

SAR Compliance Test Report					
Test report no.:	Beij_SAR_0550_05	Date of report:	2006-01-12		
Template version:	5	Number of pages:	29		
Testing laboratory:	TCC Beijing Nokia Tower Pacific Century Place, 2A, Gong Ti Bei Lu, Chaoyang District, Beijing 100027 Tel: +8610-65392828 Fax: +8610-65393824	Client:	Nokia Finland, Oulu Elektroniikkatie 10 90570 Oulu Tel: +358718046629 Fax: +358718047119		
Responsible test engineer:	Gao Min	Product contact person:	Balabanis Niko		
Measurements made by:	Gao Min				
Tested device:	RM-38				
FCC ID:	LJPRM-38	IC:	661E-RM38		
Supplement reports:	-				
Testing has been carried out in accordance with:	 47CFR §2.1093 Radiofrequency Radiation Exposure Evaluation: Portable Devices FCC OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01) Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields RSS-102 Evaluation Procedure for Mobile and Portable Radio Transmitters with Respect to Health Canada's Safety Code 6 for Exposure of Humans to Radio Frequency Fields IEEE 1528 - 2003 IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques 				
Documentation:	The documentation of the testing performed on the tested devices is archived for 15 years at TCC Nokia.				
Test results:	The tested device complies with the requirements in respect of all parameters subject to the test. The test results and statements relate only to the items tested. The test report shall not be reproduced except in full, without written approval of the laboratory.				
Date and signatures:	2	006-01-16			
For the contents:	Date: 2006.01.16 15:57:32	Gao Min Test Engineer			

CONTENTS

1. SUN	IMARY OF SAR TEST REPORT	3
1.1	TEST DETAILS	
1.2	Maximum Results	
1.2.	J	
1.2.		
1.2.		
1.2.	4 Measurement Uncertainty	4
2. DES	CRIPTION OF THE DEVICE UNDER TEST	5
2.1	PICTURE OF THE DEVICE	5
2.2	DESCRIPTION OF THE ANTENNA	
3. TES	T CONDITIONS	6
3.1	Temperature and Humidity	6
3.2	TEST SIGNAL, FREQUENCIES AND OUTPUT POWER	
4. DES	CRIPTION OF THE TEST EQUIPMENT	
4.1	MEASUREMENT SYSTEM AND COMPONENTS	
4.1.	1 Isotropic E-field Probe Type: ET3DV6	7
4.2	Рнантомѕ	
4.3	Tissue Simulants	
4.3.	·····	
4.3.		8
4.3.	3 Tissue Simulants used in the Measurements	9
5. DES	CRIPTION OF THE TEST PROCEDURE	
5.1	Device Holder	
5.2	TEST POSITIONS	
5.2.	1 Against Phantom Head	
5.2.		
5.3	Scan Procedures	
5.4	SAR Averaging Methods	
6. ME/	SUREMENT UNCERTAINTY	
7. RES	ULTS	
APPENDI	X A: SYSTEM CHECKING SCANS	16
ΔΡΡΕΝΠΙ	X B: MEASUREMENT SCANS	18
APPENDI	X C: RELEVANT PAGES FROM PROBE CALIBRATION REPORT(S)	28
APPENDI	X D: RELEVANT PAGES FROM DIPOLE VALIDATION KIT REPORT(S)	29
SAR Repo	ort	Type: RM-38
	_0550_05	• • • · · • • • • • • • • • • • • • • •
Applican	t: Nokia Corporation	Copyright © 2006 TCC Beijing

1. SUMMARY OF SAR TEST REPORT

1.1 Test Details

Period of test	2006-01-09 to 2006-01-10
SN, HW and SW numbers of	SN:004400451668808; HW: 1612; SW: Vp043.200
tested device	DUT 50159
Batteries used in testing	BP-6M
Headsets used in testing	AD-41 ; HS-20
Other accessories used in	Memory card: SD512
testing	
State of sample	Prototype unit
Notes	-

1.2 Maximum Results

The maximum measured SAR values for Head configuration and Body Worn configuration are given in section 1.2.1 and 1.2.2 respectively. The device conforms to the requirements of the standard(s) when the maximum measured SAR value is less than or equal to the limit.

1.2.1 Head Configuration

Mode	Ch / <i>f</i> (MHz)	Radiated power	Position	Measured SAR value (1g avg)	Scaled* SAR value (1g avg)	SAR limit (1g avg)	Result
2-slot GPRS1900	810/1909.8	32.1dBm EIRP	Left,Tilt	0.79W/kg	0.88W/kg	1.6 W/kg	PASSED

1.2.2 Body Worn Configuration

Mode	Ch / <i>f</i> (MHz)	Radiated power	Separation distance	Measured SAR value (1g avg)	Scaled* SAR value (1g avg)	SAR limit (1g avg)	Result
2-slot GPRS1900	661/1880.0	31.1dBm EIRP	2.2 cm	0.39W/kg	0.44W/kg	1.6 W/kg	PASSED

*SAR values are scaled up by 12% to cover measurement drift.

1.2.3 Maximum Drift

Maximum drift covered by 12% scaling up of the SAR values	Maximum drift during measurements	
0.5dB	-0.29dB	

1.2.4 Measurement Uncertainty

2. DESCRIPTION OF THE DEVICE UNDER TEST

Device category	Portable
Exposure environment	General population / uncontrolled

Modes and Bands of	GSM	GPRS	EGPRS	BT
Operation	1900	1900	1900	
Modulation Mode	GMSK	GMSK	GMSK / 8PSK	GFSK
Duty Cycle	1/8	1/8 or 2/8	1/8 or 2/8	
Transmitter Frequency Range (MHz)	1850 - 1910	1850 - 1910	1850 - 1910	2402-2480

Outside of USA and Canada, the transmitter of the device is capable of operating also in 900&1800 bands, which are not part of this filing.

This device has Push to Talk/Voice–over-IP capability for use at the ear. Therefore, SAR for 2-slot GPRS mode was evaluated against the head profile of the phantom.

