

Appendix C

Calibration certificate

1. Dipole

D2450V2-SN 733(2019-12-17)

D2600V2-SN 1125(2019-05-20)

2. DAE

DAE4-SN 896(2019-09-18)

3. Probe

EX3DV4-SN 3923(2019-10-22)

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Z19-60474

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

SGS Client

CALIBRATION CERTIFICATE

Object

D2450V2 - SN: 733

December 17, 2019

CALIBRATION LABORATORY

Calibration Procedure(s)

FF-Z11-003-01 Calibration Procedures for dipole validation kits

Certificate No:

Calibration date:

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Lin Hao

Qi Dianyuan

Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106276	11-Apr-19 (CTTL, No.J19X02605)	Apr-20
Power sensor NRP6A	101369	11-Apr-19 (CTTL, No.J19X02605)	Apr-20
Reference Probe EX3DV4	SN 3617	31-Jan-19(SPEAG, No.EX3-3617_Jan19)	Jan-20
DAE4	SN 1555	22-Aug-19(CTTL-SPEAG,No.Z19-60295)	Aug-20
Secondary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	23-Jan-19 (CTTL, No.J19X00336)	Jan-20
NetworkAnalyzer E5071C	MY46110673	24-Jan-19 (CTTL, No.J19X00547)	Jan-20
	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	Stand Barry

SAR Test Engineer

SAR Project Leader

Reviewed by:

Approved by:

Issued: December 23, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z19-60474

Page 1 of 6

SGS Taiwan Ltd. No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan/新北市五股區新北產業園區五工路 134 號 t (886-2) 2299-3279 f (886-2) 2298-0488 www.sas.com.tw

In Collaboration with e

CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com http://www.chinattl.cn

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z19-60474

Page 2 of 6

In Collaboration with

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: ettl@chinattl.com
 http://www.chinattl.cn

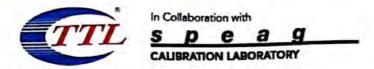
Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.3
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.


	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.0 ± 6 %	1.77 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	12.9 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	51.9 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.92 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.8 W/kg ± 18.7 % (k=2)

Certificate No: Z19-60474

Page 3 of 6

Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.2Ω+ 3.88 jΩ
Return Loss	- 27.2dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.018 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: Z19-60474

Page 4 of 6

台灣檢驗科技股份有限公司

SGS Taiwan Ltd. | No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan/新北市五股區新北產業園區五工路 134 號 t (886-2) 2299-3279 f (886-2) 2298-0488 www.sas.com.tw

In Collaboration with e CALIBRATION LABORATORY

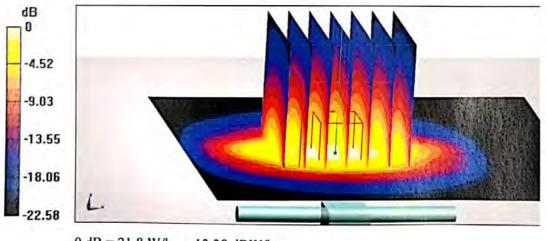
Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn E-mail: cttl@chinattl.com

DASY5 Validation Report for Head TSL

Date: 12.17.2019

Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 733

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.772 \text{ S/m}$; $\varepsilon_r = 39.01$; $\rho = 1000 \text{ kg/m}3$


Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(7.62, 7.62, 7.62) @ 2450 MHz; Calibrated: 1/31/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/22/2019
- Phantom: MFP V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 100.5 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 27.3 W/kg SAR(1 g) = 12.9 W/kg; SAR(10 g) = 5.92 W/kgSmallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 47.5% Maximum value of SAR (measured) = 21.8 W/kg

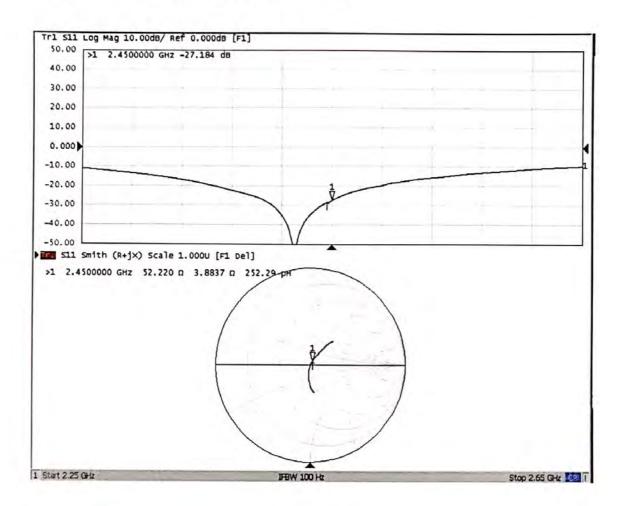
0 dB = 21.8 W/kg = 13.38 dBW/kg

Certificate No: Z19-60474

Page 5 of 6

台灣檢驗科技股份有限公司

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan/新北市五股區新北產業園區五工路 134 號 SGS Taiwan Ltd. 1 t (886-2) 2299-3279 f (886-2) 2298-0488 www.sas.com.tw


e а CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 http://www.chinattl.cn

