

Product L	Product Detail:								
FCC ID	FCC ID: 2AOL2041115								
Equipm	Equipment type: DSS								
T 1.01									
Test Stan		C Dort 15 Subport (<u></u>						
	R Title 47, Chapter I, F0 art 15 CFR Title 47: 201								
	y Canada RSS-247, Iss								
inducti.									
This re	port concerns: Original	Grant for Certificatio	n						
FCC Pa	art 15.247								
	rformed For:		Test Facility:						
Hill-Ro			Radiometrics Midwest Corporation						
	tate Rte. 46 East		12 Devonwood Avenue						
Batesvi	ine, in		Romeoville, IL 60446-1349 (815) 293-0772						
Test Date	e(s): (Month-Day-Year)		(013) 233-0772	·					
	thru July 19, 2017								
	-								
Docum	ent RP-8630 Revisions	:							
Rev.	Rev. Issue Date Affected Sections			Revised By					
0	October 30, 2017								
1	November 14, 2017	11.4		Joseph Strzelecki					
-	December 00,0017	Cover		Jacoph Strzelecki					
2	December 20, 2017	Cover		Joseph Strzelecki					

Table of Contents

1.0ADMINISTRATIVE DATA	
2.0TEST SUMMARY AND RESULTS	3
3.0EQUIPMENT UNDER TEST (EUT) DETAILS	4
3.1 EUT Description	
3.1.1 FCC Section 15.203 Antenna Requirements	4
4.0TESTED SYSTEM DETAILS	4
4.1 Tested System Configuration	4
4.2 Special Accessories	
4.3 Equipment Modifications	5
5.0TEST SPECIFICATIONS	
6.0TEST PROCEDURE DOCUMENTS	
7.0RADIOMETRICS' TEST FACILITIES	
8.0DEVIATIONS AND EXCLUSIONS FROM THE TEST SPECIFICATIONS	6
9.0CERTIFICATION	
10.0TEST EQUIPMENT TABLE	
11.0TEST SECTIONS	
11.1 AC Conducted Emissions	
11.2 Carrier Frequency Separation	
11.3 Number of Hopping Frequencies	
11.4 Time of Occupancy (Dwell Time)	
11.5 Occupied Bandwidth Data	
11.6 Peak Output Power	
11.7 Band-edge Compliance of RF Conducted Emissions	
11.8 Spurious RF Conducted Emissions at Antenna Port	
11.9 Radiated RF Emissions	
11.9.1 Field Strength Calculation	
11.9.2 Radiated Emissions Test Results	
11.10 Unintentional Emissions (Receive Mode)	
11.10.1 Measurement Instrumentation Uncertainty	.31

Notice: This report must not be reproduced (except in full) without the written approval of Radiometrics Midwest Corporation.

1.0 ADMINISTRATIVE DATA

Equipment Under Test: A Hill-Rom, Inc, Watchcare Reader Model: P006979 Serial Number: none This will be referred to as the EUT in this Report	
Date EUT Received at Radiometrics: (Month-Day-Year)	Test Date(s): (Month-Day-Year)
May 5, 2017	May 6 thru July 19, 2017
Test Report Written By:	Test Partially Witnessed By:
Joseph Strzelecki	Marwan Nusair
Senior EMC Engineer	Hill-Rom, Inc
Radiometrics' Personnel Responsible for Test:	Test Report Approved By
Joseph Strzelecki	Chris W. Carlson
Joseph Strzelecki	Chris W. Carlson
Senior EMC Engineer	Director of Engineering
NARTE EMC-000877-NE	NARTE EMC-000921-NE

2.0 TEST SUMMARY AND RESULTS

The EUT (Equipment Under Test) is a Watchcare Reader, Model P006979, manufactured by Hill-Rom, Inc. The detailed test results are presented in a separate section. The following is a summary of the test results.

Emissions Tests Results							
Environmental Phenomena	Frequency Range	FCC Section	Test Result				
Carrier Frequency Separation	902-928 MHz	15.247 a	Pass				
Number of Hopping Frequencies	902-928 MHz	15.247 a	Pass				
Time of Occupancy (Dwell Time)	902-928 MHz	15.247 a	Pass				
20 dB Bandwidth Test	902-928 MHz	15.247 a	Pass				
Peak Output Power	902-928 MHz	15.247 b	Pass				
Band-edge Compliance of RF	902-928 MHz	15.247 d	Pass				
Conducted Emissions							
Spurious RF Conducted Emissions	30-9300 MHz	15.247 d	Pass				
Spurious Radiated Emissions	30-9300 MHz	15.247 d	Pass				
RF Radiated Emissions (Unintential	30-5,000 MHz	15.209	Pass				
Radiation Receive mode)							
AC conducted Emissions	0.15-30 MHz	15.207	Pass				

3.0 EQUIPMENT UNDER TEST (EUT) DETAILS

3.1 EUT Description

The EUT is a Watchcare Reader, Model P006979, manufactured by Hill-Rom, Inc. The EUT is an incontinence detection system. The EUT was in good working condition during the tests, with no known defects.

3.1.1 FCC Section 15.203 Antenna Requirements

The antennas have a connector type that is not readily available to the general public. The connector is inside the housing and not readily available to the end user. Therefore, it meets the 15.203 Requirements.

4.0 TESTED SYSTEM DETAILS

4.1 Tested System Configuration

The system was configured for testing in a typical fashion. The EUT was placed on an 80-cm or 150 cm high, nonconductive test stand. The testing was performed in conditions as close as possible to installed conditions. Wiring was consistent with manufacturer's recommendations. The EUT was tested as a stand-alone device. Power was supplied at 120 VAC, 60 Hz single-phase to its external power supply.

The identification for all equipment, plus descriptions of all cables used in the tested system, are:

Item	Description Type*		Manufacturer	Model Number	Serial Number			
1	Watchcare Reader	Е	Hill-Rom, Inc	P006979	Sample 3			
2	120VAC-12VDC power P supply		Jameco	DFU120150	None			
3	Status Indicator	Ρ	Hill-Rom, Inc.	201009	None			

Tested System Configuration List

* Type: E = EUT, P = Peripheral, S = Support Equipment

List of System Cables

QTY	Length (m)	Cable Description	Shielded?
1	2.5	DC Cord from power supply to EUT	No
4	0.8	Coaxial Antenna Cable	Yes
1	2.4	Status cable from EUT to Status indicator	No
1	1.8	Nurse Call Cable	No
1	1.0	USB cable	Yes

4.2 Special Accessories

No special accessories were used during the tests in order to achieve compliance.

4.3 Equipment Modifications

No modifications were made to the EUT at Radiometrics' test facility in order to comply with the standards listed in this report.

5.0 TEST SPECIFICATIONS

Document	Date	Title
FCC CFR Title 47	2017	Code of Federal Regulations Title 47, Chapter 1, Federal Communications Commission, Part 15 - Radio Frequency Devices

6.0 TEST PROCEDURE DOCUMENTS

The tests were performed using the procedures from the following specifications:

Document	Date	Title
ANSI C63.4-2014	2014	Methods of Measurement of Radio Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
ANSI C63.10-2013	2013	American National Standard for Testing Unlicensed Wireless Devices

7.0 RADIOMETRICS' TEST FACILITIES

The results of these tests were obtained at Radiometrics Midwest Corp. in Romeoville, Illinois, USA. Radiometrics is accredited by A2LA (American Association for Laboratory Accreditation) to conform to ISO/IEC 17025: 2005 "General Requirements for the Competence of Calibration and Testing Laboratories". Radiometrics' Lab Code is 121191 and Certification Number is 1495.01. Radiometrics' scope of accreditation includes all of the test methods listed herein. A copy of the accreditation can be accessed on our web site (www.radiomet.com). Radiometrics accreditation status can be verified at A2LA's web site (www.a2la2.org).

The following is a list of shielded enclosures located in Romeoville, Illinois used during the tests:

- Chamber E: Is a custom made anechoic chamber that measures 52' L X 30' W X 18' H. The walls and ceiling are fully lined with RF absorber. Pro-shield of Collinsville, Oklahoma manufactured the chamber. The floor has a 9' x 9' section of microwave absorber for testing above 1 GHz.
- Test Station F: Is an area that measures 10' D X 12' W X 10' H. The floor and back wall are metal shielded. This area is used for conducted emissions measurements.

A separate ten-foot long, brass plated, steel ground rod attached via a 6-inch copper braid grounds each of the above chambers. Each enclosure is also equipped with low-pass power line filters.

The FCC has accepted these sites as test site number US1065. The FCC test site Registration Number is 732175. Details of the site characteristics are on file with the Industry Canada as site number IC 3124A-1.

A complete list of the test equipment is provided herein. The calibration due dates are indicated on the equipment list. The equipment is calibrated in accordance to ANSI/NCSL Z540-1 with traceability to the National Institute of Standards and Technology (NIST).

8.0 DEVIATIONS AND EXCLUSIONS FROM THE TEST SPECIFICATIONS

There were no deviations or exclusions from the test specifications.

9.0 CERTIFICATION

Radiometrics Midwest Corporation certifies that the data contained herein was taken under conditions that meet or exceed the requirements of the test specification and the data contained herein was taken with calibrated test equipment. The results relate only to the EUT listed herein.

