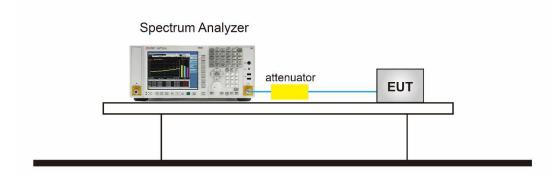


Report No.: AGC11775240906FR01 Page 70 of 76

12. Frequency Separation Measurement

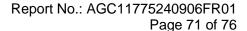
12.1 Provisions Applicable

When the power is less than 0.125W: The minimum permissible channel separation for this system is 2/3 the value of the 20dB BW.

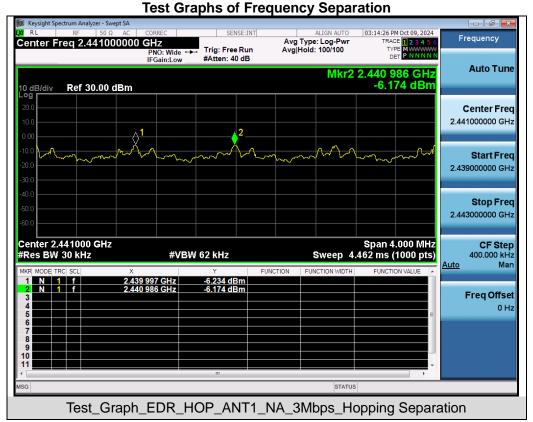

When the power is less than 1W: The minimum permissible channel separation for this system is 20dB BW.

12.2 Measurement Procedure

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:


- 1. Span: Wide enough to capture the peaks of two adjacent channels.
- 2. RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- 3. Video (or average) bandwidth (VBW) ≥ RBW.
- 4. Sweep: Auto.
- 5. Detector function: Peak.
- 6. Trace: Max hold. g) Allow the trace to stabilize.
- 7. Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

12.3 Measurement Setup (Block Diagram of Configuration)



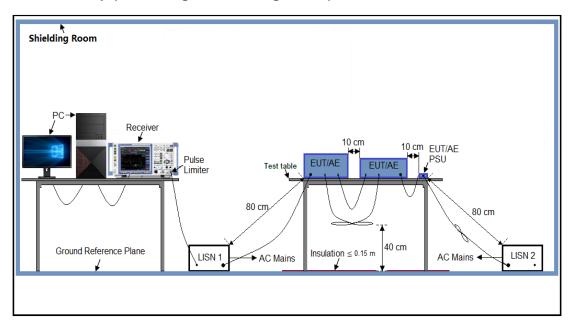
12.4 Measurement Result

	Test Data of Frequency Separa	tion	
Test Mode	Channel Separation (MHz)	Limits (MHz)	Pass or Fail
8DPSK Hopping	0.989	≥0.863	Pass

Note: All mode rates are tested and evaluated, 8DPSK modulated 3DH5 mode is the worst case and documented in the report.

Report No.: AGC11775240906FR01 Page 72 of 76

13. AC Power Line Conducted Emission Test


13.1 Measurement Limit

Fraguency	Maximum RF Line Voltage			
Frequency	Q.P. (dBµV)	Average (dBµV)		
150kHz~500kHz	66-56	56-46		
500kHz~5MHz	56	46		
5MHz~30MHz	60	50		

Note:

- 1. The lower limit shall apply at the transition frequency.
- 2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