In Collaboration with

Impedance Measurement Plot for Head TSL

Certificate No: Z19-60474

Page 6 of 6

(F

SGS Taiwan Ltd. No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan/新北市五股區新北產業園區五工路 134 號 t (886-2) 2299-3279 f (886-2) 2298-0488 www.sgs.com.tw

Member of SGS Group

Tel: +86-10-623046 E-mail: cttl@chinat	33-2079 Fax:	strict, Beijing, 100191, Chir +86-10-62304633-2504 /www.chinattl.cn	a Malalalala		CALIBRAT CNAS L05
Client SGS	theom map.		Certificate No:	Z19-60	0155
CALIBRATION CE	ERTIFICA	re			
Object	D2600	V2 - SN: 1125			
Calibration Procedure(s)		I-003-01 ation Procedures for d	ipole validation kits		
Calibration date:	May 2), 2019			
All calibrations have been	conducted in	the closed laborator	ry facility: environi	ment tem	perature(22±3)°C a
All calibrations have been humidity<70%. Calibration Equipment used		for calibration)			4
numidity<70%. Calibration Equipment used Primary Standards	(M&TE critical	for calibration) Cal Date(Calibrate	d by, Certificate No		heduled Calibratio
oumidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2	(M&TE critical ID # 106277	for calibration) Cal Date(Calibrate 20-Aug-18 (CTTL, I	d by, Certificate No No.J18X06862)		heduled Calibration Aug-19
umidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S	(M&TE critical ID # 106277 104291	for calibration) Cal Date(Calibrate 20-Aug-18 (CTTL, I 20-Aug-18 (CTTL, I	d by, Certificate No No.J18X06862) No.J18X06862)	o.) Sc	heduled Calibration Aug-19 Aug-19
numidity<70%. Calibration Equipment used	(M&TE critical ID # 106277 104291	for calibration) Cal Date(Calibrate 20-Aug-18 (CTTL, I	d by, Certificate No No.J18X06862) No.J18X06862) No.EX3-3617_Jan1	o.) Sc 19)	heduled Calibration Aug-19
numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4	(M&TE critical ID # 106277 104291 SN 3617	for calibration) Cal Date(Calibrate 20-Aug-18 (CTTL, I 20-Aug-18 (CTTL, I 31-Jan-19(SPEAG,	d by, Certificate No No.J18X06862) No.J18X06862) No.EX3-3617_Jan1 No.DAE4-1331_Fe	5.) Sc 19) 919)	heduled Calibratio Aug-19 Aug-19 Jan-20
numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4	(M&TE critical) ID # 106277 104291 SN 3617 SN 1331	for calibration) Cal Date(Calibrate 20-Aug-18 (CTTL, I 20-Aug-18 (CTTL, I 31-Jan-19(SPEAG, 06-Feb-19(SPEAG, Cal Date(Calibrated	d by, Certificate No No.J18X06862) No.EX3-3617_Jan1 No.DAE4-1331_Fe I by, Certificate No.	5.) Sc 19) 919)	cheduled Calibration Aug-19 Aug-19 Jan-20 Feb-20
Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	(M&TE critical 1 ID # 106277 104291 SN 3617 SN 1331 ID # MY49071430	for calibration) Cal Date(Calibrate 20-Aug-18 (CTTL, I 20-Aug-18 (CTTL, I 31-Jan-19(SPEAG, 06-Feb-19(SPEAG, Cal Date(Calibrated 23-Jan-19 (CTTL, N	d by, Certificate No No.J18X06862) No.EX3-3617_Jan1 No.DAE4-1331_Fe I by, Certificate No.	5.) Sc 19) 919)	cheduled Calibratio Aug-19 Aug-19 Jan-20 Feb-20 cheduled Calibratio Jan-20
Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	(M&TE critical ID # 106277 104291 SN 3617 SN 1331 ID # MY49071430 MY46110673	for calibration) Cal Date(Calibrate 20-Aug-18 (CTTL, I 20-Aug-18 (CTTL, I 31-Jan-19(SPEAG, 06-Feb-19(SPEAG, Cal Date(Calibrated 23-Jan-19 (CTTL, N 24-Jan-19 (CTTL, N	d by, Certificate No No.J18X06862) No.J18X06862) No.EX3-3617_Jan1 No.DAE4-1331_Fe I by, Certificate No. No.J19X00336) No.J19X00547)	5.) Sc 19) 919)	cheduled Calibration Aug-19 Aug-19 Jan-20 Feb-20 Cheduled Calibratio Jan-20 Jan-20
Aumidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C	(M&TE critical 1 ID # 106277 104291 SN 3617 SN 1331 ID # MY49071430 MY46110673 Name	for calibration) Cal Date(Calibrate 20-Aug-18 (CTTL, I 20-Aug-18 (CTTL, I 31-Jan-19(SPEAG, 06-Feb-19(SPEAG, Cal Date(Calibrated 23-Jan-19 (CTTL, N 24-Jan-19 (CTTL, N Function	d by, Certificate No No.J18X06862) No.EX3-3617_Jan1 No.DAE4-1331_Fe I by, Certificate No. No.J19X00336) No.J19X00547)	5.) Sc 19) 919)	cheduled Calibration Aug-19 Aug-19 Jan-20 Feb-20 Cheduled Calibratio Jan-20 Jan-20
aumidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C	(M&TE critical 1 ID # 106277 104291 SN 3617 SN 1331 ID # MY49071430 MY46110673 Name Zhao Jing	for calibration) Cal Date(Calibrate 20-Aug-18 (CTTL, I 20-Aug-18 (CTTL, I 31-Jan-19(SPEAG, 06-Feb-19(SPEAG, Cal Date(Calibrated 23-Jan-19 (CTTL, N 24-Jan-19 (CTTL, N Function SAR Test Eng	d by, Certificate No No.J18X06862) No.J18X06862) No.EX3-3617_Jan1 No.DAE4-1331_Fe I by, Certificate No. No.J19X00336) No.J19X00547)	5.) Sc 19) 919)	cheduled Calibration Aug-19 Aug-19 Jan-20 Feb-20 Cheduled Calibratio Jan-20 Jan-20