10.0 TEST EQUIPMENT TABLE

					Frequency	Cal	
RMC ID	Manufacturer	Description	Model No.	Serial No.	Range	Period	Cal Date
AMP-05	RMC/Celeritek	Pre-amplifier	MW110G	1001	1.0-12GHz	12 Mo.	01/09/17
ANT-04	Tensor	Biconical Antenna	4104	2246	20-250MHz	24 Mo.	05/16/16
ANT-06	EMCO	Log-Periodic Ant.	3146	1248	200-1000MHz	24 Mo.	11/25/15
ANT-13	EMCO	Horn Antenna	3115	2502	1.0-18GHz	24 Mo.	12/28/16
CAB-106A	Teledyne	Coaxial Cable	N/A	1090	DC-2 GHz	24 Mo.	04/21/16
CAB-1090	Teledyne	Coaxial Cable	N/A	1090	DC-18 GHz	24 Mo.	04/19/16
CAB-160B	Teledyne	Coaxial Cable	N/A	1090	DC-18 GHz	24 Mo.	04/21/16
HPF-01	Solar	High Pass Filter	7930-100	HPF-1	0.15-30MHz	24 Mo.	03/15/16
HPF-07	Mini-Circuits	High Pass Filter	VHF-1500+	31121	1.7-10 GHz	24 Mo.	03/31/16
LSN-17	EMCO	LISN	3810/2NM	9602-1356	0.15 - 30MHz	12 Mo.	02/22/17
				33330A00135			
REC-20	HP / Agilent	Spectrum Analyzer	85460A/84562A	3410A00178	30Hz-6GHz	24 Mo.	07/13/16
REC-21	Agilent	Spectrum Analyzer	E7405A	MY45118341	9Hz-26.5 GHz	24 Mo.	12/22/15

Note: All calibrated equipment is subject to periodic checks.

Software Company	Test Software Name	Version	Applicable Tests
Radiometrics	EN550XX0	06.10.16	RF Conducted Emissions (FCC Part 15)
Radiometrics	REREC11D	01.05.16	RF Radiated Emissions (FCC Part 15)
Agilent	PSA/ESA-E/L/EMC	2.4.0.42	Bandwidth and screen shots

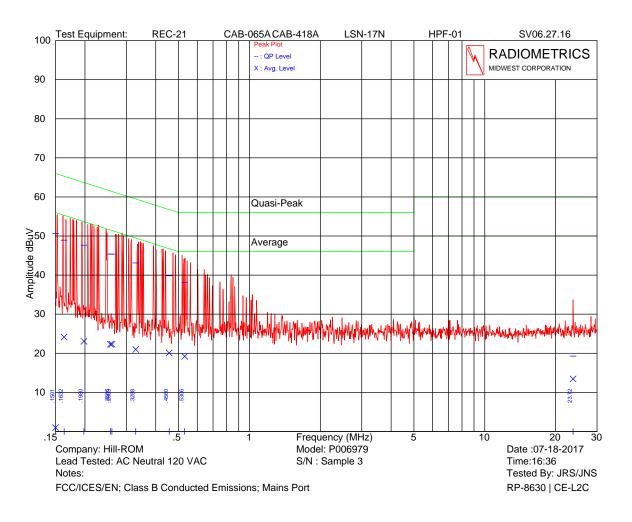
11.0 TEST SECTIONS

11.1 AC Conducted Emissions

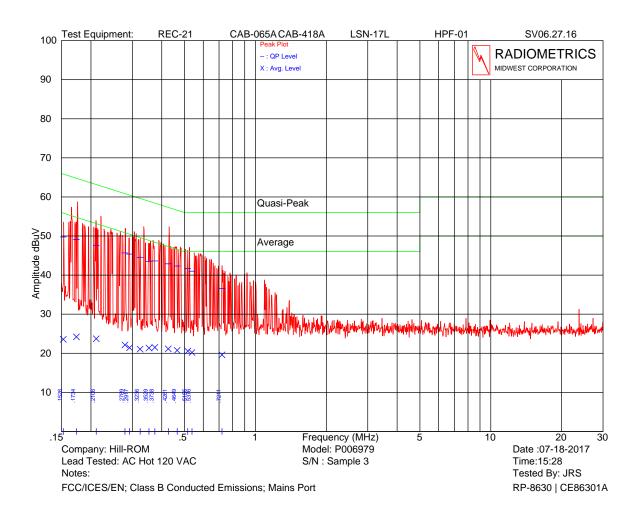
The tests and limits are in accordance with FCC section 15.207.

A computer-controlled analyzer was used to perform the conducted emissions measurements. The frequency range was divided into 500 subranges equally spaced on a logarithmic scale. The computer recorded the peak of each subrange. This data was then plotted on a semi-log graph generated by the computer. Adjusting the positions of the cables and orientation of the test system then maximizes the highest emissions.

Mains Conducted emission measurements were performed using a 50 Ohm/50 uH Line Impedance Stabilization Network (LISN) as the pick-up device. Measurements were repeated on both leads within the power cord. If the EUT power cord exceeded 80 cm in length, the excess length of the power cord was made into a 30 to 40 cm bundle near the center of the cord. The LISN was placed on the floor at the base of the test platform and electrically bonded to the ground plane.


Too Limits of conducted Limissions at the Ac Mains Forts						
Frequency Range	Class B Limits (dBuV)					
(MHz)	Quasi-Peak	Average				
0.150 - 0.50*	66 - 56	56 - 46				
0.5 – 5.0	56	46				
5.0 - 30	60	50				
* The limit decreases linearly with the logarithm of the frequency in this range						

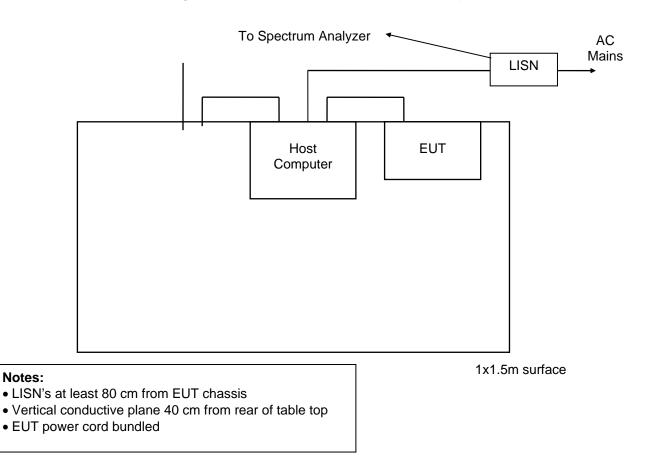
FCC Limits of Conducted Emissions at the AC Mains Ports


The initial step in collecting conducted data is a peak detector scan and the plotting of the measurement range. Significant peaks are then marked as shown on the following table, and these signals are then measured with the quasi-peak detector. The following represents the worst case emissions from the power cord, after testing all modes of operation. QP readings are quasi-peak with a 9 kHz bandwidth and no video filter.

Test Date : July 18, 2017 Tested by: Joseph Strzelecki

The Amplitude is the final corrected value with cable and LISN Loss.

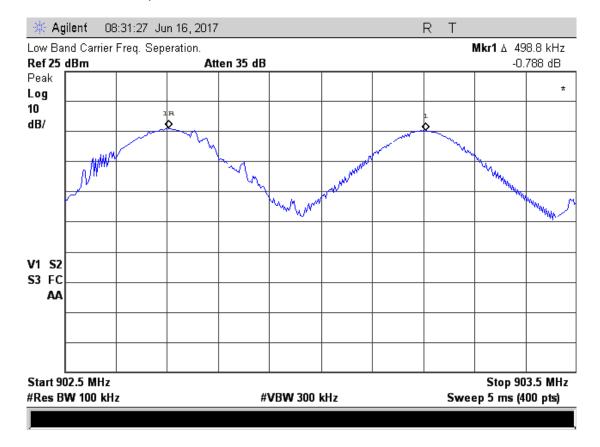
Frequency	QP Amplitude	QP Limit	Average Amplitude	Average Limit	Margin
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)
0.150	50.6	66.0	1.0	56.0	15.4
0.163	48.9	65.3	24.1	55.3	16.4
0.198	47.6	63.7	23.1	53.7	16.0
0.257	45.4	61.5	22.3	51.5	16.2
0.260	45.4	61.4	22.3	51.4	16.1
0.329	43.1	59.5	21.0	49.5	16.4
0.456	39.8	56.8	20.1	46.8	16.9
0.531	38.2	56.0	19.2	46.0	17.8
23.724	19.3	60.0	13.4	50.0	36.6

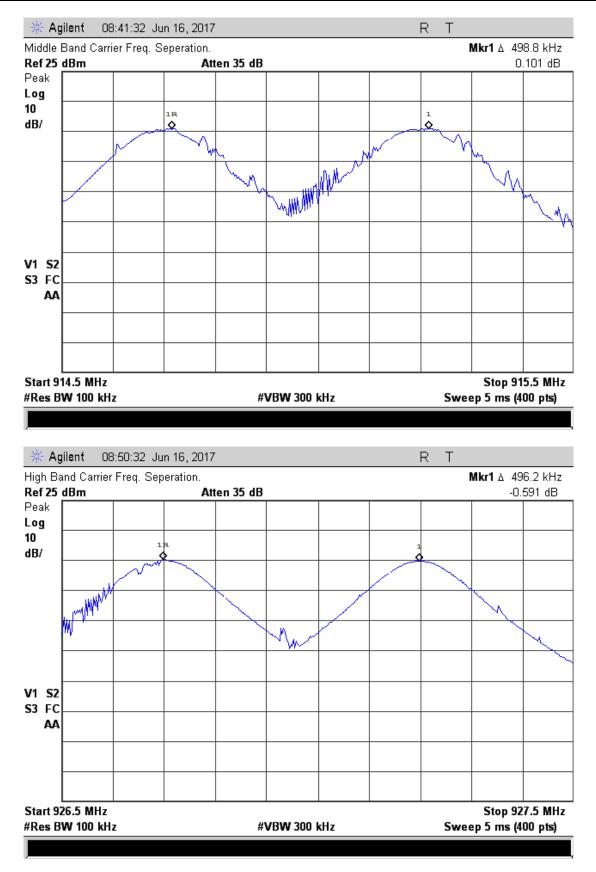

Frequency	QP Amplitude	QP Limit	Average Amplitude	Average Limit	Margin
(MHz) 0.153	(dBuV) 49.8	(dBuV) 65.9	(dBuV) 23.6	(dBuV) 55.9	(dB) 16.1
0.173	49.1	64.8	24.2	54.8	15.7

