|                                                 | - ie                                                                                                                                                                 | 1C                                   |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
|                                                 | 24                                                                                                                                                                   | Report No.: DACE241101016RL004       |
|                                                 | RF TEST REPORT                                                                                                                                                       | 2                                    |
|                                                 | For                                                                                                                                                                  |                                      |
| DAC                                             | VITRINEMEDIA Enterprise                                                                                                                                              |                                      |
|                                                 | Product Name: LIGHT&PLA                                                                                                                                              | Y                                    |
|                                                 | Test Model(s).: 0106_2_00                                                                                                                                            |                                      |
|                                                 |                                                                                                                                                                      |                                      |
|                                                 |                                                                                                                                                                      |                                      |
| Report Reference No.                            | : DACE241101016RL004                                                                                                                                                 |                                      |
| FCC ID                                          | : 2AR5X-0106                                                                                                                                                         |                                      |
|                                                 |                                                                                                                                                                      |                                      |
| Applicant's Name                                | : VITRINEMEDIA Enterprise                                                                                                                                            |                                      |
| Address                                         | : 50 route de la Reine 92100 Boulogne-Billa                                                                                                                          | ancourt FRANCE                       |
| Testing Laboratory                              | : Shenzhen DACE Testing Technology Co.,                                                                                                                              | 1 +                                  |
| Address                                         | <ul> <li>302, Building H1, &amp; 1/F., Building H, Hong</li> <li>Tangtou Community, Shiyan Subdistrict, B<br/>Guangdong, China</li> </ul>                            | fa Science & Technology Park,        |
| Test Specification Standard                     | : 47 CFR Part 15E                                                                                                                                                    |                                      |
| Date of Receipt                                 | : November 1, 2024                                                                                                                                                   |                                      |
| Date of Test                                    | : November 1, 2024 to November 30, 2024                                                                                                                              |                                      |
| Data of Issue                                   | : November 30, 2024                                                                                                                                                  |                                      |
| Result                                          | : Pass                                                                                                                                                               |                                      |
| Testing Technology Co., Ltd. T                  | eproduced except in full, without the written appr<br>his document may be altered or revised by Shen<br>hall be noted in the revision section of the docun<br>sample | zhen DACE Testing Technology         |
|                                                 |                                                                                                                                                                      |                                      |
| 102. Building H1. & 1/F., Building H. Hongfa Sc | ence & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an                                                                                                | District, Shenzhen, Guangdong, China |

Ì

Ì

DAG



# Apply for company information

| Applicant's Name               | : | VITRINEMEDIA Enterprise                                |  |
|--------------------------------|---|--------------------------------------------------------|--|
| Address                        | : | 50 route de la Reine 92100 Boulogne-Billancourt FRANCE |  |
| Product Name                   | : | LIGHT&PLAY                                             |  |
| Test Model(s)                  | : | 0106_2_00                                              |  |
| Series Model(s)                | è | 0106_2_01; 0106_3_00; 0106_3_01; 0106_4_00; 0106_4_01; |  |
| 20                             | Ľ | 0106_5_00; 0106_5_01; 0106_7_00; 0106_7_01             |  |
| Test Specification Standard(s) | : | 47 CFR Part 15E                                        |  |

#### NOTE1:

DN

DA(

200

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

NC

Compiled by:

Keren Huang

Keren Huang / Test Engineer November 30, 2024

Supervised by:

Ben Tang

Ben Tang / Project Engineer

November 30, 2024

Approved by:

NC

Machael Mrs

Machael Mo / Manager November 30, 2024

)AC

NC

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613

Web: http://www.dace-lab.com

)DE

E-mail: service@dace-lab.com

Page 2 of 130

|    |          | V                               |
|----|----------|---------------------------------|
|    |          | Issue Date<br>November 30, 2024 |
| 4  | 2P       |                                 |
|    |          | - DF                            |
| ×C |          |                                 |
|    |          |                                 |
|    |          |                                 |
|    |          |                                 |
|    |          |                                 |
|    |          |                                 |
|    |          |                                 |
|    |          |                                 |
|    |          |                                 |
|    |          |                                 |
|    |          |                                 |
|    |          |                                 |
|    |          |                                 |
|    |          |                                 |
|    |          |                                 |
|    |          |                                 |
|    |          |                                 |
|    |          |                                 |
|    | ion REPO |                                 |

#### Report No.: DACE241101016RL004

# CONTENTS

|                      | CONTENTS                     |  |
|----------------------|------------------------------|--|
| VE                   |                              |  |
|                      |                              |  |
|                      |                              |  |
|                      | ST RESULT                    |  |
|                      | ON                           |  |
|                      | TION                         |  |
|                      | DEVICE (EUT)<br>TEST MODES   |  |
|                      | SUPPORT UNITS                |  |
|                      | ED DURING THE TEST           |  |
|                      | HE MEASUREMENT UNCERTAINTY   |  |
|                      | F TESTING LABORATORY         |  |
|                      | TTER TEST RESULTS (RF)       |  |
|                      | SSION AT AC POWER LINE       |  |
|                      |                              |  |
|                      | Operation:                   |  |
|                      | up Diagram:<br>a:            |  |
|                      | .a.                          |  |
|                      | Operation:                   |  |
| 3.2.1 E.0.1. C       | up Diagram:                  |  |
|                      | a:                           |  |
| 3.3 EMISSION BANDW   | /IDTH AND OCCUPIED BANDWIDTH |  |
| 3.3.1 E.U.T. C       | Operation:                   |  |
| 3.3.2 Test Set       | up Diagram:                  |  |
|                      | a:                           |  |
| 3.4 MAXIMUM CONDU    | CTED OUTPUT POWER            |  |
|                      | Operation:                   |  |
|                      | up Diagram:                  |  |
|                      | a:                           |  |
|                      | L DENSITY                    |  |
|                      | Operation:                   |  |
|                      | up Diagram:<br>a:            |  |
|                      | sions (Radiated)             |  |
|                      | operation:                   |  |
| 3.6.2 Test Dat       | a:                           |  |
|                      | IISSION LIMITS (BELOW 1GHZ)  |  |
|                      | peration:                    |  |
|                      | a:                           |  |
|                      | IISSION LIMITS (ABOVE 1GHz)  |  |
|                      | Operation:                   |  |
|                      | a:                           |  |
|                      | <u></u>                      |  |
| 5 PHOTOS OF THE EUT. |                              |  |
| APPENDIX-5.2GWIFI    |                              |  |
| 126DB AND 99% B      | EMISSION BANDWIDTH           |  |

Report No.: DACE241101016RL004

| 2. DUTY CYCLE                     | 62 |
|-----------------------------------|----|
| 3. MAXIMUM CONDUCTED OUTPUT POWER |    |
| 4. Power Spectral Density         | 72 |
| 5. BANDEDGE                       |    |
| 6. Spurious Emission              |    |
| 7. FREQUENCY STABILITY            |    |
| APPENDIX-5.8GWIFI                 |    |
| 16DB EMISSION BANDWIDTH           |    |
| 226DB AND 99% EMISSION BANDWIDTH  |    |
| 3. DUTY CYCLE                     |    |
| 4. MAXIMUM CONDUCTED OUTPUT POWER |    |
| 5. POWER SPECTRAL DENSITY         |    |
| 6. BANDEDGE                       |    |
| 7. Spurious Emission              |    |
| 8. FREQUENCY STABILITY            |    |

)De

DAG

)De

DAG

)De

2

)AC

DAG

,De

DAG

DAG

3

DAG

DAG

DAE

V1.0

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Web: http://www.dace-lab.com E-mail: service@dace-lab.com

)AC

)AC

0

Page 5 of 130

DAG

C

ø

#### **TEST SUMMARY** 1

## 1.1 Test Standards

DAG

The tests were performed according to following standards:

47 CFR Part 15E: Unlicensed National Information Infrastructure Devices

## 1.2 Summary of Test Result

DAG

)DE

|                                             | •                  |                                                                          |                                                                                          |        |
|---------------------------------------------|--------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------|
| Item                                        | Standard           | Method                                                                   | Requirement                                                                              | Result |
| Conducted Emission at AC power line         | 47 CFR Part<br>15E | ANSI C63.10-2013<br>section 6.2                                          | 47 CFR Part 15.207(a)                                                                    | Pass   |
| Duty Cycle                                  | 47 CFR Part<br>15E | ANSI C63.10-2013<br>section 12.2 (b)                                     | . C.                                                                                     | Pass   |
| Emission bandwidth and occupied bandwidth   | 47 CFR Part<br>15E | ANSI C63.10-2013,<br>section 6.9 & 12.4<br>KDB 789033 D02, Clause<br>C.2 | U-NII 1, U-NII 2A, U-NII 2C: No<br>limits, only for report use.<br>47 CFR Part 15.407(e) | Pass   |
| Maximum conducted output power              | 47 CFR Part<br>15E | ANSI C63.10-2013, section 12.3                                           | 47 CFR Part 15.407(a)(1)(iv)<br>47 CFR Part 15.407(a)(3)(i)                              | Pass   |
| Power spectral density                      | 47 CFR Part<br>15E | ANSI C63.10-2013, section 12.5                                           | 47 CFR Part 15.407(a)(1)(iv)<br>47 CFR Part 15.407(a)(3)(i)                              | Pass   |
| Band edge emissions<br>(Radiated)           | 47 CFR Part<br>15E | ANSI C63.10-2013,<br>section 12.7.4, 12.7.6,<br>12.7.7                   | 47 CFR Part 15.407(b)(1)<br>47 CFR Part 15.407(b)(4)<br>47 CFR Part 15.407(b)(10)        | Pass   |
| Undesirable emission<br>limits (below 1GHz) | 47 CFR Part<br>15E | ANSI C63.10-2013,<br>section 12.7.4, 12.7.5                              | 47 CFR Part 15.407(b)(9)                                                                 | Pass   |
| Undesirable emission<br>limits (above 1GHz) | 47 CFR Part<br>15E | ANSI C63.10-2013,<br>section 12.7.4, 12.7.6,<br>12.7.7                   | 47 CFR Part 15.407(b)(1)<br>47 CFR Part 15.407(b)(4)<br>47 CFR Part 15.407(b)(10)        | Pass   |

DAE

)De

24C

1

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

NE

)De

|          | V1.0                                               | Report No.: DACE2411010                                                                                                                                                                                                                                       |
|----------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2        | GENERAL INF                                        |                                                                                                                                                                                                                                                               |
| 2<br>2.1 |                                                    |                                                                                                                                                                                                                                                               |
|          | Applicant's Name                                   | : VITRINEMEDIA Enterprise                                                                                                                                                                                                                                     |
|          | Address                                            | : 50 route de la Reine 92100 Boulogne-Billancourt FRANCE                                                                                                                                                                                                      |
|          |                                                    |                                                                                                                                                                                                                                                               |
|          | Manufacturer                                       | : Huizhou Vitrinemedia Optoelectronic Technology Co., Ltd                                                                                                                                                                                                     |
|          | Address                                            | : Address: Building #4,Desheng Industrial Park, Changbu Village, Xinxu Huiyang District, Huizhou City, China                                                                                                                                                  |
| 2.2      | 2 Description of Dev                               | vice (EUT)                                                                                                                                                                                                                                                    |
|          | Product Name:                                      | LIGHT&PLAY                                                                                                                                                                                                                                                    |
|          | Model/Type reference:                              | 0106_2_00                                                                                                                                                                                                                                                     |
|          | Series Model:                                      | 0106 2 01; 0106 3 00; 0106 3 01; 0106 4 00; 0106 4 01;                                                                                                                                                                                                        |
|          |                                                    | 0106 5 00; 0106 5 01; 0106 7 00; 0106 7 01                                                                                                                                                                                                                    |
|          | Model Difference:                                  | Their electrical circuit designs, layouts, components used and internal wirin layouts are identical, only the product sizes are different.                                                                                                                    |
|          | Trade Mark:                                        | VITRINEMEDIA                                                                                                                                                                                                                                                  |
|          | Power Supply:                                      | DC 24V from adapter                                                                                                                                                                                                                                           |
|          | DAG                                                | U-NII Band 1: 5180MHz to 5240MHz;<br>U-NII Band 3: 5745MHz to 5825MHz;<br>802.11n(HT40)/ac(HT40)(HE40):<br>U-NII Band 1: 5190MHz to 5230MHz;<br>U-NII Band 3: 5755MHz to 5795MHz;<br>802.11ac(HT80)(HE80):<br>U-NII Band 1: 5210MHz;<br>U-NII Band 3: 5775MHz |
|          | Number of Channels:                                | 802.11a/n(HT20)/ac(HT20):<br>U-NII Band 1: 4;<br>U-NII Band 3: 5;<br>802.11n(HT40)/ac(HT40)(HE40):<br>U-NII Band 1: 2;<br>U-NII Band 3: 2;<br>802.11ac(HT80)(HE80):<br>U-NII Band 1: 1;<br>U-NII Band 3: 1                                                    |
|          | Modulation Type:                                   | 802.11a: OFDM(BPSK, QPSK, 16QAM, 64QAM);<br>802.11n: OFDM (BPSK, QPSK, 16QAM, 64QAM);<br>802.11ac: OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM);                                                                                                                   |
|          | Antenna Type:                                      | External                                                                                                                                                                                                                                                      |
|          | Antenna Gain:                                      | 3dBi 🥢                                                                                                                                                                                                                                                        |
|          | Hardware Version:                                  | V1.0                                                                                                                                                                                                                                                          |
|          | Software Version:                                  | V1.0                                                                                                                                                                                                                                                          |
|          | Remark:The Antenna Ga<br>related calculations asso | ain is supplied by the customer.DACE is not responsible for this data and ociated with it                                                                                                                                                                     |
|          |                                                    |                                                                                                                                                                                                                                                               |