台灣檢驗科技股份有限公司

SGS Taiwan Ltd. No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan/新北市五股區新北產業園區五工路 134 號 t (886-2) 2299-3279 f (886-2) 2298-0488 www.sgs.com.tw

In Collaboration with

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn E-mail: cttl@chinattl.com

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

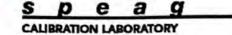
e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end . of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. • No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna . connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z19-60155


Page 2 of 8

台灣檢驗科技股份有限公司

SGS Taiwan Ltd. 」 No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan/新北市五股區新北產業園區五工路 134 號 t (886-2) 2299-3279 f (886-2) 2298-0488

In Collaboration with

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.2.1495
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2600 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.6 ± 6 %	1.95 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

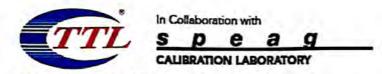
SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.2 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	56.8 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.22 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.9 W/kg ± 18.7 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

and the second se	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.5	2.16 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.9 ± 6 %	2.17 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL


SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.5 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	54.0 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.90 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.6 W/kg ± 18.7 % (k=2)

Certificate No: Z19-60155

Page 3 of 8

台灣檢驗科技股份有限公司

SGS Taiwan Ltd. No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan/新北市五股區新北產業園區五工路 134 號 t (886-2) 2299-3279 f (886-2) 2298-0488 www.sgs.com.tw

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 http://www.chinattl.cn

Appendix(Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.9Ω- 5.00jΩ	
Return Loss	- 25.7dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.4Ω- 4.25jΩ	
Return Loss	- 24.8dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.020 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
	01 110

Certificate No: Z19-60155

SGS Taiwan Ltd.

