Intermec Technologies Corporation

RFID in IP3 with 802.11(b) and CDMA in 700C

July 6, 2004

Report No. ITRM0030.2

Report Prepared By:

1-888-EMI-CERT

© 2003 Northwest EMC, Inc

Test Report

22975 NW Evergreen Parkway Suite 400 Hillsboro, Oregon 97124

Certificate of Test

Issue Date: June 6, 2004
Intermec Technologies Corporation
Model: RFID in IP3 with 802.11(b) and CDMA in 700C

	Emissions		
Description		Pass	Fail
FCC 15.247(c) Spurious Radiated Emis	sions:2003	\boxtimes	

Modifications made to the product

See the Modifications section of this report

Test Facility

• The measurement facility used to collect the data is located at:

Northwest EMC, Inc.; 22975 NW Evergreen Parkway, Suite 400; Hillsboro, OR 97124

Phone: (503) 844-4066 Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal

Communications Commission) and Industry Canada.

Approved By:

Donald Facteau, IS Manager

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested, the specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision History

Revision 05/05/03

Revision Number	Description	Date	Page Number
00	None		

EMC

FCC: Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities, have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP: Northwest EMC, Inc. is recognized under the United States Department of Commerce, National Institute of Standards and Technology, National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 89/336/EEC, ANSI C63.4, MIL-STD 461E, DO-160D and SAE J1113. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada. Accreditation has been granted to Northwest EMC, Inc. under Certificate Numbers: 200629-0, 200630-0, and 200676-0.

Industry Canada: Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS 212, Issue 1 (Provisional) and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements.

CAB: Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement

TÜV Product Service: Included in TUV Product Service Group's Listing of Recognized Laboratories. It qualifies in connection with the TUV Certification after Recognition of Agent's Testing Program for the product categories and/or standards shown in TUV's current Listing of CARAT Laboratories available from TUV. A certificate was issued to represent that this laboratory continues to meet TUV's CARAT Program requirements. Certificate No. USA0401C

TÜV Rheinland: Authorized to carryout EMC tests by order and under supervision of TÜV Rheinland. This authorization is based on "Conditions for EMC-Subcontractors" of November 1992.

NEMKO: Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

Technology International: Assessed in accordance with ISO Guide 25 defining the general international requirements for the competence of calibration and testing laboratories and with ITI assessment criteria LACO196. Based upon that assessment Interference Technology International, Ltd., has granted approval for specifications implementing the EU Directive on EMC (89/336/EEC and amendments). The scope of the approval was provided on a Schedule of Assessment supplied with the certificate and is available upon request.

Australia/New Zealand: The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body. (NVLAP)

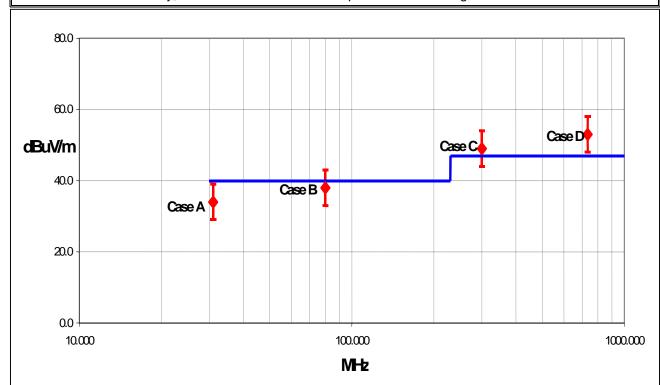
VCCI: Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (Registration Nos. - Evergreen: C-1071 and R-1025, Trails End: C-1877 and R-1760, Sultan: R-871, C-1784 and R-1761)

BSMI: Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement. License No.SL2-IN-E-1017.

GOST: Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

SCOPE

What is measurement uncertainty?


When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. The following statement of measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" value. In the case of transient tests (ESD, EFT, Surge, Voltage Dips and Interruptions), the test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements.

The following documents were the basis for determining the uncertainty levels of our measurements:

- "ISO Guide to the Expression of Uncertainty in Measurements", October 1993
- "NIS81: The Treatment of Uncertainty in EMC Measurements", May 1994
- "IEC CISPR 16-3 A1 f1 Ed.1: Radio-interference measurements and statistical techniques", December 2000

How might measurement uncertainty be applied to test results?

If the diamond marks the measured value for the test and the vertical bars bracket the range of + and – measurement uncertainty, then test results can be interpreted from the diagram below.

Test Result Scenarios:

Case A: Product complies.

Case B: Product conditionally complies. It is not possible to say with 95% confidence that the product complies.

Case C: Product conditionally does not comply. It is not possible to say with 95% confidence that the product does not comply.

Case D: Product does not comply.

Measurement Uncertainty

Radiated Emissions ≤ 1 GHz		Value (dB)				
	Probability Biconical		nical	Log Pe	eriodic	D	ipole
	Distribution	Ante	enna	Ante	enna	An	tenna
Test Distance		3m	10m	3m	10m	3m	10m
Combined standard	normal	+ 1.86	+ 1.82	+ 2.23	+ 1.29	+ 1.31	+ 1.25
uncertainty u _c (y)		- 1.88	- 1.87	- 1.41	- 1.26	- 1.27	- 1.25
Expanded uncertainty <i>U</i>	normal (k=2)	+ 3.72	+ 3.64	+ 4.46	+ 2.59	+ 2.61	+ 2.49
(level of confidence ≈ 95%)		- 3.77	- 3.73	-2.81	- 2.52	- 2.55	- 2.49

Radiated Emissions > 1 GHz	Value (dB)		
	Probability Distribution	Without High Pass Filter	With High Pass Filter
Combined standard uncertainty $u_c(y)$	normal	+ 1.29 - 1.25	+ 1.38 - 1.35
Expanded uncertainty <i>U</i> (level of confidence ≈ 95%)	normal (k=2)	+ 2.57 - 2.51	+ 2.76 2.70

Conducted Emissions					
	Probability	Value			
	Distribution	(+/- dB)			
Combined standard uncertainty <i>uc(y)</i>	normal	1.48			
Expanded uncertainty U (level of confidence ≈ 95 %)	normal (k = 2)	2.97			

Radiated Immunity					
	Probability	Value			
	Distribution	(+/- dB)			
Combined standard uncertainty uc(y)	normal	1.05			
Expanded uncertainty <i>U</i> (level of confidence ≈ 95 %)	normal (k = 2)	2.11			

Conducted Immunity					
	Probability	Value			
	Distribution	(+/- dB)			
Combined standard uncertainty <i>uc(y</i>)	normal	1.05			
Expanded uncertainty U	normal (k = 2)	2.10			
(level of confidence ≈ 95 %)	Horriai (K = 2)	2.10			

Legend

 $u_c(y)$ = square root of the sum of squares of the individual standard uncertainties

 $\it U$ = combined standard uncertainty multiplied by the coverage factor: $\it k$. This defines an interval about the measured result that will encompass the true value with a confidence level of approximately 95%. If a higher level of confidence is required, then $\it k$ =3 (CL of 99.7%) can be used. Please note that with a coverage factor of one, uc(y) yields a confidence level of only 68%.

Facilities

California

Orange County Facility

41 Tesla Ave. Irvine, CA 92618 (888) 364-2378 FAX (503) 844-3826

Oregon

Evergreen Facility

22975 NW Evergreen Pkwy., Suite 400 Hillsboro, OR 97124 (503) 844-4066 FAX (503) 844-3826

Oregon

Trails End Facility

30475 NE Trails End Lane Newberg, OR 97132 (503) 844-4066 FAX (503) 537-0735

Washington

Sultan Facility

14128 339th Ave. SE Sultan, WA 98294 (888) 364-2378 FAX (360) 793-2536

Product Description

Revision 10/3/03

Party Requesting the Test	
Company Name:	Intermec Technologies Corporation
Address:	550 Second St. SE
City, State, Zip:	Cedar Rapids, IA 52401-2023
Test Requested By:	Scott Holub
Equipment Under Test:	RFID in IP3 co-located with Bluetooth, 802.11(b), and CDMA in 700C
Model:	IP3
First Date of Test:	07-01-2004
Last Date of Test:	07-03-2004
Receipt Date of Samples:	06-15-2004
Equipment Design Stage:	Production
Equipment Condition:	No visual damage.

Information Provided by the Party Requesting the Test

Clocks/Oscillators: Not provided at the time of test.

Functional Description of the EUT (Equipment Under Test):

RFID radio installed in mobile IP3. The 700C Handheld Computer can be installed in the IP3. When installed, the RFID radio is co-located with Bluetooth, 802.11(b), and CDMA radios. The CDMA radio is new, Model EM3420.

Client Justification for EUT Selection:

The EUT is a representative production sample.

Client Justification for Test Selection:

These tests satisfy the requirements FCC 15.247 (c) for co-located transmitters.

EUT Photo

Modifications

Revision 4/28/03

Equipment modifications					
Item	Test	Date	Modification	Note	Disposition of EUT
1	Spurious Radiated Emissions	07/01/2004	No EMI suppression devices were added or modified during this test.	Same configuration as delivered.	EUT remained at Northwest EMC.
2	Spurious Radiated Emissions	07/02/2004	No EMI suppression devices were added or modified during this test.	Same configuration as delivered.	EUT remained at Northwest EMC.
3	Spurious Radiated Emissions	07/03/2004	No EMI suppression devices were added or modified during this test.	Same configuration as delivered.	EUT was returned to client following testing.