)D

Report No.: DACE241101016RL004

#### **Operation Frequency each of channel**

| 802.11a/n(HT20)/ac(HT20) |              |              |  |  |
|--------------------------|--------------|--------------|--|--|
|                          | U-NII Band 1 | U-NII Band 3 |  |  |
| Channel                  | Frequency    | Frequency    |  |  |
| 1                        | 5180 MHz     | 5745 MHz     |  |  |
| 2                        | 5200 MHz     | 5765 MHz     |  |  |
| 3                        | 5220 MHz     | 5785 MHz     |  |  |
| 4                        | 5240 MHz     | 5805 MHz     |  |  |
| 5                        | 1            | 5825 MHz     |  |  |

#### 802.11n(HT40)/ac(HT40)

|         | U-NII Band 1 | U-NII Band 3 |
|---------|--------------|--------------|
| Channel | Frequency    | Frequency    |
| 1       | 5190 MHz 📃   | 5755 MHz     |
| 2       | 5230 MHz     | 5795 MHz     |

#### 802.11ac(HT80)

|         | U-NII Band 1 | U-NII Band 3 |
|---------|--------------|--------------|
| Channel | Frequency    | Frequency    |
| 1       | 5210 MHz     | 5775 MHz     |

#### Note:

DAC

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

| 802.11a/n(HT20)/ac(HT20) |                 |                 |  |
|--------------------------|-----------------|-----------------|--|
|                          | U-NII Band 1    | U-NII Band 3    |  |
| Test channel             | Frequency (MHz) | Frequency (MHz) |  |
| Lowest channel           | 5180 MHz        | 5745 MHz        |  |
| Middle channel           | 5200 MHz        | 5785 MHz        |  |
| Highest channel          | 5240 MHz        | 5825 MHz        |  |

| 802.11n(HT40)/ac(HT40) |                 |                 |  |  |
|------------------------|-----------------|-----------------|--|--|
|                        | U-NII Band 1    | U-NII Band 3    |  |  |
| Test channel           | Frequency (MHz) | Frequency (MHz) |  |  |
| Lowest channel         | 5190 MHz        | 5755 MHz        |  |  |
| Highest channel        | 5230 MHz        | 5795 MHz        |  |  |

| C              | 802.11ac(HT80)  |                 |
|----------------|-----------------|-----------------|
|                | U-NII Band 1    | U-NII Band 3    |
| Test channel   | Frequency (MHz) | Frequency (MHz) |
| Middle channel | 5210 MHz        | 5775 MHz        |

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Web: http://www.dace-lab.com E-mail: service@dace-lab.com

Page 8 of 130

Report No.: DACE241101016RL004

## 2.3 Description of Test Modes

DΔG

| No  | Title         | Description                                                                                                                                                                                                                                                                        |
|-----|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TM1 | 802.11a mode  | Keep the EUT in continuously transmitting mode with 802.11a<br>modulation type at lowest, middle and highest channel. All data rates<br>has been tested and found the data rate @ 6Mbps is the worst case.<br>Only the data of worst case is recorded in the report.               |
| TM2 | 802.11n mode  | Keep the EUT in continuously transmitting mode with 802.11n<br>modulation type at lowest, middle and highest channel. All bandwidth<br>and data rates has been tested and found the data rate @ MCS0 is<br>the worst case. Only the data of worst case is recorded in the report.  |
| TM3 | 802.11ac mode | Keep the EUT in continuously transmitting mode with 802.11ac<br>modulation type at lowest, middle and highest channel. All bandwidth<br>and data rates has been tested and found the data rate @ MCS0 is<br>the worst case. Only the data of worst case is recorded in the report. |

Remark:Only the data of the worst mode would be recorded in this report.

## 2.4 Description of Support Units

| Title               | Manufacturer      | Model No.   | Serial No. |
|---------------------|-------------------|-------------|------------|
| AC-DC adapter       | HUAWEI TECHNOLOGY | HW100400C01 | C          |
| - Fauinmente Heed P | The Test          | 20          | Le la      |

## 2.5 Equipments Used During The Test

| Conducted Emission    | Conducted Emission at AC power line |                                                  |                                   |            |              |  |  |  |  |
|-----------------------|-------------------------------------|--------------------------------------------------|-----------------------------------|------------|--------------|--|--|--|--|
| Equipment             | Manufacturer                        | Model No                                         | Inventory No                      | Cal Date   | Cal Due Date |  |  |  |  |
| Power absorbing clamp | SCHWARZ<br>BECK                     | MESS-<br>ELEKTRONIK                              | /                                 | 2024-03-25 | 2025-03-24   |  |  |  |  |
| Electric Network      | SCHWARZ<br>BECK                     | CAT5 8158                                        | CAT5<br>8158#207                  |            | 1            |  |  |  |  |
| Cable                 | SCHWARZ<br>BECK                     | 1                                                | 1                                 | 2024-03-20 | 2025-03-19   |  |  |  |  |
| Pulse Limiter         | SCHWARZ<br>BECK                     | VTSD 9561-F<br>Pulse limiter 10dB<br>Attenuation | 561-G071                          | 2023-12-12 | 2024-12-11   |  |  |  |  |
| 50ΩCoaxial Switch     | Anritsu                             | MP59B                                            | M20531                            | /          | 1            |  |  |  |  |
| Test Receiver         | Rohde &<br>Schwarz                  | ESPI TEST<br>RECEIVER                            | ID:1164.6607K<br>03-102109-<br>MH | 2024-06-12 | 2025-06-11   |  |  |  |  |
| L.I.S.N               | R&S                                 | ESH3-Z5                                          | 831.5518.52                       | 2023-12-12 | 2025-12-11   |  |  |  |  |
| L.I.S.N               | SCHWARZ<br>BECK                     | NSLK 8126                                        | 05055                             | 2024-06-14 | 2025-06-13   |  |  |  |  |
| Pulse Limiter         | CYBERTEK                            | EM5010A                                          | /                                 | 2024-09-27 | 2025-09-26   |  |  |  |  |
| EMI test software     | EZ -EMC                             | EZ                                               | V1.1.42                           |            | 1            |  |  |  |  |

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Web: http://www.dace-lab.com E-mail: service@dace-lab.com

DΔC

2

3

DAG

DAG

DAE

| Power spectral densit<br>Duty Cycle<br>Emission bandwidth a<br>Maximum conducted o | and occupied band                                          | width    |              | DA         | E            |
|------------------------------------------------------------------------------------|------------------------------------------------------------|----------|--------------|------------|--------------|
| Equipment                                                                          | Manufacturer                                               | Model No | Inventory No | Cal Date   | Cal Due Date |
| RF Test Software                                                                   | Tachoy<br>Information<br>Technology(she<br>nzhen) Co.,Ltd. | RTS-01   | V1.0.0       | /          |              |
| Power divider                                                                      | MIDEWEST                                                   | PWD-2533 | SMA-79       | 2023-05-11 | 2026-05-10   |
| RF Sensor Unit                                                                     | Tachoy<br>Information<br>Technology(she<br>nzhen) Co.,Ltd. | TR1029-2 | 000001       | 1          | 1            |
| Wideband radio<br>communication<br>tester                                          | R&S                                                        | CMW500   | 113410       | 2024-06-12 | 2025-06-11   |
| Vector Signal<br>Generator                                                         | Keysight                                                   | N5181A   | MY50143455   | 2023-12-11 | 2024-12-10   |
| Signal Generator                                                                   | Keysight                                                   | N5182A   | MY48180415   | 2023-12-12 | 2024-12-11   |
| Spectrum Analyzer                                                                  | Keysight                                                   | N9020A   | MY53420323   | 2023-12-12 | 2024-12-11   |

)AC

)AC

)DE

DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)AC

)DE

DAG

,DE

Report No.: DACE241101016RL004

1

| Band edge emissions (Radiated)<br>Undesirable emission limits (below 1GHz)<br>Undesirable emission limits (above 1GHz) |                |                  |                            |            |              |  |  |
|------------------------------------------------------------------------------------------------------------------------|----------------|------------------|----------------------------|------------|--------------|--|--|
| Equipment                                                                                                              | Manufacturer   | Model No         | Inventory No               | Cal Date   | Cal Due Date |  |  |
| EMI Test software                                                                                                      | Farad          | EZ -EMC          | V1.1.42                    | /          | /            |  |  |
| Positioning<br>Controller                                                                                              | S MF           | MF-7802          | <u>()</u>                  | /          | /            |  |  |
| Amplifier(18-40G)                                                                                                      | COM-POWER      | AH-1840          | 10100008-1                 | 2022-04-05 | 2025-04-04   |  |  |
| Horn antenna                                                                                                           | COM-POWER      | AH-1840 (18-40G) | 10100008                   | 2023-04-05 | 2025-04-04   |  |  |
| Loop antenna                                                                                                           | ZHINAN         | ZN30900C         | ZN30900C                   | 2024-06-14 | 2026-06-13   |  |  |
| Cable(LF)#2                                                                                                            | Schwarzbeck    | /                | /                          | 2024-02-19 | 2025-02-18   |  |  |
| Cable(LF)#1                                                                                                            | Schwarzbeck    | /                | 1                          | 2024-02-19 | 2025-02-18   |  |  |
| Cable(HF)#2                                                                                                            | Schwarzbeck    | AK9515E          | 96250                      | 2024-03-20 | 2025-03-19   |  |  |
| Cable(HF)#1                                                                                                            | Schwarzbeck    | SYV-50-3-1       |                            | 2024-03-20 | 2025-03-19   |  |  |
| Power amplifier(LF)                                                                                                    | Schwarzbeck    | BBV9743          | 9743-151                   | 2024-06-12 | 2025-06-11   |  |  |
| Power amplifier(HF)                                                                                                    | Schwarzbeck    | BBV9718          | 9718-282                   | 2024-06-12 | 2025-06-11   |  |  |
| Wideband radio<br>communication<br>tester                                                                              | R&S            | CMW500           | 113410                     | 2024-06-12 | 2025-06-11   |  |  |
| Spectrum Analyzer                                                                                                      | R&S            | FSP30            | 1321.3008K40<br>-101729-jR | 2024-06-12 | 2025-06-11   |  |  |
| Test Receiver                                                                                                          | R&S            | ESCI 3           | 1166.5950K03<br>-101431-Jq | 2024-06-13 | 2025-06-12   |  |  |
| Horn Antenna                                                                                                           | Sunol Sciences | DRH-118          | A091114                    | 2023-05-13 | 2025-05-12   |  |  |
| Broadband Antenna                                                                                                      | Sunol Sciences | JB6 Antenna      | A090414                    | 2024-09-28 | 2026-09-27   |  |  |

DAG

DE

DAG

V1.0

DΔC

2

3

DAE

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)DE

)AC

0

DAE

Page 11 of 130

)DE

DAC

## 2.6 Statement Of The Measurement Uncertainty

| Test Item                                         | Measurement Uncertainty                        |
|---------------------------------------------------|------------------------------------------------|
| Conducted Disturbance (0.15~30MHz)                | ±3.41dB                                        |
| Duty cycle                                        | ±3.1%                                          |
| Occupied Bandwidth                                | ±3.63%                                         |
| RF conducted power                                | ±0.733dB                                       |
| RF power density                                  | ±0.234%                                        |
| Radiated Emission (Above 1GHz)                    | ±5.46dB                                        |
| Radiated Emission (Below 1GHz)                    | ±5.79dB                                        |
| Note: (1) This upportainty represents an expanded | upcortainty expressed at approximately the 05% |