Testing of the Hill-Rom, Inc, Model P006979, Watchcare Reader

0.211	47.6	63.2	23.7	53.2	15.5
0.279	45.7	60.8	22.1	50.8	15.2
0.292	45.4	60.5	21.4	50.5	15.1
0.324	44.6	59.6	21.1	49.6	15.0
0.353	43.5	58.9	21.3	48.9	15.4
0.374	43.6	58.4	21.5	48.4	14.8
0.426	42.9	57.3	21.1	47.3	14.4
0.465	42.3	56.6	20.8	46.6	14.3
0.516	41.7	56.0	20.6	46.0	14.3
0.721	36.6	56.0	19.6	46.0	19.4

Judgment: Passed by at least 6 dB

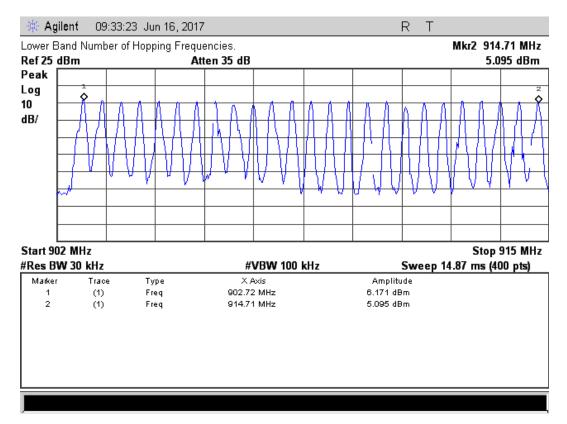



11.2 Carrier Frequency Separation

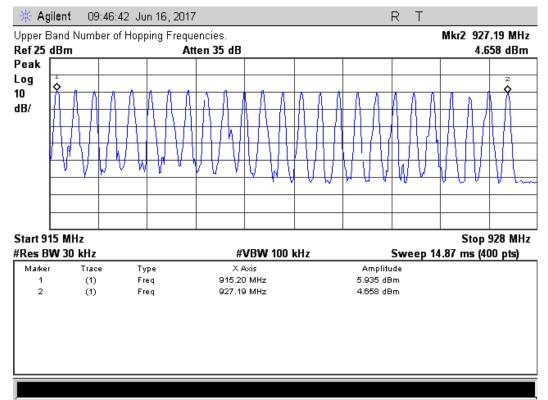
The EUT has its hopping function enabled. The spectrum analyzer was set to the MAX HOLD mode to read peak emissions. The sweep was set to AUTO. The trace was allowed to stabilize. The marker-delta function was used to determine the separation between the peaks of the adjacent channels.

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Since the 20 dB bandwidth is 131.3 kHz, the minimum separation shall be at least 131.3 kHz.

Testing of the Hill-Rom, Inc, Model P006979, Watchcare Reader



Test result: Minimum separation is 496.2 kHz; Limit is 131.3 kHz

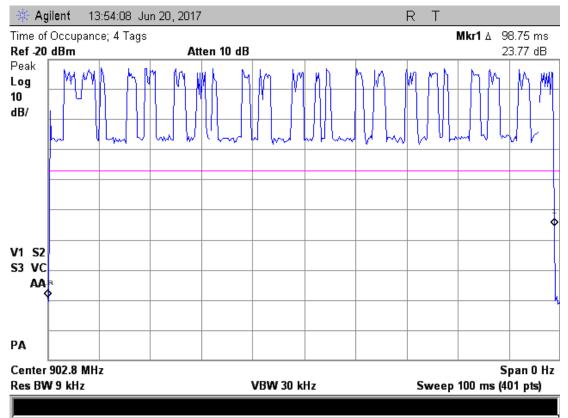

Judgement: Pass

11.3 Number of Hopping Frequencies

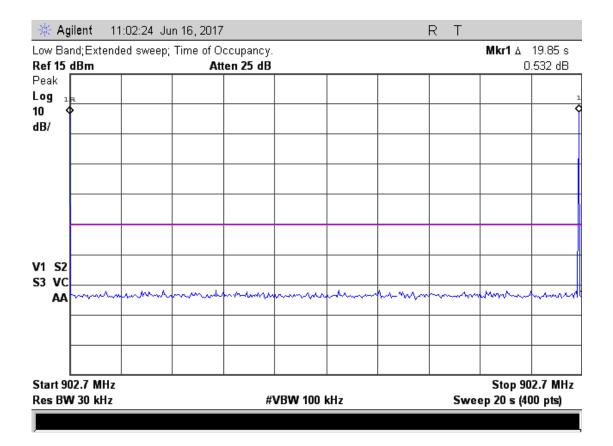
The EUT has its hopping function enabled. The spectrum analyzer was set to the MAX HOLD mode to read peak emissions. The sweep was set to AUTO. The trace was allowed to stabilize.

Testing of the Hill-Rom, Inc, Model P006979, Watchcare Reader

Test result: 50 total Channels


The EUT uses 50 channels and the rules state there must be at least 50 Channels. Judgement: Pass

11.4 Time of Occupancy (Dwell Time)


The EUT has its hopping function enabled. The spectrum analyzer was set to the MAX HOLD mode to read peak emissions. The span was set to zero. The marker-delta function to determine the dwell time.

The spectrum analyzer was connected to an antenna that was monitoring all 4 EUT antennas. The test procedures are in accordance with ANSI C63.10 section 7.8.4.

Testing of the Hill-Rom, Inc, Model P006979, Watchcare Reader

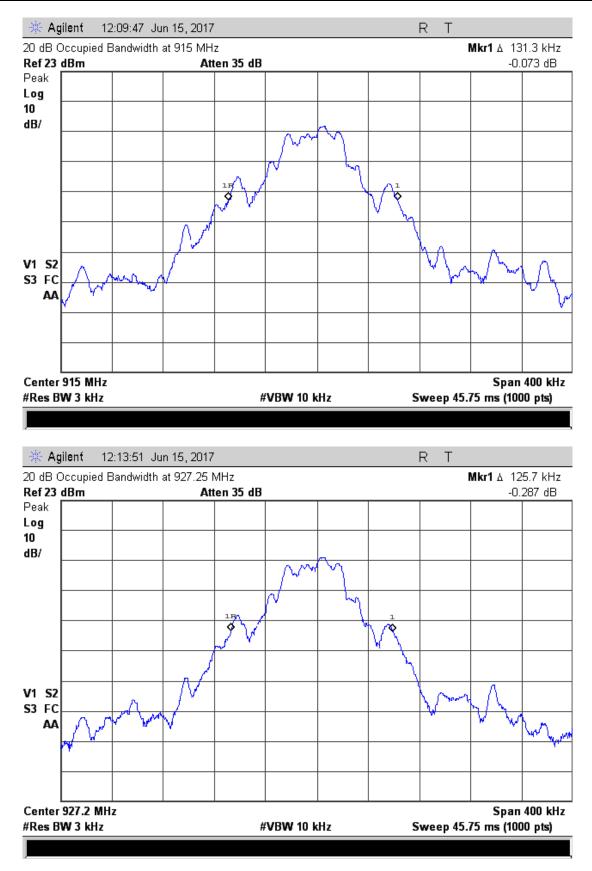
See above for the maximum transmit time per hop, which is 98.75 mSeconds.

As seen above, the transmitted signal occurs at most twice every 20 seconds on each channel.

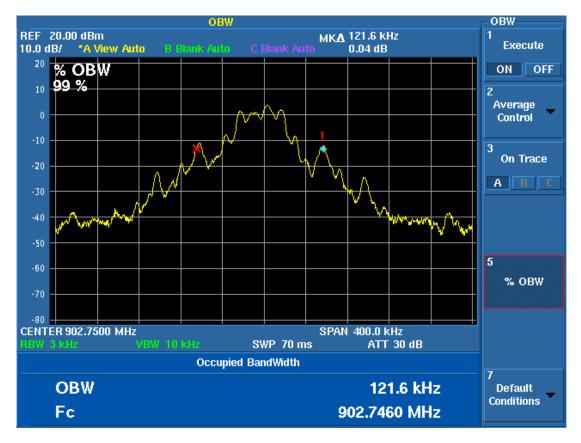
Test result: 2x98.8 mSec = 197.6 mSec per 20 seconds.