2.1 Picture of the Device

Front side **2.2 Description of the Antenna**

Back side

Front side, camera swiveled

The device has an internal patch antenna.

Copyright \odot 2006 TCC Beijing

3. TEST CONDITIONS

3.1 Temperature and Humidity

Ambient temperature (°C):	20.3 to 23.4
Ambient humidity (RH %):	28 to 57

3.2 Test Signal, Frequencies and Output Power

The device was put into operation by using a call tester. Communication between the device and the call tester was established by air link.

The device output power was set to maximum power level for all tests; a fully charged battery was used for every test sequence.

In all operating bands the measurements were performed on lowest, middle and highest channels.

The radiated output power of the device was measured by a separate test laboratory on the same unit as used for SAR testing.

4. DESCRIPTION OF THE TEST EQUIPMENT

4.1 Measurement System and Components

The measurements were performed using an automated near-field scanning system, DASY4, manufactured by Schmid & Partner Engineering AG (SPEAG) in Switzerland. The SAR extrapolation algorithm used in all measurements was the 'advanced extrapolation' algorithm.

The following table lists calibration dates of SPEAG components:

Test Equipment	Serial Number	Calibration interval	Calibration expiry
DAE3	481	12 months	2006-03
E-field Probe ET3DV6	1650	12 months	2006-03
Dipole validation Kit, D1900V2	547	24 months	2007-09
DASY4 software	Version 4.6	-	-

Additional test equipment used in testing:

Test Equipment	Model	Serial Number	Calibration interval	Calibration expiry
Signal Generator	Agilent 8648C	3847m00258	12 months	2006-07
Amplifier	AR 5S1G4M3	302339	12 months	2006-07
Power Meter	Agilent E4419B	MY41291520	12 months	2006-07
Power Sensor	Agilent 8482A	US37295411	12 months	2006-07
Call Tester	CMU200	835352/008	12 months	2006-07
Vector Network Analyzer	Agilent 8753S	My40002096	12 months	2006-07
Dielectric Probe Kit	Agilent 85070C	01033717	-	-

4.1.1 Isotropic E-field Probe Type: ET3DV6

Construction	Symmetrical design with triangular core Built-in optical fiber for surface detection system Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., butyl diglycol)
Calibration	Calibration certificate in Appendix C
Frequency Optical Surface Detection Directivity	10 MHz to 3 GHz (dosimetry); Linearity: ± 0.2 dB (30 MHz to 3 GHz) ± 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces ± 0.2 dB in HSL (rotation around probe axis) ± 0.4 dB in HSL (rotation normal to probe axis)
Dynamic Range	5 μ W/g to > 100 mW/g; Linearity: ± 0.2 dB
Dimensions	Overall length: 330 mm Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm Distance from probe tip to dipole centers: 2.7 mm
Application	General dosimetry up to 3 GHz Compliance tests of mobile phones Fast automatic scanning in arbitrary phantoms

4.2 Phantoms

The phantom used for all tests i.e. for both system checking and device testing, was the twinheaded "SAM Phantom", manufactured by SPEAG. The phantom conforms to the requirements of IEEE 1528 - 2003.

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

The SPEAG device holder (see Section 5.1) was used to position the device in all tests whilst a tripod was used to position the validation dipoles against the flat section of phantom.

4.3 Tissue Simulants

Recommended values for the dielectric parameters of the tissue simulants are given in IEEE 1528 - 2003 and FCC Supplement C to OET Bulletin 65. All tests were carried out using simulants whose dielectric parameters were within \pm 5% of the recommended values. All tests were carried out within 24 hours of measuring the dielectric parameters.

The depth of the tissue simulant was 15.0 \pm 0.5 cm measured from the ear reference point during system checking and device measurements.

4.3.1 Tissue Simulant Recipes

The following recipes were used for Head and Body tissue simulants:

1900MHz band				
Ingredient	Head (% by weight)	Body (% by weight)		
Deionised Water	54.88	69.02		
Butyl Diglycol	44.91	30.76		
Salt	0.21	0.22		

4.3.2 System Checking

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulants were measured every day using the dielectric probe kit and the network analyser. A system check measurement was made following the determination of the dielectric parameters of the simulant, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system checking results (dielectric parameters and SAR values) are given in the table below.

Type: RM-38

System checking, head tissue simulant						
SAR [W/kg], Dielectric Parameters Temp						
f [MHz]	Description	1g	٤r	σ [S/m]	[°C]	
	Reference result	10.1	38.7	1.47		
	± 10% window 9.1 – 11.1					
		9.1 - 11.1				
1900	2006-01-09	9.76	39.8	1.47	20.1	

System checking, body tissue simulant

		SAR [W/kg],	Dielectric F	Parameters	Temp
f [MHz]	Description	1g	٤r	σ [S/m]	[°C]
	Reference result	9.81	53.3	1.59	
	$\pm10\%$ window	8.83 - 10.79			
1900	2006-01-10	9.58	53.5	1.62	20.3

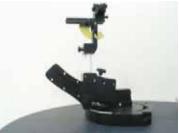
Plots of the system checking scans are given in Appendix A.

4.3.3 Tissue Simulants used in the Measurements

Head tissue simulant measurements

		Dielectric Parameters		Temp
f [MHz]	Description	٤r	σ [S/m]	[°C]
	Recommended value	40.0	1.40	
	\pm 5% window	38.0 - 42.0	1.33 - 1.47	
1880	2006-01-09	39.8	1.46	20.1

Body tissue simulant measurements


		Dielectric Parameters		Temp
f [MHz]	Description	٤r	σ [S/m]	[°C]
	Recommended value	53.3	1.52	
	\pm 5% window	50.6 - 56.0	1.44 - 1.60	
1880	2006-01-10	53.5	1.60	20.3

5. DESCRIPTION OF THE TEST PROCEDURE

5.1 Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of the Dasy system.