Page 4 of 8

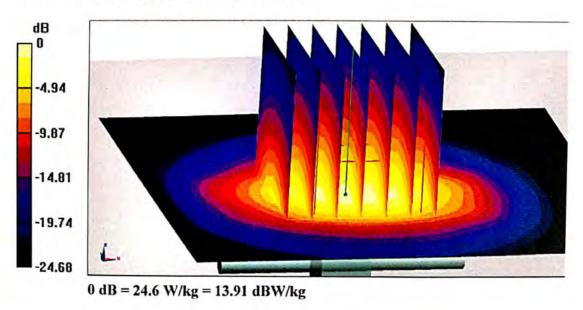
台灣檢驗科技股份有限公司

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan/新北市五股區新北產業園區五工路 134 號 t (886-2) 2299-3279 f (886-2) 2298-0488 www.sgs.com.tw

In Collaboration with e

CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn E-mail: cttl@chinattl.com


DASY5 Validation Report for Head TSL

Date: 05.20.2019

Test Laboratory: CTTL, Beijing, China DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1125 Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; $\sigma = 1.952 \text{ S/m}$; $\varepsilon_r = 38.59$; $\rho = 1000 \text{ kg/m3}$ Phantom section: Center Section **DASY5** Configuration:

- Probe: EX3DV4 SN3617; ConvF(7.19, 7.19, 7.19) @ 2600 MHz; Calibrated: 1/31/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 2/6/2019 .
- Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 . (7450)

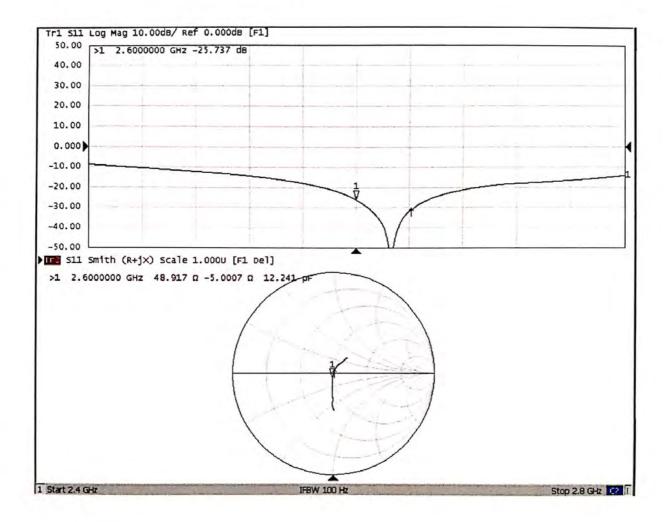
Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.31 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 31.8 W/kg SAR(1 g) = 14.2 W/kg; SAR(10 g) = 6.22 W/kg Maximum value of SAR (measured) = 24.6 W/kg

Certificate No: Z19-60155

Page 5 of 8

台灣檢驗科技股份有限公司

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan/新北市五股區新北產業園區五工路 134 號 SGS Taiwan Ltd. 1 t (886-2) 2299-3279 f (886-2) 2298-0488 www.sas.com.tw


In Collaboration with

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

Certificate No: Z19-60155

Page 6 of 8

SGS Taiwan Ltd. 台灣檢驗科技股份有限公司

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan/新北市五股區新北產業園區五工路 134 號 t (886-2) 2299-3279 f (886-2) 2298-0488 www.sgs.com.tw

In Collaboration with

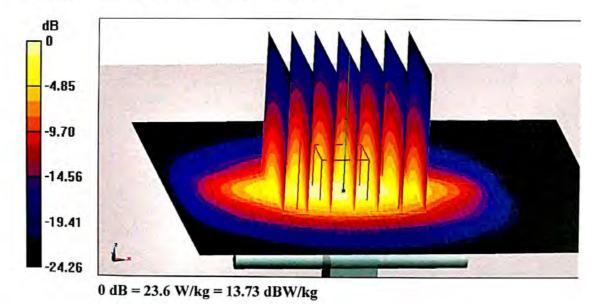
e CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 http://www.chinattl.cn

DASY5 Validation Report for Body TSL

Date: 05.20.2019


Test Laboratory: CTTL, Beijing, China DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1125 Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; $\sigma = 2.169 \text{ S/m}$; $\varepsilon_r = 52.88$; $\rho = 1000 \text{ kg/m3}$ Phantom section: Right Section

DASY5 Configuration:

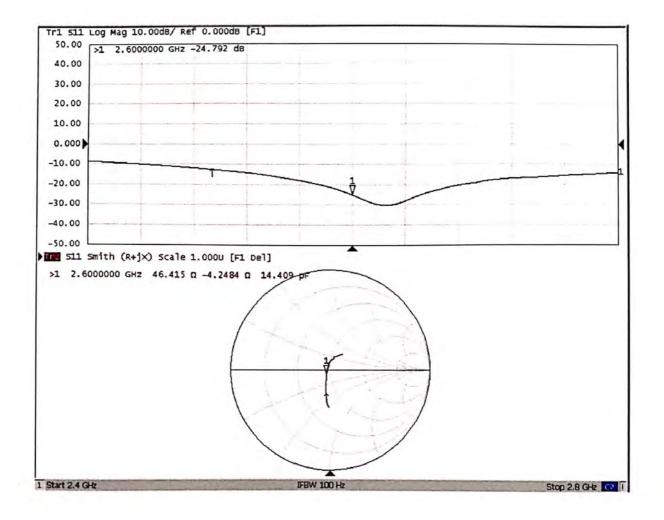
- . Probe: EX3DV4 - SN3617; ConvF(7.49, 7.49, 7.49) @ 2600 MHz; Calibrated: 1/31/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 2/6/2019 .
- Phantom: MFP_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.11 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 30.4 W/kg SAR(1 g) = 13.5 W/kg; SAR(10 g) = 5.9 W/kg Maximum value of SAR (measured) = 23.6 W/kg

Certificate No: Z19-60155

Page 7 of 8


台灣檢驗科技股份有限公司

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan/新北市五股區新北產業園區五工路 134 號 SGS Taiwan Ltd. 1 t (886-2) 2299-3279 f (886-2) 2298-0488 www.sas.com.tw

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2079Fax: +86-10-62304633-2504E-mail: cttl@chinattl.comhttp://www.chinattl.cn

Impedance Measurement Plot for Body TSL

Certificate No: Z19-60155

Page 8 of 8

SGS Taiwan Ltd. 台灣檢驗科技股份有限公司

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan/新北市五股區新北產業園區五工路 134 號 t (886-2) 2299-3279 f (886-2) 2298-0488 www.sgs.com.tw

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage С Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

SGS - CN (Auden)

Accredited by the Swiss Accreditation Service (SAS)

Certificate No: DAE4-896_Sep19

CALIBRATION (CERTIFICATE		
Object	DAE4 - SD 000 D	04 BJ - SN: 896	
Calibration procedure(s)	QA CAL-06.v29 Calibration procee	dure for the data acquisition ele	ctronics (DAE)
Calibration date:	September 18, 20	019	
The measurements and the unce	ertainties with confidence pro	onal standards, which realize the physical un obability are given on the following pages an r facility: environment temperature (22 ± 3)° Cal Date (Certificate No.)	nd are part of the certificate.
Keithley Multimeter Type 2001	SN: 0810278	03-Sep-19 (No:25949)	Sep-20
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Auto DAE Calibration Unit Calibrator Box V2.1	SE UWS 053 AA 1001	07-Jan-19 (in house check) 07-Jan-19 (in house check)	In house check: Jan-20 In house check: Jan-20
Calibrated by:	Name Dominique Steffen	Function Laboratory Technician	Signature
			ALL.
Approved by:	Sven Kühn	Deputy Manager	1.V.BUIM
			Issued: September 18, 2019
This calibration certificate shall no	ot be reproduced except in fi	ull without written approval of the laboratory	

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage C
- Servizio svizzero di taratura S
 - Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary DAE Connector angle

data acquisition electronics

information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by • comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle*: The angle of the connector is assessed measuring the angle . mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an . input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter . corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset . current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, . during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement

A/D - Converter Reso	lution nominal			
High Range:	1LSB =	6.1µV,	full range =	-100+300 mV
Low Range:	1LSB =	61nV,	full range =	-1+3mV
DASY measurement	parameters: Auto	o Zero Time: 3	sec; Measuring t	time: 3 sec

Calibration Factors	X	Y	Z	
High Range	404.022 ± 0.02% (k=2)	404.257 ± 0.02% (k=2)	404.191 ± 0.02% (k=2)	
Low Range	3.98013 ± 1.50% (k=2)	3.99657 ± 1.50% (k=2)	3.97235 ± 1.50% (k=2)	

Connector Angle

Connector Angle to be used in DASY system	37.5 ° ± 1 °

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range		Reading (µV)	Difference (µV)	Error (%)
Channel X	+ Input	200040.89	5.76	0.00
Channel X	+ Input	20006.10	0.48	0.00
Channel X	- Input	-20002.92	2.55	-0.01
Channel Y	+ înput	200032.08	-3.21	-0.00
Channel Y	+ Input	20004.20	-1.29	-0.01
Channel Y	- Input	-20004.09	1.52	-0.01
Channel Z	+ Input	200033.60	-1.56	-0.00
Channel Z	+ Input	20003.49	-2.00	-0.01
Channel Z	- Input	-20004.81	0.85	-0.00

