4	307.966	-8.96	47.36	38.40	46.00	-7.60	Peak
5	327.170	-8.15	46.47	38.32	46.00	-7.68	Peak
6	364.260	-7.56	44.59	37.03	46.00	-8.97	Peak

Report No.: RA221101-50887E-RFA

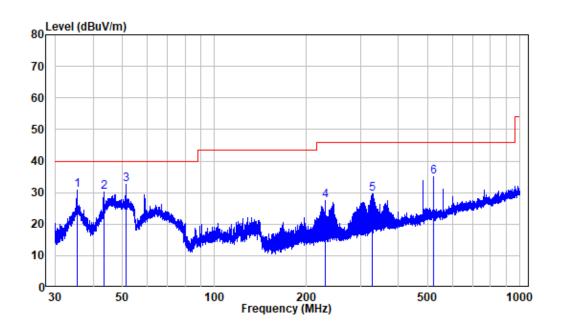


Site :	chamber				
Condition:	3m VERTICAL				
Job No. :	RA221101-50887E-RF				
Test Mode:	BT Transmitting				

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	35.499	-11.37	40.68	29.31	40.00	-10.69	Peak
2	43.410	-9.93	41.07	31.14	40.00	-8.86	Peak
3	51.143	-9.95	43.01	33.06	40.00	-6.94	Peak
4	243.484	-10.68	37.22	26.54	46.00	-19.46	Peak
5	328.031	-8.10	37.51	29.41	46.00	-16.59	Peak
6	480.107	-5.00	41.55	36.55	46.00	-9.45	Peak

For Module 2

Horizontal



Site :	chamber
Condition:	3m HORIZONTAL
Job No. :	RA221101-50887E-RF
Test Mode:	BT Transmitting

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	55.903	-10.19	29.30	19.11	40.00	-20.89	Peak
2	167.824	-13.80	35.91	22.11	43.50	-21.39	Peak
3	196.596	-11.56	38.12	26.56	43.50	-16.94	Peak
4	225.012	-11.26	43.76	32.50	46.00	-13.50	Peak
5	327.170	-8.15	39.46	31.31	46.00	-14.69	Peak
6	364.260	-7.56	43.11	35.55	46.00	-10.45	Peak

Report No.: RA221101-50887E-RFA

Site :	chamber				
Condition:	3m VERTICAL				
Job No. :	RA221101-50887E-RF				
Test Mode:	BT Transmitting				

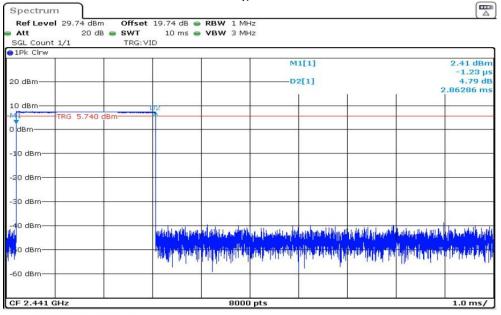
	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	35.453	-11.38	42.20	30.82	40.00	-9.18	Peak
2	43.372	-9.93	40.07	30.14	40.00	-9.86	Peak
3	51.211	-9.95	42.48	32.53	40.00	-7.47	Peak
4	229.998	-11.11	38.50	27.39	46.00	-18.61	Peak
5	327.313	-8.14	37.80	29.66	46.00	-16.34	Peak
6	519.976	-4.29	39.33	35.04	46.00	-10.96	Peak

Report No.: RA221101-50887E-RFA

For Module 1

Above 1GHz: (worst case for 8DPSK, 3DH5)

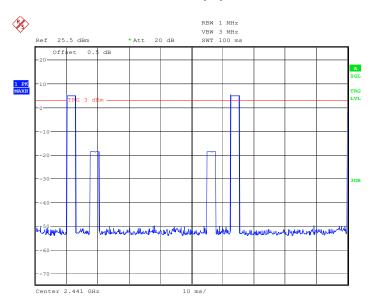
F	Receiver		T (11	Rx Antenna		Feeter	Absolute			
Frequency (MHz)	Reading (dBµV)	PK/Ave	Turntable Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	
Low Channel 2402MHz										
2310	60.40	РК	38	2.1	Н	-7.24	53.16	74	-20.84	
2310	61.02	РК	10	2	V	-7.24	53.78	74	-20.22	
2390	63.00	РК	15	2	Н	-7.22	55.78	74	-18.22	
2390	63.11	РК	309	1.5	V	-7.22	55.89	74	-18.11	
4804	54.93	РК	149	1.8	Н	-3.51	51.42	74	-22.58	
4804	55.53	РК	344	1.9	V	-3.51	52.02	74	-21.98	
			Mide	dle Channel	2441MHz					
4882	55.00	РК	315	1.1	Н	-3.37	51.63	74	-22.37	
4882	55.59	РК	191	1.3	V	-3.37	52.22	74	-21.78	
			Hig	h Channel 2	480MHz					
2483.5	63.97	РК	89	2.3	Н	-7.2	56.77	74	-17.23	
2483.5	63.79	РК	291	1.1	V	-7.2	56.59	74	-17.41	
2500	62.43	РК	311	1.4	Н	-7.18	55.25	74	-18.75	
2500	62.54	РК	153	2.2	V	-7.18	55.36	74	-18.64	
4960	55.66	РК	93	1.9	Н	-3.01	52.65	74	-21.35	
4960	54.54	РК	113	2.1	V	-3.01	51.53	74	-22.47	


Report No.: RA221101-50887E-RFA

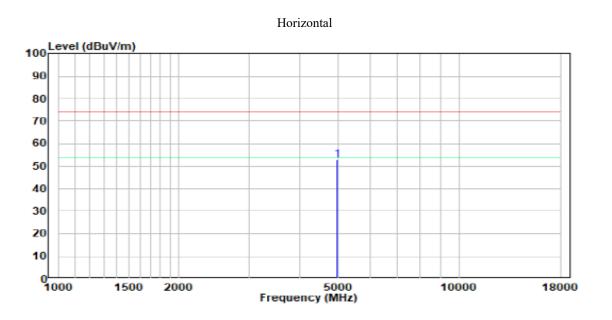
Field Strength of Average											
Frequency (MHz)	Peak Measurement @3m (dBµV/m)	Polar (H/V)	Duty Cycle Correction Factor (dB)	Corrected Ampitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)					
Low Channel(2402MHz)											
2310	53.16	Н	-24.85	28.31	54	-25.69					
2310	53.78	V	-24.85	28.93	54	-25.07					
2390	55.78	Н	-24.85	30.93	54	-23.07					
2390	55.89	V	-24.85	31.04	54	-22.96					
4804	51.42	Н	-24.85	26.57	54	-27.43					
4804	52.02	V	-24.85	27.17	54	-26.83					
		Mic	dle Channel(24	41MHz)	-						
4882	51.63	Н	-24.85	26.78	54	-27.22					
4882	52.22	V	-24.85	27.37	54	-26.63					
	High Channel(2480MHz)										
2483.5	56.77	Н	-24.85	31.92	54	-22.08					
2483.5	56.59	V	-24.85	31.74	54	-22.26					
2500	55.25	Н	-24.85	30.4	54	-23.6					
2500	55.36	V	-24.85	30.51	54	-23.49					
4960	52.65	Н	-24.85	27.8	54	-26.2					
4960	51.53	V	-24.85	26.68	54	-27.32					