Device holder supplied by SPEAG

A Nokia designed spacer (illustrated below) was used to position the device within the SPEAG holder. The spacer positions the device so that the holder has minimal effect on the test results but still holds the device securely. The spacer was removed before the tests.

5.2 Test Positions

5.2.1 Against Phantom Head

Measurements were made in "cheek" and "tilt" positions on both the left hand and right hand sides of the phantom.

The positions used in the measurements were according to IEEE 1528 - 2003 "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques".

Type: RM-38

Photo of device in "cheek" position

Photo of the device in "tilt" position

5.2.2 Body Worn Configuration

The device was placed in the SPEAG holder using the Nokia spacer and placed below the flat section of the phantom. The distance between the device and the phantom was kept at the separation distance indicated in the photo below using a separate flat spacer that was removed before the start of the measurements. The device was oriented with its antenna facing the phantom since this orientation gives higher results.

Photo of the device positioned for Body SAR measurement. The spacer was removed for the tests.

5.3 Scan Procedures

First, area scans were used for determination of the field distribution. Next, a zoom scan, a minimum of 5x5x7 points covering a volume of at least 30x30x30mm, was performed around the highest E-field value to determine the averaged SAR value. Drift was determined by measuring the same point at the start of the area scan and again at the end of the zoom scan.

5.4 SAR Averaging Methods

The maximum SAR value was averaged over a cube of tissue using interpolation and extrapolation.

Type: RM-38

Copyright @ 2006 TCC Beijing

The interpolation, extrapolation and maximum search routines within Dasy4 are all based on the modified Quadratic Shepard's method (Robert J. Renka, "Multivariate Interpolation Of Large Sets Of Scattered Data", University of North Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148).

The interpolation scheme combines a least-square fitted function method with a weighted average method. A trivariate 3-D / bivariate 2-D quadratic function is computed for each measurement point and fitted to neighbouring points by a least-square method. For the zoom scan, inverse distance weighting is incorporated to fit distant points more accurately. The interpolating function is finally calculated as a weighted average of the quadratics.

In the zoom scan, the interpolation function is used to extrapolate the Peak SAR from the deepest measurement points to the inner surface of the phantom.

6. MEASUREMENT UNCERTAINTY

Table 6.1 – Measurement uncertainty evaluation							
Uncertainty Component	Section in IEEE 1528	Tol. (%)	Prob Dist	Div	Ci	Ci .Ui (%)	Vi
Measurement System							
Probe Calibration	E2.1	±5.9	N	1	1	±5.9	x
Axial Isotropy	E2.2	±4.7	R	√3	(1-c _p) ^{1/2}	±1.9	∞
Hemispherical Isotropy	E2.2	±9.6	R	√3	(C _p) ^{1/2}	±3.9	∞
Boundary Effect	E2.3	±1.0	R	√3	1	±0.6	∞
Linearity	E2.4	±4.7	R	√3	1	±2.7	∞
System Detection Limits	E2.5	±1.0	R	√3	1	±0.6	∞
Readout Electronics	E2.6	±1.0	N	1	1	±1.0	8
Response Time	E2.7	±0.8	R	√3	1	±0.5	∞
Integration Time	E2.8	±2.6	R	√3	1	±1.5	∞
RF Ambient Conditions - Noise	E6.1	±3.0	R	√3	1	±1.7	∞
RF Ambient Conditions - Reflections	E6.1	±3.0	R	√3	1	±1.7	∞
Probe Positioner Mechanical Tolerance	E6.2	±0.4	R	√3	1	±0.2	∞
Probe Positioning with respect to Phantom Shell	E6.3	±2.9	R	√3	1	±1.7	x
Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	E5	±3.9	R	√3	1	±2.3	×
Test sample Related							
Test Sample Positioning	E4.2	±6.0	N	1	1	±6.0	11
Device Holder Uncertainty	E4.1	±5.0	N	1	1	±5.0	7
Output Power Variation - SAR drift measurement	6.6.3	±0.0	R	√3	1	±0.0	x
Phantom and Tissue Parameters							
Phantom Uncertainty (shape and thickness tolerances)	E3.1	±4.0	R	√3	1	±2.3	x
Conductivity Target - tolerance	E3.2	±5.0	R	√3	0.64	±1.8	x
Conductivity - measurement uncertainty	E3.3	±5.5	N	1	0.64	±3.5	5
Permittivity Target - tolerance	E3.2	±5.0	R	√3	0.6	±1.7	00
Permittivity - measurement uncertainty	E3.3	±2.9	N	1	0.6	±1.7	5
Combined Standard Uncertainty	1		RSS			±12.9	116
Coverage Factor for 95%			k=2			<u> </u>	110
Expanded Uncertainty						±25.8	

Table 6.1 – Measurement uncertainty evaluation

Copyright © 2006 TCC Beijing

7. RESULTS

The measured Head SAR values for the test device are tabulated below: 1900MHz Head SAR results

	1900MHZ Head SAK results					
			SAR, av	eraged over 1g	(W/kg)	
Option used	Test c	onfiguration	Ch 512	Ch 661	Ch 810	
		-	1850.2 MHz	1880.0 MHz	1909.8 MHz	
GSM		Power	32.6dBm	31.0dBm	31.9dBm	
With SD	Rig	Jht, Cheek		0.29		
With SD, camera swiveled	Rig	Jht, Cheek		0.24		
2-slot GPRS		Power	32.7dBm	31.1dBm	32.1dBm	
	Left	Cheek		0.63		
With SD		Tilt	0.7	0.70	0.79	
	Right	Cheek		0.35		
		Tilt		0.57		
2-slot EGPRS		Power	29.8dBm	28.4dBm	29.6dBm	
With SD	L	eft, Tilt			0.49	
Without SD	2-slot (GPRS: Left, Tilt			0.78	
With SD, BT active	2-slot (GPRS: Left, Tilt			0.76	

The measured Body SAR values for the test device are tabulated below:

1900MHz Body SAR results

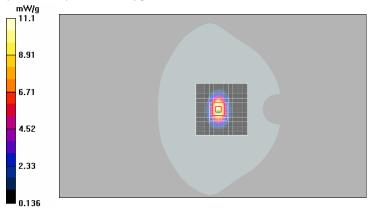
		SAR, av	eraged over 1g	(W/kg)
Option used	Test configuration	Ch 512	Ch 661	Ch 810
2-slot GPRS	Power	1850.2 MHz 32.7dBm	1880.0 MHz 31.1dBm	1909.8 MHz 32.1dBm
Without SD	Without Headset	0.38	0.39	0.37
	Headset HS-20	0.34	0.37	0.35
With SD	2-slot GPRS: Without Headset		0.37	
Without SD, camera swiveled	2-slot GPRS: Without Headset		0.37	
Without SD, BT active	2-slot GPRS: Without Headset		0.38	

Type: RM-38

Plots of the Measurement scans are given in Appendix B.

APPENDIX A: SYSTEM CHECKING SCANS

Date: 2006-01-09 Liquid temperature: 20.1°C **DUT Type: Dipole 1900 MHz Program Name: System Performance Check at 1900 MHz, advanced extrapolation, head** Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.47 mho/m; ε_r = 39.8; ρ = 1000 kg/m³ Phantom section: Flat Section DASY4 Configuration: - Probe: ET3DV6 - SN1650; ConvF(5.15, 5.15, 5.15); Calibrated: 3/18/2005 - Sensor-Surface: 4mm (Mechanical Surface Detection)


- Electronics: DAE3 Sn481; Calibrated: 3/15/2005
- Phantom: SAM1;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

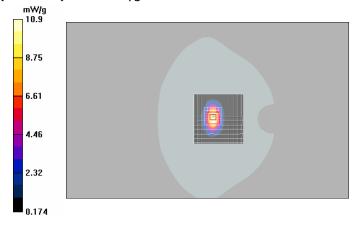
d=10mm, Pin=250mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 11.9 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 92.1 V/m; Power Drift = -0.027 dB Peak SAR (extrapolated) = 17.4 W/kg SAR(1 g) = 9.76 mW/g; SAR(10 g) = 5.04 mW/g

Warning: Maximum averaged SAR over 10 g is located on the boundary of the measurement cube. This cube might not incorporate the absolute averaged SAR. Please consider a refinement of the Area Scan measurement.

Maximum value of SAR (measured) = 11.1 mW/g

Date: 2006-01-10 Liquid temperature: 20.3°C **DUT Type: Dipole 1900 MHz Program Name: System Performance Check at 1900 MHz, advanced extrapolation, body** Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.62 mho/m; ε_r = 53.5; ρ = 1000 kg/m³ Phantom section: Flat Section DASY4 Configuration: - Probe: ET3DV6 - SN1650; ConvF(4.71, 4.71, 4.71); Calibrated: 3/18/2005 - Sensor-Surface: 4mm (Mechanical Surface Detection)


- Electronics: DAE3 Sn481; Calibrated: 3/15/2005

- Phantom: SAM2;

- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

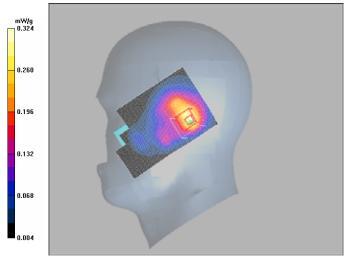
d=10mm, Pin=250mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 11.8 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 79.9 V/m; Power Drift = -0.063 dB Peak SAR (extrapolated) = 16.1 W/kg **SAR(1 g) = 9.58 mW/g; SAR(10 g) = 5.07 mW/g** Maximum value of SAR (measured) = 10.9 mW/g

APPENDIX B: MEASUREMENT SCANS

Date: 2006-01-09 Liquid Temperature: 20.1°C **DUT Type: RM-38 Program Name: GSM1900, Right side, advanced extrapolation, with SD** Communication System: GSM 1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; σ = 1.46 mho/m; ε_r = 39.8; ρ = 1000 kg/m³ Phantom section: Right Section DASY4 Configuration: - Probe: ET3DV6 - SN1650; ConvF(5.15, 5.15, 5.15); Calibrated: 3/18/2005 - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: DAE3 Sn481; Calibrated: 3/15/2005

- Phantom: SAM1; ;


- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

Cheek position - Middle/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.315 mW/g

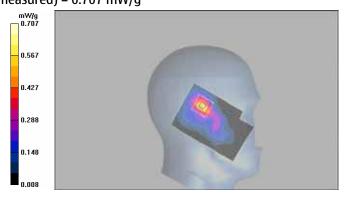
Cheek position - Middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 12.7 V/m; Power Drift = 0.023 dB Peak SAR (extrapolated) = 0.517 W/kg SAR(1 g) = 0.294 mW/g; SAR(10 g) = 0.160 mW/g

Warning: Maximum averaged SAR over 10 g is located on the boundary of the measurement cube. This cube might not incorporate the absolute averaged SAR. Please consider a refinement of the Area Scan measurement.

Maximum value of SAR (measured) = 0.324 mW/g

Type: RM-38

Date: 2006-01-09 Liquid Temperature: 20.1°C **DUT Type: RM-38 Program Name: 2-slot GPRS 1900, left side, advanced extrapolation, with SD** Communication System: 2-slot GPRS1900; Frequency: 1880 MHz;Duty Cycle: 1:4.2 Medium parameters used: f = 1880 MHz; σ = 1.46 mho/m; ε_r = 39.8; ρ = 1000 kg/m³ Phantom section: Left Section DASY4 Configuration: - Probe: ET3DV6 - SN1650; ConvF(5.15, 5.15, 5.15); Calibrated: 3/18/2005

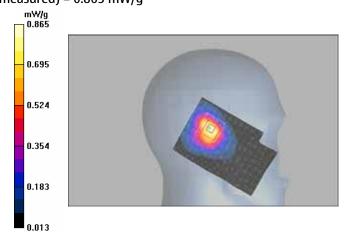

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn481; Calibrated: 3/15/2005

- Phantom: SAM1; ;