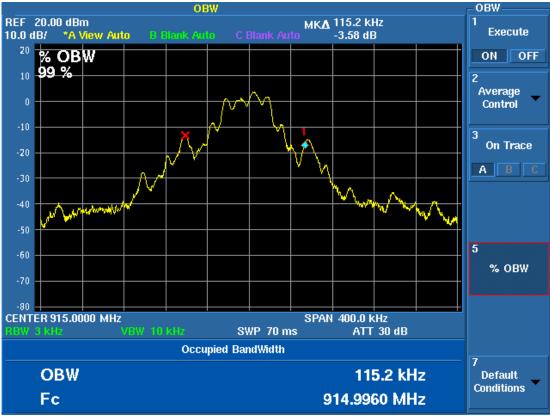
In accordance with FCC 15.247(a)(1)(i), The Itime of occupancy should be less than 400 mSec in a period of 400 mSec times the number of hopping frequencies, which is 20 seconds.

Judgement: Pass


11.5 Occupied Bandwidth Data

The occupied bandwidth of the RF output was measured using a spectrum analyzer. The bandwidth was measured using the peak detector function and a narrow resolution bandwidth. A broadband antenna was used to receive the modulated signal. The spectrum analyzer was set to the MAX HOLD mode to record the worst case of the modulation. The spectrum analyzer display was digitized and plotted. The plots of the occupied bandwidth for the EUT are supplied on the following page.


Channel	99% EBW kHz	20 dB EBW kHz
902.75	121.6	126.1
915.00	115.2	131.3
927.25	94.0	125.7



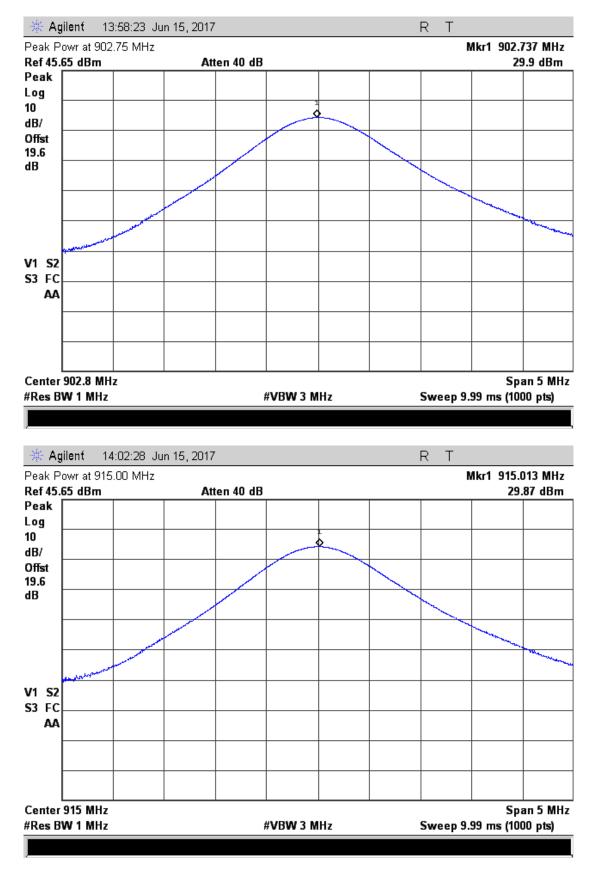
Testing of the Hill-Rom, Inc, Model P006979, Watchcare Reader

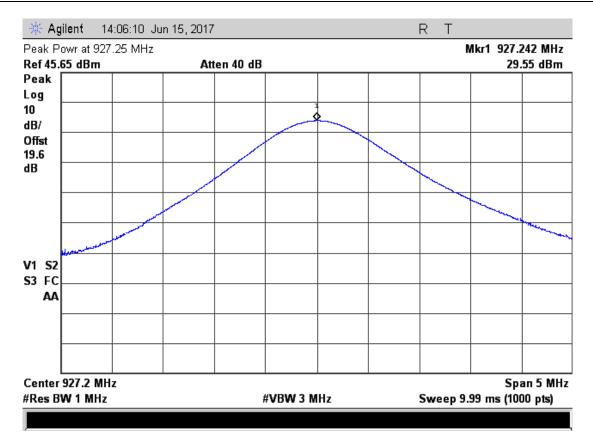
Testing of the Hill-Rom, Inc, Model P006979, Watchcare Reader

11.6 Peak Output Power

The EUT antenna port was connected to the Spectrum analyzer Via a low loss coaxial cable. The power output test method from ANSI C63.10 section 12.3.1 was used for this test. Trace averaging was not used. The EUT was transmitting continously. The spectrum analyzer was set to the following settings:

Span = 5 MHz; RBW = 1 MHz; VBW = 3 MHz; Sweep = auto Detector function = peak; Trace = max hold


The trace was allowed to stabilize. The indicated level is the peak output power. Since the gain of the antenna is less than 6 dB, the limit is not reduced.


Tested by: Joseph Strzelecki/ Richard Tichgelaar Test Date: 08/25/2017

Frequency	Reading	Cable + Att	Total Power (dBm)		
(MHz)	(dBm)	Loss (dB)	dBm	Watts	Limit (dBm)
902.75	10.30	19.60	29.90	0.977	30.00
915.00	10.27	19.60	29.87	0.971	30.00
927.25	9.95	19.60	29.55	0.902	30.00

Judgment: Passed by 0.1 dB

Tested by: Joseph Strzelecki, Richard Tichgelaar Test Date: June 15, 2017

11.7 Band-edge Compliance of RF Conducted Emissions

The spectrum analyzer was set to the MAX HOLD mode to record the worst case of the modulation at the band-edge, with the EUT set to the lowest frequency. The trace was allowed to stabilize.

Tested by: Joseph Strzelecki/ Richard Tichgelaar Test Date: June 15, 2017

Reading at E	Band Edge	Minimum Allowed
Freq. (MHz)	Delta (dB)	dB
901.4	52.2	20
928.0	47.1	20
	Freq. (MHz) 901.4	901.4 52.2

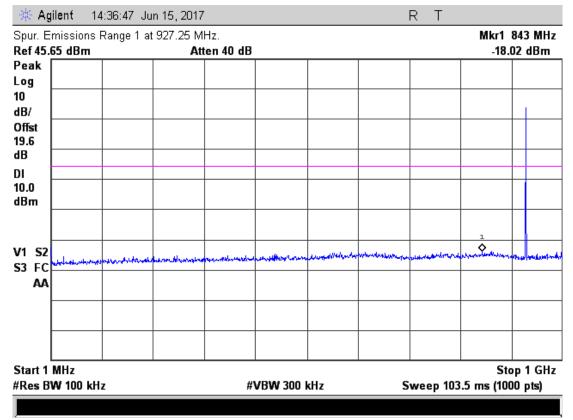
Judgment: Passed by 27.1 dB

🔆 🔆 Ag	jilent 15	5:49:38 Ju	n 15, 2017	r				RT		
		lot; TX Fre							Vikr1 & 1.3	
Ref 44.0 Peak	6 dBm	1	#At	ten 35 dB		1			5.	2.23 dB
Log										
10										1 0
dB/										-A
Offst 19.6										/
dB										$/ \langle \rangle$
V1 S2							IR Ø			
S3 FC	n an the state of th	tertertorme	unation the second of	the second states	ereelle March 1995 and		hafa hasi na gundhan tika	anili-conditioned		
Start 89 #Res B	98 MHz W 100 kH	z		#1	VBW 300	kHz		Sweep 9.	؛ Stop 99 ms (100	903 MHz)0 pts)
								<u> </u>		. /
,										
🔆 Ag	jilent 15	5:54:09 Ju	n 15, 2017	r				RТ		
_		5:54:09 Ju Plot; TX Fre							Mkr1 ∆ -5	11 kHz
High Ba Ref 44 .	and Edge F		eq. at 927.1							11 kHz 7.12 dB
High Ba Ref 44. Peak	and Edge F		eq. at 927.1	25MHz						
High Ba Ref 44 .	and Edge F		eq. at 927.1	25MHz						
High Ba Ref 44 .(Peak Log	and Edge F		eq. at 927.1	25MHz						
High Ba Ref 44. Peak Log 10	and Edge F		eq. at 927.1	25MHz						
High Ba Ref 44. Peak Log 10 dB/ Offst	and Edge F		eq. at 927.1	25MHz						
High Ba Ref 44.0 Peak Log 10 dB/ Offst 19.6	and Edge F		eq. at 927.1	25MHz						
High Ba Ref 44.0 Peak Log 10 dB/ Offst 19.6	and Edge F		eq. at 927 #Att	25MHz						
High Ba Ref 44.0 Peak Log 10 dB/ Offst 19.6	and Edge F		eq. at 927 #Att	25MHz						
High Ba Ref 44.0 Peak Log 10 dB/ Offst 19.6 dB V1 S2 S3 FC	and Edge F		eq. at 927 #Att	25MHz						
High Ba Ref 44.0 Peak Log 10 dB/ Offst 19.6 dB	and Edge F		eq. at 927. #Att	25MHz	Lare fre coleges				4	7.12 dB
High Ba Ref 44.0 Peak Log 10 dB/ Offst 19.6 dB V1 S2 S3 FC	and Edge F		eq. at 927. #Att	25MHz					4	7.12 dB
High Ba Ref 44.0 Peak Log 10 dB/ Offst 19.6 dB V1 S2 S3 FC	and Edge F		eq. at 927. #Att	25MHz	Land dr. 101-100-100				4	7.12 dB
High Ba Ref 44.1 Peak Log 10 dB/ Offst 19.6 dB V1 S2 S3 FC AA	and Edge F		eq. at 927. #Att	25MHz					4	7.12 dB
High Ba Ref 44.1 Peak Log 10 dB/ Offst 19.6 dB V1 S2 S3 FC AA Start 92	and Edge F		eq. at 927. #Att	25MHz ten 35 dB	Uwe day and a second se				4	7.12 dB

11.8 Spurious RF Conducted Emissions at Antenna Port

The spectrum analyzer was set to the MAX HOLD mode to record all spurious emissions from the lowest frequency generated in the EUT up through the 10th harmonic. The trace was allowed to stabilize. The first two plots were made while stepping through three frequencies (Low middle and high). Each frequency was on for 30 seconds. The red dislplay line was set to 20 dB below the level of the fundamental.