Note:

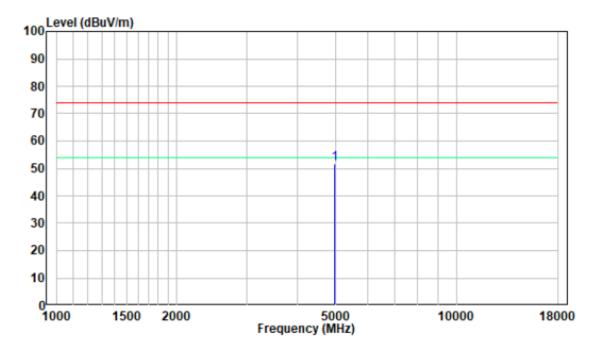
Absolute Level = Corrected Factor + Reading Margin = Corrected. Amplitude - Limit Average level= Peak level+ Duty Cycle Corrected Factor


The worst case duty cycle as below: Duty cycle = Ton/100ms = 2.86*2/100=0.0572 Duty Cycle Corrected Factor = 20lg (Duty cycle) = 20lg0.0576 = -24.85

Pulse length: 2.88ms

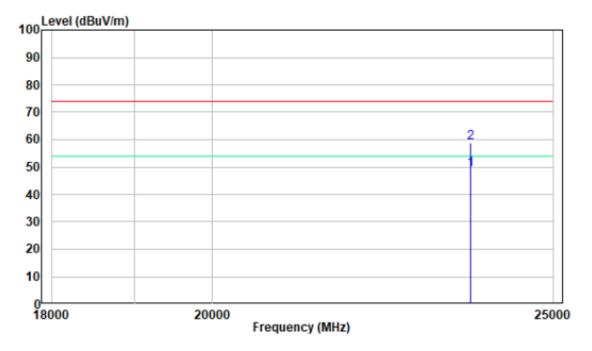

Date: 29.NOV.2022 19:27:22

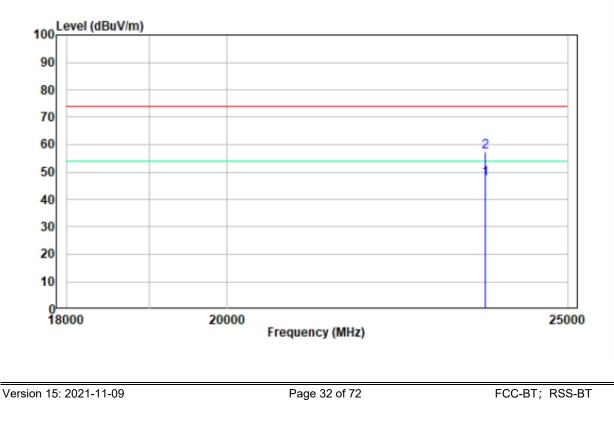
Duty cycle


Date: 6.DEC.2022 10:20:28

1 GHz - 18 GHz: (Pre-Scan plots)

High channel


Vertical


18-25GHz: (Pre-Scan plots)

High channel

Horizontal

Vertical

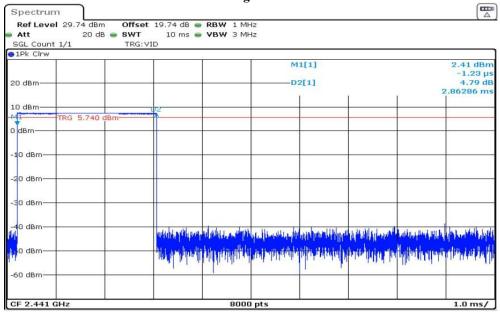
Report No.: RA221101-50887E-RFA

For Module 2

Above 1GHz: (worst case for 8DPSK, 3DH5)

Frequency (MHz)	Receiver			Rx Antenna		E (Absolute	T • •/	N .			
	Reading (dBµV)	PK/Ave	Turntable Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)			
Low Channel 2402MHz												
2310	61.51	РК	11	1.3	Н	-7.24	54.27	74	-19.73			
2310	61.66	PK	71	2.4	V	-7.24	54.42	74	-19.58			
2390	64.40	РК	273	2	Н	-7.22	57.18	74	-16.82			
2390	64.65	РК	61	2.3	V	-7.22	57.43	74	-16.57			
4804	58.76	РК	286	2.5	Н	-3.51	55.25	74	-18.75			
4804	59.27	РК	168	1.5	V	-3.51	55.76	74	-18.24			
Middle Channel 2441MHz												
4882	58.76	РК	76	1.8	Н	-3.37	55.39	74	-18.61			
4882	59.22	РК	318	1.1	V	-3.37	55.85	74	-18.15			
High Channel 2480MHz												
2483.5	65.84	РК	20	1.6	Н	-7.20	58.64	74	-15.36			
2483.5	65.61	РК	55	2	V	-7.20	58.41	74	-15.59			
2500	63.38	РК	130	2.3	Н	-7.18	56.20	74	-17.80			
2500	63.27	РК	35	2.4	V	-7.18	56.09	74	-17.91			
4960	57.84	РК	337	2.4	Н	-3.01	54.83	74	-19.17			
4960	58.55	РК	43	1.3	V	-3.01	55.54	74	-18.46			

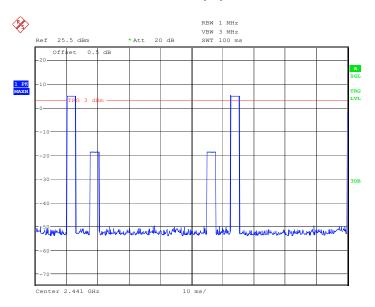
Report No.: RA221101-50887E-RFA


Field Strength of Average											
Frequency (MHz)	Peak Measurement @3m (dBµV/m)	Polar (H/V)	Duty Cycle Correction Factor (dB)	Corrected Ampitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)					
Low Channel(2402MHz)											
2310	54.27	Н	-24.85	29.42	54	-24.58					
2310	54.42	V	-24.85	29.57	54	-24.43					
2390	57.18	Н	-24.85	32.33	54	-21.67					
2390	57.43	V	-24.85	32.58	54	-21.42					
4804	55.25	Н	-24.85	30.4	54	-23.6					
4804	55.76	V	-24.85	30.91	54	-23.09					
Middle Channel(2441MHz)											
4882	55.39	Н	-24.85	30.54	54	-23.46					
4882	55.85	V	-24.85	31	54	-23					
High Channel(2480MHz)											
2483.5	58.64	Н	-24.85	33.79	54	-20.21					
2483.5	58.41	V	-24.85	33.56	54	-20.44					
2500	56.20	Н	-24.85	31.35	54	-22.65					
2500	56.09	V	-24.85	31.24	54	-22.76					
4960	54.83	Н	-24.85	29.98	54	-24.02					
4960	55.54	V	-24.85	30.69	54	-23.31					