Note: (1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

## 2.7 Identification of Testing Laboratory

| Company Name:Shenzhen DACE Testing Technology Co., Ltd.Address:102, Building H1, & 1/F., Building H, Hongfa Science & Technology F<br>Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, G<br>ChinaPhone Number:+86-13267178997Fax Number:86-755-29113252Identification of the Responsible Testing LocationCompany Name:Shenzhen DACE Testing Technology Co., Ltd.Address:102, Building H1, & 1/F., Building H, Hongfa Science & Technology F<br>Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, G<br>ChinaPhone Number:+86-13267178997Fax Number:*86-13267178997Fax Number:*86-13267178997Fax Number:*86-13267178997Fax Number:*86-755-29113252 |    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Address:Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, G<br>ChinaPhone Number:+86-13267178997Fax Number:86-755-29113252Identification of the Responsible Testing LocationCompany Name:Company Name:Shenzhen DACE Testing Technology Co., Ltd.Address:102, Building H1, & 1/F., Building H, Hongfa Science & Technology F<br>Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, G<br>ChinaPhone Number:+86-13267178997                                                                                                                                                                                                                           |    |
| Fax Number:86-755-29113252Identification of the Responsible Testing LocationCompany Name:Shenzhen DACE Testing Technology Co., Ltd.Address:102, Building H1, & 1/F., Building H, Hongfa Science & Technology F<br>Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, G<br>ChinaPhone Number:+86-13267178997                                                                                                                                                                                                                                                                                                                                                        |    |
| Identification of the Responsible Testing Location         Company Name:       Shenzhen DACE Testing Technology Co., Ltd.         Address:       102, Building H1, & 1/F., Building H, Hongfa Science & Technology F<br>Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, G<br>China         Phone Number:       +86-13267178997                                                                                                                                                                                                                                                                                                                                  |    |
| Company Name:Shenzhen DACE Testing Technology Co., Ltd.Address:102, Building H1, & 1/F., Building H, Hongfa Science & Technology F<br>Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, G<br>ChinaPhone Number:+86-13267178997                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| Address:102, Building H1, & 1/F., Building H, Hongfa Science & Technology F<br>Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, G<br>ChinaPhone Number:+86-13267178997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| Address:       Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, G         China       +86-13267178997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| Fax Number: 86-755-29113252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| FCC Registration Number: 0032847402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| Designation Number: CN1342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
| Test Firm Registration 778666 778666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| A2LA Certificate Number: 6270.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SP |

#### 2.8 Announcement

(1) The test report reference to the report template version v0.

(2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.

(3) The test report is invalid if there is any evidence and/or falsification.

(4) This document may not be altered or revised in any way unless done so by DACE and all revisions are duly noted in the revisions section.

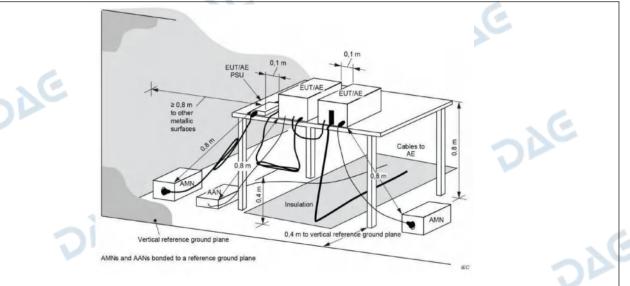
(5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

(6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

#### **Radio Spectrum Matter Test Results (RF)** 3

# 3.1 Conducted Emission at AC power line

V1.0

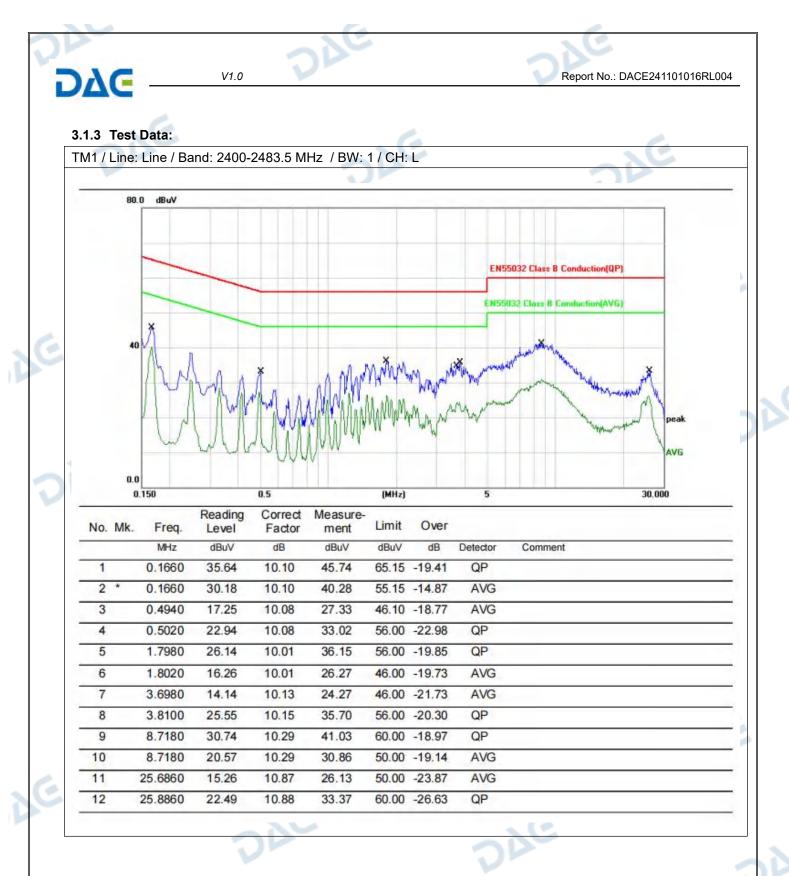

| Test Requirement:     | 47 CFR Part 15.207(a)              |                        | V         |
|-----------------------|------------------------------------|------------------------|-----------|
| Test Limit:           | Frequency of emission (MHz)        | Conducted limit (dBµV) |           |
|                       | G                                  | Quasi-peak             | Average   |
|                       | 0.15-0.5                           | 66 to 56*              | 56 to 46* |
|                       | 0.5-5                              | 56                     | 46        |
|                       | 5-30                               | 60                     | 50        |
|                       | *Decreases with the logarithm of t | he frequency.          |           |
| Test Method:          | ANSI C63.10-2013 section 6.2       |                        |           |
| 3.1.1 E.U.T. Operatio | n                                  |                        |           |
| Operating Environmen  | +-                                 | - (*                   |           |

DAG

| Operating Envir | onment: |     |           |      |                       |         |   |
|-----------------|---------|-----|-----------|------|-----------------------|---------|---|
| Temperature:    | 23.3 °C | _   | Humidity: | 51 % | Atmospheric Pressure: | 102 kPa |   |
| Pretest mode:   |         | TM1 |           |      |                       |         |   |
| Final test mode | :       | TM1 |           |      |                       |         |   |
| 2 4 2 Test Cat  |         |     |           |      |                       |         | , |

## 3.1.2 Test Setup Diagram:

DAG




AC

)AC

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 E-mail: service@dace-lab.com Web: http://www.dace-lab.com

NC

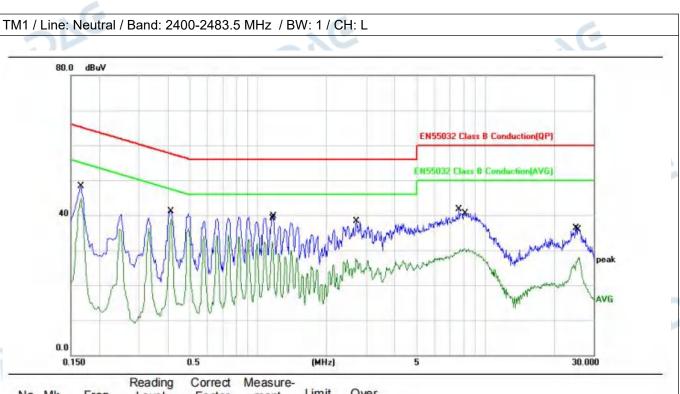


)De

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613

Web: http://www.dace-lab.com

246


E-mail: service@dace-lab.com

24C

DAG

DAG

Report No.: DACE241101016RL004



| No. | Mk. | Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |         |  |
|-----|-----|---------|------------------|-------------------|------------------|-------|--------|----------|---------|--|
|     |     | MHz     | dBuV             | dB                | dBuV             | dBuV  | dB     | Detector | Comment |  |
| 1   |     | 0.1660  | 38.16            | 10.10             | 48.26            | 65.15 | -16.89 | QP       |         |  |
| 2   |     | 0.1660  | 34.78            | 10.10             | 44.88            | 55.15 | -10.27 | AVG      |         |  |
| 3   |     | 0.4140  | 30.98            | 10.07             | 41.05            | 57.57 | -16.52 | QP       |         |  |
| 4   | *   | 0.4140  | 28.87            | 10.07             | 38.94            | 47.57 | -8.63  | AVG      |         |  |
| 5   |     | 1.1539  | 22.44            | 10.07             | 32.51            | 46.00 | -13.49 | AVG      |         |  |
| 6   |     | 1.1660  | 29.70            | 10.07             | 39.77            | 56.00 | -16.23 | QP       |         |  |
| 7   |     | 2.6980  | 17.65            | 10.04             | 27.69            | 46.00 | -18.31 | AVG      |         |  |
| 8   |     | 2.7180  | 28.19            | 10.04             | 38.23            | 56.00 | -17.77 | QP       |         |  |
| 9   |     | 7.6700  | 31.41            | 10.26             | 41.67            | 60.00 | -18.33 | QP       |         |  |
| 10  |     | 8.0900  | 20.14            | 10.28             | 30.42            | 50.00 | -19.58 | AVG      |         |  |
| 11  |     | 25.1060 | 25.46            | 10.84             | 36.30            | 60.00 | -23.70 | QP       |         |  |
| 12  |     | 25.9020 | 17.00            | 10.88             | 27.88            | 50.00 | -22.12 | AVG      |         |  |
| -   |     |         |                  |                   |                  |       | _      |          |         |  |

)DE

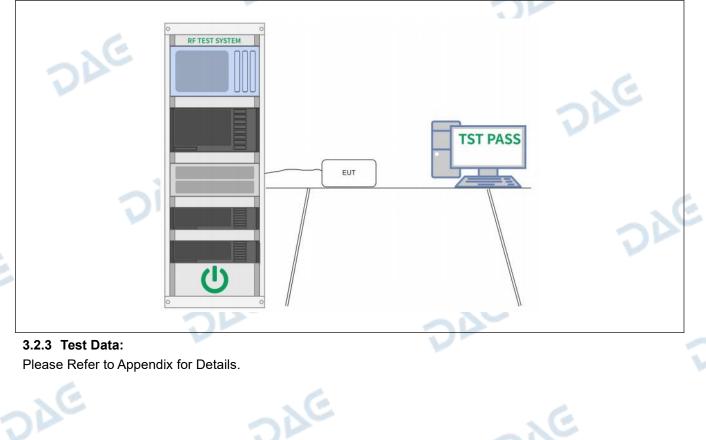
102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Web: http://www.dace-lab.com E-mail: service@dace-lab.com

DAG

Page 15 of 130

Report No.: DACE241101016RL004

## 3.2 Duty Cycle


DVC

| Test Requirement: | All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.                                                                                                                                                                                             |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Limit:       | No limits, only for report use.                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Test Method:      | ANSI C63.10-2013 section 12.2 (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Procedure:        | <ul> <li>i) Set the center frequency of the instrument to the center frequency of the transmission.</li> <li>ii) Set RBW &gt;= EBW if possible; otherwise, set RBW to the largest available value.</li> <li>iii) Set VBW &gt;= RBW.</li> <li>iv) Set detector = peak.</li> <li>v) The zero-span measurement method shall not be used unless both RBW and VBW are &gt; 50/T, where T is defined in item a1) of 12.2, and the number of sweep points across duration T exceeds 100.</li> </ul> |

#### 3.2.1 E.U.T. Operation:

| Operating Envir                | onment: |      |           |      | V                     |         |  |
|--------------------------------|---------|------|-----------|------|-----------------------|---------|--|
| Temperature:                   | 23.3 °C |      | Humidity: | 51 % | Atmospheric Pressure: | 102 kPa |  |
| Pretest mode:                  |         | TM1, | TM2, TM3  |      |                       |         |  |
| Final test mode: TM1, TM2, TM3 |         |      | C         |      |                       |         |  |
| 0.0.0 Test Ost                 |         |      |           |      |                       |         |  |