Tested by: Joseph Strzelecki/ Richard Tichgelaar Test Date: June 15, 2017

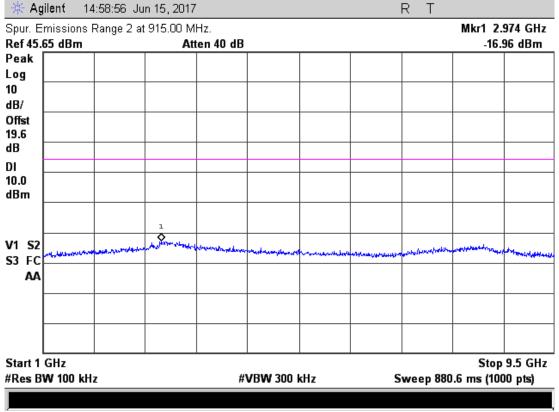

> 🔆 Agilent 14:24:54 Jun 15, 2017 RΤ Spur. Emissions Range 1 at 902.75 MHz. Mkr1 850 MHz Ref 45.65 dBm Atten 40 dB -17.62 dBm Peak Log 10 dB/ Offst 19.6 dB DL 10.0 dBm 0 V1 S2 **S3** FC AA Start 1 MHz Stop 1 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 103.5 ms (1000 pts)

The pink Display Line on all plots was set to 20 dB below the level of the carrier.

1 MHz to 1 GHz (902.75 MHz)

🔆 Ag	ilent 1	4:31:33 Ju	n 15, 2017					RТ		
Spur. Er Ref 45. (Range 1 at		Hz. ten 40 dB						626 MHz 98 dBm
Peak	53 abm	1	Au						-17.3	
Log										
10										
dB/										
Offst										
19.6										
dB										
DI										
10.0 dBm										
							_			
V1 S2	a a ana kataka A	-	a philes and sources	Abberrymadynak	manderhearten	Anthony		and a state the second as	e Laster warder warder	er normatione
33 FC										
		1								
l										
Start 1										op 1 GHz
#Res B	W 100 kł	lz		#'	VBW 300 I	kHz	S	weep 103	6.5 ms (100)0 pts)

1 MHz to 1 GHz (915 MHz)



1 MHz to 1 GHz (927.25 MHz)

Testing of the Hill-Rom, Inc, Model P006979, Watchcare Reader


🔆 Ag	ilent 14	l:52:43 Ju	n 15, 2017					RТ		
		Range 2 at	902.75 M							999 GHz
Peak	65 dBm		AT	ten 40 dB					-16./	24 dBm
Log										
10										
dB/										
Offst										
19.6										
dB										
DI										
10.0										
dBm										
			1							
V1 S2			Marine man		wonhaman				n talbucht i	
S3 FC		en a lever of white		and the second sec	and the second second	-1-1-14-14-14(Im	~~~~	all provide the second	a man in a sub	att the state and
AA										
Start 1	<u>сн</u> ,								Stor	9.5 GHz
	GNZ W 100 kH	z		#	VBW 300 I	kHz	S	weep 880	5.0p 6 ms (100.	

1 to 9.5 GHz (902.75 MHz)

1 to 9.5 GHz (915 MHz)

Testing of the Hill-Rom, Inc, Model P006979, Watchcare Reader

Judgement: Pass by at least 10 dB

11.9 Radiated RF Emissions

Radiated emission measurements were performed with linearly polarized broadband antennas. The results obtained with these antennas can be correlated with results obtained with a tuned dipole antenna. The radiated emission measurements were performed with a spectrum analyzer. The bandwidth used from 150 kHz to 30 MHz is 9 or 10 kHz and the bandwidth from 30 MHz to 1000 MHz is 100 or 120 kHz. Above 1 GHz, a 1 MHz bandwidth is used. A 10 dB linearity check is performed prior to start of testing in order to determine if an overload condition exists. A harmonic mixer was used from 18 to 25 GHz. Figure 4 herein lists the details of the test equipment used during radiated emissions tests.

In addition, a high pass filter was used to reduce the fundamental emission. The EUT was rotated through three orthogonal axis as per 5.10.1 of ANSI C63.10 during the radiated tests.

Final radiated emissions measurements were performed inside of an anechoic chamber at a test distance of 3 meters. The anechoic chamber is designated as Chamber E. This Chamber meets the Site Attenuation requirements of ANSI C63.4 and CISPR 16-1. Chamber E is located at 12 East Devonwood Ave. Romeoville, Illinois EMI test lab.

The entire frequency range from 30 to 9300 MHz was slowly scanned with particular attention paid to those frequency ranges which appeared high. Measurements were performed using two antenna polarizations, (vertical and horizontal). The worst case emissions were recorded. All measurements may be performed using either the peak, average or quasi-peak detector functions. If the peak detector data exceeds or is marginally close to the limits, the measurements are repeated using a quasi-peak detector or average function as required by the specification for final determination of compliance.

The detected emission levels were maximized by rotating the EUT, adjusting the positions of all cables, and by scanning the measurement antenna from 1 to 4 meters above the ground.

11.9.1 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and by subtracting the Amplifier Gain from the measured reading. The basic equation is as follows:

FS = RA + AF + CF - AG + HPF + PKAWhere: FS = Field Strength RA = Receiver Amplitude AF = Antenna Factor CF = Cable Attenuation Factor AG = Amplifier Gain HPF = High pass Filter Loss

Note: The actual FCC limits are in uV/m. The data in the results table coverted the limits to dBuV/m. 100 uV/m = 40.0 dBuV/m 150 uV/m = 43.5 dBuV/m 200 uV/m = 46.0 dBuV/m500 uV/m = 54.0 dBuV/m

11.9.2 Radiated Emissions Test Results

Test Date	6/09/2017
Test Distance	3 Meters
Specification	FCC Part 15 Subpart C
Tested by	Joseph Strzelecki/ Richard Tichgelaar
Notes	Corr. Factors = Cable Loss – Preamp Gain
	External preamp used above 1 GHz
Abbreviations	Pol = Antenna Polarization; V = Vertical; H = Horizontal; P = peak; Q = QP