Revision 10/1/03

Justification

The EUT is a previously certified RFID radio module (FCC ID: EHARFID915PCC-6) installed inside Intermec's Model IP3. The IP3 is an optional pistol grip accessory that attaches externally to the bottom of Intermec's 700C. The 700C is a handheld computer that contains three co-located radio modules (CDMA, 802.11(b) and Bluetooth). The 802.11(b) and Bluetooth radios have been previously certified for portable, co-located use in the 700C (FCC ID: HN22011B-2, FCC ID: EHABTS0080). The CDMA radio is a new radio module that is undergoing certification (FCC ID: EHAEM3420). Since the IP3 uses the same IRDA interface port as the Bluetooth radio, the Bluetooth and RFID radios cannot transmit simultaneously (see Intermec's attestation letter). All other radios can transmit simultaneously. Each radio transmits through its own antenna. This test demonstrates compliance with FCC 15.247(c) emissions limits while the EUT is co-located with the 700C radios.

All possible combinations of harmonic emissions from the CDMA, 802.11(b) and RFID radios were compared numerically. It was determined that there were no possible coincidental harmonics below 1 GHz. All the radios were configured for simultaneous transmission at the channels specified below:

Channels in Specified Band Investigated:		
802.11(b):	1, 5, 8, 11	
CDMA (Cellular):	310, 477, 602, 727	
CDMA (PCS):	41, 932, 1117, 1175	
RFID:	7, 8, 12, 47, 50, 62, 69, 71, 73	

Operating Modes Investigated:

Simultaneous transmission of CDMA (cellular) and 802.11(b) radios in 700C and RFID radio in IP3
Simultaneous transmission of CDMA (PCS) and 802.11(b) radios in 700C and RFID radio in IP3

Operating Modes Investigated:

Simultaneous Transmission of CDMA Cellular Channel 477, RFID Channel 12, and 802.11(b) Channel 1 Simultaneous Transmission of CDMA Cellular Channel 727, RFID Channel 47, and 802.11(b) Channel 8 Simultaneous Transmission of CDMA Cellular Channel 602, RFID Channel 73, and 802.11(b) Channel 1 Simultaneous Transmission of CDMA Cellular Channel 310, RFID Channel 71, and 802.11(b) Channel 5 Simultaneous Transmission of CDMA Cellular Channel 310, RFID Channel 71, and 802.11(b) Channel 11 Simultaneous Transmission of CDMA PCS Channel 41, RFID Channel 69, and 802.11(b) Channel 11 Simultaneous Transmission of CDMA PCS Channel 1175, RFID Channel 7, and 802.11(b) Channel 11 Simultaneous Transmission of CDMA PCS Channel 932, RFID Channel 8, and 802.11(b) Channel 11 Simultaneous Transmission of CDMA PCS Channel 1117, RFID Channel 50, and 802.11(b) Channel 1 Simultaneous Transmission of CDMA PCS Channel 1117, RFID Channel 50, and 802.11(b) Channel 1 Simultaneous Transmission of CDMA PCS Channel 1117, RFID Channel 62, and 802.11(b) Channel 1 Simultaneous Transmission of CDMA PCS Channel 1117, RFID Channel 62, and 802.11(b) Channel 1 Simultaneous Transmission of CDMA PCS Channel 11175, RFID Channel 7, and 802.11(b) Channel 1

Data Rates Investigated:

Maximum

Output Power Setting(s) Investigated:

Maximum

Revision 10/1/03

Power Input Settings Investigated: 120 VAC, 60 Hz.

Antennas Investiga	ated:		
802.11(b):	Custom internal to 700C		
CDMA (Cellular):	805-606-102 Dual Band CDMA 900/1900MHz Antenna (SB555)		
CDMA (PCS):	805-666-204 Single Band CDMA 1900MHz Antenna (SB555)		
RFID:	IP3 integral antenna (internal to IP3)		

Software\Firmware Applied During Test					
	CDMA FCC Test		6/7/04		
Exercise software	PrismTest	Version	6/1/04		
	IP3FCC2		11/17/03		
Description					
The system was tested using special test software to exercise the functions of the device during the					
testing including channel,	band, and operating mode.				

EUT and Peripherals			
Description	Manufacturer	Model/Part Number	Serial Number
CDMA Radio	Intermec Technologies Corporation	EM3420	Unknown
Handheld Computer	Intermec Technologies Corporation	700C	13790400008
AC Adapter	Elpac Power Systems	FW1812	014869
802.11(b) Radio	Intermec Technologies Corporation	2011B	N/A
RFID Radio in Pistol Grip	Intermec Technologies Corporation	IP3	N/A

Cables											
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2						
DC Leads	PA	1.4	No	Handheld Computer	AC Adapter						
AC Power	No	2.0	No	AC Adapter	AC Mains						
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.											

Revision 10/1/03

Measurement Eq	uipment				
Description	Manufacturer	Model	Identifier	Last Cal	Interval
Antenna, Horn	EMCO	3160-09	AHG	NCR	NA
Pre-Amplifier	Miteq	JSD4-18002600-26-8P	APU	10/08/2003	12 mo
Antenna, Horn	EMCO	3160-08	AHK	NCR	NA
Pre-Amplifier	Miteq	AMF-4D-005180-24- 10P	APC	10/08/2003	12 mo
Antenna, Horn	EMCO	3115	AHC	09/18/2003	12 mo
Pre-Amplifier	Miteq	AMF-4D-005180-24- 10P	APJ	01/05/2004	13 mo
Antenna, Biconilog	EMCO	3141	AXE	12/03/2003	24 mo
Pre-Amplifier	Amplifier Research	LN1000A	APS	02/05/2004	13 mo
High Pass Filter	Micro-Tronics	HPM50111	HFO	04/13/2004	13 mo
Attenuator	Pasternack	PE7001-10	ATD	02/03/2004	13 mo
Attenuator		2082-6148-20	ATE	02/03/2004	13 mo
Antenna, Horn	EMCO	3115	AHF	03/18/2004	24 mo
Signal Generator	Hewlett Packard	8341B	TGN	01/23/2004	13 mo
Antenna, Dipole (ADAA included)	Roberts	Roberts	ADA	12/27/2002	24 mo
Spectrum Analyzer	Hewlett-Packard	8566B	AAL	12/23/2003	13 mo

Test Description

Requirement: Per 15.247(c), the field strength of any spurious emissions or modulation products that fall in a restricted band, as defined in 15.205, is measured. The peak level must comply with the limits specified in 15.35(b). The average level (taken with a 10Hz VBW) must comply with the limits specified in 15.209.

Configuration: The EUT is a previously certified RFID radio module (FCC ID: EHARFID915PCC-6) installed inside Intermec's Model IP3. The IP3 is an optional pistol grip accessory that attaches externally to the bottom of Intermec's 700C. The 700C is a handheld computer that contains three colocated radio modules (CDMA, 802.11(b) and Bluetooth). The 802.11(b) and Bluetooth radios have been previously certified for portable, co-located use in the 700C (FCC ID: HN22011B-2, FCC ID: EHABTS0080). The CDMA radio is a new radio module that is undergoing certification (FCC ID: EHAEM3420). Since the IP3 uses the same IRDA interface port as the Bluetooth radio, the Bluetooth and RFID radios cannot transmit simultaneously (see Intermec's attestation letter). All other radios can transmit simultaneously. Each radio transmits through its own antenna.

The following is an excerpt from the FCC / TCB Training Q & A, October 2002, Day 2, Question 7:

Assuming that the radios do not share an antenna, only radiated tests for simultaneous transmission is required. If the radios share an antenna, antenna conducted measurements would also be required. Only one set of worst case simultaneous transmission data is going to be requested to be submitted at this time. The test engineer should indicate the worst case condition and provide justification as to why the worst case condition was chosen. The grantee should be reminded that even if the FCC requests one set of data, they are responsible for compliance for all modes of simultaneous transmission.

Revision 10/1/03

All possible combinations of harmonic emissions from the CDMA, 802.11(b) and RFID radios were compared numerically. It was determined that there were no possible coincidental harmonics below 1 GHz. The frequency range from 1 GHz to 25 GHz was investigated for channel combinations that would produce coincidental harmonics. Compliance with the restricted band at 2483.5 – 2500 MHz was also measured.

All the radios were configured for simultaneous transmission at the channels specified in the previous pages. The highest gain antennas to be used with the radios were tested. The spectrum was scanned throughout the specified range. While scanning, emissions from the radios were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antennas in three orthogonal axes, and adjusting the measurement antenna height and polarization (per ANSI C63.4:1992). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

Bandwidths Used for Me	asurements						
Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)				
0.01 – 0.15	1.0	0.2	0.2				
0.15 - 30.0	10.0	9.0	9.0				
30.0 – 1000	100.0	120.0	120.0				
Above 1000	1000.0	N/A 1000.0					
Measurements were m	nade using the bandwidth	s and detectors specified. No	video filter was used.				