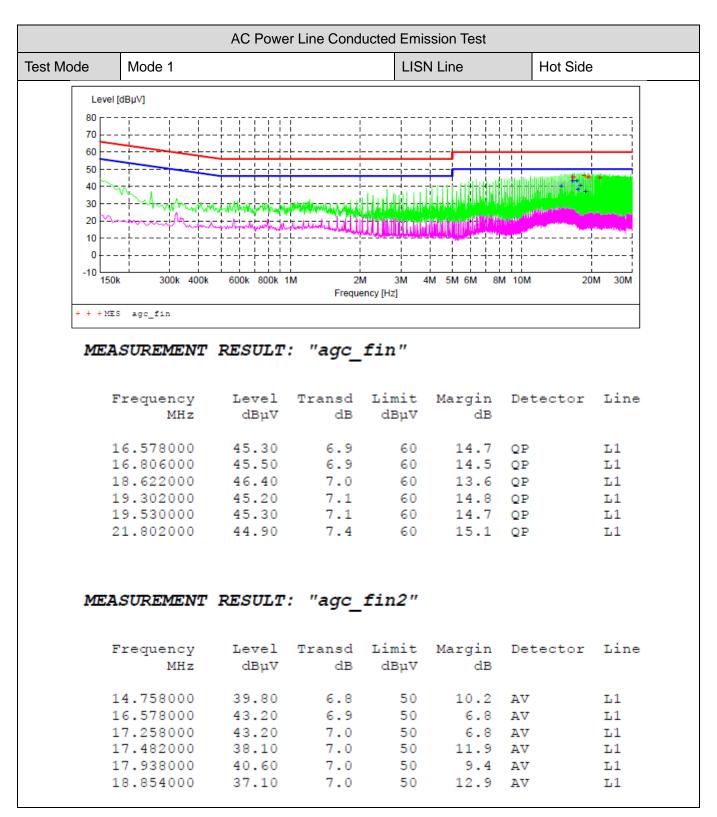
13.2 Measurement Setup (Block Diagram of Configuration)

Report No.: AGC11775240906FR01

Page 73 of 76

13.3 Preliminary Procedure of Line Conducted Emission Test

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. All support equipment received AC120V/60Hz power from a LISN, if any.
- 5. The EUT received DC 5V power from adapter which received AC120V/60Hz power from a LISN.
- 6. The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.
- 9. The test mode(s) were scanned during the preliminary test.


Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.

13.4 Final Procedure of Line Conducted Emission Test

- EUT and support equipment was set up on the test bench as per step 2 of the preliminary test.
- 2. A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less 2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.
- 3. The test data of the worst case condition(s) was reported on the Summary Data page.

