

Page: 1 of 25

Appendix C for KSCR230200012801

Calibration Certificate

Object	Apply	No	Model	SN	Calibration Date	Due date of calibration
		1	CLA150	4025	2021/04/26	2024/04/25
		2	D450V3	1103	2021/04/21	2024/04/20
		3	D750V3	1188	2022/03/29	2025/03/28
		4	D835V2	4d114	2022/03/31	2025/03/30
		5	D900V2	1d079	2022/06/07	2025/06/06
D: 1		6	D1800V2	2d170	2022/03/31	2025/03/30
Dipole		7	D1900V2	5d136	2022/06/07	2025/06/06
		8	D2000V2	1041	2022/06/06	2025/06/05
		9	D2300V2	1096	2022/03/31	2025/03/30
	\boxtimes	10	D2450V2	817	2022/04/01	2025/03/31
		11	D2600V2	1158	2022/03/31	2025/03/30
		12	D5GHzV2	1095	2022/06/01	2025/05/31
DAE	\boxtimes	13	DAE4	1245	2022/05/30	2023/05/29
Probe	\boxtimes	14	EX3DV4	7767	2022/10/28	2023/10/27

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from excising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration, forgery or falsification of the content or appearance of this document to unduly and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CM.Doccheck@ass.com"

or email: <u>CN.Doccheck@sgs.com</u> No.10 Weiye Road, Development Zone, Kunshan, Jiangsu, China 215300 (186-512) 57355888 f(86-512) 57370818 www.sgsgroup.com.cn 中国・江苏・昆山开发区伟业路10号 邮编: 215300 (186-512) 57355888 f(86-512) 57370818 sgs.china@sgs.com

Page: 2 of 25

1 Dipole

1.1 CLA150 - SN 4025

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from excising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration, forgery or falsification of the content or appearance of this document to unduly and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CM.Doccheck@ass.com"

No.10 Weiye Road, Development Zone, Kunshan, Jiangsu, China 215300 tt(86-512) 57355888 ft(86-512) 57370818 www.sgsgroup.com.cn

中国・江苏・昆山开发区伟业路10号

邮编: 215300 t(86-512)57355888 f(86-512)57370818 sgs.china@sgs.com

3 of 25 Page:

D450V3 - SN 1103

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from excising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration, forgery or falsification of the content or appearance of this document to unduly and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CM.Doccheck@ass.com"

No.10 Weiye Road, Development Zone, Kunshan, Jiangsu, China 215300 (86-512) 57355888 f(86-512) 57370818 www.sgsgroup.com.cn 中国・江苏・昆山开发区伟业路10号 邮编: 215300 t(86-512)57355888 f(86-512)57370818 sgs.china@sgs.com

Page: 4 of 25

Measurement Conditions

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	ELI4 Flat Phantom	Shell thickness: 2 ± 0.2 mm
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	450 MHz ± 1 MHz	

the following parameters and calculations were applied.				
	Temperature	Permittivity	Conductivity	
Nominal Head TSL parameters	22.0 °C	43.5	0.87 mho/m	
Measured Head TSL parameters	(22.0 ± 0.2) °C	43.1±6%	0.87 mho/m ± 6 %	
Head TSL temperature change during test	<05°C			

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.14 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	4.55 W/kg ± 18.1 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ² (10 g) of Head TSL. SAR measured	condition 250 mW input power	0.767 W/kg

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	57.1 Ω - 2.8 jΩ
Return Loss	- 23,0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	
	1.346 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made at standard sensitifd coords cable. The center conductor of the feeding line is desepose and see instandant sensitive contracts and the dipole. The antenno is therefore selective could be considered for Do-Signish. On some of the dipole, small order as addited for the dipole arm in order to improve matching when needed secondary to the positions are registed of it in "Massurement Conditions" paragraph. The SAR data are not affected by this charge. The overall dipole length is sell to exceeding to the Standard.

This distribution is sell to develop the contract of the dipole arms, because they might bend or the soldered connections near the footpolet may be demanded.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D450V3-1103_Apr21 Page 4 of 6

Date: 21.04.2021

DASY5 Validation Report for Head TSL

Certificate No: D450V3-1103_Apr21

DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN:1103

Communication System: UID 0 - CW; Frequency: 450 MHz Medium parameters used: f=450 MHz, $\alpha=0.87$ S/m; $\epsilon_r=43.1$; $\rho=1000$ kg/m³ Phanton section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN3877; ConvF(10.64, 10.64, 10.64) @ 450 MHz; Calibrated: 30.12.2020

Page 3 of 6

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 26.06.2020
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: txe-5mm, dys-5mm, dzs-5mm
Reference Value = 9.18 V/m, Power Drift = 0.08 dB
Peak SAR (extrapolated) = 1.76 W/kg
SAR(1 g) = 1.14 W/kg; SAR(1 g) = 0.676 W/kg
Saralleg s = 0.04 W/kg; SAR(1 g) = 0.64 W/kg
SAR(1 g) = 1.14 W/kg; SAR(1 g) = 0.64 W/kg
SAR(1 g) = 1.48 V = 0.84 R w H = 0.64 W/kg
Maximum value of SAR (measured) = 1.53 W/kg

Certificate No: D450V3-1103_Apr21

Certificate No: D450V3-1103_Apr21

Page 6 of 6

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from excising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration, forgery or falsification of the content or appearance of this document to unduly and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CM.Doccheck@ass.com"

No.10 Weiye Road, Development Zone, Kunshan, Jiangsu, China 215300 (86-512) 57355888 f(86-512) 57370818 www.sgsgroup.com.cn 邮编: 215300 t(86-512)57355888 f(86-512)57370818 sgs.china@sgs.com 中国・江苏・昆山开发区伟业路10号

Page: 5 of 25

1.3 D750V3 - SN 1188

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from excising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration, forgery or falsification of the content or appearance of this document to unduly and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CM.Doccheck@ass.com"

or email: CN_Doccheck@sgs.com
No.10 Weiye Road, Development Zone, Kunshan, Jiangsu, China 215300 t(86-512) 5735 5888 f(86-512) 57370818 www.sgsgroup.com.cn

Page: 6 of 25

1.4 D835V2 - SN 4d114

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from excising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration, forgery or falsification of the content or appearance of this document to unduly and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CM.Doccheck@ass.com"

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CM_Doccheck@sgs.com

No.10 Weiye Road, Development Zone, Kunshan, Jiangsu, China 215300 | 1(86-512) 5735 5888 | 1(86-512) 57370818 | www.sgsgroup.com.cn

中国・江苏・昆山开发区伟业路10号 邮编: 215300 | 1(86-512) 57355888 | 1(86-512) 57370818 | sgs.china@sgs.com

Page: 7 of 25

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from excising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration, forgery or falsification of the content or appearance of this document to unduly and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CM.Doccheck@ass.com"

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755)83071443, or email: CM. Doccheck@ags.com

No.10 Weiye Road, Development Zone, Kunshan, Jiangsu, China 215300 ti(86-512) 57355888 fi(86-512) 57370818 www.sgsgroup.com.cn

中国・江苏・昆山开发区伟业路10号 邮编: 215300 ti(86-512) 57355888 fi(86-512) 57370818 sgs.china@sgs.com

Page: 8 of 25

1.5 D900V2 - SN 1d079

Page: 9 of 25

1.6 D1800V2 - SN 2d170

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from excising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration, forgery or falsification of the content or appearance of this document to unduly and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CM.Doccheck@ass.com"