Completed by:

Holy Arling

NORTHWEST RADIATED EMISSIONS DATA SHEET **EMC** EUT: RFID in IP3 with CDMA and 802.11(b) in 700C Work Order: ITRM0030 Date: 07/01/04 Serial Number: Customer: Intermec Technologies Corporation Temperature: 79 Attendees: none Humidity: 43% Cust. Ref. No.: Barometric Pressure 29.93 Tested by: Holly Ashkannejhad Power: 120VAC, 60Hz Job Site: EV01 TEST SPECIFICATIONS Specification: FCC 15.247(c) Spurious Radiated Emissions Method: ANSI C63.4 Year: 2003 Year: 2001 SAMPLE CALCULATIONS

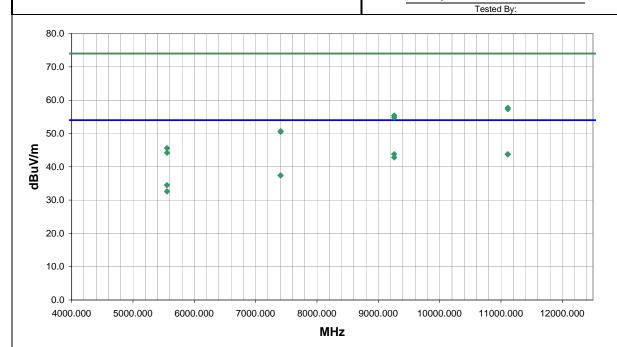
Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

CDMA(PCS) and 802.11(b) in 700C. RFID in IP3.

EUT OPERATING MODES

Transmitting CDMA (PCS) 41 and 802.11b 11 in 700C, and RFID 69 in IP3


DEVIATIONS FROM TEST STANDARD

No deviations.

RESULTS 57 Pass

Other

Holy Aligh

_						External			Distance			Compared to
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)
9258.750	28.6	15.2	33.0	1.2	3.0	0.0	V-Horn	AV	0.0	43.8	54.0	
11110.500	24.9	18.9	47.0	2.5	3.0	0.0	H-Horn	AV	0.0	43.8	54.0	-10.2
11110.500	24.8	18.9	108.0	3.8	3.0	0.0	V-Horn	AV	0.0	43.7	54.0	-10.3
9258.750	27.6	15.2	28.0	1.8	3.0	0.0	H-Horn	AV	0.0	42.8	54.0	-11.2
11110.500	38.8	18.9	47.0	2.5	3.0	0.0	H-Horn	PK	0.0	57.7	74.0	-16.3
7407.000	26.4	11.0	247.0	1.8	3.0	0.0	V-Horn	AV	0.0	37.4	54.0	-16.6
7407.000	26.4	11.0	154.0	1.3	3.0	0.0	H-Horn	AV	0.0	37.4	54.0	-16.6
11110.500	38.4	18.9	108.0	3.8	3.0	0.0	V-Horn	PK	0.0	57.3	74.0	-16.7
9258.750	40.2	15.2	28.0	1.8	3.0	0.0	H-Horn	PK	0.0	55.4	74.0	-18.6
9258.750	39.6	15.2	33.0	1.2	3.0	0.0	V-Horn	PK	0.0	54.8	74.0	-19.2
5555.250	28.4	6.1	48.0	1.6	3.0	0.0	V-Horn	AV	0.0	34.5	54.0	-19.5
5555.250	26.5	6.1	46.0	1.3	3.0	0.0	H-Horn	AV	0.0	32.6	54.0	-21.4
3703.500	30.4	1.1	17.0	1.2	3.0	0.0	V-Horn	AV	0.0	31.5	54.0	-22.5
3703.500	29.9	1.1	48.0	1.3	3.0	0.0	H-Horn	AV	0.0	31.0	54.0	-23.0
7407.000	39.7	11.0	154.0	1.3	3.0	0.0	H-Horn	PK	0.0	50.7	74.0	-23.3
7407.000	39.5	11.0	247.0	1.8	3.0	0.0	V-Horn	PK	0.0	50.5	74.0	-23.5
5555.250	39.5	6.1	48.0	1.6	3.0	0.0	V-Horn	PK	0.0	45.6	74.0	-28.4
5555.250	38.1	6.1	46.0	1.3	3.0	0.0	H-Horn	PK	0.0	44.2	74.0	-29.8
3703.500	42.1	1.1	17.0	1.2	3.0	0.0	V-Horn	PK	0.0	43.2	74.0	-30.8
3703.500	41.4	1.1	48.0	1.3	3.0	0.0	H-Horn	PK	0.0	42.5	74.0	-31.5

NORTHWEST RADIATED EMISSIONS DATA SHEET **EMC** EUT: RFID in IP3 with CDMA and 802.11(b) in 700C Work Order: ITRM0030 Date: 07/02/04 Serial Number: Customer: Intermec Technologies Corporation Temperature: 79 Attendees: none Humidity: 43% Cust. Ref. No.: Barometric Pressure 29.93 Tested by: Holly Ashkannejhad Power: 120VAC, 60Hz Job Site: EV01 TEST SPECIFICATIONS Specification: FCC 15.247(c) Spurious Radiated Emissions Method: ANSI C63.4 Year: 2003 Year: 2001 SAMPLE CALCULATIONS

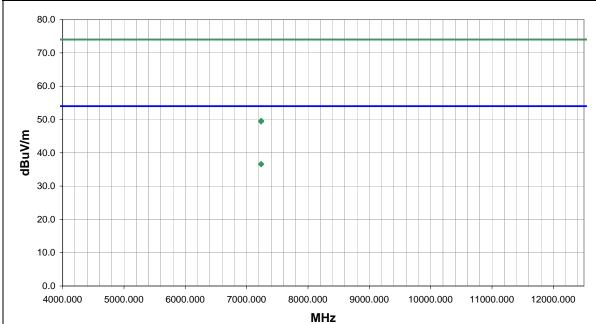
Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

COMMENTS

CDMA(PCS) and 802.11(b) in 700C. RFID in IP3.

EUT OPERATING MODES

Transmitting CDMA (PCS) 1182 and 802.11b 1 in 700C, and RFID 12 in IP3


DEVIATIONS FROM TEST STANDARD

No deviations.

RESULTS Run #
Pass 58

Other

Holy Arling Tested By:

						External			Distance			Compared to	ı
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	l
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)	l
7236.000	26.2	10.4	305.0	1.2	3.0	0.0	V-Horn	AV	0.0	36.6	54.0	-17.4	
7236.000	26.2	10.4	159.0	1.3	3.0	0.0	H-Horn	AV	0.0	36.6	54.0	-17.4	
7236.000	39.2	10.4	305.0	1.2	3.0	0.0	V-Horn	PK	0.0	49.6	74.0	-24.4	
7236.000	39.0	10.4	159.0	1.3	3.0	0.0	H-Horn	PK	0.0	49.4	74.0	-24.6	

NORTHWEST RADIATED EMISSIONS DATA SHEET **EMC** EUT: RFID in IP3 with CDMA and 802.11(b) in 700C Work Order: ITRM0030 Date: 07/02/04 Serial Number: Customer: Intermec Technologies Corporation Temperature: 79 Attendees: none Humidity: 43% Cust. Ref. No.: Barometric Pressure 29.93 Tested by: Holly Ashkannejhad Power: 120VAC, 60Hz Job Site: EV01 TEST SPECIFICATIONS Specification: FCC 15.247(c) Spurious Radiated Emissions Method: ANSI C63.4 Year: 2003 Year: 2001 SAMPLE CALCULATIONS

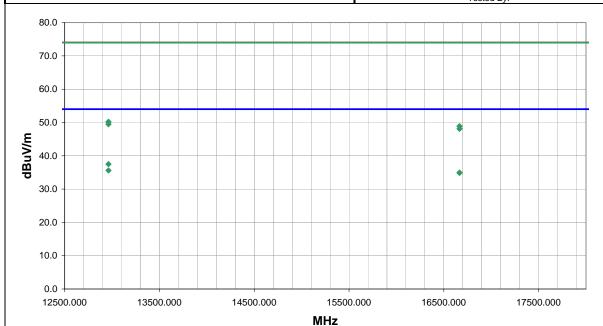
Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

COMMENTS

CDMA(PCS) and 802.11(b) in 700C. RFID in IP3.

EUT OPERATING MODES

Transmitting CDMA (PCS) 41 and 802.11b 11 in 700C, and RFID 69 in IP3


DEVIATIONS FROM TEST STANDARD

No deviations.