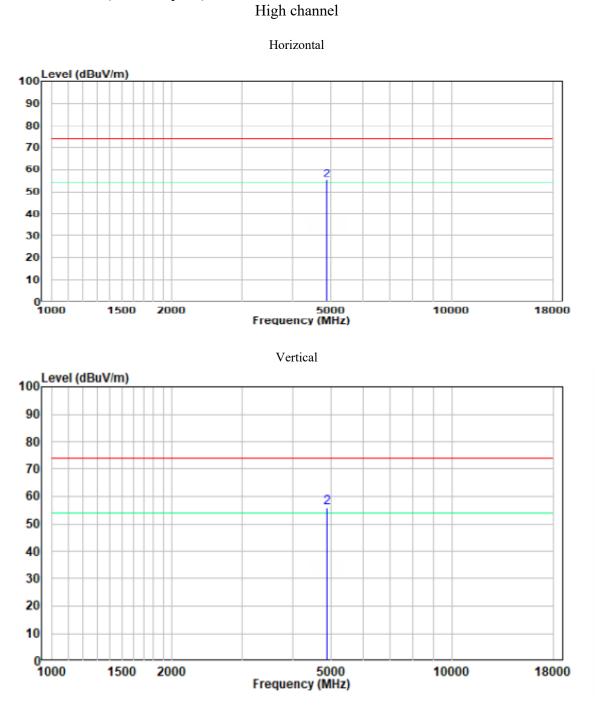
Note:

Absolute Level = Corrected Factor + Reading Margin = Corrected. Amplitude - Limit Average level= Peak level+ Duty Cycle Corrected Factor

The worst case duty cycle as below: Duty cycle = Ton/100ms = 2.86*2/100=0.0572Duty Cycle Corrected Factor = 20lg (Duty cycle) = 20lg0.0572 = -24.85

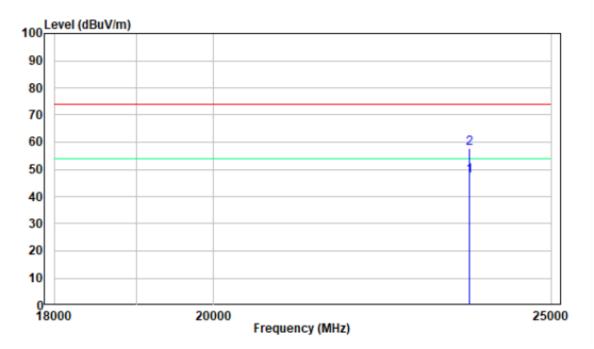

Report No.: RA221101-50887E-RFA

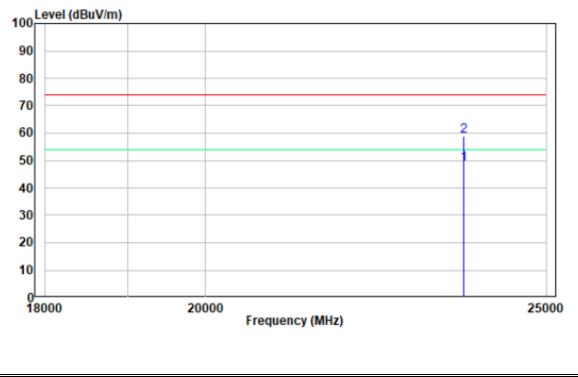
Pulse length: 2.88ms


Date: 29.NOV.2022 19:27:22

Duty cycle

Date: 6.DEC.2022 10:20:28


1 GHz - 18 GHz: (Pre-Scan plots)



18-25GHz: (Pre-Scan plots)

High channel

Horizontal

FCC §15.247(a) (1) & RSS-247 § 5.1 (b) -CHANNEL SEPARATION TEST

Applicable Standard

According to FCC §15.247(a) (1):

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

According to RSS-247 § 5.1 (b):

Frequency hopping systems (FHSs) shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the -20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, FHSs operating in the band 2400-2483.5 MHz may have hopping channel carrier frequencies that are separated by 25 kHz or two thirds of the -20 dB bandwidth of the hopping channel, whichever is greater, provided that the systems operate with an output power no greater than 0.125 W. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Test Procedure

Set the EUT in transmitting mode, max hold the channel. Set the adjacent channel of the EUT and max hold another trace. Measure the channel separation.

Test Data

Environmental Conditions

Temperature:	20 °C	
Relative Humidity:	50 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Gleen Jiang on 2022-11-29.

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix.

FCC §15.247(a) (1) & RSS-247 § 5.1 (a), RSS-GEN § 6.7 – 20 dB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH

Applicable Standard

According to FCC §15.247(a) (1):

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

According to RSS-247 § 5.1 (a), RSS-GEN § 6.7:

The occupied bandwidth or the "99% emission bandwidth" is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained. The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs.

In some cases, the "20 dB bandwidth" is required, which is defined as the frequency range between two points, one at the lowest frequency below and one at the highest frequency above the carrier frequency, at which the maximum power level of the transmitted emission is attenuated 20 dB below the maximum inband power level of the modulated signal, where the two points are on the outskirts of the in-band emission.

Test Procedure

The following conditions shall be observed for measuring the occupied bandwidth and 20 dB bandwidth:

• The transmitter shall be operated at its maximum carrier power measured under normal test conditions.

• The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.

• The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / 20 dB bandwidth if the device is not transmitting continuously.

• The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / 20 dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

Note: It may be necessary to repeat the measurement a few times until the RBW and VBW are in compliance with the above requirement.

For the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth).

Test Data

Environmental Conditions

Temperature:	20 °C	
Relative Humidity:	50 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Gleen Jiang on 2022-11-29.

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix

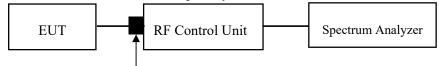
FCC §15.247(a) (1) (iii) & RSS-247 § 5.1 (d) - QUANTITY OF HOPPING CHANNEL TEST

Applicable Standard

According to FCC §15.247(a) (1) (iii):

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

According to RSS-247 § 5.1 (d):


Frequency hopping systems (FHSS) operating in the band 2400-2483.5 MHz shall use at least 15 hopping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed. Transmissions on particular hopping frequencies may be avoided or suppressed provided that at least 15 hopping channels are used.

Test Procedure

Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.

Set the EUT in hopping mode from first channel to last.

By using the max-hold function record the quantity of the channel.

Attenuator

Test Data

Environmental Conditions

Temperature:	20 °C	
Relative Humidity:	50 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Gleen Jiang on 2022-11-29.

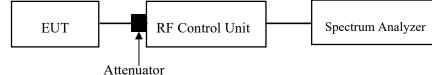
EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix.

FCC §15.247(a) (1) (iii) & RSS-247 § 5.1 (d) - TIME OF OCCUPANCY (DWELL TIME)

Applicable Standard

According to FCC §15.247(a) (1) (iii):


Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

According to RSS-247 § 5.1 (d):

Frequency hopping systems (FHSs) operating in the band 2400-2483.5 MHz shall use at least 15 hopping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed. Transmissions on particular hopping frequencies may be avoided or suppressed provided that at least 15 hopping channels are used.

Test Procedure

The EUT was worked in channel hopping. Set the RBW to: 1MHz. Set the VBW \geq 3×RBW. Set the span to 0Hz. Detector = peak. Sweep time = auto couple. Trace mode = max hold. Allow trace to fully stabilize. Recorded the time of single pulses

Test Data

Environmental Conditions

Temperature:	20 °C	
Relative Humidity:	50 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Gleen Jiang on 2022-11-29.