No.10 Weiye Road, Development Zone, Kunshan, Jiangsu, China 215300 (86-512) 57355888 f(86-512) 57370818 www.sgsgroup.com.cn 中国・江苏・昆山开发区伟业路10号 邮编: 215300 t(86-512)57355888 f(86-512)57370818 sgs.china@sgs.com

Page: 10 of 25

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from excising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration, forgery or falsification of the content or appearance of this document to unduly and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CM.Doccheck@ass.com"

No.10 Weiye Road, Development Zone, Kunshan, Jiangsu, China 215300 (86-512) 57355888 f(86-512) 57370818 www.sgsgroup.com.cn 邮编: 215300 t(86-512)57355888 f(86-512)57370818 sgs.china@sgs.com 中国・江苏・昆山开发区伟业路10号

Page: 11 of 25

1.7 D1900V2 - SN 5d136

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from excising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration, forgery or falsification of the content or appearance of this document to unduly and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CM.Doccheck@ass.com"

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CM.Doccheck@sgs.com

No.10 Weiye Road, Development Zone, Kunshan, Jiangsu, China 215300 t/(86-512) 57355888 f/(86-512) 57370818 www.sgsgroup.com.cn
中国・江苏・昆山开发区伟业路10号 邮编: 215300 t/(86-512) 57355888 f/(86-512) 57370818 sgs.china@sgs.com

Page: 12 of 25

1.8 D2000V2 - SN 1041

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from excising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration, forgery or falsification of the content or appearance of this document to unduly and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CM.Doccheck@ass.com"

or email: CN Doccheck@sgs.com No.10 Welye Road, Development Zone, Kunshan, Jiangsu, China 215300 (1/86-512)57355888 (1/86-512)57370818 www.sgsgroup.com.cn 中国・江苏・昆山开发区伟业路10号 邮编: 215300 (1/86-512)57355888 (1/86-512)57370818 sgs.china@sgs.com

Page: 13 of 25

Page: 14 of 25

1.9 D2300V2 - SN 1096

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to list Client and this document does not exonerate parties to a transaction from excessing all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN. Doccheck@ses.com

Attention: 10 check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-75)830/1443, or email: CM. Doccheck@gs.com

No.10 Weiye Road, Development Zone, Kunshan, Jiangsu, China 215300 ti(86-512) 57355888 fi(86-512) 57370818 www.sgsgroup.com.cn

中国・江苏・昆山开发区伟业路10号 邮编: 215300 ti(86-512) 57355888 fi(86-512) 57370818 sgs.china@sgs.com

Page: 15 of 25

1.10 D2450V2 - SN 817

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from excising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document to unduly and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CADoccheck@ass.com"

Page: 16 of 25

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from excising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration, forgery or falsification of the content or appearance of this document to unduly and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CM.Doccheck@ass.com"

| No.10 Weiye Road, Development Zone, Kunshan, Jiangsu, China | 215300 | 1(86-512) \$7355888 | 1(86-512) \$7370818 | www.sgsgroup.com.cn |
| 中国・江苏・昆山开发区伟业路10号 | 邮编: 215300 | 1(86-512) \$7355888 | 1(86-512) \$7370818 | sgs.china@sgs.com

Page: 17 of 25

1.11 D2600V2 - SN 1158

Page: 18 of 25

1.12 D5GHzV2 - SN 1095

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from excising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration, forgery or falsification of the content or appearance of this document to unduly and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CM.Doccheck@ass.com"

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CM_Doccheck@sgs.com

No.10 Weiye Road, Development Zone, Kunshan, Jiangsu, China 215300 | 1(86-512) 5735 5888 | 1(86-512) 57370818 | www.sgsgroup.com.cn

中国・江苏・昆山开发区伟业路10号 邮编: 215300 | 1(86-512) 57355888 | 1(86-512) 57370818 | sgs.china@sgs.com

Page: 19 of 25

CAICT

CAICT

CAICT

Add: No.52 Hua/YumBei Road, Haidun District, Beijing, 100191, China Tel: +86-10-62302117 E-mail: ethiychinami.com http://www.cuict.ac.cn

ASY system configuration, as far as	not given on page 1.	
DASY Version	DASY52	52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5300 MHz ± 1 MHz 5500 MHz ± 1 MHz 5600 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200MHz

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mha/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.4 ± 6 %	4.62 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C	-	

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	7.79 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	77.6 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.22 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.1 W/kg ± 24.2 % (k=2)

Certificate No: Z22-60187

Page 3 of 10

CAICT

In Collaboration with S P e a g

Add: No.52 HuaYuanBei Roud, Haidian District, Beijing, 100191, China Tel: +86-10-02392117 E-mail: ettl@chinattl.com http://www.caict.uc.cn

Head TSL parameters at 5300MHz
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.76 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.2 ± 6 %	4.73 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		-

SAR result with Head TSL at 5300MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.94 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.1 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.27 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.6 W/kg ± 24.2 % (k=2)

Head TSL parameters at 5500MHz

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.8 ± 6 %	4,94 mho/m ± 6 9
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5500MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.29 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	82.5 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.34 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.3 W/kg ± 24.2 % (k=2)

Certificate No: Z22-60187

Page 4 of 10

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.7 ± 6 %	5.05 mho/m ± 6 9
Head TSL temperature change during test	<1.0 °C	-	-

| Condition | 100 mW input power | 8.12 W/kg | normalized to 1W | 80.8 W/kg ± 24.4 % (k=2) | Condition | SAR for nominal Head TSL parameters

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.4 ± 6 %	5.25 mho/m ± 6 %
Manual TREE descriptions observed absolute to all	-4.0.40		

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.71 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	76.7 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.16 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.5 W/kg ± 24.2 % (k=2)

Certificate No: Z22-60187

Page 5 of 10

dix (Additional assessments outside the scope of CNAS L0570)

na Parameters with Head TSL at 5200MHz

Impedance, transformed to feed point	46.1Ω- 5.03jΩ	
Return Loss	- 23.6dB	

Antenna Parameters with Head TSL at 5300MHz

Impedance, transformed to feed point	47.8Ω- 2.42jΩ
Return Loss	- 29.5dB

Antenna Parameters with Head TSL at 5500MHz

Impedance, transformed to feed point	50.3Ω- 4.26jΩ
Return Loss	- 27.4dB

Antenna Parameters with Head TSL at 5600MHz

Impedance, transformed to feed point	54.5Ω- 4.80jΩ	
Return Loss	- 24.0dB	

Antenna Parameters with Head TSL at 5800MHz

Impedance, transformed to feed point	51.5Ω- 5.61jΩ	
Return Loss	- 24.9dB	

Certificate No: Z22-60187

Page 6 of 10

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from excising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration, forgery or falsification of the content or appearance of this document to unduly and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CM.Doccheck@ass.com"

No.10 Weiye Road, Development Zone, Kunshan, Jiangsu, China 215300 (86-512) 5735 5888 (86-512) 57370818 www.sgsgroup.com.cn 邮编: 215300 t(86-512)57355888 f(86-512)57370818 sgs.china@sgs.com 中国・江苏・昆山开发区伟业路10号

Page: 20 of 25

21 of 25 Page:

2 **DAE4 - SN 1245**

Page: 22 of 25

EX3DV4 - SN 7767 3

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from excising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration, forgery or falsification of the content or appearance of this document to unduly and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CM.Doccheck@ass.com"