Restricted band (15.205) Radiated emissions; Non Harmonics

Freq. MHz Reading dBu/V Ant. Pol. Ant. Pol. Ant. Factor Factors EUT dB Bu/Vm Limit dBu/Vm Under Limit dB Note 118.6 12.2 P H 12.4 0.9 0.0 25.5 43.5 18.0 130.1 14.0 P H 15.6 1.1 0.0 25.5 43.5 18.0 241.8 18.1 P H 15.6 1.1 0.0 35.3 46.0 12.9 250.0 16.6 P H 17.0 1.3 0.0 33.1 46.0 11.1 272.3 18.4 P H 22.7 2.7 0.0 37.5 54.0 16.5 100.0 10.9 P H 22.5 -3.8 0.0 37.6 54.0 15.8 2707.5 47.0 P H 22.7 -2.2 0.0 40.2 54.0 13.8 4000.0 41.0 P 32.6		Meter					Dist	•		Margin	
MHz dBuV Dect. Pol. Factor Factors dB dBuV/m dBuV/m Limit dB Note 118.6 12.2 P H 12.4 0.9 0.0 25.5 43.5 18.0 130.1 14.0 P H 118.6 1.1 0.0 25.5 43.5 18.0 241.8 18.1 P H 15.9 1.3 0.0 33.1 46.0 11.1 245.0 21.0 P H 12.8 1.4 0.0 32.6 46.0 11.1 272.3 18.4 P H 22.7 2.7 0.0 37.5 54.0 16.4 1490.0 43.3 P H 22.8 -32.0 0.0 42.0 54.0 13.8 4000.0 41.0 P H 32.8 -32.1 0.0 41.7 54.0 13.3 4052.5 39.0 P H 32.6 -30.9	Frea.			Ant.	Ant	Cbl/amp		EUT	Limit		
118.6 12.2 P H 12.4 0.9 0.0 25.5 43.5 18.0 130.1 14.0 P H 11.8 1.0 0.0 26.8 43.5 18.0 241.8 18.1 P H 15.9 1.3 0.0 35.3 46.0 10.7 245.0 21.0 P H 10.8 1.3 0.0 33.1 46.0 11.1 272.3 18.4 P H 12.8 1.4 0.0 32.6 46.0 11.1 272.3 18.4 P H 22.7 2.7 0.0 37.6 54.0 16.4 1490.0 43.3 P H 22.5 -30.6 0.0 37.6 54.0 16.4 2707.5 47.0 P H 32.7 -32.2 0.0 40.2 54.0 13.8 4000.0 41.0 P H 32.6 -31.8 0.0 37.9 54.0 16.1 4307.5 39.0 P H 32.6 -			Dect.								Note
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	118.6			Н	12.4	0.9	0.0	25.5		18.0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	130.1	14.0	Р	Н	11.8	1.0	0.0	26.8	43.5	16.7	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	165.9	8.8	Р	Н	15.6	1.1	0.0	25.5	43.5	18.0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	241.8	18.1	Р	Н	15.9	1.3	0.0	35.3	46.0	10.7	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	245.0	21.0	Р	Н	10.8	1.3	0.0	33.1	46.0	12.9	
975.012.1PH22.72.70.037.554.016.51000.010.9PH23.92.80.037.654.016.41490.043.3PH25.5-30.60.038.254.015.82707.547.0PH28.9-33.90.042.054.012.03872.539.7PH32.7-32.20.040.254.013.84000.041.0PH32.8-32.10.041.754.012.34052.537.1PH32.6-31.80.037.954.016.14307.539.0PH32.6-30.90.040.754.013.34735.037.2PH33.2-30.70.039.754.014.3118.612.3PV12.40.90.025.643.517.9120.214.5PV16.01.30.034.446.011.6245.018.2PV17.01.30.032.546.013.5252.813.1PV11.31.30.025.346.020.3255.111.7PV13.71.50.026.446.019.6331.512.9PV13.71.50.026.446.019.6331.512.9	250.0	16.6	Р	Н	17.0	1.3	0.0	34.9	46.0	11.1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	272.3	18.4	Р	Н	12.8	1.4	0.0	32.6	46.0	13.4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	975.0	12.1	Р	Н	22.7	2.7	0.0	37.5	54.0	16.5	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1000.0	10.9	Р	Н	23.9	2.8	0.0	37.6	54.0	16.4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1490.0	43.3	Р	Н	25.5	-30.6	0.0	38.2	54.0	15.8	
400.0 41.0 PH 32.8 -32.1 0.0 41.7 54.0 12.3 4052.5 37.1 PH 32.6 -31.8 0.0 37.9 54.0 16.1 4307.5 39.0 PH 32.6 -30.9 0.0 40.7 54.0 13.3 4735.0 37.2 PH 33.2 -30.7 0.0 39.7 54.0 14.3 118.6 12.3 PV 12.4 0.9 0.0 25.6 43.5 17.9 120.2 14.5 PV 12.4 0.9 0.0 27.8 43.5 15.7 242.9 17.1 PV 16.0 1.3 0.0 34.4 46.0 11.6 245.0 18.2 PV 10.8 1.3 0.0 32.5 46.0 13.5 252.8 13.1 PV 11.3 1.3 0.0 25.7 46.0 20.3 265.1 11.7 PV 12.2 1.4 0.0 25.3 46.0 17.0 322.4 11.2 PV 13.7 1.5 0.0 26.4 46.0 17.0 322.4 11.2 PV 13.7 1.5 0.0 28.1 46.0 17.9 401.0 11.0 PV 13.7 1.5 0.0 28.1 46.0 17.9 998.8 11.3 PV 23.8 2.8 0.0	2707.5	47.0	Р	Н	28.9	-33.9	0.0	42.0	54.0	12.0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3872.5	39.7	Р	Н	32.7	-32.2	0.0	40.2	54.0	13.8	
4307.539.0PH32.6 -30.9 0.040.754.013.34735.037.2PH33.2 -30.7 0.039.754.014.3118.612.3PV12.40.90.025.643.517.9120.214.5PV12.40.90.027.843.515.7242.917.1PV16.01.30.034.446.011.6245.018.2PV10.81.30.032.546.013.5250.014.2PV17.01.30.032.546.013.5252.813.1PV11.31.30.025.746.020.3265.111.7PV13.01.40.025.346.020.7273.614.6PV13.71.50.026.446.019.6331.512.9PV13.71.50.028.146.017.9401.011.0PV23.82.80.037.954.016.11000.08.7PV23.92.80.035.454.018.61598.811.3PV23.92.80.035.454.018.61000.08.7PV25.8-34.50.035.554.015.11662.544.1P <t< td=""><td>4000.0</td><td>41.0</td><td>Р</td><td>Н</td><td>32.8</td><td>-32.1</td><td>0.0</td><td>41.7</td><td>54.0</td><td>12.3</td><td></td></t<>	4000.0	41.0	Р	Н	32.8	-32.1	0.0	41.7	54.0	12.3	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4052.5	37.1	Р	Н	32.6		0.0	37.9	54.0	16.1	
118.612.3PV12.40.90.025.643.517.9120.214.5PV12.40.90.027.843.515.7242.917.1PV16.01.30.034.446.011.6245.018.2PV10.81.30.030.346.015.7250.014.2PV17.01.30.032.546.013.5252.813.1PV11.31.30.025.746.020.3265.111.7PV12.21.40.025.346.017.0273.614.6PV13.01.40.029.046.017.0322.411.2PV13.71.50.028.146.019.6331.512.9PV13.71.50.028.146.018.5998.811.3PV23.82.80.037.954.016.11000.08.7PV25.8-34.50.036.554.017.51662.544.1PV26.1-34.40.035.854.018.22707.543.6PV28.9-33.60.038.954.015.13775.038.7PV32.4-32.00.039.154.014.44000.037.9P	4307.5	39.0	Р	Н	32.6		0.0	40.7	54.0	13.3	
118.612.3PV12.40.90.025.643.517.9120.214.5PV12.40.90.027.843.515.7242.917.1PV16.01.30.034.446.011.6245.018.2PV10.81.30.030.346.015.7250.014.2PV17.01.30.032.546.013.5252.813.1PV11.31.30.025.746.020.3265.111.7PV12.21.40.025.346.017.0273.614.6PV13.01.40.029.046.017.0322.411.2PV13.71.50.026.446.019.6331.512.9PV13.71.50.028.146.017.9401.011.0PV14.81.70.027.546.018.5998.811.3PV23.82.80.035.454.018.61597.545.2PV25.8-34.50.036.554.017.51662.544.1PV26.1-34.40.035.854.018.22707.543.6PV28.9-33.60.038.954.015.13775.038.7PV<	4735.0	37.2	Р	Н	33.2	-30.7	0.0	39.7	54.0	14.3	
242.917.1PV16.01.30.034.446.011.6245.018.2PV10.81.30.030.346.015.7250.014.2PV17.01.30.032.546.013.5252.813.1PV11.31.30.025.746.020.3265.111.7PV12.21.40.025.346.017.0273.614.6PV13.01.40.029.046.017.0322.411.2PV13.71.50.026.446.019.6331.512.9PV13.71.50.028.146.017.9401.011.0PV14.81.70.027.546.018.5998.811.3PV23.82.80.037.954.016.11000.08.7PV25.8-34.50.036.554.017.51662.544.1PV26.1-34.40.035.854.018.22707.543.6PV28.9-33.60.038.954.015.13775.038.7PV32.8-32.10.038.654.014.44107.538.6PV32.5-31.50.039.654.014.4	118.6	12.3	Р	V	12.4	0.9	0.0	25.6	43.5	17.9	
245.0 18.2 P V 10.8 1.3 0.0 30.3 46.0 15.7 250.0 14.2 P V 17.0 1.3 0.0 32.5 46.0 13.5 252.8 13.1 P V 11.3 1.3 0.0 25.7 46.0 20.3 265.1 11.7 P V 12.2 1.4 0.0 25.3 46.0 20.7 273.6 14.6 P V 13.0 1.4 0.0 29.0 46.0 17.0 322.4 11.2 P V 13.7 1.5 0.0 26.4 46.0 19.6 331.5 12.9 P V 13.7 1.5 0.0 28.1 46.0 17.9 401.0 11.0 P V 14.8 1.7 0.0 27.5 46.0 18.5 998.8 11.3 P V 23.8 2.8 0.0 35.4 54.0 18.6 1597.5 45.2 P V 25.8 -34.5	120.2	14.5	Р	V	12.4	0.9	0.0	27.8	43.5	15.7	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	242.9	17.1		V	16.0	1.3	0.0	34.4	46.0	11.6	
252.813.1PV11.31.30.025.746.020.3265.111.7PV12.21.40.025.346.020.7273.614.6PV13.01.40.029.046.017.0322.411.2PV13.71.50.026.446.019.6331.512.9PV13.71.50.028.146.017.9401.011.0PV14.81.70.027.546.018.5998.811.3PV23.82.80.037.954.016.11000.08.7PV23.92.80.035.454.018.61597.545.2PV26.1-34.40.035.854.018.22707.543.6PV28.9-33.60.038.954.015.13775.038.7PV32.4-32.00.039.154.014.94000.037.9PV32.8-32.10.038.654.015.44107.538.6PV32.5-31.50.039.654.014.4	245.0	18.2	Р	V	10.8	1.3	0.0	30.3	46.0	15.7	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	250.0	14.2	Р	V	17.0	1.3	0.0	32.5	46.0	13.5	
273.614.6PV13.01.40.029.046.017.0322.411.2PV13.71.50.026.446.019.6331.512.9PV13.71.50.028.146.017.9401.011.0PV14.81.70.027.546.018.5998.811.3PV23.82.80.037.954.016.11000.08.7PV23.92.80.035.454.018.61597.545.2PV25.8-34.50.036.554.017.51662.544.1PV26.1-34.40.035.854.018.22707.543.6PV28.9-33.60.039.154.015.13775.038.7PV32.8-32.10.038.654.015.44107.538.6PV32.5-31.50.039.654.014.4	252.8	13.1	Р	V	11.3	1.3	0.0	25.7	46.0	20.3	
322.4 11.2 P V 13.7 1.5 0.0 26.4 46.0 19.6 331.5 12.9 P V 13.7 1.5 0.0 28.1 46.0 17.9 401.0 11.0 P V 14.8 1.7 0.0 27.5 46.0 18.5 998.8 11.3 P V 23.8 2.8 0.0 37.9 54.0 16.1 1000.0 8.7 P V 23.9 2.8 0.0 35.4 54.0 18.6 1597.5 45.2 P V 25.8 -34.5 0.0 36.5 54.0 17.5 1662.5 44.1 P V 26.1 -34.4 0.0 35.8 54.0 18.2 2707.5 43.6 P V 28.9 -33.6 0.0 38.9 54.0 15.1 3775.0 38.7 P V 32.4 -32.0 0.0 39.1 54.0 14.9 4000.0 37.9 P V 32.8 <td< td=""><td>265.1</td><td>11.7</td><td>Р</td><td>V</td><td>12.2</td><td>1.4</td><td>0.0</td><td>25.3</td><td>46.0</td><td>20.7</td><td></td></td<>	265.1	11.7	Р	V	12.2	1.4	0.0	25.3	46.0	20.7	
331.5 12.9 P V 13.7 1.5 0.0 28.1 46.0 17.9 401.0 11.0 P V 14.8 1.7 0.0 27.5 46.0 18.5 998.8 11.3 P V 23.8 2.8 0.0 37.9 54.0 16.1 1000.0 8.7 P V 23.9 2.8 0.0 35.4 54.0 18.6 1597.5 45.2 P V 25.8 -34.5 0.0 36.5 54.0 17.5 1662.5 44.1 P V 26.1 -34.4 0.0 35.8 54.0 18.2 2707.5 43.6 P V 28.9 -33.6 0.0 38.9 54.0 15.1 3775.0 38.7 P V 32.4 -32.0 0.0 39.1 54.0 14.9 4000.0 37.9 P V 32.8 -32.1 0.0 38.6 54.0 15.4 4107.5 38.6 P V 32.5	273.6	14.6		-	13.0	1.4	0.0	29.0	46.0	17.0	
401.011.0PV14.81.70.027.546.018.5998.811.3PV23.82.80.037.954.016.11000.08.7PV23.92.80.035.454.018.61597.545.2PV25.8-34.50.036.554.017.51662.544.1PV26.1-34.40.035.854.018.22707.543.6PV28.9-33.60.038.954.015.13775.038.7PV32.4-32.00.039.154.014.94000.037.9PV32.8-32.10.038.654.015.44107.538.6PV32.5-31.50.039.654.014.4	322.4	11.2		-	13.7	1.5	0.0	26.4	46.0	19.6	
998.8 11.3 P V 23.8 2.8 0.0 37.9 54.0 16.1 1000.0 8.7 P V 23.9 2.8 0.0 35.4 54.0 18.6 1597.5 45.2 P V 25.8 -34.5 0.0 36.5 54.0 17.5 1662.5 44.1 P V 26.1 -34.4 0.0 35.8 54.0 18.2 2707.5 43.6 P V 28.9 -33.6 0.0 38.9 54.0 15.1 3775.0 38.7 P V 32.4 -32.0 0.0 39.1 54.0 14.9 4000.0 37.9 P V 32.8 -32.1 0.0 38.6 54.0 15.4 4107.5 38.6 P V 32.5 -31.5 0.0 39.6 54.0 14.4	331.5	12.9	Р	V	13.7	1.5	0.0	28.1	46.0	17.9	
1000.0 8.7 P V 23.9 2.8 0.0 35.4 54.0 18.6 1597.5 45.2 P V 25.8 -34.5 0.0 36.5 54.0 17.5 1662.5 44.1 P V 26.1 -34.4 0.0 35.8 54.0 18.2 2707.5 43.6 P V 28.9 -33.6 0.0 38.9 54.0 15.1 3775.0 38.7 P V 32.4 -32.0 0.0 39.1 54.0 14.9 4000.0 37.9 P V 32.8 -32.1 0.0 38.6 54.0 15.4 4107.5 38.6 P V 32.5 -31.5 0.0 39.6 54.0 14.4	401.0	11.0		V	14.8	1.7	0.0	27.5	46.0	18.5	
1597.5 45.2 P V 25.8 -34.5 0.0 36.5 54.0 17.5 1662.5 44.1 P V 26.1 -34.4 0.0 35.8 54.0 18.2 2707.5 43.6 P V 28.9 -33.6 0.0 38.9 54.0 15.1 3775.0 38.7 P V 32.4 -32.0 0.0 39.1 54.0 14.9 4000.0 37.9 P V 32.8 -32.1 0.0 38.6 54.0 15.4 4107.5 38.6 P V 32.5 -31.5 0.0 39.6 54.0 14.4	998.8	11.3	Р	-	23.8	2.8	0.0	37.9	54.0	16.1	
1662.5 44.1 P V 26.1 -34.4 0.0 35.8 54.0 18.2 2707.5 43.6 P V 28.9 -33.6 0.0 38.9 54.0 15.1 3775.0 38.7 P V 32.4 -32.0 0.0 39.1 54.0 14.9 4000.0 37.9 P V 32.8 -32.1 0.0 38.6 54.0 15.4 4107.5 38.6 P V 32.5 -31.5 0.0 39.6 54.0 14.4	1000.0	8.7	Р	-	23.9	2.8	0.0	35.4	54.0	18.6	
2707.5 43.6 P V 28.9 -33.6 0.0 38.9 54.0 15.1 3775.0 38.7 P V 32.4 -32.0 0.0 39.1 54.0 14.9 4000.0 37.9 P V 32.8 -32.1 0.0 38.6 54.0 15.4 4107.5 38.6 P V 32.5 -31.5 0.0 39.6 54.0 14.4	1597.5	45.2	Р	V	25.8	-34.5	0.0	36.5	54.0	17.5	
3775.0 38.7 P V 32.4 -32.0 0.0 39.1 54.0 14.9 4000.0 37.9 P V 32.8 -32.1 0.0 38.6 54.0 15.4 4107.5 38.6 P V 32.5 -31.5 0.0 39.6 54.0 14.4	1662.5	44.1	Р	V	26.1	-34.4	0.0	35.8	54.0	18.2	
3775.0 38.7 P V 32.4 -32.0 0.0 39.1 54.0 14.9 4000.0 37.9 P V 32.8 -32.1 0.0 38.6 54.0 15.4 4107.5 38.6 P V 32.5 -31.5 0.0 39.6 54.0 14.4	2707.5	43.6		V	28.9	-33.6	0.0	38.9	54.0	15.1	
4107.5 38.6 P V 32.5 -31.5 0.0 39.6 54.0 14.4		38.7		-	32.4	-32.0	0.0	39.1		14.9	
4107.5 38.6 P V 32.5 -31.5 0.0 39.6 54.0 14.4	4000.0	37.9			32.8	-32.1	0.0	38.6	54.0	15.4	
4815.0 39.8 P V 33.2 -30.2 0.0 42.8 54.0 11.2		38.6			32.5	-31.5	0.0	39.6	54.0	14.4	
	4815.0	39.8	Р	V	33.2	-30.2	0.0	42.8	54.0	11.2	