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix.

FCC §15.247(b) (1) & RSS-247§ 5.1(b) &§ 5.4(b) - PEAK OUTPUT POWER MEASUREMENT

Applicable Standard

According to FCC §15.247(b) (1):

For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 nonoverlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. And for all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.


According to RSS-247§ 5.1(b) &§ 5.4(b):

For frequency hopping systems (FHSs) operating in the band 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1.0 W if the hopset uses 75 or more hopping channels; the maximum peak conducted output power shall not exceed 0.125 W if the hopset uses less than 75 hopping channels. The e.i.r.p. shall not exceed 4 W (see Section 5.4(e) for exceptions).

Frequency hopping systems (FHSs) shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the -20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, FHSs operating in the band 2400-2483.5 MHz may have hopping channel carrier frequencies that are separated by 25 kHz or two thirds of the -20 dB bandwidth of the hopping channel, whichever is greater, provided that the systems operate with an output power no greater than 0.125 W.

Test Procedure

- 1. Place the EUT on a bench and set in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Attenuator Note: the RF control unit has a built-in power sensor.

Test Data

Environmental Conditions

Temperature:	20 °C	
Relative Humidity:	50 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Gleen Jiang on 2022-11-29.

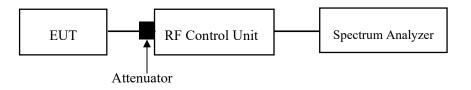
EUT operation mode: Transmitting Test Result: Compliant. Please refer to the Appendix.

FCC §15.247(d) & RSS-247 § 5.5 - BAND EDGES TESTING

Applicable Standard

According to FCC §15.247(d).

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).


According to RSS-247 § 5.5.

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(e), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

Test Procedure

- Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- Set RBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

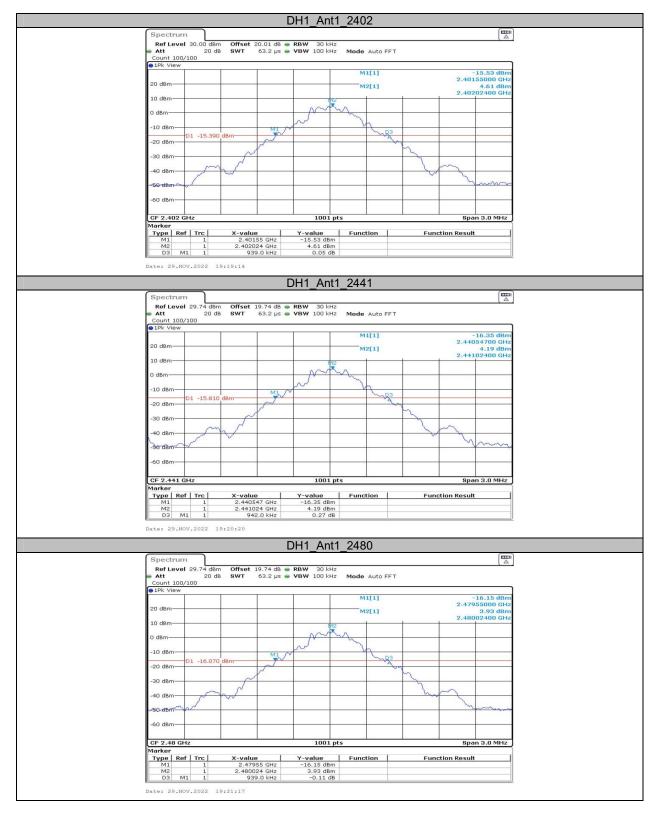
Test Data

Environmental Conditions

Temperature:	20 °C	
Relative Humidity:	50 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Gleen Jiang on 2022-11-29.

EUT operation mode: Transmitting


Test Result: Compliant. Please refer to the Appendix.

APPENDIX

Appendix A: 20dB Emission Bandwidth Test Result

Test Mode	Antenna	Channel	20db EBW[MHz]	Limit[MHz]	Verdict
		2402	0.94		
DH1	Ant1	2441	0.94		
		2480	0.94		
		2402	1.30		
2DH1	Ant1	2441	1.28		
		2480	1.31		
3DH1 Ant1		2402	1.28		
	Ant1	2441	1.28		
		2480	1.28		


Test Graphs

Version 15: 2021-11-09

FCC-BT; RSS-BT

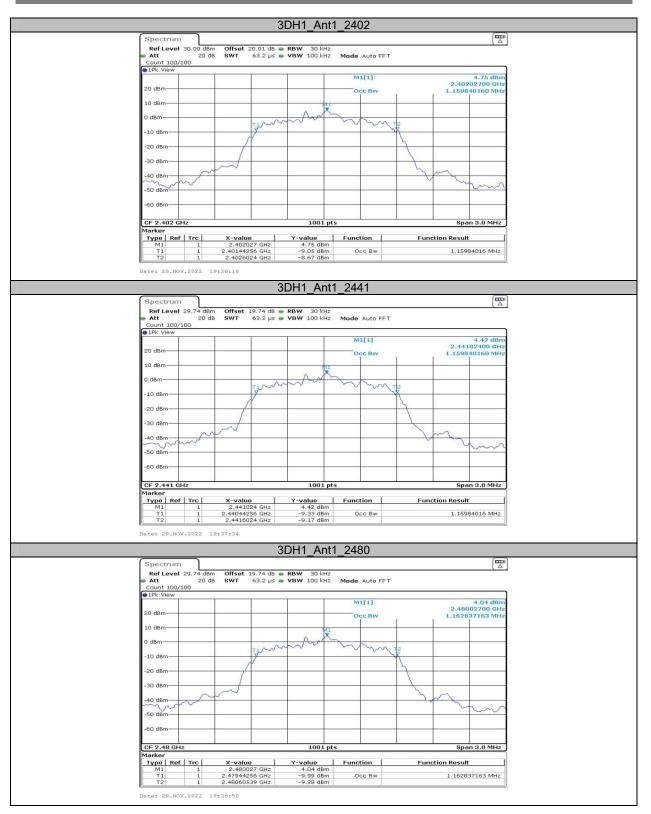
Report No.: RA221101-50887E-RFA

Report No.: RA221101-50887E-RFA

Appendix B: Occupied Channel Bandwidth Test Result

Test Mode	Antenna	Channel	OCB [MHz]	Limit[MHz]	Verdict
		2402	0.818		
DH1	Ant1	2441	0.824		
		2480	0.824		
		2402	1.169		
2DH1	Ant1	2441	1.172		
		2480	1.172		
		2402	1.160		
3DH1 Ant1	2441	1.160			
	2480	1.163			


Test Graphs


Version 15: 2021-11-09

FCC-BT; RSS-BT

Report No.: RA221101-50887E-RFA

Report No.: RA221101-50887E-RFA

Appendix C: Maximum conducted Peak output power Test Result

Module 1:

Test Mode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
		2402	8.59	≤20.97	PASS
DH1	Ant1	2441	8.28	≤20.97	PASS
		2480	8.14	≤20.97	PASS
		2402	10.82	≤20.97	PASS
2DH1	Ant1	2441	10.69	≤20.97	PASS
		2480	10.5	≤20.97	PASS
3DH1	Ant1	2402	11.34	≤20.97	PASS
		2441	11.19	≤20.97	PASS
		2480	10.94	≤20.97	PASS
Note: the maximur	n antenna gain is :	3.42dBi, the maxim	um EIRP=14.76dBm<36dBm		


Module 2:

Test Mode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict	
		2402	8.45	≤20.97	PASS	
DH1	Ant1	2441	8.26	≤20.97	PASS	
		2480	8.16	≤20.97	PASS	
2DH1		2402	10.87	≤20.97	PASS	
	Ant1	2441	10.72	≤20.97	PASS	
		2480	10.45	≤20.97	PASS	
		2402	11.26	≤20.97	PASS	
3DH1 Ant	Ant1	2441	11.17	≤20.97	PASS	
		2480	11.02	≤20.97	PASS	
Note: the maximum antenna gain is 3.42dBi, the maximum EIRP=14.68dBm<36dBm						

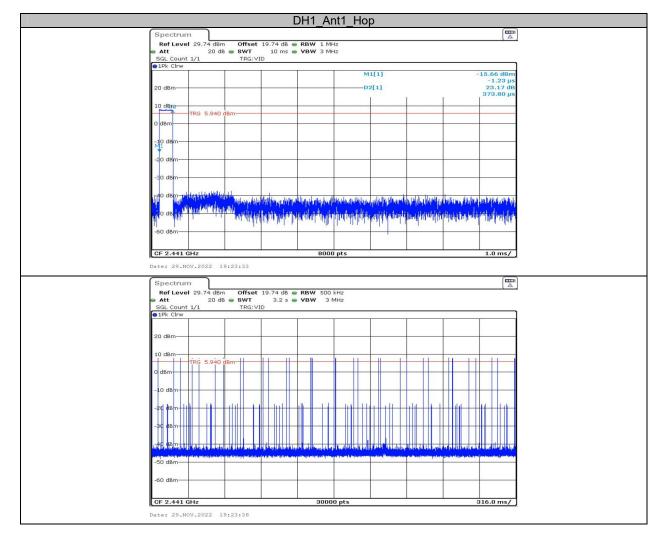
Appendix D: Carrier frequency separation Test Result

Test Mode	Antenna	Channel	Result[MHz]	Limit[MHz]	Verdict
DH1	Ant1	Нор	1.003	≥0.627	PASS
2DH1	Ant1	Нор	1.006	≥0.873	PASS
3DH1	Ant1	Нор	1	≥0.853	PASS

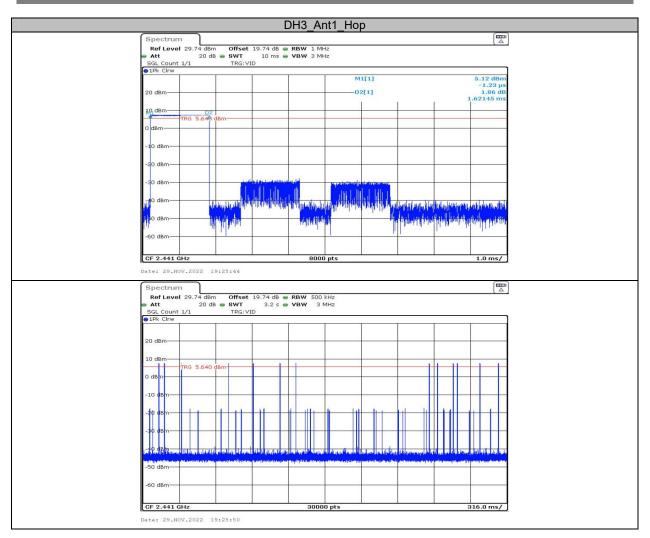
Test Graphs

Report No.: RA221101-50887E-RFA

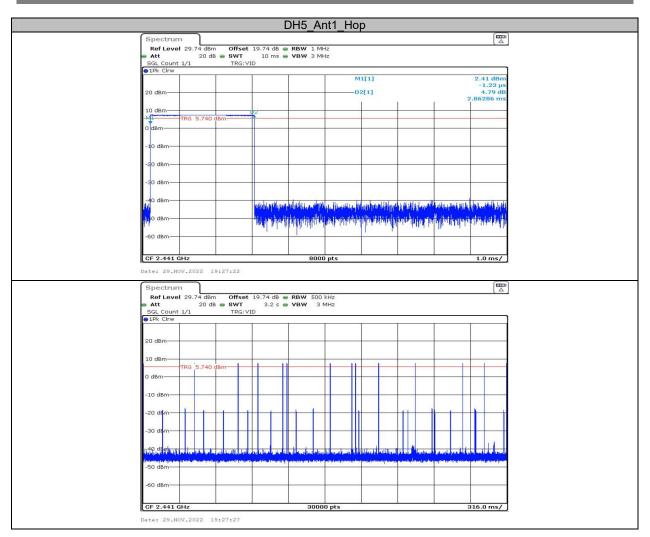
Appendix E: Time of occupancy Test Result


Test Mode	Antenna	Channel	BurstWidth [ms]	TotalHops [Num]	Result[s]	Limit[s]	Verdict
DH1	Ant1	Нор	0.37	330	0.123	≤0.4	PASS
DH3	Ant1	Нор	1.62	140	0.227	≤0.4	PASS
DH5	Ant1	Нор	2.86	130	0.372	≤0.4	PASS
2DH1	Ant1	Нор	0.39	320	0.123	≤0.4	PASS
2DH3	Ant1	Нор	1.63	140	0.228	≤0.4	PASS
2DH5	Ant1	Нор	2.87	110	0.316	≤0.4	PASS
3DH1	Ant1	Нор	0.39	320	0.123	≤0.4	PASS
3DH3	Ant1	Нор	1.63	140	0.228	≤0.4	PASS
3DH5	Ant1	Нор	2.87	120	0.345	≤0.4	PASS

Note 1: A period time=0.4*79=31.6(S), Result=BurstWidth*Totalhops


Note 2: Totalhops=Hopping Number in 3.16s*10

Note 3: Hopping Number in 3.16s=Total of highest signals in 3.16s(Second high signals were other channel)