## 3.2.2 Test Setup Diagram:



)AC

DγG

Report No.: DACE241101016RL004

1

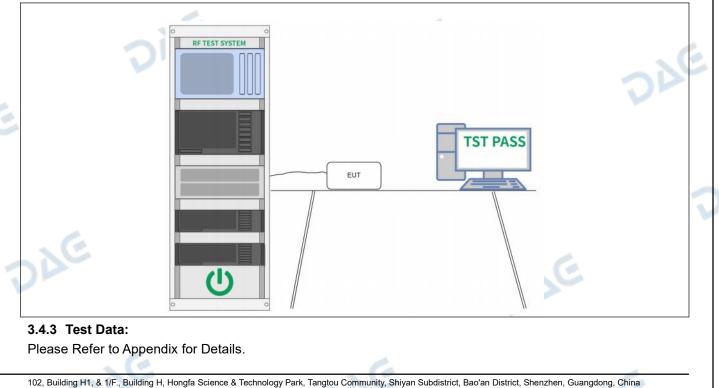
## 3.3 Emission bandwidth and occupied bandwidth

| Test Requirement: | U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -                 | U-NII 3, U-NII 4: 47 CFR Part 15.407(e)                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Test Limit:       | U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 200               | U-NII 3, U-NII 4: Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.                                                                                                                                                                                                                                                                                                                               |
| Test Method:      | ANSI C63.10-2013, section 6.9 & 12.4<br>KDB 789033 D02, Clause C.2                                                                                                                                                                                                                                                                                                                                                                                                           |
| Procedure:        | <ul> <li>Emission bandwidth:</li> <li>a) Set RBW = approximately 1% of the emission bandwidth.</li> <li>b) Set the VBW &gt; RBW.</li> <li>c) Detector = peak.</li> <li>d) Trace mode = max hold.</li> <li>e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission.</li> <li>Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.</li> </ul> |
| C                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   | Occupied bandwidth:<br>a) The instrument center frequency is set to the nominal EUT channel center<br>frequency. The<br>frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times<br>the OBW.                                                                                                                                                                                                                                                        |
| DAG               | <ul> <li>b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW,</li> <li>and VBW shall be approximately three times the RBW, unless otherwise specified by the</li> </ul>                                                                                                                                                                                                                                                               |
|                   | applicable requirement.<br>c) Set the reference level of the instrument as required, keeping the signal from<br>exceeding the                                                                                                                                                                                                                                                                                                                                                |
|                   | maximum input mixer level for linear operation. In general, the peak of the spectral envelope                                                                                                                                                                                                                                                                                                                                                                                |
| 20                | shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.                                                                                                                                                                                                                                                                                                                                                                      |
|                   | d) Step a) through step c) might require iteration to adjust within the specified range.                                                                                                                                                                                                                                                                                                                                                                                     |
|                   | <ul> <li>e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode</li> </ul>                                                                                                                                                                                                                                                                                                                                                           |
|                   | shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.                                                                                                                                                                                                                                                                                                                                                                       |
|                   | <ul> <li>f) Use the 99% power bandwidth function of the instrument (if available) and report<br/>the measured<br/>bandwidth.</li> </ul>                                                                                                                                                                                                                                                                                                                                      |
| . 6               | <ul> <li>g) If the instrument does not have a 99% power bandwidth function, then the trace data points are</li> </ul>                                                                                                                                                                                                                                                                                                                                                        |
| AC                | recovered and directly summed in linear power terms. The recovered amplitude data points,                                                                                                                                                                                                                                                                                                                                                                                    |
|                   | beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached;                                                                                                                                                                                                                                                                                                                                                                           |
|                   | that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the                                                                                                                                                                                                                                                                                                                                                                                |
| . 6               | total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is                                                                                                                                                                                                                                                                                                                                                                              |

|   |                                                     | 5                                  |                                                                                                                                                                    |
|---|-----------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 |                                                     | 246                                | Ne                                                                                                                                                                 |
| 1 | ΟΔ <b>Ε</b> ——                                      | /1.0                               | Report No.: DACE241101016RL004                                                                                                                                     |
|   |                                                     |                                    |                                                                                                                                                                    |
|   | DAG                                                 | instrument                         | be reported by providing plot(s) of the measuring le units per division shall be clearly labeled.                                                                  |
| E | DAG                                                 | frequencies associated with the tw | ) ≥ 3 >= RBW.<br>If the emission that is constrained by the<br>vo outermost amplitude points (upper and lower<br>by 6 dB relative to the maximum level measured in |
| ſ | 3.3.1 E.U.T. Operation:                             |                                    | 2                                                                                                                                                                  |
|   | Operating Environment:                              |                                    |                                                                                                                                                                    |
|   | Temperature: 23.3 °C                                | Humidity: 51 %                     | Atmospheric Pressure: 102 kPa                                                                                                                                      |
| 0 | Pretest mode:                                       | TM1, TM2, TM3                      |                                                                                                                                                                    |
|   | Final test mode:                                    | TM1, TM2, TM3                      | 1 C                                                                                                                                                                |
| Ŀ | 3.3.2 Test Setup Diagra                             |                                    | TST PASS                                                                                                                                                           |
| 1 | <b>3.3.3 Test Data:</b><br>Please Refer to Appendix | for Details.                       | DIE                                                                                                                                                                |

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAG


Report No.: DACE241101016RL004

#### 3.4 Maximum conducted output power Test Requirement: 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(3)(i) Test Limit: For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations. Test Method: ANSI C63.10-2013, section 12.3 Procedure: Refer to ANSI C63.10-2013 section 12.3

#### 3.4.1 E.U.T. Operation:

| Temperature:23.3 °CHumidity:51 %Atmospheric Pressure:102 kPaPretest mode:TM1, TM2, TM3Final test mode:TM1, TM2, TM3 | Operating Environment: |         |              |         |   |                       |         |  |
|---------------------------------------------------------------------------------------------------------------------|------------------------|---------|--------------|---------|---|-----------------------|---------|--|
|                                                                                                                     | Temperature:           | 23.3 °C | Humidit      | y: 51 % | C | Atmospheric Pressure: | 102 kPa |  |
| Final test mode: TM1, TM2, TM3                                                                                      | Pretest mode:          |         | TM1, TM2, TM | 13      |   |                       | NE      |  |
|                                                                                                                     | Final test mode:       |         | TM1, TM2, TM | 13      |   |                       | JE      |  |

#### 3.4.2 Test Setup Diagram:



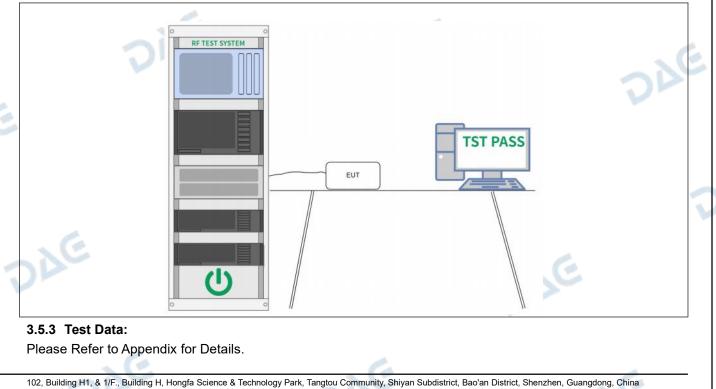
Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Report No.: DACE241101016RL004

## 3.5 Power spectral density


DAG

| shall not exceed                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| shall not exceed                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| maximum powe<br>directional gain<br>For the band 5.7<br>exceed 30 dBm<br>If transmitting an<br>maximum powe<br>directional gain<br>devices operatin<br>gain greater tha<br>conducted powe<br>Fixed, point-to-p<br>omnidirectional<br>same informatio<br>professionally in | ntennas of directional gain greater than 6 dBi are used, the<br>r spectral density shall be reduced by the amount in dB that the<br>of the antenna exceeds 6 dBi.<br>725-5.850 GHz, the maximum power spectral density shall not<br>in any 500-kHz band.<br>Intennas of directional gain greater than 6 dBi are used, the<br>r spectral density shall be reduced by the amount in dB that the<br>of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII<br>ing in this band may employ transmitting antennas with directional<br>n 6 dBi without any corresponding reduction in transmitter<br>er.<br>boint operations exclude the use of point-to-multipoint systems,<br>applications, and multiple collocated transmitters transmitting the<br>on. The operator of the U-NII device, or if the equipment is<br>isstalled, the installer, is responsible for ensuring that systems<br>gain directional antennas are used exclusively for fixed, point-to- |
| Test Method: ANSI C63.10-20                                                                                                                                                                                                                                               | 013, section 12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Procedure: Refer to ANSI C                                                                                                                                                                                                                                                | 63.10-2013, section 12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

#### 3.5.1 E.U.T. Operation:

| Operating Environment: |         |      |           |        |   |                       |         |  |
|------------------------|---------|------|-----------|--------|---|-----------------------|---------|--|
| Temperature:           | 23.3 °C |      | Humidity: | 51 % 👞 | C | Atmospheric Pressure: | 102 kPa |  |
| Pretest mode:          |         | TM1, | TM2, TM3  |        |   |                       |         |  |
| Final test mode:       |         | TM1, | TM2, TM3  | V      |   |                       | JE      |  |

#### 3.5.2 Test Setup Diagram:



Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

DAG

Report No.: DACE241101016RL004

| est Requirement: | 47 CFR Part 15.407(b)(1)<br>47 CFR Part 15.407(b)(4)<br>47 CFR Part 15.407(b)(10)                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |             |  |  |  |  |  |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------|--|--|--|--|--|
| est Limit:       | For transmitters operati<br>5.15-5.35 GHz band sh                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |             |  |  |  |  |  |
|                  | All emissions shall be li<br>or below the band edge<br>below the band edge, a<br>linearly to a level of 15.<br>from 5 MHz above or be<br>dBm/MHz at the band e                                                                                                                                                                                                                                                                                                                                             | For transmitters operating solely in the 5.725-5.850 GHz band:<br>All emissions shall be limited to a level of $-27$ dBm/MHz at 75 MHz or more above<br>or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or<br>below the band edge, and from 25 MHz above or below the band edge increasing<br>linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and<br>from 5 MHz above or below the band edge increasing linearly to a level of 27<br>dBm/MHz at the band edge. |                   |             |  |  |  |  |  |
|                  | MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MHz               | GHz         |  |  |  |  |  |
|                  | 0.090-0.110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16.42-16.423                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 399.9-410         | 4.5-5.15    |  |  |  |  |  |
|                  | <sup>1</sup> 0.495-0.505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16.69475-16.69525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 608-614           | 5.35-5.46   |  |  |  |  |  |
|                  | 2.1735-2.1905                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16.80425-16.80475                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 960-1240          | 7.25-7.75   |  |  |  |  |  |
|                  | 4.125-4.128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25.5-25.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1300-1427         | 8.025-8.5   |  |  |  |  |  |
|                  | 4.17725-4.17775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 37.5-38.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1435-1626.5       | 9.0-9.2     |  |  |  |  |  |
|                  | 4.20725-4.20775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 73-74.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1645.5-<br>1646.5 | 9.3-9.5     |  |  |  |  |  |
|                  | 6.215-6.218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 74.8-75.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1660-1710         | 10.6-12.7   |  |  |  |  |  |
|                  | 6.26775-6.26825                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 108-121.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1718.8-<br>1722.2 | 13.25-13.4  |  |  |  |  |  |
|                  | 6.31175-6.31225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 123-138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2200-2300         | 14.47-14.5  |  |  |  |  |  |
|                  | 8.291-8.294                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 149.9-150.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2310-2390         | 15.35-16.2  |  |  |  |  |  |
|                  | 8.362-8.366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 156.52475-<br>156.52525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2483.5-2500       | 17.7-21.4   |  |  |  |  |  |
|                  | 8.37625-8.38675                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 156.7-156.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2690-2900         | 22.01-23.12 |  |  |  |  |  |
|                  | 8.41425-8.41475                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 162.0125-167.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3260-3267         | 23.6-24.0   |  |  |  |  |  |
|                  | 12.29-12.293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 167.72-173.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3332-3339         | 31.2-31.8   |  |  |  |  |  |
|                  | 12.51975-12.52025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 240-285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3345.8-3358       | 36.43-36.5  |  |  |  |  |  |
|                  | 12.57675-12.57725                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 322-335.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3600-4400         | (2)         |  |  |  |  |  |
|                  | 13.36-13.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |             |  |  |  |  |  |
|                  | <sup>1</sup> Until February 1, 1999<br><sup>2</sup> Above 38.6                                                                                                                                                                                                                                                                                                                                                                                                                                             | ), this restricted band s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | hall be 0.490-0.4 | 510 MHz.    |  |  |  |  |  |
|                  | The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |             |  |  |  |  |  |
|                  | measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |             |  |  |  |  |  |

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Web: http://www.dace-lab.com

E-mail: service@dace-lab.com

Page 21 of 130

Report No.: DACE241101016RL004

1

| V1 | .0 |
|----|----|

٩.