Note: All Peak readings above 1 GHz were under the Average limits, so average readings are not required.

Judgment: Passed by 11.1 dB

			Spectrum Analyzer Readings (dBuV)				-		EUT	Peak	Ave	Peak	Ave	Margin		
hrm	Тx		Peak		Ave		Peak		Ave	Corr.	Emission	Tot	. FS	Limit		Under
	Freq	Ver	tical Po	olarizat	ion	Hor	izontal	Polariz	ation	Fact.	Freq					Limit
#	MHz	Х	Y	ΖN	/lax	Х	Y	Z	Max	dB	MHz	dBu	ıV/m	dBu	V/m	dB
3	902.75	54.1	50.1	49.4	54.1	47.3	53.7	47.1	53.7	-5.0	2708.3	49.1	49.1	74	54	4.9
4	902.75	45.8	42.5	42.5	45.8	43.2	46.8	42.8	46.8	0.5	3611.0	47.3	47.3	74	54	6.7
5	902.75	42.6	43.3	42.9	43.3	42.6	42.7	42.8	42.8	3.2	4513.8	46.5	46.5	74	54	7.5
6	902.75	42.3	42.2	42.7	42.7	42.3	42.6	42.7	42.7	6.9	5416.5	49.6	49.6	74	54	4.4
3	915.00	50.5	45.9	46.9	50.5	48.5	52.7	47.9	52.7	-4.9	2745.0	47.8	47.8	74	54	6.2
4	915.00	46.2	43.1	43.1	46.2	43.1	42.7	42.7	43.1	0.7	3660.0	46.9	46.9	74	54	7.1
5	915.00	42.3	42.7	43.1	43.1	43.0	42.8	43.5	43.5	3.6	4575.0	47.1	47.1	74	54	6.9
3	927.25	45.6	50.1	45.3	50.1	44.5	52.9	46.6	52.9	-4.7	2781.8	48.2	48.2	74	54	5.8
4	927.25	42.9	49.6	42.9	49.6	43.3	43.3	42.8	43.3	1.0	3709.0	50.6	50.6	74	54	3.4
5	927.25	42.6	42.4	42.4	42.6	42.9	43.0	42.9	43.0	3.9	4636.3	46.9	46.9	74	54	7.1
	Column numbers (see below for explanations)															
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

Restricted Band Harmonic Radiated emissions (15.205)

Column #1. hrm = Harmonic; BE = Band Edge emissions

Column #2. Frequency of Transmitter.

Column #3. Uncorrected readings from the spectrum analyzer with First Axis Rotation.

Column #4. Uncorrected readings from the spectrum analyzer with Second Axis Rotation.

Column #5. Uncorrected readings from the spectrum analyzer with Third Axis Rotation.