Low Range		Reading (μV)	Difference (µV)	Error (%)
Channel X	+ Input	2000.63	-0.76	-0.04
Channel X	+ Input	201.08	-0.29	-0.15
Channel X	- Input	-199.07	-0.39	0.20
Channel Y	+ Input	2001.55	0.25	0.01
Channel Y	+ Input	199.66	-1.59	-0.79
Channel Y	- Input	-199.65	-0.88	0.45
Channel Z	+ Input	2001.32	0.14	0.01
Channel Z	+ Input	200.72	-0.51	-0.25
Channel Z	- Input	-200.26	-1.43	0.72

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	11.76	10.55
	- 200	-10.27	-11.69
Channel Y	200	15.87	16.13
	- 200	-17.91	-18.33
Channel Z	200	5.47	5.16
	- 200	-7.23	-6.76

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Υ (μV)	Channel Z (µV)
Channel X	200	-	-0.54	-4.17
Channel Y	200	7.56	-	0.46
Channel Z	200	9.61	5.52	

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15562	17474
Channel Y	15992	17482
Channel Z	15642	14726

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MΩ

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	0.71	-0.23	2.09	0.45
Channel Y	-0.40	-1.78	0.63	0.55
Channel Z	-0.76	-1.83	0.29	0.47

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	0.01	-8	-9

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 www.speag.swiss, info@speag.swiss

IMPORTANT NOTICE

USAGE OF THE DAE4

The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points:

Battery Exchange: The battery cover of the DAE4 unit is fixed using a screw, over tightening the screw may cause the threads inside the DAE to wear out.

Shipping of the DAE: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside.

E-Stop Failures: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements.

Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect.

DASY Configuration Files: Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file.

Important Note: Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer.

Important Note:

Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the Estop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure.

Important Note:

To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE.

Certificate No: Z19-60327

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 E-mail: cttl@chinattl.com

SGS

Http://www.chinattl.cn

Fax: +86-10-62304633-2504

Client

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3923

October 22, 2019

Calibration Procedure(s)

FF-Z11-004-01 Calibration Procedures for Dosimetric E-field Probes

Calibration date:

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	18-Jun-19 (CTTL, No.J19X05125)	Jun-20
Power sensor NRP-Z91	101547	18-Jun-19 (CTTL, No.J19X05125)	Jun-20
Power sensor NRP-Z91	101548	18-Jun-19 (CTTL, No.J19X05125)	Jun-20
Reference10dBAttenuator 18N50W-10dB		09-Feb-18(CTTL, No.J18X01133)	Feb-20
Reference20dBAttenuator 18N50W-20d		09-Feb-18(CTTL, No.J18X01132)	Feb-20
Reference Probe EX3DV4	SN 7307	24-May-19(SPEAG,No.EX3-7307_May19/	2) May-20
DAE4 SN 1525		26-Aug-19(SPEAG, No.DAE4-1525_Aug1	9) Aug -20
Secondary Standards SignalGeneratorMG3700A Network Analyzer E5071C	ID # 6201052605 MY46110673	Cal Date(Calibrated by, Certificate No.) 18-Jun-19 (CTTL, No.J19X05127) 24-Jan-19 (CTTL, No.J19X00547)	Scheduled Calibration Jun-20 Jan -20
	Name	Function	Signature
Calibrated by:	Yu Zongying	SAR Test Engineer	Ant
Reviewed by:	Lin Hao	SAR Test Engineer	TARAB
Approved by:	Qi Dianyuan	SAR Project Leader	SA
		Issued: Octob	er 24, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2512E-mail: cttl@chinattl.comHttp://www.chinattl.cn

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A,B,C,D	modulation dependent linearization parameters
Polarization Φ	Φ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i
	θ =0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system **Calibration is Performed According to the Following Standards:**

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- *DCPx, y, z*: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax, y, z; Bx, y, z; Cx, y, z; VRx, y, z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- *Connector Angle:* The angle is assessed using the information gained by determining the *NORMx* (no uncertainty required).

