

RADIO TEST REPORT FCC 47 CFR PART 15 SUBPART C **INDUSTRY CANADA RSS-247**

Test Standard FCC Part 15.247 and RSS-247 Issue 1

FCC ID A4C-1000BA

ISED No. 10199A-1000BA

Trade name Rand McNally

OverDryve™ 7c Product name

Model No. OD7C **Test Result Pass**

The test Result was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were given in ANSI C63.10: 2013 and compliance standards.

The test results of this report relate only to the tested sample (EUT) identified in this report.

The test Report of full or partial shall not copy. Without written approval of Compliance Certification Services Inc. (Wugu Laboratory)

The sample selected for test was production product and was provided by manufacturer.

Approved by:

Reviewed by:

Sam Chuang Manager

Ed Chiang Engineer

Revision History

Rev.	Issue Date	Revisions	Revised By
00	February 7, 2017	Initial Issue	Angel Cheng
01	March 24, 2017	 Remove Remark in page 4. Revise section 3.3 in page 12. Revise section 4.2.4 in page 16. Revised section 4.8.2 Duty Cycle in page 34. Add Test Setup Photos in page 61, 62. Revise section 1.3 Antenna Category in page 5. 	Doris Chu

Table of contents

1.	GEN	ERAL INFORMATION	4
	1.1	EUT INFORMATION	4
	1.2	EUT CHANNEL INFORMATION	5
	1.3	ANTENNA INFORMATION	5
	1.4	MEASUREMENT UNCERTAINTY	6
	1.5	FACILITIES AND TEST LOCATION	6
	1.6	INSTRUMENT CALIBRATION	7
	1.7	SUPPORT AND EUT ACCESSORIES EQUIPMENT	8
2.	TES1	SUMMERY	9
3.	DESC	CRIPTION OF TEST MODES1	0
	3.1	THE WORST MODE OF OPERATING CONDITION1	0
	3.2	THE WORST MODE OF MEASUREMENT1	1
	3.3	EUT DUTY CYCLE1	2
4.	TES1	TRESULT1	3
	4.1	AC POWER LINE CONDUCTED EMISSION1	3
	4.2	20DB BANDWIDTH AND OCCUPIED BANDWIDTH(99%)1	6
	4.3	OUTPUT POWER MEASUREMENT1	9
	4.4	FREQUENCY SEPARATION2	:1
	4.5	NUMBER OF HOPPING2	4
	4.6	CONDUCTED BANDEDGE AND SPURIOUS EMISSION2	:6
	4.7	TIME OF OCCUPANCY (DWELL TIME)	1
ΔI	4.8 PPFNI	RADIATION BANDEDGE AND SPURIOUS EMISSION3	3

1. GENERAL INFORMATION

1.1 EUT INFORMATION

Applicant	RM Acquisition, LLC 9855 Woods Drive Skokie, IL 60077 USA.	
Equipment	OverDryve™ 7c	
Model Name	OD7C	
Model Discrepancy	N/A	
EUT Functions	IEEE 802.11b/g/n+BT+GPS+FM	
Received Date	Dec 28, 2016	
Date of Test	Jan 02, 2017 ~ Jan 18, 2017	
Output Power(W)	GFSK: 0.0056 (EIRP: 0.0105) 8DPSK: 0.0047 (EIRP: 0.0089)	
Power Operation	 AC 120V/60Hz Adapter(Not for sale) PoE(Not for sale) Host system DC Type: Battery Car Charger DC Power Supply External DC adapter 	

1.2 EUT CHANNEL INFORMATION

Frequency Range	2402MHz-2480MHz
Modulation Type	 GFSK for BR-1Mbps π/4-DQPSK for EDR-2Mbps 8DPSK for EDR-3Mbps
Number of channel	79 Channels

Remark:

Refer as ANSI 63.10:2013 clause 5.6.1 Table 4 and RSS-GEN Table A1 for test channels

TOTAL GOTTO: 20 TO GLAGO C.C.T TABLE T ATTA TOO CETY TABLE THE TOTAL TABLE THE TOTAL TABLE THE TOTAL TABLE THE TABLE						
Number of frequencies to be tested						
Frequency range in Number of Location in frequency which device operates frequencies range of operation						
1 MHz or less	1	Middle				
1 MHz to 10 MHz 2 1 near top and 1 near bottom						
More than 10 MHz	3	1 near top, 1 near middle, and 1 near bottom				