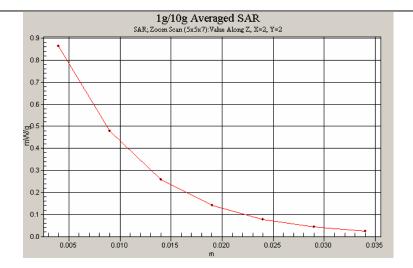
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

Cheek position - middle, with SD/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.706 mW/g

Cheek position - middle, with SD/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 13.1 V/m; Power Drift = 0.168 dB Peak SAR (extrapolated) = 1.20 W/kg SAR(1 g) = 0.633 mW/g; SAR(10 g) = 0.317 mW/g Maximum value of SAR (measured) = 0.707 mW/g

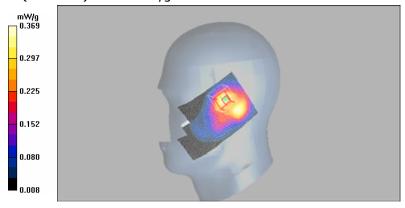

Date: 2006-01-09 Liquid Temperature: 20.1°C **DUT Type: RM-38 Program Name: 2-slot GPRS 1900, left side, advanced extrapolation, with SD** Communication System: 2-slot GPRS1900; Frequency: 1909.8 MHz;Duty Cycle: 1:4.2 Medium parameters used: f = 1910 MHz; σ = 1.48 mho/m; ε_r = 39.8; ρ = 1000 kg/m³ Phantom section: Left Section DASY4 Configuration: - Probe: ET3DV6 - SN1650; ConvF(5.15, 5.15, 5.15); Calibrated: 3/18/2005

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn481; Calibrated: 3/15/2005
- Phantom: SAM1; ;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160


Tilt position - high, with SD/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.953 mW/g

Tilt position - high, with SD/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 22.5 V/m; Power Drift = -0.289 dB Peak SAR (extrapolated) = 1.45 W/kg SAR(1 g) = 0.788 mW/g; SAR(10 g) = 0.427 mW/g Maximum value of SAR (measured) = 0.865 mW/g



Date: 2006-01-09 Liquid Temperature: 20.1°C **DUT Type: RM-38 Program Name: 2-slot GPRS1900, Right side, advanced extrapolation, with SD** Communication System: 2-slot GPRS1900; Frequency: 1880 MHz;Duty Cycle: 1:4.2 Medium parameters used: f = 1880 MHz; σ = 1.46 mho/m; ε_r = 39.8; ρ = 1000 kg/m³ Phantom section: Right Section DASY4 Configuration: Probe: FT2DV6 _ CM16E0; ConvE(E 1E E 1E E 1E); Calibrated: 2(10/200E)

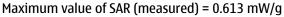
- Probe: ET3DV6 SN1650; ConvF(5.15, 5.15, 5.15); Calibrated: 3/18/2005
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn481; Calibrated: 3/15/2005
- Phantom: SAM1; ;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

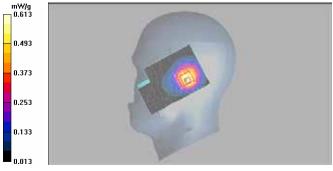
Cheek, position - Middle, with SD/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.370 mW/g

Cheek, position - Middle, with SD/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 13.3 V/m; Power Drift = -0.125 dB Peak SAR (extrapolated) = 0.501 W/kg **SAR(1 g) = 0.345 mW/g; SAR(10 g) = 0.205 mW/g** Maximum value of SAR (measured) = 0.369 mW/g

Date: 2006-01-09 Liquid Temperature: 20.1°C **DUT Type: RM-38 Program Name: 2-slot GPRS1900, Right side, advanced extrapolation, with SD** Communication System: 2-slot GPRS1900; Frequency: 1880 MHz;Duty Cycle: 1:4.2 Medium parameters used: f = 1880 MHz; σ = 1.46 mho/m; ε_r = 39.8; ρ = 1000 kg/m³ Phantom section: Right Section DASY4 Configuration: - Probe: ET3DV6 - SN1650; ConvF(5.15, 5.15, 5.15); Calibrated: 3/18/2005

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn481; Calibrated: 3/15/2005


- Phantom: SAM1; ;


- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

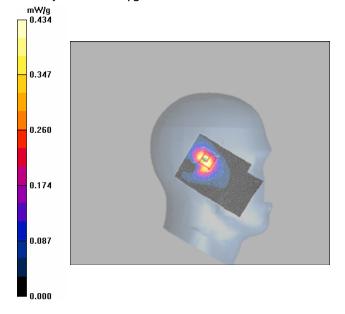
Tilt position - Middle, with SD/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.616 mW/g

Tilt position - Middle, with SD/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 18.2 V/m; Power Drift = -0.005 dB Peak SAR (extrapolated) = 0.987 W/kg SAR(1 g) = 0.569 mW/g; SAR(10 g) = 0.318 mW/g

Date: 2006-01-09 Liquid Temperature: 20.1°C **DUT Type: RM-38 Program Name: 2-slot EGPRS 1900, left side, advanced extrapolation, with SD** Communication System: 2-slot EGPRS1900; Frequency: 1909.8 MHz;Duty Cycle: 1:4.2 Medium parameters used: f = 1910 MHz; σ = 1.48 mho/m; ε_r = 39.8; ρ = 1000 kg/m³ Phantom section: Left Section DASY4 Configuration: - Probe: ET3DV6 - SN1650; ConvF(5.15, 5.15, 5.15); Calibrated: 3/18/2005

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn481; Calibrated: 3/15/2005


- Phantom: SAM1;

- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

Tilt position - high, with SD, in EGPRS mode/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.484 mW/g

Tilt position - high, with SD, in EGPRS mode/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 14.4 V/m; Power Drift = 0.265 dB Peak SAR (extrapolated) = 1.68 W/kg