No.10 Weiye Road, Development Zone, Kunshan, Jiangsu, China 215300 (86-512) 57355888 f(86-512) 57370818 www.sgsgroup.com.cn 邮编: 215300 t(86-512)57355888 f(86-512)57370818 sgs.china@sgs.com 中国・江苏・昆山开发区伟业路10号

23 of 25 Page:

D	767						Octobe		1	EX3DV4 - SN:7767	October 28, 2022
	n of D	EVAPUL	011.77					_	1	Parameters of Brokes Eventure out	
	s of Probe:		SN:7767							Parameters of Probe: EX3DV4 - SN:7767	
Basic Calibra	ation Paramete	ters								Other Probe Parameters	
Norm (-1707	A G	Senso		Sensor '	Y :	Sensor Z	Une (t = 2)		Sensor Arrangement	Triangular
Norm (µV/(V/m DCP (mV) B	n)-) ^	103.		107.3		0.56	±10	1%		Connector Angle Mechanical Surface Detection Mode	144.8° enabled
				107.3		100.7	1 24		1	Optical Surface Detection Mode	disabled
Calibration P	Results for Mo	dulation Res	ponse						1	Probe Overall Length Probe Body Diameter	337 mm
UID Commun	nication System	Name	7.1	A B		D dB	VR Max mV dev.	Max		Tip Length	10 mm
				dB dB _V		dB		Max Unc ^c		Tlp Diameter	9 mm 2.5 mm
o cw			X C	0.00 0.	.00 1.00 .00 1.00 .00 1.00	0.00 1	164.7 ±3.5%	k = 2 ±4.7%		Proba Tip to Sengor X Calibration Point	1 mm
			Y 0	0.00 0.	00 1.00	1 F	186.7 175.3			Probe Tip to Sensor Y Calibration Point Probe Tip to Sensor Z Calibration Point	1 mm
m										Recommended Measurement Distance from Surface	1 mm
factor k=2, which	incertainty of meas oh for a normal dis	asurement is state istribution corresp	ed as the star pends to a co	indard uncert overage prob	tainly of meas ability of appr	turement mu roximately 95	ultiplied by the 5%.	coverage		Note: Measurement dissence from surface can be increased to 3-4 mm for an Area Span	1
A The uncertainties o	of Norm X.Y.Z do not a	affect the E ^Q -Teki uno	containty invide T	TRI (see Point)					1		
" Uncertainty is deter	of Norm X,Y,Z do not a mater uncertainty for m armined using the max.	maximum specified fig x. deviation from thea	eld strangth. ar response appl	dying reasongule	e distribution and	l is expressed to	for the square of t	is file lid wature.			
Cerificate No: EX	X-7767_Oci22		Page 3	3 of 9						Centicate No: EX-792_Oct22 Page 4 of 9	
	s of Probe:				ng Media		Octobe	28, 2022		EXS04 - \$9:7767	October 28, 2022
Parameters Calibration P	s of Probe:	ermined in He	ead Tissue	e Simulati		Alpha ^G				BX8044 - 8427187	October 28, 9022
Parameters Calibration P	Rolativo Permittivity ^F 52.3	ermined in He	ead Tissue	e Simulati		Alpha ^G	Depth ^Q (mm)	Unc (x = 2)			
Parameters Calibration P f (MHz) ^C 150 450	Parameter Dete	Conductivity ^F (S/m)	ConvF X	e Simulati	ConvF Z	Alpha ^G 0.00 0.16	Depth ^Q (mm)	Unc (k = 2):13.3%		EXECUTA - SINCEPOET Frequency Response of	
Parameters Calibration P f (MHz) ^G 150 450 750	Relative Permittivity ^F 52.3 43.5 41.9	Conductivity ^F (S/m) 0.76 0.87 0.89	ConvF X 14.06 11.90 10.26	ConvF Y 14.06 11.90 10.26	14.06 11.90 10.26	0.00 0.16 0.55	Depth ^Q (mm) 1.00 1.30	Unc (k = 2) 1:13.3% 1:13.3%			E-Field
Parameters Calibration P 1 (MHz) ^C 150 450 750 835	Relativo Permittivity 52.3 43.5 41.9	Conductivity [#] (S/m). 0.76 0.87 0.89 0.90	ConvF X 14.06 11.90 10.26	ConvF Y 14.08 11.90 10.26	14.06 11.90 10.26	0.00 0.16 0.55 0.43	Depth ^Q (mm) 1.00 1.30 0.80	Unc (k = 2):13.3%		Frequency Response of	E-Field
Parameters Calibration P f (MHz) ^C 150 450 750 835 1750	Relativo Permituity 52.3 43.5 41.9 41.5	Conductivity ^F (S/m). 0.76 0.87 0.89 0.90	ConvF X 14.06 11.90 10.26 10.00 9.32	ConvF Y 14.06 11.90 10.26 10.00 9.32	14.06 11.90 10.26 10.00 9.32	0.00 0.16 0.55 0.43 0.36	Depth ^q (mm) 1.00 1.30 0.80 0.89	Une (X = 2) 143 3% 143 3% 142 0% 142 0%		Frequency Response of (TBM-Cettiff10 EDC, Wavegott	E-Field
Parameters Calibration P 1 (MHz) ^C 150 450 750 835	Relativo Permittivity 52.3 43.5 41.9	Conductivity [®] (8/m). 0.76 0.87 0.99 0.90 1.37	ConvF X 14.06 11.90 10.26 10.00 9.32 8.91	ConvF Y 14.06 11.90 10.26 10.00 9.32 8.91	14.06 11.90 10.26 10.00 9.32 8.91	0.00 0.16 0.55 0.43 0.36 0.33	Depth ^Q (mm) 1.00 1.30 0.80 0.89 0.86	Unc (x = 25) 13.3% 13.3% 13.3% 12.0% 12.0%		Frequency Response of (TBM-Cellitti BEX, Waveguid	E-Field
Parameters Calibration P f (MHz) ^c 150 450 750 835 1750 1900	Relative Permittuity 52.3 43.5 41.5 40.1	Conductivity ^F (S/m). 0.76 0.87 0.89 0.90	ConvF X 14.06 11.90 10.26 10.00 9.32 8.91 8.60	14.06 11.90 10.26 10.00 9.32 8.91 8.60	14.06 11.90 10.26 10.00 9.32 8.91 8.60	0.00 0.16 0.55 0.43 0.36 0.33	Depth ^Q (mm) 1.00 1.30 0.80 0.89 0.86 0.86	Une (K = 2) (K = 2) 13.3% 13.3% 12.0% 12.0% 12.0%		Frequency Response of (TBM-Cestiff10 EDC, Wavegotd	E-Field
Parameters Calibration P f (MHz) ^C 150 450 750 835 1750 1900 2100 2300 2450	Relative Permittivity	Conductivity* (8/m). 0.76 0.87 0.89 0.90 1.37 1.40 1.49 1.57 1.80	ConvF X 14.06 11.90 10.26 10.00 9.32 8.91 8.60 8.44	ConvF Y 14.06 11.90 10.26 10.00 9.32 8.91 8.60 8.44	14.06 11.90 10.26 10.00 9.32 8.91 6.60 8.44	0.00 0.16 0.55 0.43 0.36 0.33	Depth ^Q (mm) 1.00 1.30 0.80 0.89 0.86 0.86 0.86	Unc (x = 25) 13.3% 13.3% 13.3% 12.0% 12.0%		Frequency Response of (TBM-Cettiff10 EDC, Wavegott	E-Field