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Probe EX3DV4

SN: 3923

Calibrated: October 22, 2019

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 Http://www.chinattl.cn

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 3923

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m)²) ^A	0.57	0.46	0.48	±10.0%
DCP(mV) ^B	101.6	103.7	103.8	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (k=2)
0 CW	CW	X	0.0	0.0	1.0	0.00	181.3	±2.6%
			Y	0.0	0.0	1.0		164.5
		Ζ	0.0	0.0	1.0		166.3	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2512
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

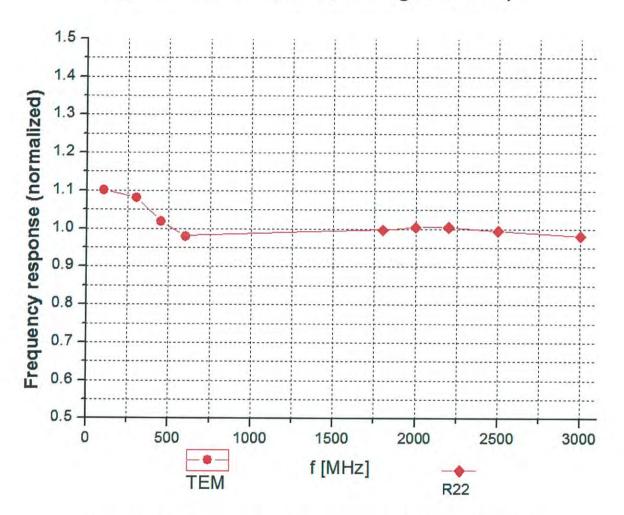
DASY/EASY – Parameters of Probe: EX3DV4 – SN: 3923

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	10.62	10.62	10.62	0.40	0.80	±12.1%
835	41.5	0.90	10.34	10.34	10.34	0.13	1.48	±12.1%
1450	40.5	1.20	9.20	9.20	9.20	0.10	1.46	±12.1%
1640	40.3	1.29	9.06	9.06	9.06	0.24	0.97	±12.1%
1750	40.1	1.37	8.90	8.90	8.90	0.20	1.14	±12.1%
1900	40.0	1.40	8.64	8.64	8.64	0.26	0.96	±12.1%
2000	40.0	1.40	8.63	8.63	8.63	0.19	1.11	±12.1%
2450	39.2	1.80	7.87	7.87	7.87	0.53	0.74	±12.1%
2600	39.0	1.96	7.74	7.74	7.74	0.47	0.82	±12.1%
5250	35.9	4.71	5.34	5.34	5.34	0.40	1.70	±13.3%
5600	35.5	5.07	4.90	4.90	4.90	0.50	1.20	±13.3%
5750	35.4	5.22	4.83	4.83	4.83	0.45	1.70	±13.3%

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

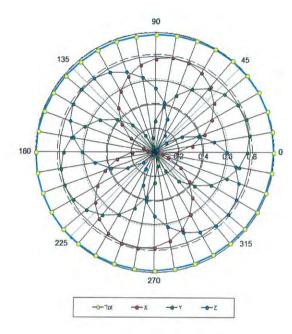

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

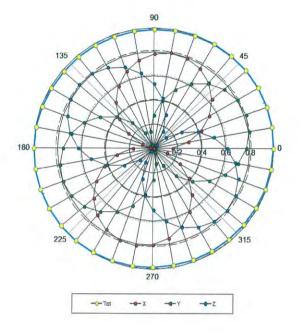
Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 E-mail: cttl@chinattl.com

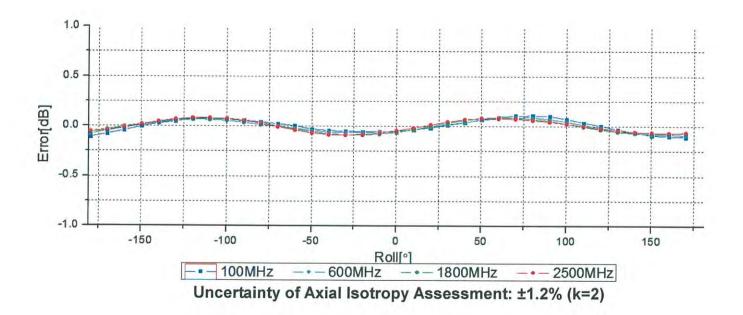
Fax: +86-10-62304633-2504 Http://www.chinattl.cn