RESULTS Run #
Pass 59

Other

Holy Arling

						External			Distance			Compared to	
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)	
12962.250	28.9	8.6	116.0	1.2	3.0	0.0	V-Horn	AV	0.0	37.5	54.0	-16.5	
12962.250	27.0	8.6	48.0	1.5	3.0	0.0	H-Horn	AV	0.0	35.6	54.0	-18.4	
16665.750	26.4	8.5	54.0	1.2	3.0	0.0	V-Horn	AV	0.0	34.9	54.0	-19.1	
16665.750	26.4	8.5	348.0	1.3	3.0	0.0	H-Horn	AV	0.0	34.9	54.0	-19.1	
12962.250	41.6	8.6	116.0	1.2	3.0	0.0	V-Horn	PK	0.0	50.2	74.0	-23.8	
12962.250	40.9	8.6	48.0	1.5	3.0	0.0	H-Horn	PK	0.0	49.5	74.0	-24.5	
16665.750	40.4	8.5	347.0	1.3	3.0	0.0	H-Horn	PK	0.0	48.9	74.0	-25.1	
16665.750	39.6	8.5	54.0	1.2	3.0	0.0	V-Horn	PK	0.0	48.1	74.0	-25.9	

NORTHWEST RADIATED EMISSIONS DATA SHEET **EMC** EUT: RFID in IP3 with CDMA and 802.11(b) in 700C Work Order: ITRM0030 Date: 07/02/04 Serial Number: Customer: Intermec Technologies Corporation Temperature: 79 Attendees: none Humidity: 43% Cust. Ref. No.: Barometric Pressure 29.93 Tested by: Holly Ashkannejhad Power: 120VAC, 60Hz Job Site: EV01 TEST SPECIFICATIONS Specification: FCC 15.247(c) Spurious Radiated Emissions Method: ANSI C63.4 Year: 2003 Year: 2001 SAMPLE CALCULATIONS

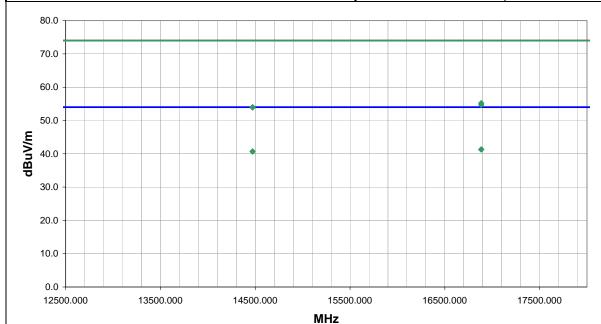
Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

COMMENTS

CDMA(PCS) and 802.11(b) in 700C. RFID in IP3.

EUT OPERATING MODES

Transmitting CDMA (PCS) 1175 and 802.11b 1 in 700C, and RFID 12 in IP3


DEVIATIONS FROM TEST STANDARD

No deviations.

RESULTS Run # 60

Other

Holy Arling

						External			Distance			Compared to
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)
16884.000	26.5	14.8	20.0	1.2	3.0	0.0	V-Horn	AV	0.0	41.3	54.0	-12.7
16884.000	26.5	14.8	141.0	1.3	3.0	0.0	H-Horn	AV	0.0	41.3	54.0	-12.7
14472.000	26.9	13.8	117.0	2.2	3.0	0.0	V-Horn	AV	0.0	40.7	54.0	-13.3
14472.000	26.9	13.8	89.0	1.3	3.0	0.0	H-Horn	AV	0.0	40.7	54.0	-13.3
16884.000	40.4	14.8	20.0	1.2	3.0	0.0	V-Horn	PK	0.0	55.2	74.0	-18.8
16884.000	39.9	14.8	141.0	1.3	3.0	0.0	H-Horn	PK	0.0	54.7	74.0	-19.3
14472.000	40.2	13.8	89.0	1.3	3.0	0.0	H-Horn	PK	0.0	54.0	74.0	-20.0
14472.000	40.1	13.8	117.0	2.2	3.0	0.0	V-Horn	PK	0.0	53.9	74.0	-20.1

NORTHWEST EMC	RADIATED EMIS	SIONS DATA	SHEET		REV df4.13 05/06/2004
EUT:	RFID in IP3 with CDMA and 802.11(b) in 700C		Work Order:	ITRM0030	
Serial Number:			Date:	07/02/04	
Customer:	Intermec Technologies Corporation		Temperature:	79	
Attendees:	none		Humidity:	43%	
Cust. Ref. No.:			Barometric Pressure	29.93	
Tested by:	Holly Ashkannejhad	Power: 120VAC, 60Hz	Job Site:	EV01	
TEST SPECIFICATI	ONS				
Specification:	FCC 15.247(c) Spurious Radiated Emissions		Year:	2003	
	ANSI C63.4		Year:	2001	
SAMPLE CALCULA	TIONS				

Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

CDMA(PCS) and 802.11(b) in 700C. RFID in IP3.

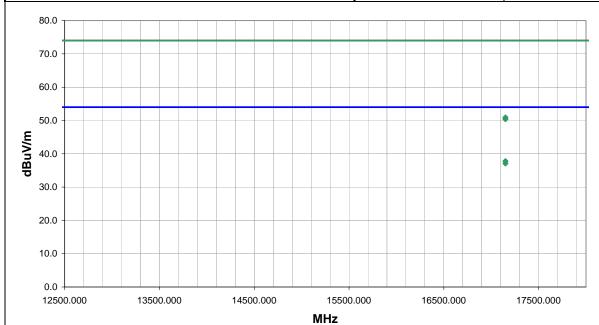
17149.910

EUT OPERATING MODES
Transmitting CDMA (PCS) 1117 and 802.11b 11 in 700C, and RFID 7 in IP3

DEVIATIONS FROM TEST STANDARD No deviations.

RESULTS Pass 61

Other


Holy Aligh Tested By:

PK 0.0

50.4

74.0

-23.6

							External			Distance			Compared to
F	req	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.
(N	IHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)
	17150.050	27.2	10.6	121.0	1.2	3.0	0.0	V-Horn	AV	0.0	37.8	54.0	-16.2
	17149.910	26.5	10.6	2.0	3.5	3.0	0.0	H-Horn	AV	0.0	37.1	54.0	-16.9
	17149.910	40.3	10.6	2.0	3.5	3.0	0.0	H-Horn	PK	0.0	50.9	74.0	-23.1

39.8 10.6 121.0 1.2 3.0 0.0 V-Horn

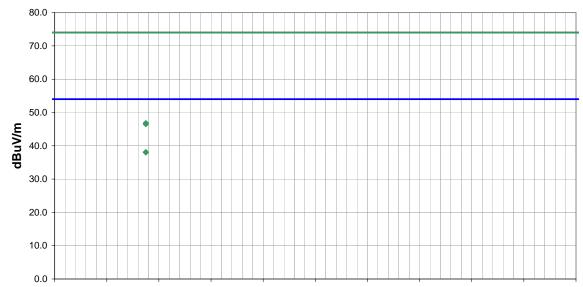
NORTHWEST EMC	RADIATED EMIS	SIONS DATA	SHEET		REV df4.13 05/06/2004
EUT:	RFID in IP3 with CDMA and 802.11(b) in 700C		Work Order:	ITRM0030	
Serial Number:			Date:	07/02/04	
Customer:	Intermec Technologies Corporation		Temperature:	79	
Attendees:	none		Humidity:	43%	
Cust. Ref. No.:			Barometric Pressure	29.93	
Tested by:	Holly Ashkannejhad	Power: 120VAC, 60Hz	Job Site:	EV01	
TEST SPECIFICATI	ONS				
Specification:	FCC 15.247(c) Spurious Radiated Emissions		Year:	2003	
	ANSI C63.4		Year:	2001	
SAMPLE CALCULA	ATIONS				

Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

COMMENTS

CDMA(PCS) and 802.11(b) in 700C. RFID in IP3.

EUT OPERATING MODES
Transmitting CDMA (PCS) 41 and 802.11b 11 in 700C, and RFID 69 in IP3


DEVIATIONS FROM TEST STANDARD

No deviations.

RESULTS Pass 66

Other

Holy Soling D Tested By:

 $18500.000 \quad 18510.000 \quad 18520.000 \quad 18530.000 \quad 18540.000 \quad 18550.000 \quad 18570.000 \quad 18580.000 \quad 18590.000 \quad 18600.000 \quad 18590.000 \quad 1859$ MHz

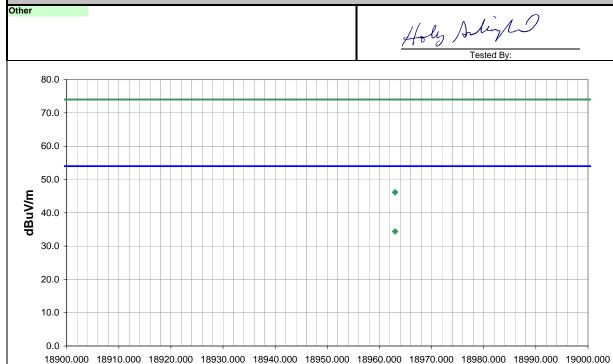
						External			Distance			Compared to
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)
18517.500	31.1	7.0	303.0	1.1	3.0	0.0	√-High Horr	AV	0.0	38.1	54.0	-15.9
18517.500	31.0	7.0	121.0	1.0	3.0	0.0	H-High Horr	AV	0.0	38.0	54.0	-16.0
18517.500	39.8	7.0	303.0	1.1	3.0	0.0	V-High Horr	PK	0.0	46.8	74.0	-27.2
18517 500	39.5	7.0	121 0	1.0	3.0	0.0	H-High Horr	PK	0.0	46.5	74 0	-27.5

NORTHWEST EMC	RADIATED EMIS	SIONS DATA	SHEET		REV df4.13 05/06/2004
EUT:	RFID in IP3 with CDMA and 802.11(b) in 700C		Work Order:	ITRM0030	
Serial Number:			Date:	07/02/04	
Customer:	Intermec Technologies Corporation		Temperature:	79	
Attendees:	none		Humidity:	43%	
Cust. Ref. No.:			Barometric Pressure	29.93	
Tested by:	Holly Ashkannejhad	Power: 120VAC, 60Hz	Job Site:	EV01	
TEST SPECIFICATI	ONS				
Specification:	FCC 15.247(c) Spurious Radiated Emissions	_	Year:	2003	
	ANSI C63.4		Year:	2001	
SAMPLE CALCULA	TIONS				

Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator COMMENTS

CDMA(PCS) and 802.11(b) in 700C. RFID in IP3.