Parameters Calibration P f (MHz) ^G 150 150 450 750 835 1750 1900 2100 2300 2450 2500	Relative Permituity* 52.3 43.5 41.9 41.5 40.1 40.0 39.8 39.5 39.2	Conductivity* (8/m). 0.76 0.87 0.89 0.90 1.37 1.40 1.49 1.67 1.80 1.96	ConvF X 14.06 11.90 10.26 10.00 9.32 8.91 8.60 8.44 8.24 7.99	14.06 11.90 10.26 10.00 9.32 8.91 8.60 8.44 8.24	14.08 11.90 10.26 10.00 9.32 8.91 8.60 8.44 8.24 7.99	0.00 0.16 0.55 0.43 0.36 0.33 0.30	Depth (mm) 1.00 1.30 0.80 0.89 0.86 0.86 0.86 0.90	Une (# +2) (# +2	1	Frequency Response of (TBM-Cestiff10 EDC, Wavegotd	E-Field
Parameters Calibration P f (MHz) ^o 150 150 750 835 1780 1900 2100 2200 2450 2850 2850 3300	Relative Permittivity* 10.2 41.5 40.1 40.0 39.8 39.5 39.2 39.0 38.2	Conductivity* (S/m). 0.76 0.87 0.89 0.90 1.37 1.40 1.49 1.67 1.89 2.71	ConvF X 14.06 11.90 10.26 10.00 9.32 8.91 8.60 8.44 8.24 7.99 7.55	ConvF Y 14.06 11.90 10.26 10.00 9.32 8.91 8.60 8.44 8.24 7.99 7.55	14.06 11.90 10.26 10.00 9.32 8.91 8.60 8.44	0.00 0.16 0.55 0.43 0.36 0.33 0.30 0.33	Depth a (mm) 1.00 1.30 0.80 0.86 0.86 0.86 0.86 0.86 0.80 0.80	Une (b = 2) (10.2%) (10.2%) (10.2%) (10.2%) (10.2%) (10.2%) (10.2%) (10.2%)		Frequency Response of (TBM-Celtiff10 EDX, Wavegotd 1.5	E-Field
Parameters Calibration P f QMHz/D 150 450 750 835 1750 1900 2100 2200 2450 2600 3500 3500	Relative Permetritist 1	Conductivity* (8/m). 0.76 0.87 0.89 0.90 1.37 1.40 1.40 1.67 1.80 1.98 2.71	ConvF X 14.06 11:90 10:26 10:00 9:32 8:91 8:60 8:44 8:24 7:99 7:55 7:45	ConvF Y 14.06 11.90 10.26 10.00 9.32 8.91 8.60 8.44 8.24 7.99 7.55 7.45	ConvF Z 14.06 31.30 10.26 10.00 9.32 8.91 8.60 8.44 8.24 7.39 7.55 7.45	0.00 0.16 0.55 0.43 0.36 0.33 0.30 0.33 0.32 0.27 0.30 0.30	Depth ^Q (mm) 1.00 1.30 0.80 0.89 0.86 0.86 0.90 0.90 0.90 1.25	Ure (8 × 2) 13 250 13 250 14 250 15 250 16 2	1	Frequency Response of (TBM-Celtiff10 EDX, Wavegotd 1.5	E-Field
Parameters Calibration P f (MHz)P 150 450 835 1750 2100 2200 2450 2500 3500 3500	s of Probe: Parameter Determination Relative Permittivity \$2.3 43.5 41.9 40.1 40.0 50.8 50.9 50.2 50.0 50.2 57.9 57.7	Conductivity (S/m) 0.76 0.87 0.89 0.59 0.137 1.40 1.49 1.80 1.96 2.71 2.91 2.91 3.12	ConvF X 14.06 11:90 10:26 10:00 9:32 8:91 8:60 8:44 8:24 7:99 7:55 7:45	e Simulati ConvF Y 14.06 11.98 10.26 10.00 9.32 8.91 8.60 8.44 8.24 7.99 7.55 7.46 7.20	ConvF z 14.06 31.90 10.26 10.00 9.32 8.91 8.60 8.44 8.24 7.39 7.55 7.45 7.20	0.00 0.16 0.55 0.43 0.36 0.33 0.30 0.33 0.32 0.27 0.30 0.30	Depth ^Q (mm) 1.00 1.30 0.80 0.86 0.86 0.86 0.90 0.90 1.25 1.35 1.35	Une (8 × 2) (8 × 2) (8 × 3) (8		Frequency Response of (TBM-Centiff10 EDX, Wavegotd 1.5	E-Field
Parameters Calibration P f (MMx) ^o 150 450 750 335 1750 1900 2100 2200 2450 2800 3500 3500 3700	Relative Probe: Relative Permutity 19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Conductivity (S/m) 0.76 0.87 0.89 0.90 1.37 1.40 1.40 1.67 1.80 1.90 2.71 2.91 3.12	ConvF X 14.08 11.90 10.28 10.00 9.32 8.91 8.60 8.44 8.24 7.99 7.55 7.45 7.20 6.84	e Simulati ConvF Y 14.06 11.90 10.26 10.00 9.32 8.91 8.60 8.44 8.24 7.99 7.55 7.46 6.84	14.06 11.90 10.26 10.00 9.32 8.91 8.60 8.44 8.24 7.99 7.55 7.45 7.20 6.84	0.00 0.16 0.55 0.43 0.36 0.33 0.30 0.33 0.32 0.27 0.30 0.30 0.30 0.30 0.30 0.30 0.33	Depth a (mm) 1.00 1.30 0.80 0.86 0.86 0.90 0.90 1.25 1.35 1.80	Ure (# +2) 13.25% 13.25% 13.25% 13.25% 12.25% 12.25% 12.25% 12.25% 12.25% 12.25% 12.25% 12.25% 12.25% 12.25% 13.35% 13.35% 13.35% 13.35% 13.35%		Frequency Response of (TBM-Centiff10 EDX, Wavegotd 1.5	E-Field
Parameters Calibration P f (MMx) ^O 150 450 750 835 1730 2100 2100 2200 2200 2800 3500 3700 3800 3700	s of Probe: Parameter Determinishing Relative Permittivity \$2.3 43.5 41.9 41.5 40.1 40.0 99.8 99.9 99.0 38.2 39.0 37.7 37.5	Conductivity (S/m) 0.76 0.87 0.89 0.59 0.137 1.40 1.49 1.80 1.96 2.71 2.91 2.91 3.12	ConvF X 14.06 11:90 10:26 10:00 9:32 8:91 8:60 8:44 8:24 7:99 7:55 7:45	e Simulati ConvF Y 14.06 11.98 10.26 10.00 9.32 8.91 8.60 8.44 8.24 7.99 7.55 7.46 7.20	ConvF z 14.06 31.90 10.26 10.00 9.32 8.91 8.60 8.44 8.24 7.39 7.55 7.45 7.20	0.00 0.16 0.55 0.43 0.36 0.33 0.30 0.33 0.32 0.27 0.30 0.30	Depth ^Q (mm) 1.00 1.30 0.80 0.86 0.86 0.86 0.96 0.90 1.25 1.35 1.35 1.86	Upe (8 × 2) (8 × 2) (8 × 2) (8 × 3) (8		Frequency Response of (TBM-Centiff to EDX, Wavegood 1.1.1.1.3.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	E-Field
Parameters Calibration P 1 (MHxy) 150 150 450 750 835 1700 2100 2200 2440 2600 3500 3500 3500 4100 4400	Relative Probe: Relative Permutity 19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ormined in He Conductivity ^F (§Im) 0.76 0.87 0.89 0.50 1.37 1.40 1.40 1.80 1.96 2.91 3.12 3.12 3.32	ConvF X 14.06 11.90 10.26 10.00 9.32 8.91 8.60 8.44 7.99 7.55 7.45 7.20 8.84 6.83	e Simulati ConvF Y 14.06 11.90 10.26 10.00 9.32 8.91 8.60 8.44 9.24 7.99 7.55 7.45 7.45 6.63	14.06 11.90 10.26 10.00 9.32 8.91 8.60 8.44 8.24 7.90 7.55 7.45 7.45 7.20 6.63	0.00 0.16 0.55 0.43 0.36 0.33 0.30 0.30 0.32 0.27 0.30 0.30 0.30 0.40 0.40	Depth ^Q (mm) 1.00 1.30 0.80 0.86 0.86 0.86 0.90 0.90 1.25 1.35 1.35 1.60 1.60 1.70	Ure (# +2) 16.2 90 16.2 90 16.2 90 16.2 90 16.2 90 16.2 90 16.2 90 16.2 90 16.2 90 16.2 90 16.2 90 16.2 90 16.2 90 16.2 90 16.2 90 16.2 90 16.3 15 16.	-	Frequency Response of (TBM-Centiff10 EDX, Wavegotd 1.5	E-Field