13.5 Measurement Results

RESULT: Pass

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/

		AC Pow	er Line Con	ducted Em	nission Test		
Mode	Mode 1			LIS	SN Line	Neutral	Side
Lev	el [dBµV]						
80 -							
70 -			- -		-		
60			 	-		1 1 1	
50 40	<u>~</u> [-			والمالية المالية المراوية والمراوية والمراوية	laus de contra
30 -		ا المحالم الأصواد المحاط عد	i i Leba Wesakada	حملنا والمقانع	الأوان لينابل أباب	Millian hinds and a second	+ * +
20 -	Many Many	· · · · · · · · · · · · · · · · · · ·	ckaded till		Maria de la Companya	H-garawa	and the same of the
10 -				the of the tribution		1-11	
0-		+					
-10 L	50k 300k 400)k 600k 800k	1M	2M 3M	4M 5M 6M	8M 10M	20M 30M
			Freq	uency [Hz]			
+ + + 1	MES agc_fin						
MEA	SUREMENT	RESULT	: "agc_	fin"			
F	requency	Level	Transd	Limit	Margin	Detector	Line
	MHz	dΒμV	dB	dΒμV	dB		
	7.174000	44.00	7.0	60	16.0	QP	N
1	.7.174000 .7.390000	44.00 38.90	7.0 7.0	60 60	16.0 21.1	QP	N N
1 1	.7.174000 .7.390000	44.00 38.90 41.40	7.0 7.0 7.0	60 60 60	16.0 21.1 18.6	QP QP	N N
1 1 2	.7.174000 .7.390000 .7.610000	44.00 38.90 41.40 44.80	7.0 7.0	60 60	16.0 21.1 18.6 15.2	QP	N N
1 1 2 2	.7.174000 .7.390000	44.00 38.90 41.40	7.0 7.0 7.0 7.6	60 60 60	16.0 21.1 18.6	QP QP QP	N N N
1 1 2 2	7.174000 7.390000 7.610000 22.930000 88.802000	44.00 38.90 41.40 44.80 45.50	7.0 7.0 7.0 7.6 8.3	60 60 60 60	16.0 21.1 18.6 15.2 14.5	QP QP QP QP	N N N N
1 1 2 2	7.174000 7.390000 7.610000 22.930000 88.802000	44.00 38.90 41.40 44.80 45.50	7.0 7.0 7.0 7.6 8.3	60 60 60 60	16.0 21.1 18.6 15.2 14.5	QP QP QP QP	N N N N
1 1 2 2 2	7.174000 7.390000 7.610000 22.930000 88.802000	44.00 38.90 41.40 44.80 45.50 45.60	7.0 7.0 7.6 8.3 8.3	60 60 60 60 60	16.0 21.1 18.6 15.2 14.5	QP QP QP QP	N N N N
1 1 2 2 2	7.174000 7.390000 7.610000 22.930000 88.802000	44.00 38.90 41.40 44.80 45.50 45.60	7.0 7.0 7.6 8.3 8.3	60 60 60 60	16.0 21.1 18.6 15.2 14.5	QP QP QP QP	N N N N
1 1 2 2 2 2 MEA	7.174000 7.390000 7.610000 2.930000 8.802000 9.046000	44.00 38.90 41.40 44.80 45.50 45.60	7.0 7.0 7.6 8.3 8.3	60 60 60 60 60	16.0 21.1 18.6 15.2 14.5 14.4	QP QP QP QP QP	N N N N
1 1 2 2 2 2 MEA	7.174000 7.390000 7.610000 22.930000 88.802000 9.046000	44.00 38.90 41.40 44.80 45.50 45.60	7.0 7.0 7.6 8.3 8.3	60 60 60 60 60 60	16.0 21.1 18.6 15.2 14.5 14.4	QP QP QP QP QP	N N N N
1 1 2 2 2 2 MEA	7.174000 7.390000 7.610000 2.930000 8.802000 9.046000	44.00 38.90 41.40 44.80 45.50 45.60	7.0 7.0 7.6 8.3 8.3	60 60 60 60 60 60	16.0 21.1 18.6 15.2 14.5 14.4	QP QP QP QP QP	N N N N
1 2 2 2 2 MEA	7.174000 7.390000 7.610000 22.930000 8.802000 9.046000 SUREMENT	44.00 38.90 41.40 44.80 45.50 45.60 RESULT	7.0 7.0 7.6 8.3 8.3 **.3	60 60 60 60 60 60	16.0 21.1 18.6 15.2 14.5 14.4	QP QP QP QP QP	N N N N N
1 1 2 2 2 2 MEA 1	7.174000 7.390000 7.610000 2.930000 8.802000 9.046000 SUREMENT	44.00 38.90 41.40 44.80 45.50 45.60 RESULT	7.0 7.0 7.6 8.3 8.3 *** *** *** *** *** *** *** *** *** **	60 60 60 60 60 60 60 Limit dBµV	16.0 21.1 18.6 15.2 14.5 14.4 Margin dB	QP QP QP QP QP P	N N N N N
1 1 2 2 2 2 2 4 MEA 1	7.174000 7.390000 7.610000 2.930000 8.802000 9.046000 SUREMENT Trequency MHz 5.414000 8.842000	44.00 38.90 41.40 44.80 45.50 45.60 RESULT	7.0 7.0 7.6 8.3 8.3 *******************************	60 60 60 60 60 60 60 50 50	16.0 21.1 18.6 15.2 14.5 14.4 Margin dB 9.4 14.1	QP QP QP QP QP P Detector	N N N N N N
1 1 2 2 2 2 2 2 1 1 1 1 2	7.174000 7.390000 7.610000 2.930000 8.802000 9.046000 SUREMENT Trequency MHz 5.414000 8.842000	44.00 38.90 41.40 44.80 45.50 45.60 RESULT Level dBµV 40.60 35.90 37.90	7.0 7.0 7.6 8.3 8.3 *** *** *** *** *** *** *** *** *** **	60 60 60 60 60 60 60 50 50 50	16.0 21.1 18.6 15.2 14.5 14.4 Margin dB	QP QP QP QP QP AV AV	N N N N N
1 1 2 2 2 2 2 2 3 4 4 4 1 1 1 2 2 2 2 2 2 2 2 2 2 3 1 1 1 1 1 1	7.174000 7.390000 7.610000 2.930000 8.802000 9.046000 SUREMENT Trequency MHz 5.414000 8.842000 6.478000	44.00 38.90 41.40 44.80 45.50 45.60 RESULT Level dBµV 40.60 35.90 37.90 38.70	7.0 7.0 7.6 8.3 8.3 *******************************	60 60 60 60 60 60 50 50 50	16.0 21.1 18.6 15.2 14.5 14.4 Margin dB 9.4 14.1 12.1	QP QP QP QP QP QP AV AV AV	N N N N N N