Column #6. Average Reading based on peak reading reduced by the Duty cycle correction

Column #7. Uncorrected readings from the spectrum analyzer with First Axis Rotation.

Column #8. Uncorrected readings from the spectrum analyzer with Second Axis Rotation.

Column #9. Uncorrected readings from the spectrum analyzer with Third Axis Rotation.

Column #10. Average Reading based on peak reading reduced by the Duty cycle correction

Column #11. Corr. Factors = Cable Loss - Preamp Gain + Antenna Factor

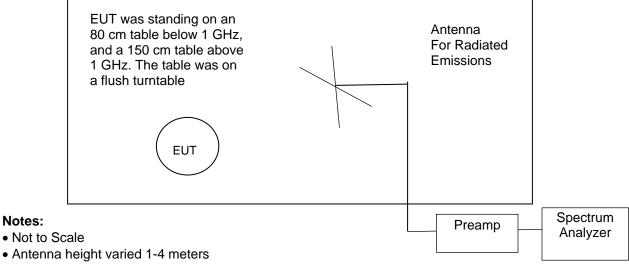
Column #12. Frequency of Tested Emission

Column #13. Highest peak field strength at listed frequency.

Column #14. Highest Average field strength at listed frequency.

Column #15. Peak Limit.

Column #16. Average Limit.


Column #17. The margin (last column) is the worst case margin under the peak or average limits for that row.

Overall Judgment: Passed by 3.4 dB

No other Emissions were detected from 30 to 9300 MHz within 8 dB of the limits, in the restricted bands

Figure 3. Drawing of Radiated Emissions Setup

Chamber E, anechoic

- Distance from antenna to tested system is 3 meters
- AC cords not shown. They are connected to AC outlet with low-pass filter on turntable

	Receive	Pre-	Spectrum	High Pass
Frequency Range	Antenna	Amplifier	Analyzer	Filter
30 to 200 MHz	ANT-04	Internal	REC-21	None*
200 to 1000 MHz	ANT-06	Internal	REC-21	None*
1 to 10 GHz	ANT-13	AMP-05	REC-21	HPF-07

* A high pass filter was not needed since the fundamental frequency was outside of the amplifiers pass band.

11.10 Unintentional Emissions (Receive Mode)

Manufacturer	Hill-Rom, Inc	Specification	FCC Part 15.209			
Model	P006979	Test Date	06/08/2017			
Serial Number	none	Test Distance	3 Meters			
Abbreviations	Pol = Antenna Polarization; V = Vertical; H = Horizontal; P = peak; Q = QP					
Notes	Corr. Factors = Cable Loss – Preamp Gain					
	External preamp used above 1 GHz					
Configuration	Receive mode					

Freq. MHz	Meter Reading dBuV	Dect.	Ant. Pol.	Ant Factor	Cbl/amp Factors	Dist Fact dB	EUT dBuV/m	Limit dBuV/m	Margin Under Limit dB	Note
36.0	15.1	Р	Н	17.0	0.5	0.0	32.6	40.0	7.4	
58.0	14.9	Р	Н	11.4	0.6	0.0	26.9	40.0	13.1	
83.3	16.2	Р	Н	7.3	0.8	0.0	24.3	40.0	15.7	
160.9	17.0	Р	Н	10.6	0.7	0.0	28.3	43.5	15.2	
191.1	13.1	Р	Н	9.6	1.1	0.0	23.9	43.5	19.6	
198.9	19.1	Р	Н	9.9	0.8	0.0	29.8	43.5	13.7	
200.5	18.7	Р	Н	9.8	0.8	0.0	29.3	43.5	14.2	

Testing of the Hill-Rom, Inc, Model P006979, Watchcare Reader

	Meter					Dist			Margin	
Freq.	Reading		Ant.	Ant	Cbl/amp	Fact	EUT	Limit	Under	
MHz	dBuV	Dect.	Pol.	Factor	Factors	dB	dBuV/m	dBuV/m	Limit dB	Note
212.1	16.7	P	. ө Н	10.7	0.8	0.0	28.2	43.5	15.3	11010
220.3	16.6	P	H	11.6	1.2	0.0	29.4	46.0	16.6	
231.9	24.5	P	H	11.8	0.9	0.0	37.2	46.0	8.8	
245.0	14.2	P	H	12.2	0.9	0.0	27.3	46.0	18.7	
245.6	22.8	P	H	12.2	0.9	0.0	35.9	46.0	10.1	
267.8	12.7	P	H	12.7	0.9	0.0	26.3	46.0	19.7	
330.8	9.4	P	H	13.6	1.5	0.0	24.6	46.0	21.4	
384.1	16.7	P	H	14.8	1.1	0.0	32.7	46.0	13.3	
463.4	8.5	P	H	16.6	1.8	0.0	27.0	46.0	19.0	
573.8	13.2	P	H	18.6	1.4	0.0	33.2	46.0	12.8	
630.0	8.1	P	H	19.3	2.2	0.0	29.6	46.0	16.4	
765.0	12.3	P	H	20.5	2.4	0.0	35.2	46.0	10.8	
766.3	13.9	P	H	20.6	1.6	0.0	36.2	46.0	9.8	
913.8	10.3	P	H	21.4	2.6	0.0	34.4	46.0	11.6	
967.5	10.7	P	Н	22.6	1.9	0.0	35.3	54.0	18.7	
1040.0	42.1	P	Н	24.0	-34.2	0.0	31.9	54.0	22.1	
1107.5	41.8	P	Н	24.5	-34.3	0.0	32.0	54.0	22.0	
1317.5	44.6	P	Н	25.6	-34.2	0.0	36.1	54.0	17.9	
1342.5	45.7	P	H	25.6	-34.2	0.0	37.1	54.0	16.9	
1530.0	44.2	P	H	25.6	-34.4	0.0	35.4	54.0	18.6	
46.0	13.1	P	V	15.3	0.3	0.0	28.8	40.0	11.2	
64.1	15.6	P	V	9.2	0.3	0.0	25.5	40.0	14.5	
97.1	15.5	P	V	8.8	0.7	0.0	24.8	43.5	14.3	
122.4	18.4	P	V	15.1	0.5	0.0	34.1	43.5	9.4	
143.9	15.9	P	V	10.6	0.0	0.0	27.2	43.5	16.3	
143.9	21.3	P	V	10.0	0.7	0.0	32.8	43.5	10.3	
199.9	26.1	P	V	9.8	0.7	0.0	36.7	43.5	6.8	
201.5	20.1	P Q	V	9.8	0.8	0.0	33.4	43.5	10.1	
201.3	9.1	P	V	9.8	1.2	0.0	20.8	43.5	22.7	
210.9	21.5	P	V	10.5	0.8	0.0	33.2	43.5	10.3	
213.3	21.3	P	V	11.8	0.8	0.0	33.9	43.5	10.3	
230.9	21.3	P	V	11.8	0.8	0.0	35.0	46.0	12.1	
230.9	19.7	P	V	12.3	0.9	0.0	32.8	46.0	13.2	
240.3	20.2	P	V	12.5	0.9	0.0	33.7	46.0	12.3	
274.9	18.0	P	V	13.0	0.9	0.0	31.9	46.0	12.3	
274.9	17.2	P	V				31.3		14.1	
377.0		P	V	13.1 15.1	1.0 1.6	0.0	24.7	46.0 46.0	21.3	
-	8.0	P	V	15.1	1.8	0.0				
464.7 501.1	8.4	P	V			0.0	26.9	46.0	19.1 16.2	
-	11.2	P P	V	17.2	1.4	0.0	29.8	46.0		
600.0 601.3	9.9	P P	V	18.4	2.1	0.0	30.4	46.0	15.6	
601.3	11.3	P P	V	18.4	1.4	0.0	31.2	46.0	14.8	
743.8	8.6	P P	V	19.7	2.4	0.0	30.7	46.0	15.3	
992.5	8.9			22.5	2.0	0.0	33.4	54.0	20.6	
1005.0	46.9	P	V	23.7	-34.2	0.0	36.5	54.0	17.5	
1107.5	47.0	P	V	24.5	-34.3	0.0	37.3	54.0	16.7	
1175.0	44.3	P	V	25.2	-34.3	0.0	35.2	54.0	18.8	
1315.0	46.0	P	V	25.6	-34.2	0.0	37.4	54.0	16.6	
1595.0	44.6	P	V	25.8	-34.5	0.0	35.9	54.0	18.1	
1660.0	45.1	P	V	26.1	-34.4	0.0	36.8	54.0	17.2	

Note: All Peak readings above 1 GHz were under the Average limits, so average readings are not required.

Judgment: Passed by 6.8 dB

11.10.1 Measurement Instrumentation Uncertainty

Measurement	Uncertainty
Conducted Emissions, LISN method, 150 kHz to 30 MHz	2.7 dB
Radiated Emissions, E-field, 3 meters, 30 to 200 MHz	3.3 dB
Radiated Emissions, E-field, 3 meters, 200 to 1000 MHz	4.9 dB
Radiated Emissions, E-field, 3 meters, 1 to 18 GHz	4.8 dB
Bandwidth using marker delta method at a span of 10 MHz	4 kHz
Bandwidth using marker delta method at a span of 50 kHz	470 Hz
99% Occupied Bandwidth using REC-43	1% of frequency
	span
Conducted power REC-11 at 460 MHz	0.8 dB
Amplitude measurement 1-5000 MHz; REC-11	1.5 dB
Temperature THM-02	0.6 Deg C

The uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2 in accordance with CISPR 16-4-2.