Parameters Calibration P f QMMsp ⁰ 180 180 180 180 180 280 1750 2800 2800 2800 2800 3800 3800 3800 380	s of Probe: Parameter Dete Relative Relative \$2.3 41.9 41.5 40.1 40.0 99.8 99.5 90.2 90.5 90.7 97.7 97.5 97.7 97.1 98.9 98.7	Conductivity* (S/m) (S/m) (ConvF X 14.06 11.90 10.26 10.00 9.32 8.91 8.60 8.44 7.99 7.55 7.45 7.20 6.84 6.83 6.30 6.17 6.15	e Simulati ConvF Y 14.06 11.93 10.26 10.00 9.32 8.91 8.60 8.44 7.99 7.55 7.45 7.20 6.64 8.63 6.30 8.17 8.15	14.06 31.90 10.26 10.00 9.32 8.91 8.60 8.44 8.24 7.90 7.55 7.45 7.20 6.84 6.63 6.30 6.31 6.51 7.61 6.51	0.00 0.16 0.55 0.43 0.36 0.33 0.30 0.33 0.32 0.27 0.30 0.30 0.30 0.40 0.40 0.40 0.40 0.40	Depth ⁰ (mm) 1.00 1.30 0.80 0.89 0.86 0.86 0.86 0.90 0.90 1.25 1.35 1.35 1.60 1.70 1.70	Upe (gr = 2) 16.2 9/4 16.2 9/2 16.2 9/4 16.2 9/4 16.2 9/4 16.2 9/4 16.2 9/4 16.2 9/4 16.2 9/4 16.2 9/4 16.2 9/4 16.2 9/4 16.2 9/4 16.2 9/4 16.3 9/4	1	Frequency Response of (TBM-Cest#110 EDX, Wavegotd 1.5	E-Field
Parameters Calibration P f (MMs) ⁰ 180 180 180 180 2800 2800 2800 2800 3800 3800 3800 4100 4400 4400 4400	s of Probe: Relative Permettivity Relative Permettivity 82.3 43.9 43.5 44.9 44.5 50.6 50.9 50.9 50.9 50.0 50.9 50.0	Conductivity ² (S/m) 0.76 0.87 0.89 0.89 0.89 1.37 1.40 1.47 1.80 1.91 2.71 2.91 3.12 2.91 3.12 3.12 3.12 3.12 4.04 4.04 4.25	ConvF X 14.06 11.90 10.26 10.00 9.32 8.91 8.60 8.44 8.24 7.99 7.55 7.45 7.20 6.84 6.68 6.90 6.17 6.15	e Simulati 14.06 11.90 10.00 9.32 8.91 8.60 8.44 8.24 7.99 7.55 7.45 7.20 6.63 6.30 6.17 6.13	ComF Z 14.06 11.30 10.26 10.00 9.32 891 8.60 8.44 8.24 7.50 7.20 6.84 6.63 6.30 6.17 6.15	0.00 0.16 0.55 0.43 0.36 0.33 0.30 0.33 0.32 0.30 0.30 0.30 0.30	Depth ^Q (mm) 1.00 1.30 0.89 0.86 0.86 0.90 0.90 1.35 1.35 1.60 1.70 1.70 1.70	Upon (F = 2) 163 394 163 395		Frequency Response of (TBM-Centiff to EDX, Wavegood 1.1.1.1.3.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	E-Field
Parameters Calibration F (NHsy) 150 150 150 150 150 200 2000 2800 2800 3800 3800 3700 3800 4100 4200 4400 4400 4400	s of Probe: Parameter Deterministry Relative Permittivity 14.5 43.6 44.9 44.9 45.6 40.1 40.0 39.8 39.2 39.0 39.2 39.0 39.2 39.0 39.7 37.7 37.8 39.7 37.7 37.8 39.7 39.7 39.7 39.7 39.7 39.7 39.7 39.7	Conductivity* (S/m) (S/m	ComvF X 14.06 11.90 10.26 10.00 9.32 8.91 8.60 8.44 8.97 7.55 7.45 7.20 6.84 6.63 6.17 6.15 6.17	e Simulati 14.06 11.90 10.26 10.00 9.32 8.91 8.60 8.44 8.24 7.99 7.55 7.20 6.84 6.30 6.17 6.15 6.13	14.06 11.30 10.26 10.26 10.26 10.00 9.32 8.91 8.60 8.44 8.24 7.39 7.56 7.45 7.20 6.84 6.63 6.63 6.17 6.15	0.00 0.16 0.55 0.43 0.36 0.33 0.30 0.30 0.32 0.27 0.30 0.30 0.30 0.30 0.40 0.40 0.40 0.40	Depth (mm) 1.00 1.30 0.80 0.89 0.86 0.86 0.90 0.90 1.25 1.35 1.35 1.35 1.60 1.70 1.70 1.70	Upe (gr = 2) 143.394 143.394 143.394 143.395 143.295 1	1	Frequency Response of (TBM-Cest#110 EDX, Wavegotd 1.5	E-Field
Parameters Calibration P f (MHV) ⁰ 150 450 150 450 2100 2100 2100 2100 2100 2100 2100 3700 3700 3700 3700 4100 4400 4400 4400 4400 4400 4400 4	s of Probe: Relative Permittivity 4.55 Relative Permittivity 4.55 42.3 43.5 41.9 41.5 40.1 40.0 98.8 90.0 90.0 90.0 97.7 97.7 97.9 97.7 98.9 90.0 90.	Conductivity (Sim)	ConvF X 14.06 11.30 10.26 10.00 9.32 8.91 8.60 8.44 8.24 7.99 7.55 7.45 7.20 6.84 6.63 6.17 6.15 6.13 6.13 6.53	e Simulati 14.08 11.90 10.26 10.00 9.32 8.91 8.60 8.44 8.24 7.29 7.55 7.45 7.20 6.84 8.63 6.30 6.17 6.15 6.13	ConvF Z 14.00 11.30 10.26 10.00 9.32 8.91 8.60 8.44 8.24 7.76 7.56 7.45 7.20 6.94 6.63 6.30 6.17 6.15 6.13 6.13 6.13 6.15	0.00 0.16 0.16 0.43 0.36 0.33 0.33 0.32 0.27 0.30 0.30 0.30 0.30 0.40 0.40 0.40 0.40	Depth 0 (mm) 1.00 1.30 0.80 0.89 0.86 0.86 0.86 0.80 1.25 1.35 1.80 1.70 1.70 1.70 1.80 1.80	Up to (F + 2) 163 394 163 394 163 395 163 295 163 295 163 295 163 295 163 295 163 295 163 295 163 295 163		Frequency Response of (TBM-Celliff19 EXX, Wavegott 1.5	E-Field
Parameters Calibration P f (IBHs) ⁰ 150 450 150 450 1730 2500 2500 2500 2500 2500 3500 3500 35	s of Probe: Parameter Deterministry Relative Permittivity Relative Permittivity Relative Rela	Conductivity (3/m)	ComvF X 14.06 11:90 10:26 10:00 9:32 8:91 8:60 8:44 7:99 7:55 7:20 6:84 6:83 6:30 6:17 6:13 6:07 5:54	e Simulati ConvF Y 14.06 11.09 10.26 10.00 9.52 8.91 8.60 8.44 7.99 7.55 7.45 7.20 6.63 6.30 6.17 6.15 6.13 6.07 5.65	ConvF Z 14.00 11.30 10.26 10.00 9.32 8.91 8.60 8.44 7.30 7.55 7.20 6.84 6.63 6.30 6.17 6.15 6.17 6.15 6.07 5.66	0.00 0.16 0.16 0.58 0.43 0.36 0.33 0.30 0.32 0.27 0.30 0.30 0.30 0.30 0.40 0.40 0.40 0.40	Depth (mm) 1.00 1.30 0.80 0.89 0.86 0.86 0.86 0.90 0.90 1.25 1.35 1.80 1.70 1.70 1.70 1.80 1.80 1.80	Upe (gr = 2) 16.2 99 1		Frequency Response of (TBM-Celliffitie ECX, Wavepool 1.5	E-Field
Parameters Calibration P f (MHV) ⁰ 150 450 150 450 2100 2100 2100 2100 2100 2100 2100 3700 3700 3700 3700 4100 4400 4400 4400 4400 4400 4400 4	s of Probe: Tarameter Determinary Relative Permittivity 82.3 45.5 41.9 41.9 41.5 40.1 40.0 38.8 38.2 38.2 38.2 37.9 37.2 37.2 37.2 37.2 37.2 38.9 38.7 38.9 38.9 38.9 38.9 38.9 38.9 38.9 38.9	Conductivity (Sim) (Sim) (Conductivity (Sim) (Con) (Co	Com/F X 14.06 11.00 11.90 10.26 10.00 9.32 8.91 8.90 8.91 8.24 7.99 7.20 6.84 6.63 6.80 6.17 6.19 6.19 6.19 6.53 6.30 6.17 6.19 6.19 6.55 6.40	Simulati 14.08 11.93 11.00 11.93 10.00 9.52 8.44 8.24 7.55 7.45 6.63 6.17 6.15 6.17 6.15 6.30 6.17 6.55 6.48	ConvF Z 14.00 11.30 10.26 10.00 9.32 8.91 8.60 8.44 7.90 7.55 7.45 6.63 6.30 6.17 6.15 6.13 6.07 5.65 5.48	0.00 0.16 0.16 0.58 0.43 0.36 0.39 0.30 0.33 0.32 0.27 0.30 0.30 0.30 0.40 0.40 0.40 0.40 0.40	Depth 0 (mm) 1,00 1,30 0,80 0,86 0,86 0,86 0,80 0,80 1,25 1,35 1,36 1,36 1,70 1,70 1,70 1,80 1,80 1,80 1,80 1,80 1,80 1,80 1,8	Up to (F = 2) 163 394 163 394 163 395 163 296 163 296 163 296 163 296 163 296 163 296 163 296 163 296 163	1	Frequency Response of (TBM-Cestiff10 ECX, Wavegott 1.5	E-Field te-R22)