1.3 ANTENNA INFORMATION

Antenna Category	☐ Integral: antenna permanently attached ☐ External dedicated antennas ☐ External Unique antenna connector
Antenna Type	☐ PIFA ☐ PCB ☐ Dipole ☐ Coils
Antenna Gain	2.75dBi

1.4 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
AC Powerline Conducted Emission	+/- 1.2575
Emission bandwidth, 20dB bandwidth	+/- 1.4003
RF output power, conducted	+/- 1.1372
Power density, conducted	+/- 1.4003
3M Semi Anechoic Chamber / 30M~200M	+/- 4.0138
3M Semi Anechoic Chamber / 200M~1000M	+/- 3.9483
3M Semi Anechoic Chamber / 1G~8G	+/- 2.5975
3M Semi Anechoic Chamber / 8G~18G	+/- 2.6112
3M Semi Anechoic Chamber / 18G~26G	+/- 2.7389
3M Semi Anechoic Chamber / 26G~40G	+/- 2.9683
3M Semi Anechoic Chamber / 40G~60G	+/- 1.8509
3M Semi Anechoic Chamber / 60G~75G	+/- 1.9869
3M Semi Anechoic Chamber / 75G~110G	+/- 2.9651
3M Semi Anechoic Chamber / 110G~170G	+/- 2.7807
3M Semi Anechoic Chamber / 170G~220G	+/- 3.6437
3M Semi Anechoic Chamber / 220G~325G	+/- 4.2982

Remark:

1.5 FACILITIES AND TEST LOCATION

All measurement facilities used to collect the measurement data are located at

1. No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.)

2. No.163-1, Jhongsheng Rd. Sindian City, Taipei County 23151, Taiwan.

Test site	Test Engineer	Remark
AC Conduction Room	Jim Lian	The AC conduction room test items was tested at Compliance Certification Services Inc. (Sindian Lab.) The test equipments were listed in page 7 and the test data, please refer page 14-15.
Radiation	Ed Chiang	
RF Conducted	Eric Lee	

Remark: The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

^{1.} This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

^{2.} ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report.

1.6 INSTRUMENT CALIBRATION

RF Conducted Test Site							
Equipment	Manufacturer	Model	S/N	Cal Date	Cal Due		
Power Meter	Anritsu	ML2495A	1012009	07/04/2016	07/03/2017		
Power Sensor	Anritsu	MA2411B	917072	07/04/2016	07/03/2017		
Spectrum Analyzer	R&S	FSV 40	101073	10/05/2016	10/04/2017		
Thermostatic/Hrgrosatic Chamber	GWINSTEK	GTC-288MH-CC	TH160402	05/04/2016	05/03/2017		
USB Wideband Power Sensor	Agilent	U2021XA	MY54250027	05/12/2016	05/11/2017		
USB Wideband Power Sensor	Agilent	U2021XA	MY54260016	05/12/2016	05/11/2017		
USB Wideband Power Sensor	Agilent	U2021XA	MY54260020	05/12/2016	05/11/2017		
USB Wideband Power Sensor	Agilent	U2021XA	MY54260007	05/12/2016	05/11/2017		

3M 966 Chamber Test Site							
Equipment	Manufacturer	Model	S/N	Cal Due	Cal Due		
Spectrum Analyzer	Agilent	E4446A	US42510252	12/05/2016	12/04/2017		
Bilog Antenna	Sunol Sciences	JB3	A030105	07/03/2016	07/02/2017		
Pre-Amplifier	EMEC	EM330	60609	06/08/2016	06/07/2017		
Horn Antenna	ETC	MCTD 1209	DRH13M02003	06/01/2016	05/31/2017		
Pre-Amplifier	EMCI	EMC012635	980151	06/23/2016	06/22/2017		
Antenna Tower	CCS	CC-A-5F	N/A	N.C.R	N.C.R		
Controller	CCS	CC-C-5F	N/A	N.C.R	N.C.R		
Turn Table	CCS	CC-T-5F	N/A	N.C.R	N.C.R		
Horn Antenna	ETC	MCTD 1209	DRH13M02003	09/02/2016	09/01/2017		
Pre-Amplifier	EMEC	EM330	60609	06/08/2016	06/07/2017		