DAG

|              | Frequency (MHz)                                                                                                                                                                                                                                                                                                                  | Field strength<br>(microvolts/meter)                                                                                                                                                                                                                                                                                                                                                                                             | Measurement<br>distance<br>(meters)                                                                                                                                                                                                           |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | 0.009-0.490                                                                                                                                                                                                                                                                                                                      | 2400/F(kHz)                                                                                                                                                                                                                                                                                                                                                                                                                      | 300                                                                                                                                                                                                                                           |
|              | 0.490-1.705                                                                                                                                                                                                                                                                                                                      | 24000/F(kHz)                                                                                                                                                                                                                                                                                                                                                                                                                     | 30                                                                                                                                                                                                                                            |
|              | 1.705-30.0                                                                                                                                                                                                                                                                                                                       | 30                                                                                                                                                                                                                                                                                                                                                                                                                               | 30                                                                                                                                                                                                                                            |
|              | 30-88                                                                                                                                                                                                                                                                                                                            | 100 **                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                             |
|              | 88-216                                                                                                                                                                                                                                                                                                                           | 150 **                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                             |
|              | 216-960                                                                                                                                                                                                                                                                                                                          | 200 **                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                             |
|              |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                               |
|              | Above 960                                                                                                                                                                                                                                                                                                                        | 500                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                                                                                                                                                             |
|              | radiators operating under<br>54-72 MHz, 76-88 MHz, 1<br>these frequency bands is<br>and 15.241.                                                                                                                                                                                                                                  | baragraph (g), fundamental em<br>this section shall not be locate<br>74-216 MHz or 470-806 MHz.<br>permitted under other sections<br>we, the tighter limit applies at th                                                                                                                                                                                                                                                         | ed in the frequency bands<br>However, operation within<br>of this part, e.g., §§ 15.23                                                                                                                                                        |
|              | The emission limits show<br>employing a CISPR quas<br>110–490 kHz and above                                                                                                                                                                                                                                                      | n in the above table are based<br>i-peak detector except for the f<br>1000 MHz. Radiated emission<br>ents employing an average dete                                                                                                                                                                                                                                                                                              | on measurements<br>frequency bands 9–90 kHz,<br>limits in these three bands                                                                                                                                                                   |
| Test Method: | ANSI C63.10-2013, section                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                               |
| Procedure:   | Above 1GHz:                                                                                                                                                                                                                                                                                                                      | 511 12.7.4, 12.7.0, 12.7.7                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                               |
|              | was mounted on the top of<br>c. The antenna height is we<br>determine the maximum we<br>polarizations of the antenne<br>d. For each suspected end<br>the antenna was tuned to<br>below 30MHz, the antenne<br>was turned from 0 degree<br>e. The test-receiver syste<br>Bandwidth with Maximum<br>f. If the emission level of the | ters away from the interference<br>of a variable-height antenna tow<br>varied from one meter to four m<br>value of the field strength. Both<br>na are set to make the measur<br>hission, the EUT was arranged<br>heights from 1 meter to 4 met<br>a was tuned to heights 1 mete<br>to 360 degrees to find the m<br>m was set to Peak Detect Fund<br>Hold Mode.<br>he EUT in peak mode was 100<br>uld be stopped and the peak var | wer.<br>heters above the ground to<br>a horizontal and vertical<br>rement.<br>to its worst case and then<br>ers (for the test frequency of<br>r) and the rotatable table<br>aximum reading.<br>ction and Specified<br>dB lower than the limit |
|              | reported. Otherwise the e<br>tested one by one using p<br>a data sheet.<br>g. Test the EUT in the low<br>h. The radiation measured<br>Transmitting mode, and fo                                                                                                                                                                  | missions that did not have 10d<br>beak or average method as spe<br>rest channel, the middle chann<br>ments are performed in X, Y, Z<br>bund the X axis positioning whi                                                                                                                                                                                                                                                           | IB margin would be re-<br>ecified and then reported in<br>el, the Highest channel.<br>axis positioning for<br>ich it is the worst case.                                                                                                       |
|              | Remark:<br>1. Level= Read Level+ Ca<br>2. Scan from 18GHz to 40<br>points marked on above points<br>testing, so only above points<br>emissions from the radiation<br>need not be reported.<br>3. As shown in this section                                                                                                        | es until all frequencies measur<br>able Loss+ Antenna Factor- Pro<br>DGHz, the disturbance above 1<br>plots are the highest emissions<br>nts had been displayed. The a<br>or which are attenuated more t<br>n, for frequencies above 1GHz<br>However, the peak field streng                                                                                                                                                      | eamp Factor<br>8GHz was very low. The<br>could be found when<br>mplitude of spurious<br>han 20dB below the limit<br>t, the field strength limits ar                                                                                           |

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Report No.: DACE241101016RL004

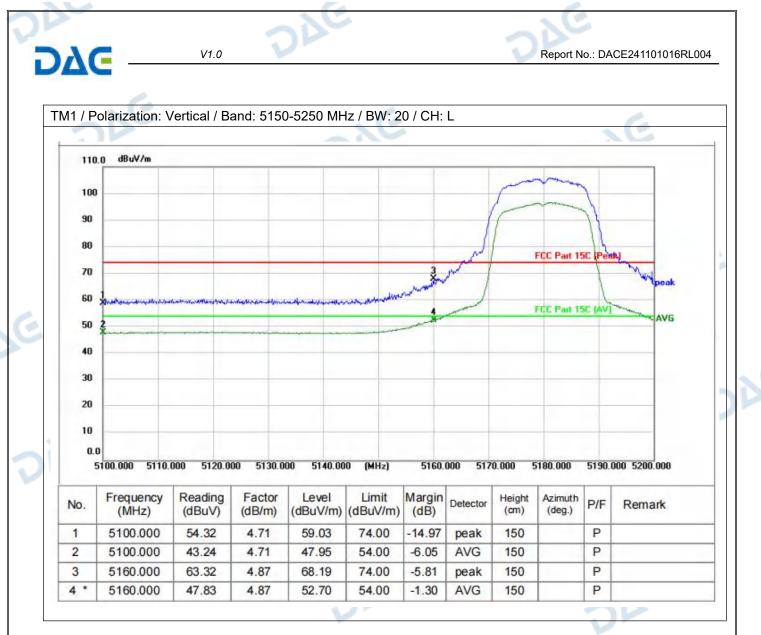
under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report. 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

#### 3.6.1 E.U.T. Operation:

DA

| Operating Environment: |         |      |           |      |  |                       |         |      |
|------------------------|---------|------|-----------|------|--|-----------------------|---------|------|
| Temperature:           | 23.3 °C |      | Humidity: | 51 % |  | Atmospheric Pressure: | 102 kPa |      |
| Pretest mode:          |         | TM1, | TM2, TM3  |      |  |                       | •       | - 20 |
| Final test mode:       |         | TM1, | TM2, TM3  |      |  |                       |         | NC   |

#### 3.6.2 Test Data:


NE

TM1 / Polarization: Horizontal / Band: 5150-5250 MHz / BW: 20 / CH: L dBuV/m 110.0 100 90 80 FCC Part 15C 70 60 FCC Part 15C (AV) AVG 50 40 30 20 10 0.0 5190.000 5200.000 5100.000 5110.000 5120.000 5130.000 5140.000 5160.000 5170.000 5180.000 (MHz) Reading Frequency Factor Level Limit Margin Height Azimuth Detector P/F No. Remark (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) (cm) (deg.) P 1 5100.000 48.83 4.71 53.54 74.00 -20.46 150 peak P 2 5100.000 39.02 4.71 43.73 54.00 -10.27 150 AVG 5160.000 60.37 4.87 65.24 74.00 -8.76 150 P 3 peak 46.18 P 4 \* 5160.000 4.87 51.05 54.00 -2.95150 AVG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

NE

)DE



DAE

4

DAG

DAE

2AC

DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAG

DAE

Page 24 of 130

)DE

DAC V1.0 Report No.: DACE241101016RL004 TM1 / Polarization: Horizontal / Band: 5150-5250 MHz / BW: 20 / CH: H dBuV/m 110.0 100 90 80 FCC Part 15C (Peak) 70 60 50 AVG 40 30 20 10 0.0 5290.000 5300.000 5200.000 5210.000 5220.000 5230.000 5240.000 (MHz) 5260.000 5270.000 5280.000 Frequency Reading Factor Level Limit Margin Height Azimuth Detector P/F No. Remark (MHz) (dBuV) (dB/m)(dBuV/m) (dBuV/m) (dB) (cm) (deg.) P 5260.000 62.54 5.15 67.69 74.00 -6.31 150 1 peak 2 5260.000 46.51 5.15 51.66 54.00 -2.34 AVG 150 P P 3 5300.000 53.82 5.26 59.08 74.00 -14.92 peak 150 5300.000 43.32 5.26 54.00 AVG 150 P 4 48.58 -5.42

DAE

٧

4

DAG

DAE

2AC

DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAG

DAE

DE

DAC V1.0 Report No.: DACE241101016RL004 TM1 / Polarization: Vertical / Band: 5150-5250 MHz / BW: 20 / CH: H dBuV/m 110.0 100 90 80 FCC Part 15C (Peak) 70 60 FCC Part 15C (AV) 50 AVG 40 30 20 10 0.0 5200.000 5210.000 5220.000 5230.000 5240.000 (MHz) 5260.000 5270.000 5280.000 5290.000 5300.000 Reading Level Frequency Factor Limit Margin Height Azimuth Detector P/F No. Remark (MHz) (dBuV) (dB/m)(dBuV/m) (dBuV/m) (dB) (cm) (deg.) 1 5260.000 60.91 5.15 66.06 74.00 -7.94 peak 150 P 2 \* 5260.000 48.10 5.15 53.25 54.00 -0.75 AVG 150 P 5300.000 54.23 5.26 74.00 P 3 59.49 -14.51 150 peak 4 5300.000 42.79 5.26 48.05 54.00 -5.95 AVG 150 P