Parameters Calibration P f (MHs/s) ⁰ 150 150 150 150 150 150 250 250 250 250 250 250 250 250 250 2	s of Probe: Transetor Deterministry Relative Permissivity* 80.8 41.9 41.9 41.0 90.8 90.8 90.2 90.8 90.2 90.9 90.2 90.7 97.9 97.7 97.9 97.9 97.7 97.9 98.7 98.7 98.9 98.7 98.9 98.7 98.9 98.7 98.9	Conductivity (Sim) 0.76 (Sim) 0.76 (Sim) 0.76 (Sim) 0.76 (Sim) 0.87 (Sim) 0.8	Com# X 14.00 10.26 10.00 10.26 10.00 10.26 10.00 10.26 10.00 10.26 10.00 10.26 10.00 10.26 10.00 10.26 10.00 10.26 10.00 10.26 10.00	Simulati Com# Y 14.08 10.00 10.28 10.00 9.32 8.91 8.00 8.24 8.24 8.24 8.24 8.24 8.30 8.30 8.30 8.10 8.50 8.10 8.11 8.13 8.15 8.15 8.15 8.15 8.15 8.15 8.15 8.15 8.15 8.15 8.15 8.15 8.15 8.15	ComF Z 14.00 11.00 11.30 10.26 10.00 9.32 8.91 8.60 8.44 8.24 7.99 7.56 7.20 6.84 6.63 6.00 6.15 6.13 6.07 5.86 5.48 5.30 6.14	0.00 0.16 0.16 0.55 0.43 0.36 0.33 0.32 0.37 0.30 0.30 0.30 0.30 0.40 0.40 0.40 0.40	Depth (mm) 1.30 1.30 0.80 0.89 0.86 0.86 0.90 0.86 0.90 1.35 1.35 1.35 1.35 1.35 1.60 1.70 1.70 1.70 1.70 1.80 1.80 1.80	Upe (gr = 2) 16.2 99 1		Frequency Response of (TBM-CwittH116 EXX, Wavegote 1.5.1.5.1.5.1.5.1.5.1.5.1.5.1.5.1.5.1.5	E-Field te-R22)
Parameters Calibration P f (MHx) ⁶ 180 180 180 180 180 180 2800 2800 2800	s of Probe: Parameter Determinish Promote September 1	Conductivity (Sim) Conductivity (Sim) 0.76 0.87 0.87 0.89 0.90 1.37 1.40 1.49 1.49 1.49 1.89 2.71 2.91 3.32 3.53 3.63 3.64 4.94 4.94 4.96 4.99 4.99 4.99 4.99	ComF X ComF X ComF X 11:00 11:00 10:00 10:00 0.32 891 10:00 8.44 8.24 8.24 8.25 6.60 6.17 6.15 6.15 6.17 6.15 5.56 5.56 5.57 5.51 5.10	Osmulati 14.08 14.08 11.90 10.00 10.00 10.00 10.00 8.91 10.00 8.44 8.24 8.26 8.60 8.44 8.28 8.60 8.60 8.60 8.60 8.60 8.60 8.60 8.77 8.60 8.77 8.60 8.77 8.75 8.75 8.75 8.75 8.75 8.75 8.75	Com/F Z 14.00 11.30 10.26 10.00 9.32 8.91 8.90 8.44 8.24 7.85 7.45 7.85 6.31 6.30 6.17 6.15 6.13 6.07 5.65 5.48 5.30 5.10	0.00 0.16 0.55 0.43 0.36 0.33 0.30 0.33 0.32 0.37 0.30 0.40 0.40 0.40 0.40 0.40 0.40 0.40	Depth 9 (mm) 1130 (mm) 113	We (2 + 2) 13.25% 13.25		Frequency Response of (TBM-Cestaff116 ECK, Wavespork 1.5 1.5 1.4 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	E-Field Ner422)
Parameters Calibration P f (MHx) ⁶ 180 180 180 180 180 180 2800 2800 2800	s of Probe: Parameter Determinish Promote September 1	Conductivity (Sim) Conductivity (Sim) 0.76 0.87 0.87 0.89 0.90 1.37 1.40 1.49 1.49 1.49 1.89 2.71 2.91 3.32 3.53 3.63 3.64 4.94 4.94 4.96 4.99 4.99 4.99 4.99	ComF X ComF X ComF X 11:00 11:00 10:00 10:00 0.32 891 10:00 8.44 8.24 8.24 8.25 6.60 6.17 6.15 6.15 6.17 6.15 5.56 5.56 5.57 5.51 5.10	Osmulati 14.08 14.08 11.90 10.00 10.00 10.00 10.00 8.91 10.00 8.44 8.24 8.26 8.60 8.44 8.28 8.60 8.60 8.60 8.60 8.60 8.60 8.60 8.77 8.60 8.77 8.60 8.77 8.75 8.75 8.75 8.75 8.75 8.75 8.75	Com/F Z 14.00 11.30 10.26 10.00 9.32 8.91 8.90 8.44 8.24 7.85 7.45 7.85 6.31 6.30 6.17 6.15 6.13 6.07 5.65 5.48 5.30 5.10	0.00 0.16 0.55 0.43 0.36 0.33 0.30 0.33 0.32 0.37 0.30 0.40 0.40 0.40 0.40 0.40 0.40 0.40	Depth 9 (mm) 1130 (mm) 113	We (2 + 2) 13.25% 13.25		Frequency Response of (TBM-CwittH116 EXX, Wavegote 1.5.1.5.1.5.1.5.1.5.1.5.1.5.1.5.1.5.1.5	E-Field Ner422)
Parameters Calibration P f (MHx) ⁶ 180 180 180 180 180 180 2800 2800 2800	s of Probe: Parameter Determinish Promote September 1	Conductivity (Sim) Conductivity (Sim) 0.76 0.87 0.87 0.89 0.90 1.37 1.40 1.49 1.49 1.49 1.89 2.71 2.91 3.32 3.53 3.63 3.64 4.94 4.94 4.96 4.99 4.99 4.99 4.99	ComF X ComF X ComF X 11:00 11:00 10:00 10:00 0.32 891 10:00 8.44 8.24 8.24 8.25 6.60 6.17 6.15 6.15 6.17 6.15 5.56 5.56 5.57 5.51 5.10	Osmulati 14.08 11.90 10.00 10.00 10.00 8.91 10.00 8.91 7.55 7.45 6.63 6.63 6.17 6.15 6.16 6.37 6.55 5.48 6.50	Com/F Z 14.00 11.30 10.26 10.00 9.32 8.91 8.90 8.44 8.24 7.85 7.45 7.85 6.31 6.30 6.17 6.15 6.13 6.07 5.65 5.48 5.30 5.10	0.00 0.16 0.55 0.43 0.36 0.33 0.30 0.33 0.32 0.37 0.30 0.40 0.40 0.40 0.40 0.40 0.40 0.40	Depth 9 (mm) 1130 (mm) 113	We (2 + 2) 13.25% 13.25		Frequency Response of (TBM-Cestaff116 ECI, Wavegood 1.5 1.5 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	E-Field Ner/R20) 8000 2000 2400 2600 2600 3000 3000
Parameters Calibration P f (MHx) ⁶ 180 180 180 180 180 180 2800 2800 2800	s of Probe: Parameter Determinish Promote September 1	Conductivity (Sim) Conductivity (Sim) 0.76 0.87 0.87 0.89 0.90 1.37 1.40 1.49 1.49 1.49 1.89 2.71 2.91 3.32 3.53 3.63 3.64 4.94 4.94 4.96 4.99 4.99 4.99 4.99	ComF X ComF X ComF X 11:00 11:00 10:00 10:00 0.32 891 10:00 8.44 8.24 8.24 8.25 6.60 6.17 6.15 6.15 6.17 6.15 5.56 5.56 5.57 5.51 5.10	Osmulati 14.08 11.90 10.00 10.00 10.00 8.91 10.00 8.91 7.55 7.45 6.63 6.63 6.17 6.15 6.16 6.37 6.55 5.48 6.50	Com/F Z 14.00 11.30 10.26 10.00 9.32 8.91 8.90 8.44 8.24 7.85 7.45 7.85 6.31 6.30 6.17 6.15 6.15 6.15 5.48 5.30 5.10	0.00 0.16 0.55 0.43 0.36 0.33 0.30 0.33 0.32 0.37 0.30 0.40 0.40 0.40 0.40 0.40 0.40 0.40	Depth 9 (mm) 1130 (mm) 113	We (2 + 2) 13.25% 13.25		Frequency Response of (TBM-Cestaff116 ECK, Wavespork 1.5 1.5 1.4 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	E-Field Ner/120) 1000 2000 2440 2600 2600 3500 3500