EUT OPERATING MODES
Transmitting CDMA (PCS) 932 and 802.11b 11 in 700C, and RFID 8 in IP3


DEVIATIONS FROM TEST STANDARD

No deviations.

RESULTS Pass 67

Other

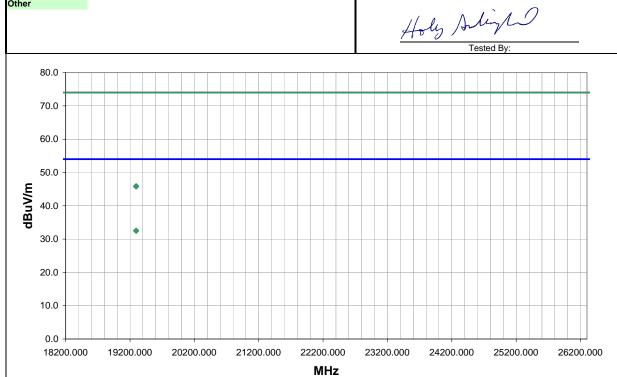
Tested By:

						External			Distance			Compared to
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)
18963.000	26.9	7.5	248.0	1.0	3.0	0.0	√-High Horr	AV	0.0	34.4	54.0	-19.6
18963.000	26.9	7.5	117.0	1.1	3.0	0.0	H-High Horr	AV	0.0	34.4	54.0	-19.6
18963.000	38.7	7.5	117.0	1.1	3.0	0.0	H-High Horr	PK	0.0	46.2	74.0	-27.8
18963.000	38.6	7.5	248 0	1.0	3.0	0.0	√-High Horr	PK	0.0	46 1	74 0	-27 9

MHz

NORTHWEST EMC	RADIATED EMIS	SIONS DATA	SHEET		REV df4.13 05/06/2004
EUT:	RFID in IP3 with CDMA and 802.11(b) in 700C		Work Order:	ITRM0030	
Serial Number:			Date:	07/02/04	
Customer:	Intermec Technologies Corporation	Temperature:	79		
Attendees:	none	Humidity:	43%		
Cust. Ref. No.:			Barometric Pressure	29.93	
Tested by:	Holly Ashkannejhad	Power: 120VAC, 60Hz	Job Site:	EV01	
TEST SPECIFICATI	ONS				
Specification:	FCC 15.247(c) Spurious Radiated Emissions	Year:	2003		
Method:	ANSI C63.4	Year:	2001		
SAMPLE CALCULA	TIONS				

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator


CDMA(PCS) and 802.11(b) in 700C. RFID in IP3.

EUT OPERATING MODES
Transmitting CDMA (PCS) 1117 and 802.11b 1 in 700C, and RFID 50 in IP3

DEVIATIONS FROM TEST STANDARD No deviations.

RESULTS Pass 68

Other

						External			Distance			Compared to	1
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)	
19294.880	24.5	8.0	309.0	1.0	3.0	0.0	H-High Horr	AV	0.0	32.5	54.0	-21.5	•
19294.880	24.5	8.0	118.0	1.1	3.0	0.0	√-High Horr	AV	0.0	32.5	54.0	-21.5	
19294.880	37.9	8.0	309.0	1.0	3.0	0.0	H-High Horr	PK	0.0	45.9	74.0	-28.1	
19294.880	37.8	8.0	118.0	1.1	3.0	0.0	√-High Horr	PK	0.0	45.8	74.0	-28.2	

NORTHWEST EMC	RADIATED EMIS	SIONS DATA	SHEET		REV df4.13 05/06/2004
EUT:	RFID in IP3 with CDMA and 802.11(b) in 700C		Work Order:	ITRM0030	
Serial Number:			Date:	07/03/04	
Customer:	Intermec Technologies Corporation		Temperature:	79	
Attendees:	none		Humidity:	43%	
Cust. Ref. No.:			Barometric Pressure	29.93	
Tested by:	Holly Ashkannejhad	Power: 120VAC, 60Hz	Job Site:	EV01	
TEST SPECIFICATI	ONS				
Specification:	FCC 15.247(c) Spurious Radiated Emissions		Year:	2003	
Method:	ANSI C63.4		Year:	2001	
SAMPLE CALCULA	ATIONS				

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

COMMENTS

CDMA(PCS) and 802.11(b) in 700C. RFID in IP3.

EUT OPERATING MODES
Transmitting CDMA (PCS) 1117 and 802.11b 1 in 700C, and RFID 62 in IP3

DEVIATIONS FROM TEST STANDARD No deviations.

RESULTS Pass 69

Other

Holy Arlingho Tested By:

22100.000 22110.000 22120.000 22130.000 22140.000 22150.000 22160.000 22170.000 22180.000 22190.000 22200.000 MHz

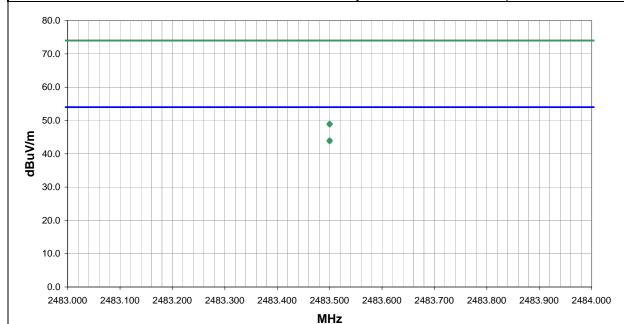
							External			Distance			Compared to
	Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.
	(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)
	22158.000	26.0	8.9	-1.0	1.0	3.0	0.0	H-High Horr	AV	0.0	34.9	54.0	-19.1
	22158.000	25.9	8.9	361.0	1.0	3.0	0.0	V-High Horr	AV	0.0	34.8	54.0	-19.2
	22158.000	38.1	8.9	-1.0	1.0	3.0	0.0	H-High Horr	PK	0.0	47.0	74.0	-27.0
	22158.000	37.9	8.9	361.0	1.0	3.0	0.0	√-High Horr	PK	0.0	46.8	74.0	-27.2

NORTHWEST EMC	RADIATED EMIS	SIONS DATA	SHEET		REV df4.13 05/06/2004
EUT:	RFID in IP3 with CDMA and 802.11(b) in 700C		Work Order:	ITRM0030	
Serial Number:			Date:	07/03/04	
Customer:	Intermec Technologies Corporation		Temperature:	79	
Attendees:	none		Humidity:	43%	
Cust. Ref. No.:			Barometric Pressure	29.93	
Tested by:	Holly Ashkannejhad	Power: 120VAC, 60Hz	Job Site:	EV01	
TEST SPECIFICATI	ONS				
Specification:	FCC 15.247(c) Spurious Radiated Emissions		Year:	2003	
Method:	ANSI C63.4		Year:	2001	
SAMPLE CALCULA	ATIONS				

Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

CDMA(PCS) and 802.11(b) in 700C. RFID in IP3.

EUT OPERATING MODES
Transmitting CDMA (PCS) 1175 and 802.11b 11 in 700C, and RFID 7 in IP3


DEVIATIONS FROM TEST STANDARD

No deviations.

RESULTS Pass 70

Other

Holy Saligh Tested By:

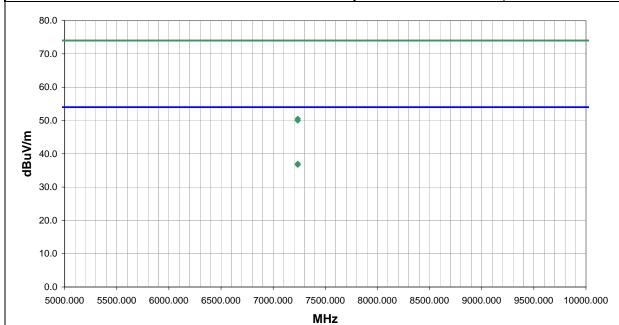
						External			Distance			Compared to
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)
2483.500	24.2	29.4	331.0	1.1	1.0	0.0	H-Horn	AV	-9.5	44.1	54.0	-9.9
2483.500	23.9	29.4	285.0	1.0	1.0	0.0	V-Horn	AV	-9.5	43.8	54.0	-10.2
2483.500	29.2	29.4	331.0	1.1	1.0	0.0	H-Horn	PK	-9.5	49.1	74.0	-24.9
2483 500	28.9	29 4	285.0	1.0	1.0	0.0	V-Horn	PK	-9.5	48.8	74 0	-25.2

NORTHWEST EMC	RADIATED EMIS	SIONS DATA	SHEET		REV df4.13 05/06/2004
EUT:	RFID in IP3 co-located with 802.11(b) and CDMA in 70	0C	Work Order:	ITRM0030	
Serial Number:			Date:	07/01/04	
Customer:	Intermec Technologies Corporation		Temperature:	79	
Attendees:	none		Humidity:	43%	
Cust. Ref. No.:			Barometric Pressure	29.93	
Tested by:	Holly Ashkannejhad	Power: 120VAC, 60Hz	Job Site:	EV01	
TEST SPECIFICATI					
Specification:	FCC 15.247(c) Spurious Radiated Emissions		Year:	2003	
Method:	ANSI C63.4		Year:	2001	
SAMPLE CALCULA	TIONS				

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

COMMENTS

CDMA(cellular) and 802.11(b) in 700C. RFID in IP3.