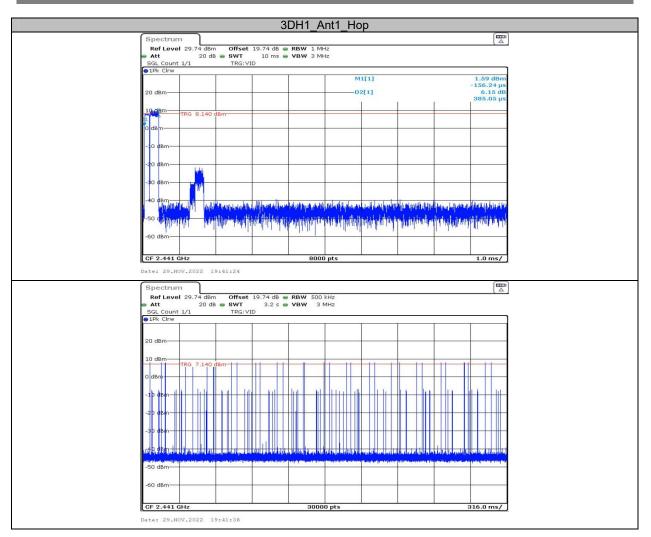

Test Graphs

Report No.: RA221101-50887E-RFA

Report No.: RA221101-50887E-RFA

Report No.: RA221101-50887E-RFA

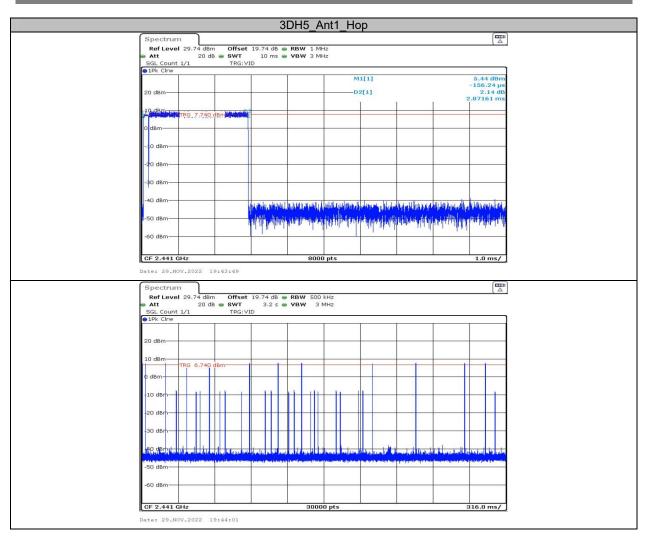
		00114	(4 1)				_
		2DH1_A	nt1_Ho	р			
SGL Count 1/1		 RBW 1 MH VBW 3 MH 					
1Pk Clrw 20 dBm				(1) (1)		-1	L.68 dBm L53.74 μs 19.28 dB 885.05 μs
10 dem TRG 7.540 de	ðm-					_	
1 ¹ 10 dBm							
-20 dBm							
-40 dBm -50 c <mark>rist and the first all and the second second</mark>	aalaq Hartoplan (see Dor Am yaqa tir ta	in an	www.t.t.s.in	h ha tu Di Dana an h A fa tu Di Dana an h	talangkanan talangkanan	n al de la de la de Proprimenta de la de	en de la charaitean Maria de la charaite
-60 dBm		8000			-1: e -1		1.0 ms/
Date: 29.NOV.2022 19	:33:15	8000	pts				
SGL Count 1/1		 RBW 500 VBW 31 					
1Pk Clrw 20 dBm							
10 dBm TRG 7.540 df	Bm						
10 dBm TRG 7.540 df	Bm						
0 dBm	Bm						
TRG 7.540 df 0 dBm -10 kBm -20 cBm -20 cBm -30 cBm -30 cBm -30 cBm							
TRG 7.540 df 0 dBm -10 dBm -20 cBm -30 cBm							


Report No.: RA221101-50887E-RFA

				2DH3	Ant1 H	ac	_		
Spectrum						- -			
Ref Level 29				RBW 1					(A
Att SGL Count 1/1	20 dB 👄 S	WT TRG: VII		VBW 3	MHz				
●1Pk Clrw				i.					
						11[1]			14.74 dBm -156.24 µs
20 dBm		-				2[1]		1	21.92 dB
10 dBm	- 182			_			-		
TRG	7.340 dBm-								
0 dBm				+					
. 10 dBm									
-20 dBm									
-30 dBm-				_	_				
1.1									
-40 dBm	tota In U.I.	ALL IN THE	LAND AL	bulu dan ala	Laburd & Ahler	an al mar the lat	المحمول الملي الا	heldel Halten 1	an starte (s. 1911) a di sa
-50 dBm	1 dit studi	and tall	i. almada	Whendham			litetid ashe kasatas a	Line Line	utitaliti alterneta
	And to shi bit	(III)	nta aldo d	e tradiction	kaliti la ka	I THAT THAT IN	al direction and in table	shadles bib as	letter slatt, shede
-60 dBm									
CF 2.441 GHz				80	00 pts				1.0 ms/
Date: 29.NOV.2	022 19:34:	10							
Spectrum									
Ref Level 29	.74 dBm 0	ffset	10 74 dp	RBW 5					1
Att									1
GL Count 1/1	20 dB 🕳 S		3.2 s	• VBW					(
	20 dB 🕳 S	WT	3.2 s			1	1		
SGL Count 1/1 1Pk Clrw	20 dB 🕳 S	WT	3.2 s						
SGL Count 1/1	20 dB 🕳 S	WT	3.2 s						
SGL Count 1/1 PIPk Clrw 20 dBm 10 dBm	20 dB • S	TRG: VII	3.2 s					1	
SGL Count 1/1 PIPk Clrw 20 dBm 10 dBm TRG	20 dB 🕳 S	TRG: VII	3.2 s						
SGL Count 1/1 PIPk Clrw 20 dBm 10 dBm	20 dB • S	TRG: VII	3.2 s						
SGL Count 1/1 PIPk Clrw 20 dBm 10 dBm TRG	20 dB • S	TRG: VII	3.2 s						
SGL Count 1/1 P1Pk Clrw 20 dBm 10 dBm -12 dBm -12 dBm	20 dB • S	TRG: VII	3.2 s						
SGL Count 1/1 PIPk Cirw 20 dBm 10 dBm TRG 0 dBm	20 dB • S	TRG: VII	3.2 s						
SGL Count 1/1 P1Pk Clrw 20 dBm 10 dBm -12 dBm -12 dBm	20 dB • S	TRG: VII	3.2 s						
SGL Count 1/1 ● 1Pk Clrw 20 dBm 10 dBm -11 dBm -21 dBm -31 dBm	20 dB • S	TRG: VII	3.2 s						
SGL Count 1/1 ● 1Pk Clrw 20 dBm 10 dBm -10 dBm -10 dBm -20 dBm	20 dB • S	TRG: VII	3.2 s						
SGL Count 1/1 ● 1Pk Clrw 20 dBm 10 dBm -11 dBm -21 dBm -31 dBm	20 dB • S	TRG: VII	3.2 s						
SGL count 1/1 ● 1Pk Clrw 20 dBm 10 dBm 10 dBm -11 dBm -22 dBm -32 dBm -32 dBm -50 dBm	20 dB • S	TRG: VII	3.2 s						
SGL Count 1/1 ● IPk Clnw 20 dBm 10 dBm 10 dBm -11 dBm -21 dBm -31 dBm -31 dBm	20 dB • S	TRG: VII	3.2 s						
SGL count 1/1 ● 1Pk Clrw 20 dBm 10 dBm 10 dBm -11 dBm -22 dBm -32 dBm -32 dBm -50 dBm	20 dB • S	TRG: VII	3.2 s						