Parameters Calibration P f (MHx) ⁶ 180 180 180 180 180 180 2800 2800 2800	s of Probe: Parameter Determinish Promote September 1	Conductivity (Sim) Conductivity (Sim) 0.76 0.87 0.87 0.89 0.90 1.37 1.40 1.49 1.49 1.49 1.89 2.71 2.91 3.32 3.53 3.63 3.64 4.94 4.94 4.96 4.99 4.99 4.99 4.99	ComF X ComF X ComF X 11:00 11:00 10:00 10:00 0.32 891 10:00 8.44 8.24 8.24 8.25 6.60 6.17 6.15 6.15 6.17 6.15 5.56 5.56 5.57 5.51 5.10	Osmulati 14.08 11.90 10.00 10.00 10.00 8.91 10.00 8.91 7.55 7.45 6.63 6.63 6.17 6.15 6.16 6.37 6.55 5.48 6.50	Com/F Z 14.00 11.30 10.26 10.00 9.32 8.91 8.90 8.44 8.24 7.85 7.45 7.85 6.31 6.30 6.17 6.15 6.15 6.15 5.48 5.30 5.10	0.00 0.16 0.55 0.43 0.36 0.33 0.30 0.33 0.32 0.37 0.30 0.40 0.40 0.40 0.40 0.40 0.40 0.40	Depth 9 (mm) 1130 (mm) 113	We (2 + 2) 13.25% 13.25		Frequency Response of (TBM-Cestaff116 ECI, Wavegood 1.5 1.5 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	E-Field Ner/R20) 8000 2000 2400 2600 2600 3000 3000
Parameters Calibration P f (MHx) ⁶ 180 180 180 180 180 180 2800 2800 2800	s of Probe: Parameter Determinish Promote September 1	Conductivity (Sim) Conductivity (Sim) 0.76 0.87 0.87 0.89 0.90 1.37 1.40 1.49 1.49 1.49 1.89 2.71 2.91 3.32 3.53 3.63 3.64 4.94 4.94 4.96 4.99 4.99 4.99 4.99	Com# X Co	Osmulati 14.08 11.90 10.00 10.00 10.00 8.91 10.00 8.91 7.55 7.45 6.63 6.63 6.17 6.15 6.16 6.37 6.55 5.48 6.50	Com/F Z 14.00 11.30 10.26 10.00 9.32 8.91 8.90 8.44 8.24 7.85 7.45 7.85 6.31 6.30 6.17 6.15 6.15 6.15 5.48 5.30 5.10	0.00 0.16 0.55 0.43 0.36 0.33 0.30 0.33 0.32 0.37 0.30 0.40 0.40 0.40 0.40 0.40 0.40 0.40	Depth 9 (mm) 1130 (mm) 113	We (2 + 2) 13.25% 13.25		Frequency Response of (TBM-Cestaff116 ECI, Wavegood 1.5 1.5 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	E-Field Ner/R20) 8000 2000 2400 2600 2600 3000 3000
Parameters Calibration P f (MHx) ⁶ 180 180 180 180 180 180 2800 2800 2800	s of Probe: Transetor Deterministry Relative Permissivity* 80.8 41.9 41.9 41.0 90.8 90.8 90.2 90.8 90.2 90.9 90.2 90.7 97.9 97.7 97.9 97.9 97.7 97.9 98.7 98.7 98.9 98.7 98.9 98.7 98.9 98.7 98.9	Conductivity (Sim) Conductivity (Sim) 0.76 0.87 0.87 0.89 0.90 1.37 1.40 1.49 1.49 1.49 1.89 2.71 2.91 3.32 3.53 3.63 3.64 4.94 4.94 4.96 4.99 4.99 4.99 4.99	Com# X Co	Osmulati 14.08 11.90 10.00 10.00 10.00 8.91 10.00 8.91 7.55 7.45 6.63 6.63 6.17 6.15 6.16 6.37 6.55 5.48 6.50	Com/F Z 14.00 11.30 10.26 10.00 9.32 8.91 8.90 8.44 8.24 7.85 7.45 7.85 6.31 6.30 6.17 6.15 6.15 6.15 5.48 5.30 5.10	0.00 0.16 0.55 0.43 0.36 0.33 0.30 0.33 0.32 0.37 0.30 0.40 0.40 0.40 0.40 0.40 0.40 0.40	Depth 9 (mm) 1130 (mm) 113	We (2 + 2) 13.25% 13.25		Frequency Response of (TBM-Cestaff116 ECI, Wavegood 1.5 1.5 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	E-Field Ner/R20) 8000 2800 2400 2800 3800 3000 3000
Parameters Calibration P (MP40) ⁶ 150 150 150 450 150 450 1700 2500 2500 2500 2500 3500 3500 3500 4000 4000 4000 4000 4000 4000 4000 4000 5000 5000 5000 5000 5000 5000	s of Probe: Parameter Determinish Promote September 1	Conductivity (Sim) Conductivity (Sim) 0.76 0.87 0.87 0.89 0.90 1.37 1.40 1.49 1.49 1.49 1.89 2.71 2.91 3.32 3.53 3.63 3.64 4.94 4.94 4.96 4.99 4.99 4.99 4.99	Com# X Co	Osmulati 14.08 11.90 10.00 10.00 10.00 8.91 10.00 8.91 7.55 7.45 6.63 6.63 6.17 6.15 6.16 6.37 6.55 5.48 6.50	Com/F Z 14.00 11.30 10.26 10.00 9.32 8.91 8.90 8.44 8.24 7.85 7.45 7.85 6.31 6.30 6.17 6.15 6.15 6.15 5.48 5.30 5.10	0.00 0.16 0.55 0.43 0.36 0.33 0.30 0.33 0.32 0.37 0.30 0.40 0.40 0.40 0.40 0.40 0.40 0.40	Depth 9 (mm) 1130 (mm) 113	We (2 + 2) 13.25% 13.25		Frequency Response of (TBM-Cestaff116 ECI, Wavegood 1.5 1.5 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	E-Field Ner/R20) 8000 2800 2800 2800 3000 3000
Parameters Calibration P r (MM4x) ⁶ 150 150 450 450 1750 1850 1900 2900 2900 2900 3900 3900 3900 3900 4100 4000 4000 4000 4000 4000 4000 55000 55000 55000 55000 55000	8 of Probe: Parameter Determination Parameter Determination Parameter Determination Parameter Determination Parameter Determination Parameter Determination 46.3 46.9 46.9 46.1 46.1 46.1 46.0 99.8 99.2 99.2 99.2 99.2 99.2 99.2 99.2	Conductivity (Sim) Conductivity (Sim) 0.76 0.87 0.87 0.89 0.90 1.37 1.40 1.49 1.49 1.49 1.89 2.71 2.91 3.32 3.53 3.63 3.64 4.94 4.94 4.96 4.99 4.99 4.99 4.99	Com# X Co	© Simulative (1997) 144.08 (1997) 144.08 (1997) 144.08 (1997) 144.08 (1997) 144.08 (1997) 144.08 (1997) 145.08 (19	Com/F Z 14.00 11.30 10.26 10.00 9.32 8.91 8.90 8.44 8.24 7.85 7.45 7.85 6.31 6.30 6.17 6.15 6.15 6.15 5.48 5.30 5.10	0.00 0.16 0.55 0.43 0.36 0.33 0.30 0.33 0.32 0.37 0.30 0.40 0.40 0.40 0.40 0.40 0.40 0.40	Depth 9 (mm) 1130 (mm) 113	We (2 + 2) 13.25% 13.25		Frequency Response of (TBM-Cestaff116 ECI, Wavegood 1.5 1.5 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	E-Field Ner/R20) 8000 2800 2800 2800 3000 3000