EUT OPERATING MODES
Transmitting CDMA (cellular) 477 and 802.11b 1 in 700C, and RFID 12 in IP3

DEVIATIONS FROM TEST STANDARD No deviations.

RESULTS Pass 54

Other

Holy Solingh Tested By:

						External			Distance			Compared to	i
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	ĺ
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)	l
7236.000	26.6	10.4	9.0	1.2	3.0	0.0	V-Horn	AV	0.0	37.0	54.0	-17.0	
7236.000	26.3	10.4	354.0	1.5	3.0	0.0	H-Horn	AV	0.0	36.7	54.0	-17.3	
7236.000	40.1	10.4	354.0	1.5	3.0	0.0	H-Horn	PK	0.0	50.5	74.0	-23.5	
7236.000	39.6	10.4	9.0	1.2	3.0	0.0	V-Horn	PK	0.0	50.0	74.0	-24.0	

NORTHWEST **RADIATED EMISSIONS DATA SHEET EMC** EUT: RFID in IP3 co-located with 802.11(b) and CDMA in 700C Work Order: ITRM0030 Date: 07/01/04 Serial Number: Customer: Intermec Technologies Corporation Temperature: 79 Attendees: none Humidity: 43% Cust. Ref. No.: Barometric Pressure 29.93 Tested by: Holly Ashkannejhad Power: 120VAC, 60Hz Job Site: EV01 TEST SPECIFICATIONS Specification: FCC 15.247(c) Spurious Radiated Emissions Method: ANSI C63.4 Year: 2003 Year: 2001 SAMPLE CALCULATIONS

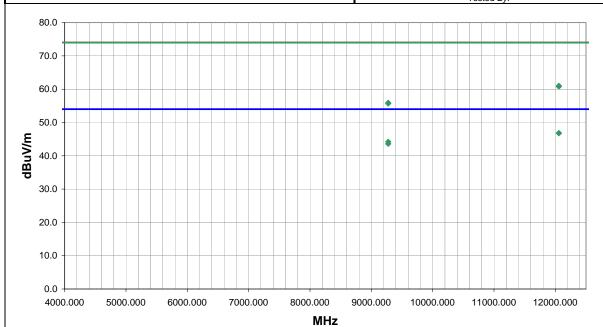
Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

CDMA(cellular) and 802.11(b) in 700C. RFID in IP3.

EUT OPERATING MODES

Transmitting CDMA (cellular) 602 and 802.11b 1 in 700C, and RFID 73 in IP3


DEVIATIONS FROM TEST STANDARD

No deviations.

RESULTS 55 Pass

Other

Holy Aligh Tested By:

١							External			Distance			Compared to
١	Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.
	(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)
	12057.940	26.2	20.6	349.0	1.0	3.0	0.0	H-Horn	AV	0.0	46.8	54.0	-7.2
	12057.940	26.2	20.6	21.0	1.0	3.0	0.0	V-Horn	AV	0.0	46.8	54.0	-7.2
	9275.500	29.0	15.2	340.0	1.1	3.0	0.0	V-Horn	AV	0.0	44.2	54.0	-9.8
	9275.500	28.4	15.2	73.0	1.1	3.0	0.0	H-Horn	AV	0.0	43.6	54.0	-10.4
	12057.940	40.4	20.6	349.0	1.0	3.0	0.0	H-Horn	PK	0.0	61.0	74.0	-13.0
	12057.940	40.2	20.6	21.0	1.0	3.0	0.0	V-Horn	PK	0.0	60.8	74.0	-13.2
	9275.500	40.7	15.2	73.0	1.1	3.0	0.0	H-Horn	PK	0.0	55.9	74.0	-18.1
	9275.500	40.5	15.2	340.0	1.1	3.0	0.0	V-Horn	PK	0.0	55.7	74.0	-18.3

NORTHWEST **RADIATED EMISSIONS DATA SHEET EMC** EUT: RFID in IP3 co-located with 802.11(b) and CDMA in 700C Work Order: ITRM0030 Date: 07/01/04 Serial Number: Customer: Intermec Technologies Corporation Temperature: 79 Attendees: none Humidity: 43% Cust. Ref. No.: Barometric Pressure 29.93 Tested by: Holly Ashkannejhad Power: 120VAC, 60Hz Job Site: EV01 TEST SPECIFICATIONS Specification: FCC 15.247(c) Spurious Radiated Emissions Method: ANSI C63.4 Year: 2003 Year: 2001 SAMPLE CALCULATIONS

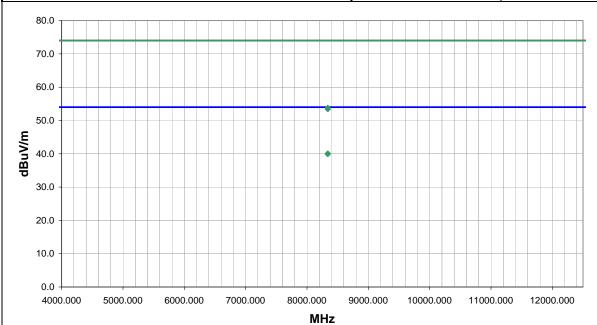
Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

CDMA(cellular) and 802.11(b) in 700C. RFID in IP3.

EUT OPERATING MODES

Transmitting CDMA (cellular) 310 and 802.11b 5 in 700C, and RFID 71 in IP3


DEVIATIONS FROM TEST STANDARD

No deviations.

RESULTS 56 Pass

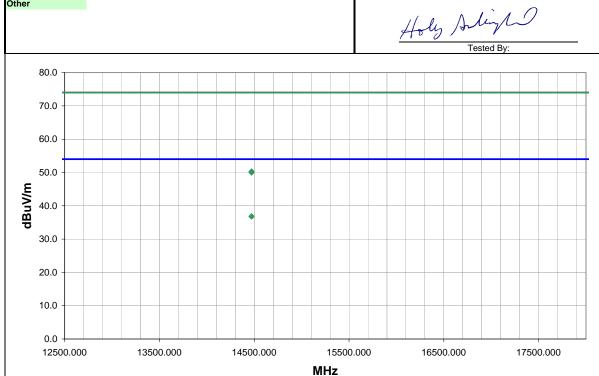
Other

Holy Aligh Tested By:

						External			Distance			Compared to	ı
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	l
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)	1
8339.813	26.1	14.0	21.0	1.0	3.0	0.0	V-Horn	AV	0.0	40.1	54.0	-13.9	
8339.813	25.9	14.0	345.0	1.1	3.0	0.0	H-Horn	AV	0.0	39.9	54.0	-14.1	
8339.813	39.8	14.0	345.0	1.1	3.0	0.0	H-Horn	PK	0.0	53.8	74.0	-20.2	
8339.813	39.4	14.0	21.0	1.0	3.0	0.0	V-Horn	PK	0.0	53.4	74.0	-20.6	

NORTHWEST EMC	RADIATED EMIS	SIONS DATA	SHEET		REV df4.13 05/06/2004
EUT:	RFID in IP3 co-located with 802.11(b) and CDMA in 70	0C	Work Order:	ITRM0030	
Serial Number:		Date:	07/02/04		
Customer:	Intermec Technologies Corporation	Temperature:	79		
Attendees:	none	Humidity:	43%		
Cust. Ref. No.:			Barometric Pressure	29.93	
Tested by:	Holly Ashkannejhad	Power: 120VAC, 60Hz	Job Site:	EV01	
TEST SPECIFICATI					
Specification:	FCC 15.247(c) Spurious Radiated Emissions	Year:	2003		
Method:	ANSI C63.4	Year:	2001		
SAMPLE CALCULA	TIONS				

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator


CDMA(cellular) and 802.11(b) in 700C. RFID in IP3.

EUT OPERATING MODES
Transmitting CDMA (cellular) 477 and 802.11b 1 in 700C, and RFID 12 in IP3

DEVIATIONS FROM TEST STANDARD No deviations.