DAE

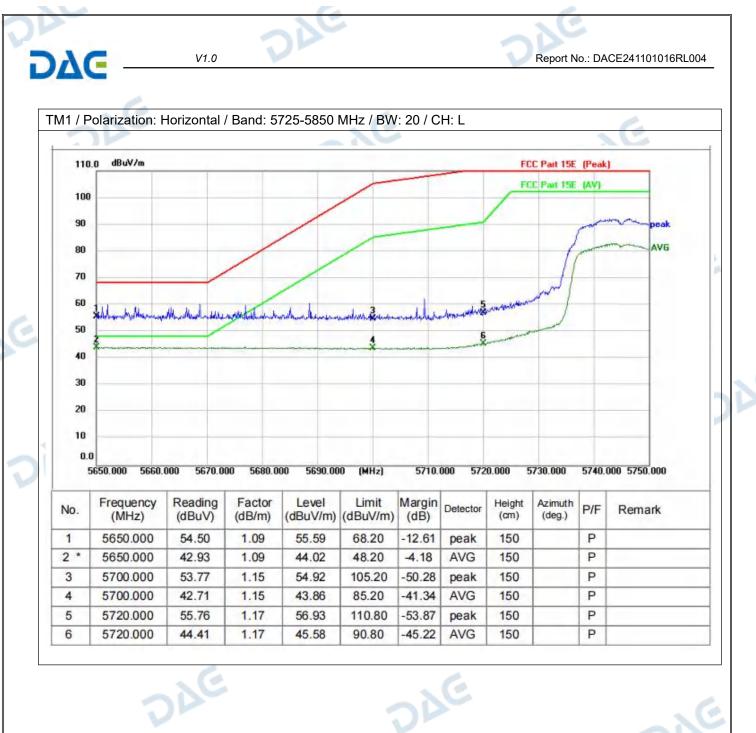
V

4

DAG

DAG

)AC


DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAG

DAG

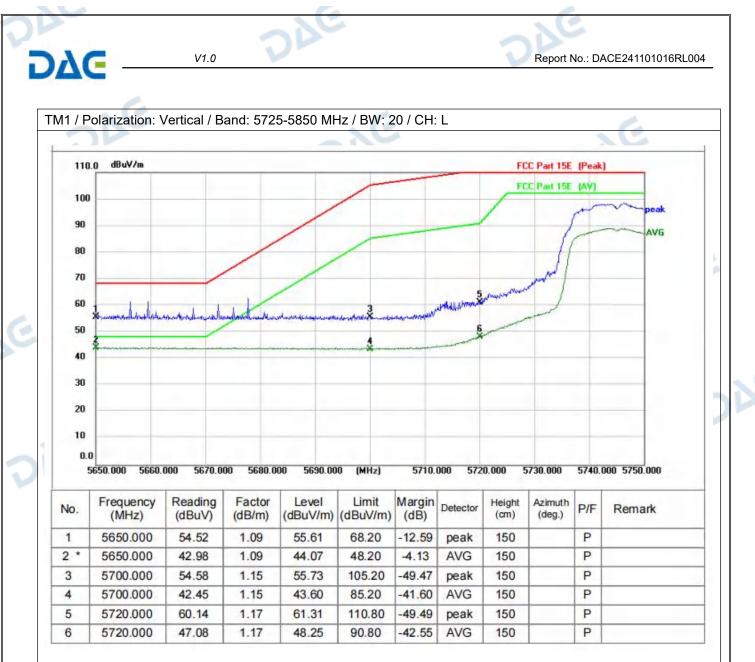
)De



102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAG

)AC


)AC

)AC

DAG

Page 27 of 130

NE

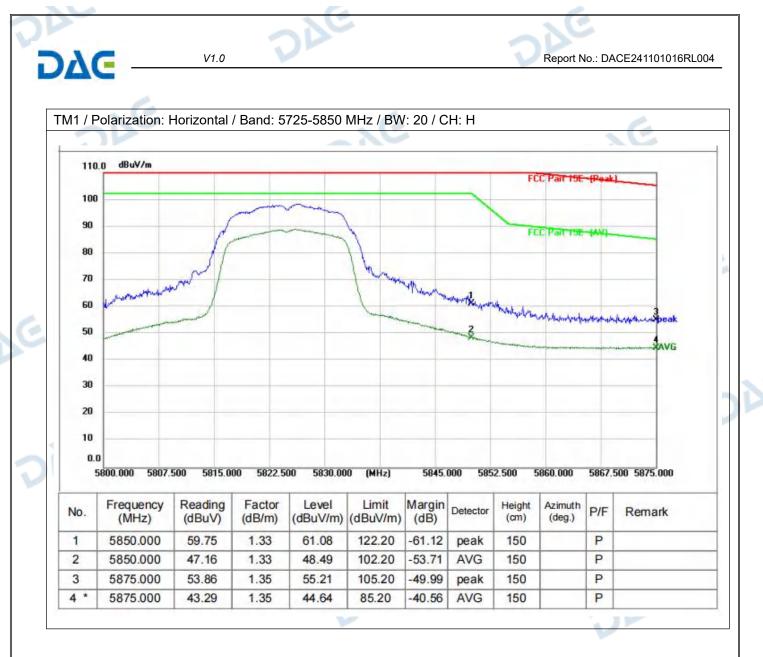


ODE

)AC

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAG


)De

)AC

DAG

Page 28 of 130

NE



DAG

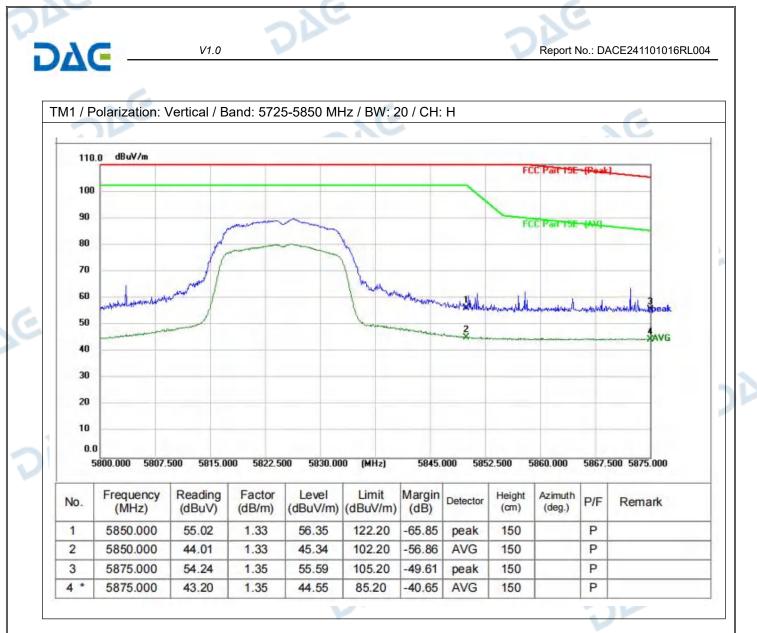
4

DAG

DAG

2AC

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com


DAG

DAG

DAG

Page 29 of 130

DE



DAG

4

DAG

DAE

)AC

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)AC

)AC

DAG

Page 30 of 130

NE

Report No.: DACE241101016RL004

DγG

# 3.7 Undesirable emission limits (below 1GHz)

| Test Requirement: | 47 CFR Part 15.407(b)(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Test Limit:       | Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|                   | Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|                   | Frequency (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Field strength<br>(microvolts/meter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Measurement<br>distance<br>(meters)                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|                   | 0.009-0.490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2400/F(kHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 300                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|                   | 0.490-1.705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24000/F(kHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|                   | 1.705-30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|                   | 30-88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100 **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|                   | 88-216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 150 **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|                   | 216-960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 200 **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|                   | Above 960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| DAG               | these frequency bands is<br>and 15.241.<br>In the emission table above<br>The emission limits shown<br>employing a CISPR quasi<br>110–490 kHz and above 2                                                                                                                                                                                                                                                                                                                                                                                                                           | 74-216 MHz or 470-806 MHz. H<br>permitted under other sections of<br>re, the tighter limit applies at the<br>n in the above table are based o<br>-peak detector except for the free<br>1000 MHz. Radiated emission lir<br>nts employing an average detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | of this part, e.g., §§ 15.23 <sup>-</sup><br>band edges.<br>n measurements<br>equency bands 9–90 kHz,<br>nits in these three bands                                                                                                                                                                                                                                                                                    |  |  |  |  |
| Test Method:      | ANSI C63.10-2013, section 12.7.4, 12.7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Procedure:        | above the ground at a 3 n<br>degrees to determine the<br>b. The EUT was set 3 or 7<br>which was mounted on th<br>c. The antenna height is w<br>determine the maximum w<br>polarizations of the antenn<br>d. For each suspected en<br>the antenna was tuned to<br>below 30MHz, the antenn<br>was turned from 0 degree<br>e. The test-receiver system<br>Bandwidth with Maximum<br>f. If the emission level of t<br>specified, then testing cou-<br>reported. Otherwise the e<br>tested one by one using of<br>data sheet.<br>g. Test the EUT in the low<br>h. The radiation measured | UT was placed on the top of a re-<br>neter semi-anechoic chamber. T<br>position of the highest radiation.<br>0 meters away from the interfer<br>e top of a variable-height antenr<br>aried from one meter to four me<br>value of the field strength. Both h<br>na are set to make the measured<br>hission, the EUT was arranged to<br>heights from 1 meter to 4 meter<br>a was tuned to heights 1 meter)<br>s to 360 degrees to find the maxim<br>m was set to Peak Detect Function<br>Hold Mode.<br>he EUT in peak mode was 10dB<br>udb be stopped and the peak values<br>missions that did not have 10dB<br>uasi-peak method as specified a<br>est channel, the middle channel<br>ments are performed in X, Y, Z a<br>pund the X axis positioning whick | he table was rotated 360<br>ence-receiving antenna,<br>a tower.<br>ters above the ground to<br>horizontal and vertical<br>ment.<br>to its worst case and then<br>s (for the test frequency o<br>and the rotatable table<br>kimum reading.<br>ion and Specified<br>b lower than the limit<br>ues of the EUT would be<br>margin would be re-<br>and then reported in a<br>, the Highest channel.<br>xis positioning for |  |  |  |  |
| .e                | i. Repeat above procedur<br>Remark:<br>1. Level= Read Level+ Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | es until all frequencies measured<br>able Loss+ Antenna Factor- Prea<br>Community, Shiyan Subdistrict, Bao'an District, S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | d was complete.<br>amp Factor                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, ChinaWeb: http://www.dace-lab.comTel: +86-755-23010613E-mail: service@dace-lab.comPage 31 of 130

2. Scan from 9kHz to 30MHz, the disturbance below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

3. The disturbance below 1GHz was very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

#### Above 1GHz:

a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be retested one by one using peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the middle channel, the Highest channel.

h. The radiation measurements are performed in X. Y. Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. i. Repeat above procedures until all frequencies measured was complete. Remark:

1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report. 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

#### 3.7.1 E.U.T. Operation:

| Operating Environment: |         |              |         |                       |         |  |  |
|------------------------|---------|--------------|---------|-----------------------|---------|--|--|
| Temperature:           | 23.3 °C | Humidit      | /: 51 % | Atmospheric Pressure: | 102 kPa |  |  |
| Pretest mode:          |         | TM1, TM2, TM | 3       |                       | C       |  |  |
| Final test mode:       |         | TM1, TM2, TM | 3       | 2                     |         |  |  |

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613

E-mail: service@dace-lab.com

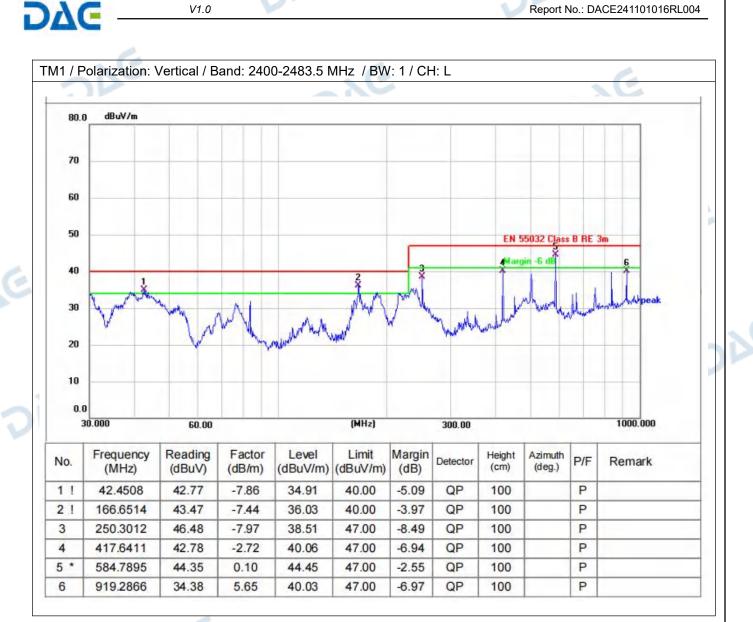
Page 32 of 130

DΔC V1.0 Report No.: DACE241101016RL004 3.7.2 Test Data: TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: L dBuV/m 80.0 70 60 50 EN 55032 Class B RE ŝ 40 30 20 10 0.0 30.000 (MHz) 1000.000 60.00 300.00 Frequency Reading Factor Level Limit Margin Height Azimuth Detector No. P/F Remark (deg.) (cm) (dBuV) (dB/m)(dBuV/m) (dBuV/m) (dB) (MHz) 1! 215.2678 45.21 -8.42 36.79 40.00 -3.21 QP 100 P 250.3012 45.97 47.00 -9.00 QP P 2 -7.97 38.00 100 42.91 -5.21 37.70 47.00 -9.30 P 3 333.6867 QP 100 584.7895 40.42 0.11 40.53 47.00 -6.47 100 4 QP P 5 \* 752.7432 41.31 2.84 44.15 47.00 -2.85 QP 100 P 836.2443 38.28 4.37 42.65 47.00 -4.35 QP 100 P 6 !