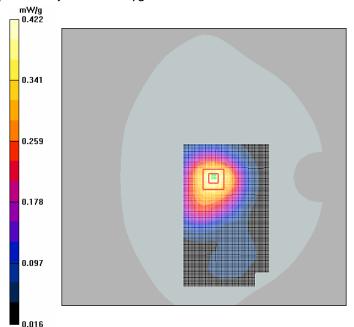
SAR(1 g) = 0.485 mW/g; SAR(10 g) = 0.205 mW/g Maximum value of SAR (measured) = 0.434 mW/g

Type: RM-38

Date: 2006-01-10 Liquid Temperature: 20.3°C **DUT Type: RM-38 Program Name: 2-slot GPRS1900, body, advanced extrapolation, without headset** Communication System: 2-slot GPRS1900; Frequency: 1880 MHz; Duty Cycle: 1:4.2 Medium parameters used: f = 1880 MHz; σ = 1.6 mho/m; ε_r = 53.5; ρ = 1000 kg/m³ Phantom section: Flat Section DASY4 Configuration: - Probe: ET3DV6 - SN1650; ConvF(4.71, 4.71, 4.71); Calibrated: 3/18/2005

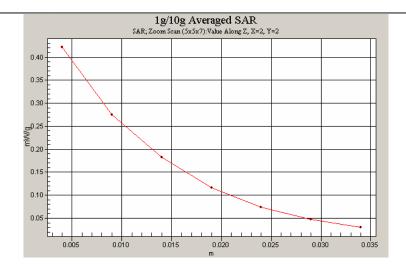
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn481; Calibrated: 3/15/2005

- Phantom: SAM2; ;


- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

Without headset - middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.434 mW/g

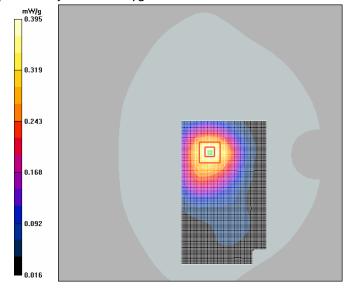
Without headset - middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm


Reference Value = 17.3 V/m; Power Drift = -0.148 dB Peak SAR (extrapolated) = 0.593 W/kg SAR(1 g) = 0.393 mW/g; SAR(10 g) = 0.250 mW/g

Maximum value of SAR (measured) = 0.422 mW/g

Type: RM-38

Date: 2006-01-10 Liquid Temperature: 20.3°C **DUT Type: RM-38 Program Name: 2-slot GPRS1900, body, advanced extrapolation, with HS-20** Communication System: 2-slot GPRS1900; Frequency: 1880 MHz; Duty Cycle: 1:4.2 Medium parameters used: f = 1880 MHz; σ = 1.6 mho/m; ϵ_r = 53.5; ρ = 1000 kg/m³ Phantom section: Flat Section DASY4 Configuration: - Probe: ET3DV6 - SN1650; ConvF(4.71, 4.71, 4.71); Calibrated: 3/18/2005


- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn481; Calibrated: 3/15/2005

- Phantom: SAM2; ;

- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

With HS-20 - middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.409 mW/g

With HS-20 - middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 16.5 V/m; Power Drift = -0.184 dB Peak SAR (extrapolated) = 0.559 W/kg SAR(1g) = 0.369 mW/g; SAR(10 g) = 0.233 mW/g Maximum value of SAR (measured) = 0.395 mW/g

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Nokia TCC Beijing

GNISS CP D ZO RT/BRATE

Schweizerlscher Kallbrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Certificate No: D1900V2-547 Sep05

CALIBRATION CERTIFICATE Object D1900V2 - SN: 547 QA CAL-05.v6 Calibration procedure(s) Calibration procedure for dipole validation kits September 27, 2005 Calibration date: In Tolerance Condition of the calibrated item This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)*C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) **Primary Standards** ID # Cal Date (Calibrated by, Certificate No.) Scheduled Calibration Power meter EPM E442 GB37480704 12-Oct-04 (METAS, No. 251-00412) Oct-05 Power sensor HP 8481A Oct-05 US37292783 12-Oct-04 (METAS, No. 251-00412) Reference 20 dB Attenuator SN: 5086 (20g) 11-Aug-05 (METAS, No 251-00498) Aug-06 Reference 10 dB Attenuator SN: 5047.2 (10r) 11-Aug-05 (METAS, No 251-00498) Aug-06 Reference Probe ET3DV6 SN 1507 26-Oct-04 (SPEAG, No. ET3-1507 Oct04) Oct-05 DAE4 SN 601 07-Jan-05 (SPEAG, No. DAE4-601_Jan05) Jan-06 Scheduled Check Secondary Standards ID# Check Date (in house) Power sensor HP 8481A MY41092317 18-Oct-02 (SPEAG, in house check Oct-03) In house check: Oct-05 RF generator R&S SML-03 100608 27-Mar-02 (SPEAG, in house check Dec-03) In house check: Dec-05 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (SPEAG, in house check Nov-04) In house check: Nov 05 Signature Name Function M. Meili Mike Meili Calibrated by: Laboratory Technician plan : 11th Approved by: Katja Pokovic **Technical Manager** Issued: September 27, 2005 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1900V2-547_Sep05

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASVA	V4.6
DA314	V4.0
Advanced Extrapolation	
Modular Flat Phantom V5.0	1
10 mm	with Spacer
dx, dy = 15 mm	
dx, dy, dz = 5 mm	
1900 MHz ± 1 MHz	
	Modular Flat Phantom V5.0 10 mm dx, dy = 15 mm dx, dy, dz = 5 mm

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.7 ± 6 %	1.47 mho/m ± 6 %
Head TSL temperature during test	(22.2 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	250 mW input power	10.1mW / g
SAR normalized	normalized to 1W	40.4 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	38.7 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.29 mW / g
SAR normalized	normalized to 1W	21.2 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	20.3 mW / g ± 16.5 % (k=2)