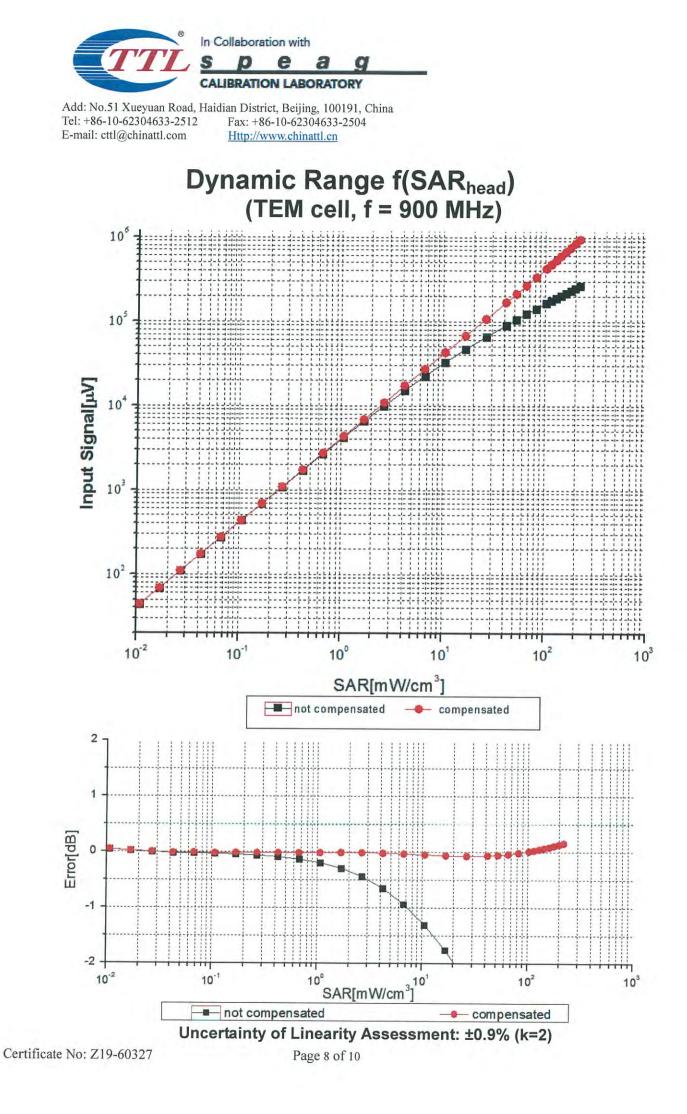
Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

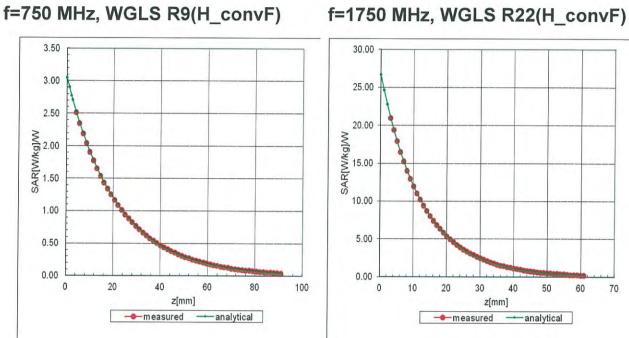


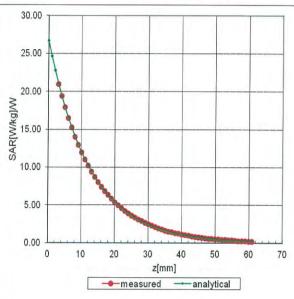

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2512E-mail: ettl@chinattl.comHttp://www.chinattl.cn


Receiving Pattern (Φ), θ=0°

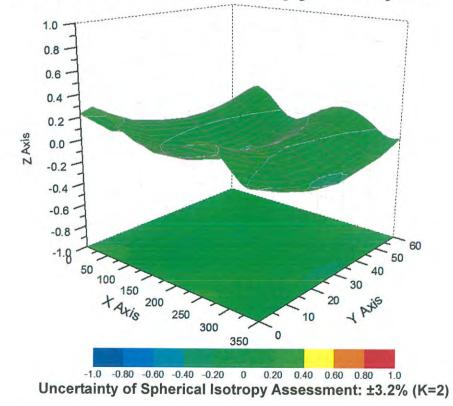

f=600 MHz, TEM

f=1800 MHz, R22





Tel: +86-10-62304633-2512 E-mail: cttl@chinattl.com


Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Conversion Factor Assessment

Deviation from Isotropy in Liquid

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2512E-mail: cttl@chinattl.comHttp://www.chinattl.cn

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 3923

Sensor Arrangement	Triangular		
Connector Angle (°)	26.2		
Mechanical Surface Detection Mode	enabled		
Optical Surface Detection Mode	disable		
Probe Overall Length	337mm		
Probe Body Diameter	10mm		
Tip Length	9mm		
Tip Diameter	2.5mm		
Probe Tip to Sensor X Calibration Point	1mm		
Probe Tip to Sensor Y Calibration Point	1mm		
Probe Tip to Sensor Z Calibration Point	1mm		
Recommended Measurement Distance from Surface	1.4mm		

Other Probe Parameters