Page: 24 of 25

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from excising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, Any unauthorized alteration, forgery or falsification of the content or appearance of this document to unduly and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CM.Doccheck@ass.com"

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755)83071443, or email: CM. Doccheck@gs.com
No.10 Weiye Road, Development Zone, Kunshan, Jiangsu, China 215300 ti(86-512)57355888 fi(86-512)57370818 www.sgsgroup.com.cn
中国・江苏・昆山开发区伟业路10号 邮编: 215300 ti(86-512)57355888 fi(86-512)57370818 sgs.china@sgs.com

Page: 25 of 25

4 Impedance and return loss

Dipole CLA150 SN 4025										
Head Liquid										
Date of Measurement	Date of Measurement Return Loss(dB) Δ % Impedance (Ω) $\Delta\Omega$									
2021/4/26	-31.4	/	47.8	/						
	Dipole D450V3 SN 1103									
Head Liquid										
Date of Measurement	Date of Measurement Return Loss(dB) Δ % Impedance (Ω) $\Delta\Omega$									
2021/4/21	-23	/	57.1	/						

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from excising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, foregery or falsification of the content or appearance of this document to unduly and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CAD.Doccheck@ags.com"

or email: <u>CN.Doccheck@sgs.com</u> No.10 Weiye Road, Development Zone, Kunshan, Jiangsu, China 215300 (186-512) 57355888 f(86-512) 57370818 www.sgsgroup.com.cn 中国・江苏・昆山开发区伟业路10号 邮编: 215300 (186-512) 57355888 f(86-512) 57370818 sgs.china@sgs.com