Report No.: RA221101-50887E-RFA

							_
	2	DH5_A	nt1_Hc	р			
Spectrum							
Att 20 dB SWT		VBW 3 MH					
SGL Count 1/1 TRG: 1Pk Clrw	VID	III ASSISTER I PARAMAN	inon.				
• IPR CITW			M	1[1]			-3.65 dBm
20 dBm-			D	2[1]			-154.99 µs 10.91 de
20 0811					r	. 2	2.87036 ms
10 dBm							
dBm	1						
-10 dBm							
-20 dBm							-
-30 dBm							
-30 0811							
-40 dBm	the second	AL	i di se su k	. L. L. C. Holes	والمتعادية والمتعاد	. lest a	الحمد بالله م
	de la gland fi his	HILLS AND A	and the second second	40.0.1	i de la cicle de la	the domain	n haan araa daa
-50 dBm	A PROPERTY OF	ha huadhaan y	the second		UNITED STATE	ALC: NO. AND	When you we are
-60 dBm	Terretion	of single I	. II		and to the	1.20	<u>ц</u> , , , ,
CF 2.441 GHz		8000	pts				1.0 ms/
CF 2.441 GHz		8000	pts				1.0 ms/
Date: 29.NOV.2022 19:35:01		8000	pts		2.		
Date: 29.NOV.2022 19:35:01							1.0 ms/
Date: 29.NOV.2022 19:35:01 Spectrum	et 19.74 dB 3.2 s		<hz< td=""><td></td><td></td><td></td><td></td></hz<>				
Date: 29.NOV.2022 19:35:01 Spectrum Ref Level 29.74 dBm Offst Att 20 dB SWT SGL Count 1/1 TRG:	3.2 s 🖷	RBW 500	<hz< td=""><td></td><td></td><td></td><td></td></hz<>				
Date: 29.NOV.2022 19:35:01 Spectrum	3.2 s 🖷	RBW 500	<hz< td=""><td></td><td></td><td></td><td></td></hz<>				
Date: 29.NOV.2022 19:35:01 Spectrum Ref Level 29.74 dBm Offse Raft Level 29.74 dBm 20 dB SWT SGL Count 1/1 TRG: TRG: IPR Cirw IPR Cirw IPR Cirw IPR Cirw	3.2 s 🖷	RBW 500	<hz< td=""><td></td><td></td><td></td><td></td></hz<>				
Date: 29.NOV.2022 19:35:01 Spectrum Ref Level 29.74 dBm Offst Att 20 dB SWT SGL Count 1/1 TRG:	3.2 s 🖷	RBW 500	<hz< td=""><td></td><td></td><td></td><td></td></hz<>				
Date: 29.NOV.2022 19:35:01 Spectrum Ref Level 29.74 dBm Offse SGL Count 1/1 TRG IPk Clrw 20 dBm 10 dBm	3.2 s 🖷	RBW 500	<hz< td=""><td></td><td></td><td></td><td></td></hz<>				
Date: 29.NOV.2022 19:35:01 Spectrum Ref Level 29.74 dBm Offse Att 20 dB SWT SGL Count 1/1 TRG 1Pk Cirw 20 dBm 10 dBm TRG 6.440 dBm	3.2 s 🖷	RBW 500	<hz< td=""><td></td><td></td><td></td><td></td></hz<>				
Date: 29.NOV.2022 19:35:01 Spectrum Ref Level 29.74 dBm Offse SGL Count 1/1 TRG IPk Clrw 20 dBm 10 dBm	3.2 s 🖷	RBW 500	<hz< td=""><td></td><td></td><td></td><td></td></hz<>				
Date: 29.NOV.2022 19:35:01 Spectrum Ref Level 29.74 dBm Offse Att 20 dB • SWT SGL Count 1/1 TRG 1Pk Clrw 20 dBm 10 dBm TRG 6.440 dBm 0 dBm	3.2 s 🖷	RBW 500	<hz< td=""><td></td><td></td><td></td><td></td></hz<>				
Date: 29.NOV.2022 19:35:01 Spectrum Ref Level 29.74 dBm Offse Att 20 dB SWT SGL Count 1/1 TRG 1Pk Cirw 20 dBm 10 dBm TRG 6.440 dBm	3.2 s 🖷	RBW 500	<hz< td=""><td></td><td></td><td></td><td></td></hz<>				
Date: 29.NOV.2022 19:35:01 Spectrum Ref Level 29.74 dBm Offse Att 20 dB • SWT SGL Count 1/1 TRG 1Pk Clrw 20 dBm 10 dBm TRG 6.440 dBm 0 dBm	3.2 s 🖷	RBW 500	<hz< td=""><td></td><td></td><td></td><td></td></hz<>				
Date: 29.NOV.2022 19:35:01 Spectrum Ref Level 29.74 dBm Offse Att 20 dB SWT SGL Count 1/1 TRG 5.440 dBm 10 dBm TRG 5.440 dBm 0 jBm -10 dBm -20 dBm	3.2 s 🖷	RBW 500	<hz< td=""><td></td><td></td><td></td><td></td></hz<>				
Date: 29.NOV.2022 19:35:01 Spectrum Ref Level 29.74 dBm Offse Att 20 dB SWT SGL Count 1/1 TRG 6.440 dBm 0 dBm -10 dBm	3.2 s 🖷	RBW 500	<hz< td=""><td></td><td></td><td></td><td></td></hz<>				
Date: 29.NOV.2022 19:35:01 Spectrum Ref Level 29.74 dBm Offse Att 20 dB SWT SGL Count 1/1 TRG 10 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -3	3.2 s 🖷	RBW 500	<hz< td=""><td></td><td></td><td></td><td></td></hz<>				
Date: 29.NOV.2022 19:35:01 Spectrum Ref Level 29.74 dBm Offse Att 20 dB SWT SGL Count 1/1 IPk Clrw 20 dBm 10 dBm TRG 6.440 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm -40 dBm	3.2 s 🖷	RBW 500	<hz< td=""><td></td><td></td><td></td><td></td></hz<>				
Date: 29.NOV.2022 19:35:01 Spectrum Ref Level 29.74 dBm Offse Att 20 dB SWT SGL Count 1/1 TRG 10 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -3		RBW 500	<hz< td=""><td></td><td></td><td></td><td></td></hz<>				
Date: 29.NOV.2022 19:35:01 Spectrum Ref Level 29.74 dBm Offse Mt 20 dB TRG 6.440 dBm O JBm D JB		RBW 500	<hz< td=""><td></td><td></td><td></td><td></td></hz<>				
Date: 29.NOV.2022 19:35:01 Spectrum Ref Level 29.74 dBm Offse Att 20 dB SWT SGL Count 1/1 IPk Clrw 20 dBm 10 dBm TRG 6.440 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm -40 dBm		RBW 500	<hz< td=""><td></td><td></td><td></td><td></td></hz<>				
Date: 29.NOV.2022 19:35:01 Spectrum Ref Level 29.74 dBm Offse Mt 20 dB TRG 6.440 dBm O JBm D JB		RBW 500					