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.3 ± 6 %	1.59 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	condition	
SAR measured	250 mW input power	9.81 mW / g
SAR normalized	normalized to 1W	39.2 mW / g
SAR for nominal Body TSL parameters 2	normalized to 1W	38.2 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.23 mW / g
SAR normalized	normalized to 1W	20.9 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	20.3 mW / g ± 16.5 % (k=2)

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

DASY4 Validation Report for Head TSL

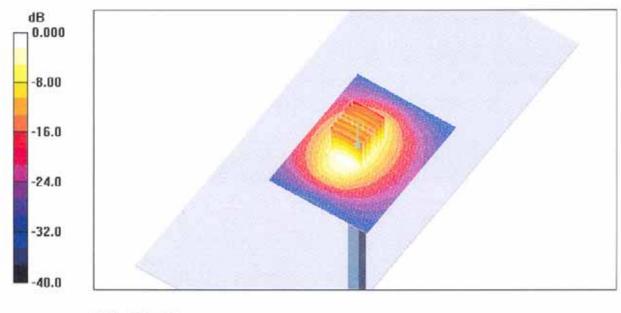
Date/Time: 23.09.2005 12:58:27

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:547

Communication System: CW-1900; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: HSL 1900 MHz; Medium parameters used: f = 1900 MHz; σ = 1.47 mho/m; ϵ_r = 38.7; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:


- Probe: ET3DV6 SN1507; ConvF(4.96, 4.96, 4.96); Calibrated: 26.10.2004
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.01.2005
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA
- Measurement SW: DASY4, V4.6 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 159

Pin = 250 mW; d = 10 mm/Area Scan (61x81x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 12.1 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 92.0 V/m; Power Drift = 0.030 dB Peak SAR (extrapolated) = 17.3 W/kg SAR(1 g) = 10.1 mW/g; SAR(10 g) = 5.29 mW/g Maximum value of SAR (measured) = 11.3 mW/g

 $0 \, dB = 11.3 \, mW/g$

DASY4 Validation Report for Body TSL

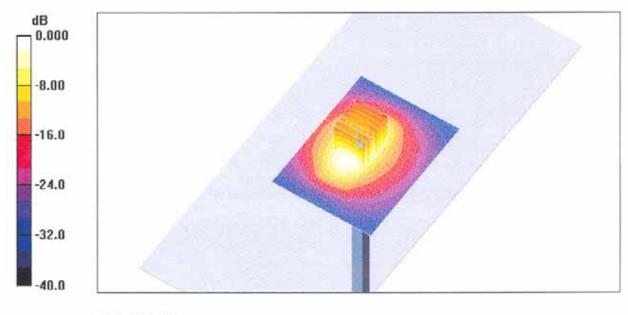
Date/Time: 27.09.2005 12:11:20

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:547

Communication System: CW-1900; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: MSL 1900 MHz; Medium parameters used: f = 1900 MHz; σ = 1.59 mho/m; ε_r = 53.3; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:


- Probe: ET3DV6 SN1507; ConvF(4.43, 4.43, 4.43); Calibrated: 26.10.2004
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.01.2005
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA
- Measurement SW: DASY4, V4.6 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 159

Pin = 250 mW; d = 10 mm/Area Scan (61x81x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 12.0 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 85.1 V/m; Power Drift = 0.040 dB Peak SAR (extrapolated) = 16.3 W/kg SAR(1 g) = 9.81 mW/g; SAR(10 g) = 5.23 mW/g Maximum value of SAR (measured) = 11.1 mW/g