AC Conducted Emissions Test Site							
Equipment	Manufacturer	Model	S/N	Cal Date	Cal Due		
BNC Cable	EMCI	CFD300-NL	BNC#B4	05/29/2016	05/28/2017		
EMI Test Receiver	R&S	ESCI	101201	08/20/2016	08/19/2017		
ISN	Teseq	ISN T800	29449	08/19/2016	08/18/2017		
LISN	Schwarzbeck	NSLK 8127	8129-286	08/19/2016	08/18/2017		
LISN(EUT)	Schwarzbeck	NSLK 8127	8127527	08/19/2016	08/18/2017		
Pulse Limiter	R&S	ESH3-Z2	C3010026-2	08/23/2016	08/22/2017		
Thermo-Hygro Meter	Wisewind	201A	No. 02	05/03/2016	05/02/2017		
Current Sensor Probe	Teseq	CSP 9160A	73982	06/02/2016	06/01/2017		
Capacitive Voltage Probe	Teseq	CVP 2200A	37925	10/26/2016	10/25/2017		
Software	EZ-EMC						

Remark: Each piece of equipment is scheduled for calibration once a year.

1.7 SUPPORT AND EUT ACCESSORIES EQUIPMENT

EUT Accessories Equipment							
No.	Equipment	Brand	Model	Series No.	FCC ID		
	N/A						

	Support Equipment							
No.	Equipment	Brand	Model	Series No.	FCC ID			
1	NB	DELL	PP19L	R33002	E2KWM3945ABG			
2	Battery	YUASA	CMF 75D23L	N/A	N/A			
3	PS/2 Mouse	hp	M-SBF96	FATSQ0C5BYJQKZ	DOC BSMI:R41126			
4	PS/2 Keyboard	Genius	K639	N/A	DOC BSMI:T3A164			
5	Microphone & Earphone	INTOPIC	LASS-288	N/A	N/A			
6	Monitor	DELL	P2314t	CN-0HMJ1V-74445-46 S-156S	R43004			
7	Host PC	DELL	T5810	8G5NKG2	N/A			
8	Modem	GALILEO	AL-56ERM	0MERM04A0212	DOC			
9	Printer	HP	SNPRB-1202 -01	CN54K182G9	R330D1			

1.8 TEST METHODOLOGY AND APPLIED STANDARDS

The test methodology, setups and results comply with all requirements in accordance with ANSI C63.10:2013, FCC Part 2, FCC Part 15.247, KDB 558074 D01 v03r05, RSS-247 Issue 1 and RSS-GEN Issue 4.

1.9 TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo	
USA	FCC	3M Semi Anechoic Chamber (FCC MRA: TW1039) to perform FCC Part 15 measurements	FCC MRA: TW1039	
Canada	Industry Canada	3M Semi Anechoic Chamber (IC 2324G-1 / IC 2324G-2) to perform	Canada IC 2324G-1 IC 2324G-2	

2. TEST SUMMERY

FCC Standard Section	IC Standard Section	Report Section	Test Item	Result
15.203	-	1.2	Antenna Requirement	Pass
15.207(a)	RSS-GEN 8.8	4.1	AC Conducted Emission	Pass
15.247(a)(1)	RSS-247(5.2)(1)	4.2	20 dB Bandwidth	Pass
-	RSS-GEN 6.6	4.2	Occupied Bandwidth (99%)	Pass
15.247(b)(1)	RSS-247(5.4)(2)	4.3	Output Power Measurement	Pass
15.247(a)(1)	RSS-247(5.1)(2)	4.4	Frequency Separation	Pass
15.247(a)(1)(iii)	RSS-247(5.1)(4)	4.5	Number of Hopping	Pass
15.247(d)	RSS-247(5.5)	4.6	Conducted Band Edge	Pass
15.247(d)	RSS-247(5.5)	4.6	Conducted Emission	Pass
15.247(a)(1)(iii)	RSS-247(5.1)(4)	4.7	Time of Occupancy	Pass
15.247(d)	RSS-GEN 8.9, 8.10	4.8	Radiation Band Edge	Pass
15.247(d)	RSS-GEN 8.9, 8.10	4.8	Radiation Spurious Emission	Pass

3. DESCRIPTION OF TEST MODES

3.1 THE WORST MODE OF OPERATING CONDITION

Operation mode	GFSK for BR-1Mbps (DH5) π/4-DQPSK for EDR-2Mbps (DH5) 8DPSK for EDR-3Mbps (DH5)
Test Channel Frequencies	GFSK for BR-1Mbps: 1.Lowest Channel: 2402MHz 2.Middle Channel: 2441MHz 3.Highest Channel: 2480MHz π/4-DQPSK for EDR-2Mbps: 1.Lowest Channel: 2402MHz 2.Middle Channel: 2441MHz 3.Highest Channel: 2480MHz 8DPSK for EDR-3Mbps: 1.Lowest Channel: 2402MHz 2.Middle Channel: 2402MHz 2.Middle Channel: 2441MHz 3.Highest Channel: 2480MHz

Remark:

^{1.} EUT pre-scanned data rate of output power for each mode, the worst data rate were recorded in this report.