RESULT: Pass

Report No.: AGC11775240906FR01

Page 76 of 76

Appendix I: Photographs of Test Setup

Refer to the Report No.: AGC11775240906AP01

Appendix II: Photographs of Test EUT

Refer to the Report No.: AGC11775240906AP02

----End of Report----

Conditions of Issuance of Test Reports

- 1. All samples and goods are accepted by the Attestation of Global Compliance (Shenzhen) Co., Ltd (the "Company") solely for testing and reporting in accordance with the following terms and conditions. The company provides its services on the basis that such terms and conditions constitute express agreement between the company and any person, firm or company requesting its services (the "Clients").
- 2. Any report issued by Company as a result of this application for testing services (the "Report") shall be issued in confidence to the Clients and the Report will be strictly treated as such by the Company. It may not be reproduced either in its entirety or in part and it may not be used for advertising or other unauthorized purposes without the written consent of the Company. The Clients to whom the Report is issued may, however, show or send it, or a certified copy thereof prepared by the Company to its customer, supplier or other persons directly concerned. The Company will not, without the consent of the Clients, enter into any discussion or correspondence with any third party concerning the contents of the Report, unless required by the relevant governmental authorities, laws or court orders.
- 3. The Company shall not be called or be liable to be called to give evidence or testimony on the Report in a court of law without its prior written consent, unless required by the relevant governmental authorities, laws or court orders.
- 4. In the event of the improper use of the report as determined by the Company, the Company reserves the right to withdraw it, and to adopt any other additional remedies which may be appropriate.
- 5. Samples submitted for testing are accepted on the understanding that the Report issued cannot form the basis of, or be the instrument for, any legal action against the Company.
- 6. The Company will not be liable for or accept responsibility for any loss or damage however arising from the use of information contained in any of its Reports or in any communication whatsoever about its said tests or investigations.
- 7.Clients wishing to use the Report in court proceedings or arbitration shall inform the Company to that effect prior to submitting the sample for testing.
- 8. The Company is not responsible for recalling the electronic version of the original report when any revision is made to them. The Client assumes the responsibility to providing the revised version to any interested party who uses them.
- 9. Subject to the variable length of retention time for test data and report stored hereinto as otherwise specifically required by individual accreditation authorities, the Company will only keep the supporting test data and information of the test report for a period of six years. The data and information will be disposed of after the aforementioned retention period has elapsed. Under no circumstances shall we provide any data and information which has been disposed of after retention period. Under no circumstances shall we be liable for damage of any kind, including (but not limited to) compensatory damages, lost profits, lost data, or any form of special, incidental, indirect, consequential or punitive damages of any kind, whether based on breach of contract of warranty, tort (including negligence), product liability or otherwise, even if we are informed in advance of the possibility of such damages.