0 dB = 11.1mW/g

Page 8 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Nokia TCC Beijing

SWISS	s
(0 0 z)	С
"IBRAT	S

Schweizerischer Kalibrierdienst

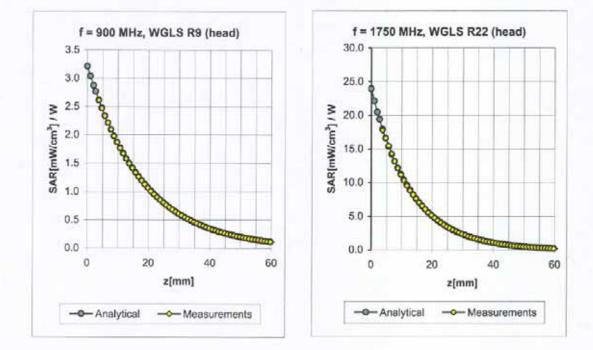
Service suisse d'étalonnage С

Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 108

Certificate No: ET3-1650_Mar05


Object	ET3DV6 - SN:1650						
Calibration procedure(s)	QA CAL-01.v5 Calibration procedure for dosimetric E-field probes						
Calibration date:	March 18, 2005						
Condition of the calibrated item	In Tolerance		Sector Addition				
The measurements and the unce	ertainties with confidence	ational standards, which realize the physical units of probability are given on the following pages and an	e part of the certificate.				
			all increased that as 70.04				
		tory facility: environment temperature (22 ± 3)*C and	a numiany < 70%.				
			a numiany < 70%.				
Calibration Equipment used (M& Primary Standards	TE critical for calibration)	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration				
Calibration Equipment used (M& Primary Standards Power meter E4419B	TE critical for calibration)	Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No. 251-00388)	Scheduled Calibration May-05				
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A	TE critical for calibration) ID # GB41293874 MY41495277	Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388)	Scheduled Calibration May-05 May-05				
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator	TE critical for calibration) ID # GB41293874 MY41495277 SN: \$5054 (3c)	Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00403)	Scheduled Calibration May-05 May-05 Aug-05				
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	TE critical for calibration) ID # GB41293874 MY41495277 SN S5054 (3c) SN: S5086 (20b)	Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00389)	Scheduled Calibration May-05 May-05 Aug-05 May-05				
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator	TE critical for calibration) ID # GB41293874 MY41495277 SN S5054 (3c) SN S5086 (20b) SN S5128 (30b)	Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00389) 10-Aug-04 (METAS, No. 251-00404)	Scheduled Calibration May-05 May-05 Aug-05 May-05 Aug-05				
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2	TE critical for calibration) ID # GB41293874 MY41495277 SN S5054 (3c) SN S5086 (20b) SN: S5129 (30b) SN: 3013	Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00389) 10-Aug-04 (METAS, No. 251-00404) 7-Jan-05 (SPEAG, No. ES3-3013_Jan05)	Scheduled Calibration May-05 May-05 Aug-05 May-05 Aug-05 Jan-06				
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2	TE critical for calibration) ID # GB41293874 MY41495277 SN S5054 (3c) SN S5086 (20b) SN S5128 (30b)	Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00389) 10-Aug-04 (METAS, No. 251-00404)	Scheduled Calibration May-05 May-05 Aug-05 May-05 Aug-05				
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	TE critical for calibration) ID # GB41293874 MY41495277 SN 85054 (3c) SN 85086 (20b) SN 85129 (30b) SN: 3013 SN: 617 ID #	Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00389) 10-Aug-04 (METAS, No. 251-00404) 7-Jan-05 (SPEAG, No. ES3-3013_Jan05)	Scheduled Calibration May-05 May-05 Aug-05 May-05 Aug-05 Jan-06 Jan-06 Scheduled Check				
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A	TE critical for calibration) ID # GB41293874 MY41495277 SN 85054 (3c) SN 85086 (20b) SN 85129 (30b) SN: 3013 SN: 617	Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00404) 10-Aug-04 (METAS, No. 251-00404) 7-Jan-05 (SPEAG, No. ES3-3013_Jan05) 19-Jan-05 (SPEAG, No. DAE4-617_Jan05)	Scheduled Calibration May-05 May-05 Aug-05 May-05 Aug-05 Jan-06 Jan-06 Scheduled Check In house check: Oct 05				
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A	TE critical for calibration) ID # GB41293874 MY41495277 SN 85054 (3c) SN 85086 (20b) SN 85129 (30b) SN: 3013 SN: 617 ID #	Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00404) 10-Aug-04 (METAS, No. 251-00404) 7-Jan-05 (SPEAG, No. ES3-3013_Jan05) 19-Jan-05 (SPEAG, No. DAE4-617_Jan05) Check Date (in house)	Scheduled Calibration May-05 May-05 Aug-05 May-05 Aug-05 Jan-06 Jan-06 Scheduled Check				
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator HP 8648C	TE critical for calibration) ID # GB41293874 MY41495277 SN 85054 (3a) SN 85086 (20b) SN 85129 (30b) SN: 3013 SN: 617 ID # MY41092180	Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00404) 10-Aug-04 (METAS, No. 251-00404) 7-Jan-05 (SPEAG, No. ES3-3013_Jan05) 19-Jan-05 (SPEAG, No. DAE4-617_Jan05) Check Date (in house) 18-Sep-02 (SPEAG, in house check Oct-03)	Scheduled Calibration May-05 May-05 Aug-05 May-05 Aug-05 Jan-06 Jan-06 Scheduled Check In house check: Oct 05				
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator HP 8648C	TE critical for calibration) ID # GB41293874 MY41495277 SN 85054 (3a) SN 85086 (20b) SN 85086 (20b) SN 85129 (30b) SN: 3013 SN: 617 ID # MY41092180 US3642U01700	Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00404) 10-Aug-04 (METAS, No. 251-00404) 7-Jan-05 (SPEAG, No. ES3-3013_Jan05) 19-Jan-05 (SPEAG, No. DAE4-617_Jan05) Check Date (in house) 18-Sep-02 (SPEAG, in house check Oct-03) 4-Aug-99 (SPEAG, in house check Dec-03)	Scheduled Calibration May-05 May-05 Aug-05 May-05 Aug-05 Jan-06 Jan-06 Scheduled Check In house check: Oct 05 In house check: Dec-05				
All calibrations have been condui Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator HP 8648C Network Analyzer HP 8753E Calibrated by:	TE critical for calibration) ID # GB41293874 MY41495277 SN: 85054 (3c) SN: 85086 (20b) SN: 85129 (30b) SN: 3013 SN: 617 ID # MY41092180 US3642U01700 US37390585	Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00389) 10-Aug-04 (METAS, No. 251-00404) 7-Jan-05 (SPEAG, No. ES3-3013_Jan05) 19-Jan-05 (SPEAG, No. DAE4-617_Jan05) Check Date (in house) 18-Sep-02 (SPEAG, in house check Oct-03) 4-Aug-99 (SPEAG, in house check Dec-03) 18-Oct-01 (SPEAG, in house check Nov-04)	Scheduled Calibration May-05 May-05 Aug-05 May-05 Aug-05 Jan-06 Jan-06 Scheduled Check In house check: Oct 05 In house check: Dec-05 In house check: Nov 05				

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ET3-1650_Mar05

March 18, 2005

ET3DV6 SN:1650

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
835	± 50 / ± 100	Head	41.5 ± 5%	0.90 ± 5%	0.68	1.69	6.95 ± 11.0% (k=2)
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.68	1.69	6.70 ± 11.0% (k=2)
1750	± 50 / ± 100	Head	40.1 ± 5%	1.37 ± 5%	0.63	2.24	5.41 ± 11.0% (k=2)
1900	± 50 / ± 100	Head	$40.0\pm5\%$	1.40 ± 5%	0.58	2.44	5.15 ± 11.0% (k=2)
835	± 50 / ± 100	Body	55.2 ± 5%	0.97 ± 5%	0.53	2.00	6.66 ± 11.0% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.50	2.10	6.35 ± 11.0% (k=2)
1750	± 50 / ± 100	Body	53.4 ± 5%	$1.49 \pm 5\%$	0.59	2.62	4.85 ± 11.0% (k=2)
1900	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.59	2.81	4.71 ± 11.0% (k=2)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: ET3-1650_Mar05