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)De

)DE


DAG

)De

24C

1

Report No.: DACE241101016RL004



)AC

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613

)AC

)ÀC

DAG

E-mail: service@dace-lab.com

DAG

)De

Page 34 of 130

NE

DAG

Report No.: DACE241101016RL004

#### 38 Undesirable emission limits (above 1GHz)

| est Requirement: | 47 CFR Part 15.407(b)<br>47 CFR Part 15.407(b)<br>47 CFR Part 15.407(b)                                                                                                                                                                                            | (4)                                                                                                                            | 1                                                                       | DAC                                                                               |  |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|
| est Limit:       | For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of $-27$ dBm/MHz.                                                                                                               |                                                                                                                                |                                                                         |                                                                                   |  |
|                  | For transmitters operati<br>All emissions shall be li<br>or below the band edge<br>below the band edge, a<br>linearly to a level of 15.<br>from 5 MHz above or be<br>dBm/MHz at the band e                                                                         | mited to a level of -27<br>e increasing linearly to<br>and from 25 MHz above<br>6 dBm/MHz at 5 MHz a<br>elow the band edge inc | dBm/MHz at 75<br>10 dBm/MHz at<br>e or below the ba<br>above or below t | MHz or more above<br>25 MHz above or<br>and edge increasing<br>the band edge, and |  |
|                  | MHz                                                                                                                                                                                                                                                                | MHz                                                                                                                            | MHz                                                                     | GHz                                                                               |  |
|                  | 0.090-0.110                                                                                                                                                                                                                                                        | 16.42-16.423                                                                                                                   | 399.9-410                                                               | 4.5-5.15                                                                          |  |
|                  | <sup>1</sup> 0.495-0.505                                                                                                                                                                                                                                           | 16.69475-16.69525                                                                                                              | 608-614                                                                 | 5.35-5.46                                                                         |  |
|                  | 2.1735-2.1905                                                                                                                                                                                                                                                      | 16.80425-16.80475                                                                                                              | 960-1240                                                                | 7.25-7.75                                                                         |  |
|                  | 4.125-4.128                                                                                                                                                                                                                                                        | 25.5-25.67                                                                                                                     | 1300-1427                                                               | 8.025-8.5                                                                         |  |
|                  | 4.17725-4.17775                                                                                                                                                                                                                                                    | 37.5-38.25                                                                                                                     | 1435-1626.5                                                             | 9.0-9.2                                                                           |  |
|                  | 4.20725-4.20775                                                                                                                                                                                                                                                    | 73-74.6                                                                                                                        | 1645.5-<br>1646.5                                                       | 9.3-9.5                                                                           |  |
|                  | 6.215-6.218                                                                                                                                                                                                                                                        | 74.8-75.2                                                                                                                      | 1660-1710                                                               | 10.6-12.7                                                                         |  |
|                  | 6.26775-6.26825                                                                                                                                                                                                                                                    | 108-121.94                                                                                                                     | 1718.8-<br>1722.2                                                       | 13.25-13.4                                                                        |  |
|                  | 6.31175-6.31225                                                                                                                                                                                                                                                    | 123-138                                                                                                                        | 2200-2300                                                               | 14.47-14.5                                                                        |  |
|                  | 8.291-8.294                                                                                                                                                                                                                                                        | 149.9-150.05                                                                                                                   | 2310-2390                                                               | 15.35-16.2                                                                        |  |
|                  | 8.362-8.366                                                                                                                                                                                                                                                        | 156.52475-<br>156.52525                                                                                                        | 2483.5-2500                                                             | 17.7-21.4                                                                         |  |
|                  | 8.37625-8.38675                                                                                                                                                                                                                                                    | 156.7-156.9                                                                                                                    | 2690-2900                                                               | 22.01-23.12                                                                       |  |
|                  | 8.41425-8.41475                                                                                                                                                                                                                                                    | 162.0125-167.17                                                                                                                | 3260-3267                                                               | 23.6-24.0                                                                         |  |
|                  | 12.29-12.293                                                                                                                                                                                                                                                       | 167.72-173.2                                                                                                                   | 3332-3339                                                               | 31.2-31.8                                                                         |  |
|                  | 12.51975-12.52025                                                                                                                                                                                                                                                  | 240-285                                                                                                                        | 3345.8-3358                                                             | 36.43-36.5                                                                        |  |
|                  | 12.57675-12.57725                                                                                                                                                                                                                                                  | 322-335.4                                                                                                                      | 3600-4400                                                               | (2)                                                                               |  |
|                  | 13.36-13.41                                                                                                                                                                                                                                                        |                                                                                                                                |                                                                         |                                                                                   |  |
|                  | <sup>1</sup> Until February 1, 1999<br><sup>2</sup> Above 38.6                                                                                                                                                                                                     | ), this restricted band s                                                                                                      | hall be 0.490-0.                                                        | 510 MHz.                                                                          |  |
|                  | The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using                             |                                                                                                                                |                                                                         |                                                                                   |  |
|                  | measurement instrumentation employing a CISPR quasi-peak detector. Above 100 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements. |                                                                                                                                |                                                                         |                                                                                   |  |
|                  | Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:                                                                                              |                                                                                                                                |                                                                         |                                                                                   |  |

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Web: http://www.dace-lab.com

E-mail: service@dace-lab.com

Page 35 of 130

Report No.: DACE241101016RL004

1

| V1 | 0 |  |
|----|---|--|

٩.,

DAG

|              | Frequency (MHz)                                                                                                                                                                                                                                                                                                                            | Field strength<br>(microvolts/meter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Measurement<br>distance<br>(meters)                                                                                                                                  |  |  |  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|              | 0.009-0.490                                                                                                                                                                                                                                                                                                                                | 2400/F(kHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 300                                                                                                                                                                  |  |  |  |
|              | 0.490-1.705                                                                                                                                                                                                                                                                                                                                | 24000/F(kHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30                                                                                                                                                                   |  |  |  |
|              | 1.705-30.0                                                                                                                                                                                                                                                                                                                                 | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30                                                                                                                                                                   |  |  |  |
|              | 30-88                                                                                                                                                                                                                                                                                                                                      | 100 **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                                                                                                                                                    |  |  |  |
|              | 88-216                                                                                                                                                                                                                                                                                                                                     | 150 **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                                                                                                                                                    |  |  |  |
|              | 216-960                                                                                                                                                                                                                                                                                                                                    | 200 **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                                                                                                                                                    |  |  |  |
|              | Above 960                                                                                                                                                                                                                                                                                                                                  | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                                                                                                                                    |  |  |  |
|              | 54-72 MHz, 76-88 MHz,<br>these frequency bands is<br>and 15.241.<br>In the emission table abo<br>The emission limits show<br>employing a CISPR quas<br>110–490 kHz and above                                                                                                                                                               | r this section shall not be locat<br>174-216 MHz or 470-806 MHz<br>s permitted under other section<br>ove, the tighter limit applies at<br>yn in the above table are base<br>si-peak detector except for the<br>1000 MHz. Radiated emission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | z. However, operation within<br>is of this part, e.g., §§ 15.23<br>the band edges.<br>d on measurements<br>frequency bands 9–90 kHz<br>i limits in these three bands |  |  |  |
|              |                                                                                                                                                                                                                                                                                                                                            | are based on measurements employing an average detector.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                      |  |  |  |
| Test Method: | ANSI C63.10-2013, sect<br>Above 1GHz:                                                                                                                                                                                                                                                                                                      | ANSI C63.10-2013, section 12.7.4, 12.7.6, 12.7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                      |  |  |  |
|              | determine the maximum<br>polarizations of the anter<br>d. For each suspected e<br>the antenna was tuned to<br>below 30MHz, the anten<br>was turned from 0 degre<br>e. The test-receiver syste<br>Bandwidth with Maximur<br>f. If the emission level of<br>specified, then testing co<br>reported. Otherwise the<br>tested one by one using | <ul> <li>b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.</li> <li>c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.</li> <li>d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency or below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.</li> <li>e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.</li> <li>f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be retested one by one using peak or average method as specified and then reported in a data sheet.</li> </ul> |                                                                                                                                                                      |  |  |  |
|              | <ul> <li>h. The radiation measure<br/>Transmitting mode, and</li> <li>i. Repeat above procedu<br/>Remark:</li> <li>1. Level= Read Level+ C</li> <li>2. Scan from 18GHz to 4</li> <li>points marked on above</li> </ul>                                                                                                                     | west channel, the middle chan<br>ements are performed in X, Y, X<br>found the X axis positioning wi<br>res until all frequencies measu<br>cable Loss+ Antenna Factor- P<br>0GHz, the disturbance above<br>plots are the highest emission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Z axis positioning for<br>hich it is the worst case.<br>ured was complete.<br>Preamp Factor<br>18GHz was very low. The<br>s could be found when                      |  |  |  |
|              | emissions from the radia<br>need not be reported.<br>3. As shown in this section                                                                                                                                                                                                                                                           | bints had been displayed. The<br>tor which are attenuated more<br>on, for frequencies above 1GH<br>However, the peak field stren                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | than 20dB below the limit<br>lz, the field strength limits are                                                                                                       |  |  |  |

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 36 of 130

)AC

NE

Report No.: DACE241101016RL004

under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report. 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

)AC

)AC

24C

)AC

16

## 3.8.1 E.U.T. Operation:

DAG

)AC

)AC

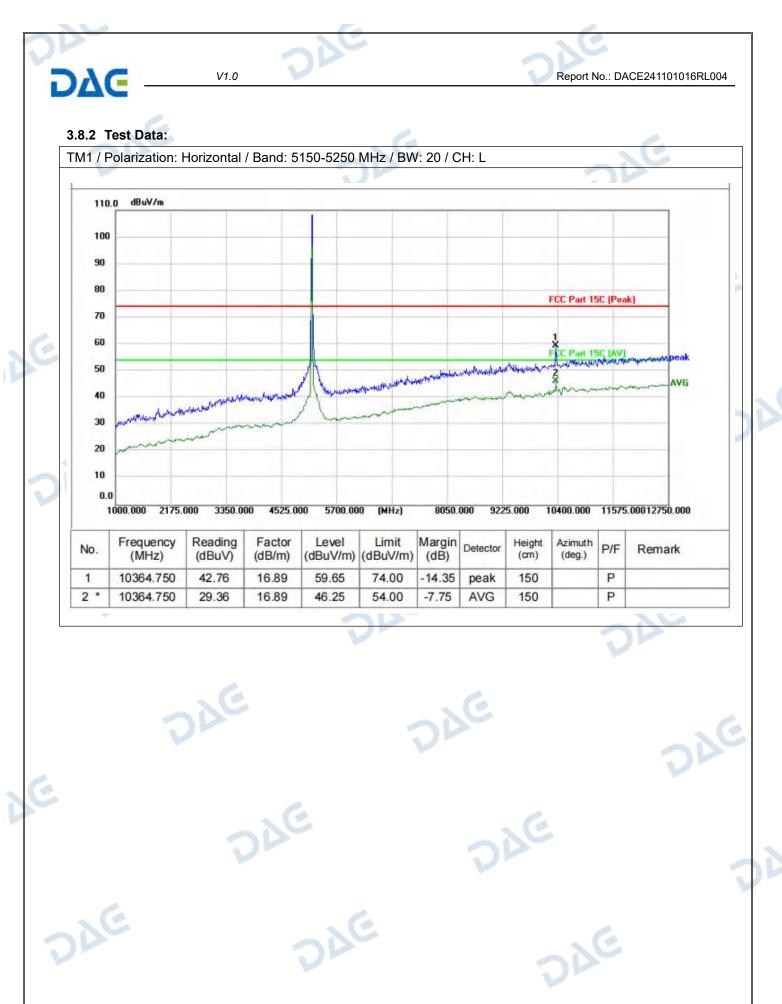
DVC

DAG

4

DAG

| Operating Environment: |         |      |           |      |  |                       |         |      |  |
|------------------------|---------|------|-----------|------|--|-----------------------|---------|------|--|
| Temperature:           | 23.3 °C |      | Humidity: | 51 % |  | Atmospheric Pressure: | 102 kPa |      |  |
| Pretest mode:          |         | TM1, | TM2, TM3  | •    |  |                       |         | _ \( |  |
| Final test mode:       |         | TM1, | TM2, TM3  |      |  |                       |         | 2M   |  |


NE

)AC

)De

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)AC



102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

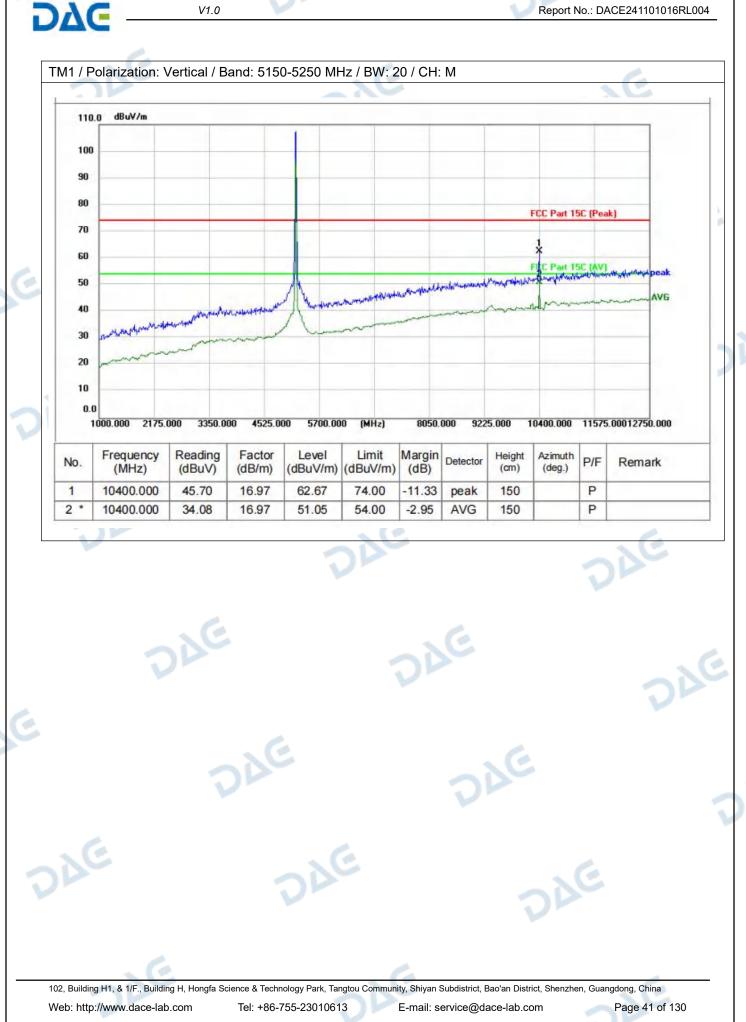
Page 38 of 130

DAC V1.0 Report No.: DACE241101016RL004 TM1 / Polarization: Vertical / Band: 5150-5250 MHz / BW: 20 / CH: L dBuV/m 110.0 100 90 80 FCC Part 15C (Peak) 70 60 at 15C MARIN 50 AVG 40 30 20 10 0.0 1000.000 2175.000 3350.000 4525.000 5700.000 (MHz) 8050.000 9225.000 10400.000 11575.00012750.000 Frequency Reading Factor Level Limit Margin Height Azimuth Detector P/F Remark No. (dB) (deg.) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (cm) (MHz) 1 10364.750 46.54 16.89 63.43 74.00 -10.57 peak 150 P 2 \* 10364.750 34.79 16.89 51.68 54.00 -2.32 AVG 150 P DAE DAG NE 4 DAG )AC