Report No.: RA221101-50887E-RFA

Report No.: RA221101-50887E-RFA

-20 dBm -30 dBm -40 dBm <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>									
Ref Level 29,74 dbm Offset 19,74 db RBW 1 MHz SGL count 1/1 TRG:VID TRG:VID 20 dbm 0 0/11/1 133.74 µs 20 dbm 0/211 -14.16 dbm 133.74 µs 20 dbm 0/211 -14.76 µs 20005 ms 10 dbm 0 0 0 0 0 dbm 0 0 0 0 0 0 dbm 0 0 0 0 0 0 0 dbm 0 0 0 0 0 0 0 0 dbm 0 0 0 0 0 0 0 0 40 dbm 0 0 0 0 0 0 0 40 dbm 0 0 0 0 0 0 0 0 40 dbm 0 0 0 0 0 0 0 0 50 dbm 0 0 0 0 0			3	DH3_	Ant1_F	ор			
Att 20 db SWT 10 ms VBW 3 MHz SGL Count L/1 TRG: VID TRG: VID -14.16 dBm 20 dBm D2[1] 2.171 dB 1.62895 ms 10 dBm D2[1] 1.62895 ms 1.62895 ms 10 dBm D2[1] D2[1] 1.62895 ms 10 dBm D2[1] D2[1] D2[1] D2[1] 10 dBm D2[1] D2[1] D2[1] D2[1] D2[1] 10 dBm D2[1] D2[1] D2[1] D2[1] D2[1] D2[1] 50 dBm D2[1] D2[1] <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
SGL Court L/1 TRG: VID 91Pk Clw -14.16 dBm 20 dBm D2[1] -15.74 tB 10; dBmcs, rrg6, 7400 dBm D2[1] 10.2805 mm 0 dBm D2[1] D2[1] 40 dBm D2[1] D2[1] 50 dBm D2[1] D2[1] 40 dBm D10.414 dBm D									
20 dem -14.16 dem 20 dem D2[1] 10.480 cov mg6 7.240 dem D2[1] 10.480 cov mg6 7.240 dem 10.62805 ms 0 dem 10.480 cov mg6 7.240 dem 0 dem 10.480 cov mg6 7.240 dem 0 dem 10.480 cov mg6 7.240 dem 10.480 cov mg6 7.240 dem 10.474 dem 0 dem 10.480 cov mg6 7.240 dem 40 dem 10.474 dem	SGL Count 1/1								
20 dBm	O IPK CIFW					M1[1]		-	14.16 dBm
10 dBm 1.62895 ms 0 dBm 1.62895 ms 10 dBm 1.62895 ms 0 dBm 1.62895 ms 10 dBm 1.62895 ms 40 dBm 1.628 ms 40 dBm 1.628 ms 50 dBm 1.0185 ms 50 dBm	20. dBm					D2[1]			
0 dBm 10 dBm -20 dBm -30 dBm -40 dB						1	ĩ	1 1	
0 dBm	10 dBm	940 dBm			-		-		
10 dbm 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
-20 dBm									
-30 dBm	1110 dBm-				_				
-30 dBm	-20 dBm								
40 dBm 40 dm 40 dm <t< td=""><td>LO GOM</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	LO GOM								
-50 dBm	-30 dBm	+ + - +			-				1
-50 dBm	-40 dBm		1000				20.5		S 15. 31
-60 dBm -60 dBm -6 dBm -6 dBm -6 dBm -6 dBm -6 dBm -6 dBm -6 dBm -6 dBm -7	10 CDIII	Apple of the state of the state	running maine	an addition of the state of the	Hullinghilly	Hellehurs, and	a Report Property	dudi Anna Altaina	and the second states of
-60 dBm	-50 dBm	all a link is a selling to	ilia ka li lu i	nillh bil n	district the second	h hiti the suit.	ha anti-	inden ürfetbelar	nkistationikaak
CF 2.441 GHz 8000 pts 1.0 ms/ Date: 29.NOV.2022 19:42:29 Image: Sector of the sect	-60 dBm	and realize the	o l'eras	als as	1 1	and the	and the second	inclused in	and in
Att::::::::::::::::::::::::::::::::::	-oo dom								
Spectrum Image:	CF 2.441 GHz			80	00 pts				1.0 ms/
Ref Level 29.74 db Offset 19.74 db RBW 500 kHz Att 20 db SWT 3.2 s VBW 3MHz SGL Count 1/1 TRG: VID TRG: VID TRG: VID TRG: VID 0 dbm TRG GL TRG: VID TRG: VID 10 dbm TRG GL TRG: VID TRG: VID 20 dbm TRG GL TRG: VID TRG: VID 10 dbm TRG GL TRG: VID TRG: VID 20 dbm TRG: 6.940 dbm TRG: VID TRG: VID TRG: VID 10 dbm TRG: 6.940 dbm TRG: VID TRG: VID TRG: VID 20 dbm TRG: 6.940 dbm TRG: VID TRG: VID TRG: VID -10 dbm TRG: 6.940 dbm TRG: VID TRG: VID TRG: VID TRG: VID -20 dbm TRG: VID TRG: VID TRG: VID TRG: VID TRG: VID -20 dbm TRG: VID TRG: VID TRG: VID TRG: VID TRG: VID -20 dbm TRG: VID TRG: VID	Date: 29.NOV.202	2 19:42:29							
Ref Level 29.74 db Offset 19.74 db RBW 500 kHz Att 20 db SWT 3.2 s VBW 3Mtz SGL Count 1/1 TRG: VID TRG: VID TRG: VID TRG: VID 0 dbm TRG GL GL GL GL 10 dbm TRG GL GL GL GL GL 10 dbm TRG GL	Guardina)							Ē
Att 20 db SWT 3.2 s VBW 3 Miz SGL_Court J1 TRG:VID TRG:VID TRG:VID TRG:VID 1Pk Clrw Image: Strateging of the strateging of th		4 dBm Offset	19.74 dB 🖷	RBW 5	00 kHz				
	🕳 Att 👘	20 dB 🕳 SWT	3.2 s 👄						
10 dBm TRG 6,940 dBm Image: state s	● 1Pk Clrw	TRG: VII	,			52.00	12		
10 dBm TRG 6,940 dBm Image: state s									
TRG 6.940 dBm Image: Control of the con	20 dBm-				_				
TRG 6.940 dBm Image: Control of the co	10 d8m								
-10 ddm	TRG 6	.940 dBm				11			
-20 dbm	0 dBm								
-20 dBm		i i ili	01.1	1			1 1	1	1. 10
-30 dBm	-holders								
100 (28 (27), 101 (27), 24 (27	-10 dBm								
100 (28 (27), 101 (27), 24 (27									
-50 dBm	-20 dBm								
-50 dBm	-20 dBm								
-60 dBm	-201dBm	مر الم				D. G. Ladate			
	-20 d8m								
CF 2.441 GHz 30000 pts 316.0 ms/	-20 d8m				i de litre				
CF 2.441 GHz 30000 pts 316.0 ms/	-20 dBm					II. Constrained		a and a second and a	
	-20 dBm				a de la construcción de la constru Construcción de la construcción de la				

Report No.: RA221101-50887E-RFA

Appendix F: Number of hopping channels Test Result

Test Mode	Antenna	Channel	Result[Num]	Limit[Num]	Verdict
DH1	Ant1	Нор	79	≥15	PASS
2DH1	Ant1	Нор	79	≥15	PASS
3DH1	Ant1	Нор	79	≥15	PASS

Test Graphs

Appendix G: Band edge measurements Test Graphs

Version 15: 2021-11-09

FCC-BT; RSS-BT

Report No.: RA221101-50887E-RFA

Report No.: RA221101-50887E-RFA

Version 15: 2021-11-09

Page 72 of 72

FCC-BT; RSS-BT