RESULTS Pass 62

Other

						External			Distance			Compared to
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)
14472.00	0 26.9	9.9	228.0	1.6	3.0	0.0	V-Horn	AV	0.0	36.8	54.0	-17.2
14472.00	0 26.9	9.9	144.0	1.3	3.0	0.0	H-Horn	AV	0.0	36.8	54.0	-17.2
14472.00	0 40.4	9.9	144.0	1.3	3.0	0.0	H-Horn	PK	0.0	50.3	74.0	-23.7
14472.00	0 40.1	9.9	228.0	1.6	3.0	0.0	V-Horn	PK	0.0	50.0	74.0	-24.0

NORTHWEST				F	R/	4[)I	A ⁻	T :	Ē		Ē	V	IS	S		10	V	S	D	A٦	۲A	S	H	Εŀ						R df4
	T: R	FID i	in IP3																									ITR	MOC	030	05/06/20
Serial Number				-						(/ -																		07/			
Custome	er: lı	nterm	nec To	echn	olo	gies	Co	pora	atio	n																	ture:				
Attendee	_	one																										43%			
Cust. Ref. No	_	lally.	A oble	ann	siba	<u>م</u>									1	Dat		12	01/ 4	C 60	\U-		Ва	arome				29.			
Tested b			ASIIK	anne	ejna	u										Po	wer:	12	UVA	C, 60	JΠZ					JOD	Site:	EV) I		
Specificatio			5.247	(c) §	nuae	rious	s Ra	diate	ed E	mi	ssio	ns															Year:	200)3		
Metho					-																							200			
MPLE CALCU	LAT	IONS	3																												
Radiated Emission			-												-					-		actor	+ Exte	rnal A	tenua	tion					
onducted Emission	ns: A	djusted	d Level	= Me	asure	ed Le	vel +	Trans	duce	er Fa	ctor +	Cal	ble A	ttenu	ation	Fact	or + E	xte	rnal A	Attenua	ator										
A(cellular) and 8	02.11	(b) in	700C.	RFID	in IP	3.																									
OPERATING smitting CDMA (802.1	1b 1	in 70	0C, a	nd RF	ID 1	2 in	IP3																				
IATIONS FRO	OM .	TEST	STA	NDA	RD																										
eviations.																												Rui	n #		
s		_																				_								63	
er																										,		\circ			
																					//	/ol	<i>(</i>	Sh	le.	~/	1	9			
																					4	8	י ק	, • -		1					
																				-					ted						
0.0																													\top		
														_									+			+			_		+
0.0																													_		
0.0														+									+			+			+		
50.0																													7		
			•																												
0.0																															
0.0																															
0.0																													_		
0.0					\vdash		+				\vdash		-	-	+	-							-		+	+			+	-	-
0.0														+								\Box							+		1
0.0						_									_								_				-		\perp		_
18000.000	1	9000	0.000		20	000	.000)	2	100	0.00	0		220	000	000		2	300	0.000)	240	00.0	00	2	2500	0.00	00		2600	0.000
																											_	_			
F																xterr				.				stance							Compare
Freq		Amplit (dBu			ctor dB)		Azin (degr			Heig mete			Dista (mete		Att	tenua (dB)		F	Polari	ity	Dete	ector		istmer (dB)		Adjus dBu\			ec. Li BuV/r		Spec. (dB)
(MHz) 19297.50	00		24.8	(C		.0	(uegr	-3.0		mete	1.0		mete	3.0	1	(uB)		/-H	liah	Horr	A	V	l '	(aB) 0.			^{//m} 32.8			4.0	(dB)
19297.50			24.8 24.7			.0		3.0- 62.0			1.0			3.0						Horr	A			0.			32.8			4.0 4.0	-2°
19297.50			38.0			.0		62.0			1.0			3.0						Horr	P			0.			46.0			4.0	-28
			37.7			.0		-3.0			1.0			3.0						Horr		K					45.7			4.0	-28

NORTHWEST **RADIATED EMISSIONS DATA SHEET EMC** EUT: RFID in IP3 co-located with 802.11(b) and CDMA in 700C Work Order: ITRM0030 Date: 07/02/04 Serial Number: Customer: Intermec Technologies Corporation Temperature: 79 Attendees: none Humidity: 43% Cust. Ref. No.: Barometric Pressure 29.93 Tested by: Holly Ashkannejhad Power: 120VAC, 60Hz Job Site: EV01 TEST SPECIFICATIONS Specification: FCC 15.247(c) Spurious Radiated Emissions Method: ANSI C63.4 Year: 2003 Year: 2001 SAMPLE CALCULATIONS Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator CDMA(cellular) and 802.11(b) in 700C. RFID in IP3. **EUT OPERATING MODES** Transmitting CDMA (cellular) 727 and 802.11b 8 in 700C, and RFID 47 in IP3 DEVIATIONS FROM TEST STANDARD No deviations. RESULTS 64 Pass Other Holy Salingha Tested By: 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0.0 18000.000 19000.000 20000.000 21000.000 22000.000 23000.000 24000.000 25000.000 26000.000

						External			Distance			Compared to	l
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	l
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)	ĺ
22016.000	26.0	8.7	-2.0	1.0	3.0	0.0	/-High Horr	AV	0.0	34.7	54.0	-19.3	
22023.000	26.0	8.7	362.0	1.0	3.0	0.0	/-High Horr	AV	0.0	34.7	54.0	-19.3	
22023.000	26.0	8.7	361.0	1.0	3.0	0.0	H-High Horr	AV	0.0	34.7	54.0	-19.3	
22016.000	25.6	8.7	-2.0	1.0	3.0	0.0	H-High Horr	AV	0.0	34.3	54.0	-19.7	
22023.000	39.7	8.7	361.0	1.0	3.0	0.0	H-High Horr	PK	0.0	48.4	74.0	-25.6	
22016.000	39.6	8.7	-2.0	1.0	3.0	0.0	H-High Horr	PK	0.0	48.3	74.0	-25.7	
22016.000	39.5	8.7	-2.0	1.0	3.0	0.0	/-High Horr	PK	0.0	48.2	74.0	-25.8	
22023.000	39.4	8.7	362.0	1.0	3.0	0.0	/-High Horr	PK	0.0	48.1	74.0	-25.9	
	(MHz) 22016.000 22023.000 22023.000 22016.000 22023.000 22016.000 22016.000	(MHz) (dBuV) 22016.000 26.0 22023.000 26.0 22023.000 25.6 22016.000 39.7 22016.000 39.5	(MHz) (dBuV) (dB) 22016.000 26.0 8.7 22023.000 26.0 8.7 22023.000 26.0 8.7 22016.000 25.6 8.7 22023.000 39.7 8.7 22016.000 39.6 8.7 22016.000 39.5 8.7	(MHz) (dBuV) (dB) (degrees) 22016.000 26.0 8.7 -2.0 22023.000 26.0 8.7 362.0 22023.000 26.0 8.7 361.0 22016.000 25.6 8.7 -2.0 22023.000 39.7 8.7 361.0 22016.000 39.6 8.7 -2.0 22016.000 39.5 8.7 -2.0	(MHz) (dBuV) (dB) (degrees) (meters) 22016.000 26.0 8.7 -2.0 1.0 22023.000 26.0 8.7 362.0 1.0 22023.000 26.0 8.7 361.0 1.0 22016.000 25.6 8.7 -2.0 1.0 22023.000 39.7 8.7 361.0 1.0 22016.000 39.6 8.7 -2.0 1.0 22016.000 39.5 8.7 -2.0 1.0	(MHz) (dBuV) (dB) (degrees) (meters) (meters) 22016.000 26.0 8.7 -2.0 1.0 3.0 22023.000 26.0 8.7 362.0 1.0 3.0 22023.000 26.0 8.7 361.0 1.0 3.0 22016.000 25.6 8.7 -2.0 1.0 3.0 22023.000 39.7 8.7 361.0 1.0 3.0 22016.000 39.6 8.7 -2.0 1.0 3.0 22016.000 39.5 8.7 -2.0 1.0 3.0	Freq (MHz) Amplitude (dBuV) Factor (dB) Azimuth (degrees) Height (meters) Distance (meters) Attenuation (dB) 22016.000 26.0 8.7 -2.0 1.0 3.0 0.0 22023.000 26.0 8.7 362.0 1.0 3.0 0.0 22023.000 26.0 8.7 361.0 1.0 3.0 0.0 22016.000 25.6 8.7 -2.0 1.0 3.0 0.0 22023.000 39.7 8.7 361.0 1.0 3.0 0.0 22016.000 39.6 8.7 -2.0 1.0 3.0 0.0 22016.000 39.5 8.7 -2.0 1.0 3.0 0.0 22016.000 39.5 8.7 -2.0 1.0 3.0 0.0	Freq (MHz) Amplitude (dBuV) Factor (dB) Azimuth (degrees) Height (meters) Distance (meters) Attenuation (meters) Polarity 22016.000 26.0 8.7 -2.0 1.0 3.0 0.0 V-High Horr 22023.000 26.0 8.7 362.0 1.0 3.0 0.0 V-High Horr 22023.000 26.0 8.7 361.0 1.0 3.0 0.0 High Horr 22016.000 25.6 8.7 -2.0 1.0 3.0 0.0 High Horr 22023.000 39.7 8.7 361.0 1.0 3.0 0.0 High Horr 22016.000 39.6 8.7 -2.0 1.0 3.0 0.0 High Horr 22016.000 39.5 8.7 -2.0 1.0 3.0 0.0 High Horr 22016.000 39.5 8.7 -2.0 1.0 3.0 0.0 High Horr	Freq (MHz) Amplitude (dBuV) Factor (dB) Azimuth (degrees) Height (meters) Distance (meters) Attenuation (meters) Polarity Detector 22016.000 26.0 8.7 -2.0 1.0 3.0 0.0 √-High Horr AV 22023.000 26.0 8.7 362.0 1.0 3.0 0.0 √-High Horr AV 22023.000 26.0 8.7 361.0 1.0 3.0 0.0 +-High Horr AV 22016.000 25.6 8.7 -2.0 1.0 3.0 0.0 +-High Horr AV 22023.000 39.7 8.7 361.0 1.0 3.0 0.0 +-High Horr PK 22016.000 39.6 8.7 -2.0 1.0 3.0 0.0 +-High Horr PK 22016.000 39.5 8.7 -2.0 1.0 3.0 0.0 +-High Horr PK 22016.000 39.5 8.7 -2.0 1.0 3.0 0.0 +-High Horr PK	Freq (MHz) Amplitude (dBuV) Factor (dBy) Azimuth (degrees) Height (meters) Distance (meters) Attenuation (dB) Polarity Detector (dB) Adjustment (dB) 22016.000 26.0 8.7 -2.0 1.0 3.0 0.0 √-High Horr AV 0.0 22023.000 26.0 8.7 361.0 1.0 3.0 0.0 √-High Horr AV 0.0 22016.000 25.6 8.7 -2.0 1.0 3.0 0.0 +-High Horr AV 0.0 22023.000 39.7 8.7 361.0 1.0 3.0 0.0 +-High Horr AV 0.0 22016.000 39.6 8.7 -2.0 1.0 3.0 0.0 +-High Horr PK 0.0 22016.000 39.5 8.7 -2.0 1.0 3.0 0.0 +-High Horr PK 0.0 22016.000 39.5 8.7 -2.0 1.0 3.0 0.0 +-High Horr PK 0.0	Freq (MHz) Amplitude (dBuV) Factor (dB) Azimuth (degrees) Height (meters) Distance (meters) Attenuation (dB) Polarity (dB) Detector (dB) Adjustment (dB) Adjusted dBuV/m 22016.000 26.0 8.7 -2.0 1.0 3.0 0.0 √-High Horr AV 0.0 34.7 22023.000 26.0 8.7 361.0 1.0 3.0 0.0 √-High Horr AV 0.0 34.7 22016.000 25.6 8.7 -2.0 1.0 3.0 0.0 √-High Horr AV 0.0 34.3 22023.000 39.7 8.7 361.0 1.0 3.0 0.0 √-High Horr AV 0.0 34.3 22023.000 39.7 8.7 361.0 1.0 3.0 0.0 √-High Horr AV 0.0 34.3 22016.000 39.6 8.7 -2.0 1.0 3.0 0.0 √-High Horr PK 0.0 48.3 22016.000 39.5 8.7 -2.0 1.0 3.0 0.0 √-High Horr<	Freq (MHz) Amplitude (dBuV) Factor (dBuV) Azimuth (degrees) Height (meters) Distance (meters) Atlenuation (dB) Polarity (dB) Detector (dB) Adjustment (dB) Adjustment (dB) Spec. Limit dBuV/m 22016.000 26.0 8.7 -2.0 1.0 3.0 0.0 √-High Horr AV 0.0 34.7 54.0 22023.000 26.0 8.7 361.0 1.0 3.0 0.0 √-High Horr AV 0.0 34.7 54.0 22016.000 25.6 8.7 -2.0 1.0 3.0 0.0 √-High Horr AV 0.0 34.7 54.0 22023.000 25.6 8.7 -2.0 1.0 3.0 0.0 √-High Horr AV 0.0 34.3 54.0 22016.000 39.7 8.7 361.0 1.0 3.0 0.0 √-High Horr AV 0.0 34.3 54.0 22016.000 39.6 8.7 -2.0 1.0 3.0 0.0 √-High Horr PK 0.0 48.3 74.0	Freq (MHz) Amplitude (dBuV) Factor (dB) Azimuth (degrees) Height (meters) Distance (meters) Atlenuation (dB) Polarity (dB) Detector (dB) Adjustment (dB) Adjusted dBuV/m Spec. Limit dBuV/m Spec. Limit (dB) Spec. Limit (dB) <th< th=""></th<>