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAG

DAG


DAG

DAC

Report No.: DACE241101016RL004

TM1 / Polarization: Horizontal / Band: 5150-5250 MHz / BW: 20 / CH: M dBu∀/m 110.0 100 90 80 FCC Part 15C (Peak) 70 60 art 15C (AV) at in the test we be the state of the start of 50 AVG 40 30 20 10 0.0 1000.000 2175.000 3350.000 4525.000 5700.000 (MHz) 8050.000 9225.000 10400.000 11575.00012750.000 Reading Factor Frequency Level Limit Margin Height Azimuth Detector P/F No. Remark (MHz) (dBuV) (dB/m)(dBuV/m) (dBuV/m) (dB) (cm) (deg.) 10400.000 1 42.33 16.97 59.30 74.00 -14.70 peak 150 P 2 \* 31.26 Ρ 10400.000 16.97 48.23 54.00 -5.77 AVG 150 DAE DAG DE 1 DAG 24C DAG DAG DAG 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

Page 40 of 130



DAC TM1 / Polarization: Horizontal / Band: 5150-5250 MHz / BW: 20 / CH: H dBuV/m 110.0 100 90 80 FCC Part 15C (Peak) 70 60 WI 15C (AV 50 malut AVG 40 30 20 10 0.0 1000.000 2175.000 3350.000 4525.000 5700.000 (MHz) 8050.000 9225.000 10400.000 11575.00012750.000 Reading Level Frequency Factor Limit Margin Height Azimuth Detector P/F Remark No. (dB) (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (cm) (deg.) peak 1 10482.250 45.87 17.17 63.04 74.00 -10.96 150 P 2 \* 10482.250 32.76 17.17 49.93 54.00 -4.07 AVG 150 P DAE DAG NE 4 DAG 24C DAG DAG DAG 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 42 of 130

Report No.: DACE241101016RL004

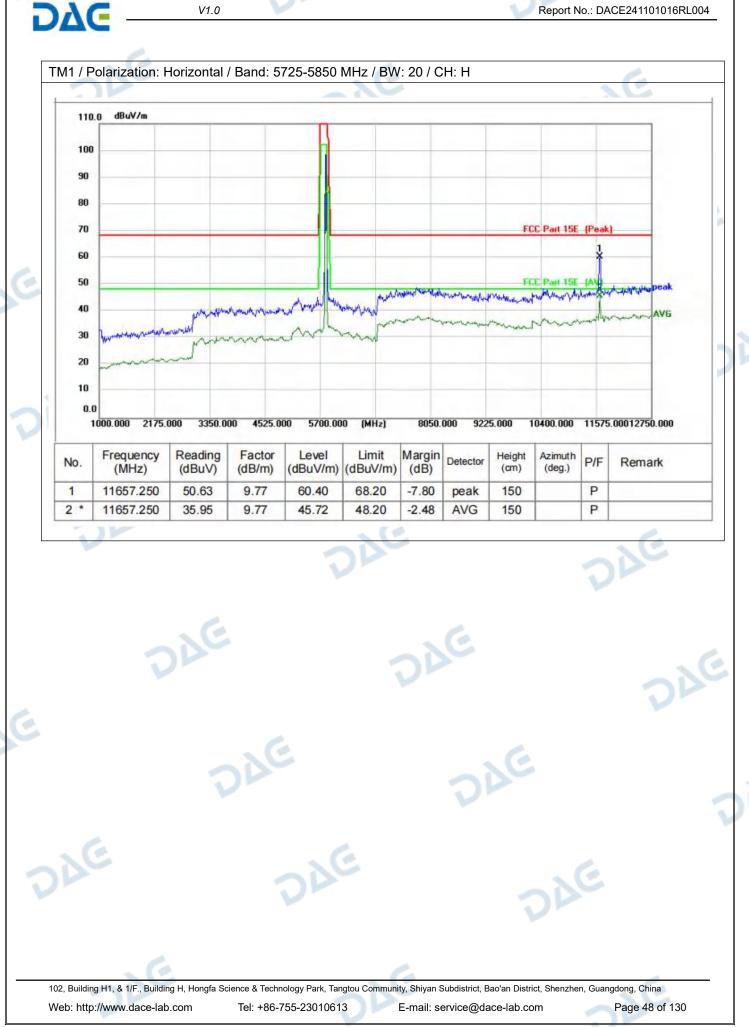
DAC TM1 / Polarization: Vertical / Band: 5150-5250 MHz / BW: 20 / CH: H dBuV/m 110.0 100 90 80 FCC Part 15C (Peak) 70 60 IL 15C (AV) 50 all marker berton with production of the AVG 40 30 20 10 0.0 11575.00012750.000 1000.000 2175.000 3350.000 4525.000 5700.000 (MHz) 8050.000 9225.000 10400.000 V Frequency Reading Factor Level Limit Margin Height Azimuth Detector P/F No. Remark (MHz) (dBuV) (dB/m)(dBuV/m) (dBuV/m) (dB) (cm) (deg.) 10482.250 55.75 -18.25 P 38.58 17.17 74.00 150 1 peak 10482.250 AVG 2 \* 28.96 17.17 46.13 54.00 -7.87 150 P DAE DAG NE 4 DAG )AC DAG DAG DAG 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

Page 43 of 130

## Report No.: DACE241101016RL004

DAC TM1 / Polarization: Horizontal / Band: 5725-5850 MHz / BW: 20 / CH: L dBu∀/m 110.0 100 90 80 70 FCC Part 15E (Peak) 60 FCC Part 15 50 40 AVG 30 20 10 0.0 1000.000 2175.000 4525.000 5700.000 8050.000 10400.000 11575.00012750.000 3350.000 (MHz) 9225.000 Frequency Reading Factor Level Limit Margin Height Azimuth Detector P/F No. Remark (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) (cm) (deg.) 11492.750 50.79 9.66 68.20 -7.75 P 1 60.45 peak 2 \* 11492.750 36.12 9.66 45.78 48.20 -2.42 AVG Ρ DAE DAG )DE 1 DAG 24C DAG DAG DAG 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613

E-mail: service@dace-lab.com


DAC V1.0 Report No.: DACE241101016RL004 TM1 / Polarization: Vertical / Band: 5725-5850 MHz / BW: 20 / CH: L dBuV/m 110.0 100 90 80 70 FCC Part 15E (Peak) 60 50 40 AVG 30 20 10 0.0 1000.000 11575.00012750.000 2175.000 3350.000 4525.000 5700.000 (MHz) 8050.000 9225.000 10400.000 Frequency Reading Factor Level Limit Margin Height Azimuth Detector P/F No. Remark (MHz) (dBuV) (dB/m)(dBuV/m) (dBuV/m) (dB) (cm) (deg.) P 11492.750 44.90 9.66 54.56 68.20 -13.64 150 peak 1 2 \* 11492.750 34.08 9.66 43.74 48.20 -4.46 AVG 150 Ρ DAE DAG NE 4 )DE 2AC DAG DAG DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAC

TM1 / Polarization: Horizontal / Band: 5725-5850 MHz / BW: 20 / CH: M dBu∀/m 110.0 100 90 80 70 FCC Part 15E (Peak) 60 50 et.15E Jak peak malaster 40 AVG 30 20 10 0.0 3350.000 4525.000 11575.00012750.000 1000.000 2175.000 5700.000 (MHz) 8050.000 9225.000 10400.000 Frequency Reading Factor Level Limit Margin Azimuth Height Detector P/F No. Remark (dB/m)(MHz) (dBuV) (dBuV/m) (dBuV/m) (dB) (cm) (deg.) 11575.000 40.71 9.72 50.43 68.20 -17.77 P 1 peak 150 P 2 \* 11575.000 29.82 9.72 39.54 48.20 -8.66 AVG 150 DAE DAG NE 4 )AC )AC DAE )AC DAG 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 46 of 130

DAC TM1 / Polarization: Vertical / Band: 5725-5850 MHz / BW: 20 / CH: M dBuV/m 110.0 100 90 80 70 FCC Part 15E (Peak) 60 50 FEC P. not a stand A.M. ent march 40 AVG 30 20 10 0.0 11575.00012750.000 1000.000 2175.000 3350.000 4525.000 5700.000 (MHz) 8050.000 9225.000 10400.000 Reading Factor Level Frequency Limit Margin Height Azimuth Detector No. P/F Remark (MHz) (dBuV) (dB/m)(dBuV/m) (dBuV/m) (dB) (cm) (deg.) 11575.000 49.72 9.72 59.44 68.20 -8.76 150 Ρ 1 peak 2 \* 11575.000 33.80 9.72 43.52 48.20 -4.68 AVG 150 P DAE DAG DE -DAG 24C DAG DAG DAG 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 47 of 130



DAC

Report No.: DACE241101016RL004

TM1 / Polarization: Vertical / Band: 5725-5850 MHz / BW: 20 / CH: H dBuV/m 110.0 100 90 80 70 FCC Part 15E (Peak 60 50 40 AVG 30 20 10 0.0 1000.000 2175.000 3350.000 4525.000 5700.000 (MHz) 8050.000 9225.000 10400.000 11575.00012750.000 Reading Factor Level Limit Frequency Margin Height Azimuth Detector P/F No. Remark (MHz) (dBuV) (dB/m)(dBuV/m) (dBuV/m) (dB) (cm) (deg.) -15.08 11657.250 1 43.35 9.77 53.12 68.20 peak 150 Ρ 11657.250 31.71 Ρ 2 \* 9.77 41.48 48.20 -6.72 AVG 150 DAE DAG DE 1 DAG )AC DAG DAG DAG 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613

Web: http://www.dace-lab.com

E-mail: service@dace-lab.com

Page 49 of 130



| DAG -     | V1.0 | JC .    | Report No.: DACE241101016RL004                                            |
|-----------|------|---------|---------------------------------------------------------------------------|
| DAC       |      |         |                                                                           |
| 2         |      |         |                                                                           |
| Æ         |      |         |                                                                           |
| <b>Ap</b> | penc | lix-5.2 | GWIFI                                                                     |
| DAG       |      |         |                                                                           |
| 5         |      |         |                                                                           |
| E         |      | 2       |                                                                           |
| DAC       |      |         |                                                                           |
|           |      |         | Bao'an District, Shenzhen, Guangdong, China<br>ace-lab.com Page 51 of 130 |

D

Report No.: DACE241101016RL004

## HT241011020--0106\_2\_00--5.2G--FCC FCC\_5.2G\_WIFI (Part15.407) Test Data

## 1. -26dB and 99% Emission Bandwidth

V1.0

DAG

| Condition | Antenna | Modulation      | Frequency(MHz) | -26dB_Emission_Bandwidth(MHz) | Occupied<br>Bandwidth(MHz) |
|-----------|---------|-----------------|----------------|-------------------------------|----------------------------|
| NVNT      | ANT1    | 802.11a         | 5180.00        | 18.27                         | 16.33                      |
| NVNT      | ANT1    | 802.11a         | 5200.00        | 18.24                         | 16.35                      |
| NVNT      | ANT1    | 802.11a         | 5240.00        | 18.39                         | 16.33                      |
| NVNT      | ANT1    | 802.11ac(VHT20) | 5180.00        | 19.23                         | 17.54                      |
| NVNT      | ANT1    | 802.11ac(VHT20) | 5200.00        | 19.33                         | 17.54                      |
| NVNT      | ANT1    | 802.11ac(VHT20) | 5240.00        | 19.45                         | 17.53                      |
| NVNT      | ANT1    | 802.11ac(VHT40) | 5190.00        | 40.82                         | 36.12                      |
| NVNT      | ANT1    | 802.11ac(VHT40) | 5230.00        | 40.16                         | 36.01                      |
| NVNT      | ANT1    | 802.11ac(VHT80) | 5210.00        | 80.72                         | 74.54                      |
|           |         |                 |                |                               |                            |



Tel: +86-755-23010613

Web: http://www.dace-lab.com

E-mail: service@dace-lab.com