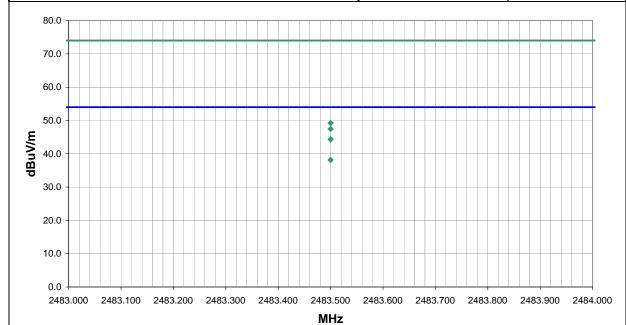
NORTHWEST		RA	DIA.	ΓED	EMIS	SIOI	NS D	ATA	SHE	ET		RI df4
	RFID in IP3										ITRM0030	05/06/20
Serial Numbe		CO-IOCALC	u with 002	. i i (b) ana i		000			•		07/02/04	
	r: Intermec To	echnologi	es Corpor	ation					Te	mperature:		
Attendee										Humidity:		
Cust. Ref. No	.: /: Holly Ashk	annaihad				Dowers	120VAC, 6	1 ⊔-	Barometri	Job Site:		
T SPECIFICA		annejnau				Power.	120VAC, 0	JIIZ		Job Site.	EVUI	
	: FCC 15.247	(c) Spurio	us Radiat	ed Emissio	าร					Year:	2003	
	i: ANSI C63.4									Year:	2001	
IPLE CALCUL									_			
Radiated Emission anducted Emission						•			+ External Atter	nuation		
MENTS												
A(cellular) and 80	2.11(b) in 700C.	RFID in IP3.										
OPERATING	MODES											
mitting CDMA (c		802.11b 5 in	700C, and Ri	ID 71 in IP3								
	M TEST STA	NDARD										
viations. ULTS											Run#	
OLIO S											6	5
er										`		
								1/ 0.	, Sole	$\neg \Lambda$	/	
								Hou) And			
							-		Teste			
										•		
0.0												\neg
0.0												Т
0.0												
0.0												
+++	++++											+
0.0												-
				•								
0.0												
0.0				•								
0.0											+++	\dashv
0.0												7
0.0												_
18000.000	18500.000	1900	00.000	19500.00	0 200	00.000	20500.00	0 210	000.000	21500.00)0 220	000.000
	1					External			Distance		, , , , , , , , , , , , , , , , , , ,	Compare
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)		A	(dB)	dBuV/m	dBuV/m	(dB)
19460.69 19460.69		8.2			3.0		High Horr	AV	0.0	32.6		-2
19460 69	0 24.4	8.2			3.0		√-High Horr	AV	0.0	32.6		-2
19460.69	0 37.4	8.2	361.0	1.0	3.0	0.0	H-High Horr	PK	0.0	45.6	74.0	-2

NORTHWEST EMC	RADIATED EMIS		SHEET		REV df4.13 05/06/2004
EUT:	RFID in IP3 co-located with 802.11(b) and CDMA in 70	Work Order:	ITRM0030		
Serial Number:		Date:	07/03/04		
Customer:	Intermec Technologies Corporation	Temperature:	79		
Attendees:	none	Humidity:	43%		
Cust. Ref. No.:			Barometric Pressure	29.93	
Tested by:	Holly Ashkannejhad	Power: 120VAC, 60Hz	Job Site:	EV01	
TEST SPECIFICATI	ONS				
Specification:	FCC 15.247(c) Spurious Radiated Emissions	Year:	2003		
Method:	ANSI C63.4	Year:	2001		
SAMPLE CALCULA	TIONS				

Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

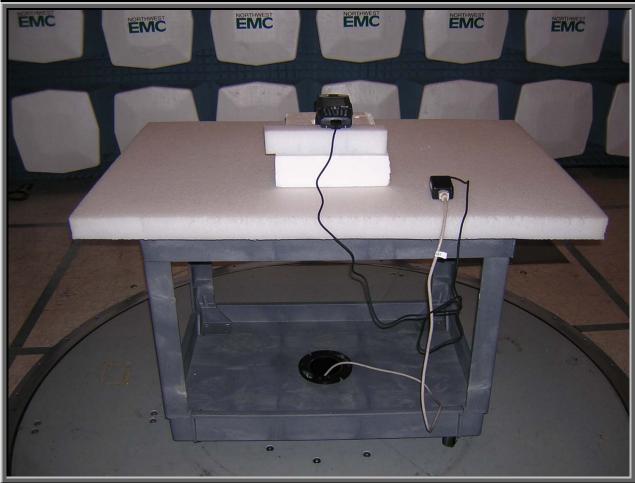
COMMENTS

CDMA(cellular) and 802.11(b) in 700C. RFID in IP3.


EUT OPERATING MODES
Transmitting CDMA (cellular) 310 and 802.11b 11 in 700C, and RFID 71 in IP3

DEVIATIONS FROM TEST STANDARD No deviations.

RESULTS 71 Pass


Other

Holy Aligh Tested By:

						External			Distance			Compared to	1
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)	
2483.500	24.5	29.4	337.0	1.0	1.0	0.0	H-Horn	AV	-9.5	44.4	54.0	-9.6	
2483.500	18.3	29.4	118.0	1.0	1.0	0.0	V-Horn	AV	-9.5	38.2	54.0	-15.8	
2483.500	29.4	29.4	337.0	1.0	1.0	0.0	H-Horn	PK	-9.5	49.3	74.0	-24.7	
2483.500	27.6	29.4	118.0	1.0	1.0	0.0	V-Horn	PK	-9.5	47.5	74.0	-26.5	