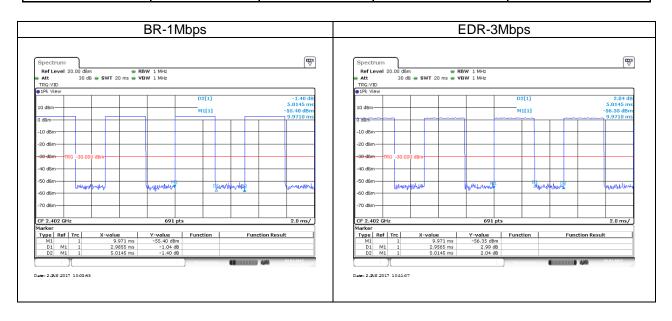
3.2 THE WORST MODE OF MEASUREMENT

Worst Mode of Power					
Bluetooth Maximum Peak Conducted Output Worst Mod					
Mode		Power (dBm)			
BR(GFSK)	1 Mbps	7.46	V		
EDR(8DPSK)	3 Mbps	6.73	V		

AC Power Line Conducted Emission			
Test Condition AC Power line conducted emission for line and neutral			
Voltage/Hz 120V/60Hz			
Test Mode Mode 1:EUT power by AC adapter via power cable.			
Worst Mode			

Radiated Emission Measurement Above 1G			
Test Condition	Band edge, Emission for Unwanted and Fundamental		
Voltage/Hz	5V DC		
Test Mode	Mode 1:EUT power by USB cable.		
Worst Mode			
Worst Position	 □ Placed in fixed position. □ Placed in fixed position at X-Plane (E2-Plane) □ Placed in fixed position at Y-Plane (E1-Plane) □ Placed in fixed position at Z-Plane (H-Plane) 		
Worst Polarity	☐ Horizontal ⊠ Vertical		

Radiated Emission Measurement Below 1G				
Test Condition Radiated Emission Below 1G				
Voltage/Hz 12V DC and 5V DC				
Test Mode	Mode 1:EUT power by 12V DC via car charger. Mode 2:EUT power by 5V DC via USB.			
Worst Mode	Worst Mode			


Remark:

- 1. The worst mode was record in this test report.
- 2. EUT pre-scanned in three axis ,X,Y, Z and two polarity, Horizontal and Vertical for radiated measurement. The worst case(Y-Plane and Vertical) were recorded in this report

3.3 EUT DUTY CYCLE

Duty Cycle						
Configuration TX ON (ms) TX ALL (ms) Duty Cycle (%) Duty Fa						
BR-1Mbps	2.9855	5.0145	59.53%	2.25		
EDR-3Mbps	2.9565	5.0145	58.96%	2.29		

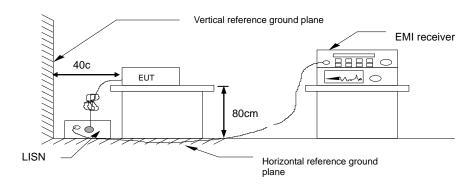
4. TEST RESULT

4.1 AC POWER LINE CONDUCTED EMISSION

4.1.1 Test Limit

According to §15.207(a) and RSS-GEN section 8.8,

Frequency Range	Limits(dBμV)		
(MHz)	Quasi-peak	Average	
0.15 to 0.50	66 to 56*	56 to 46*	
0.50 to 5	56	46	
5 to 30	60	50	

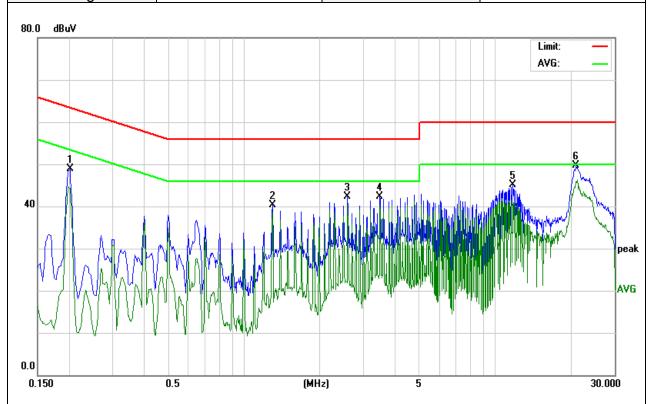

Decreases with the logarithm of the frequency.

4.1.2 Test Procedure

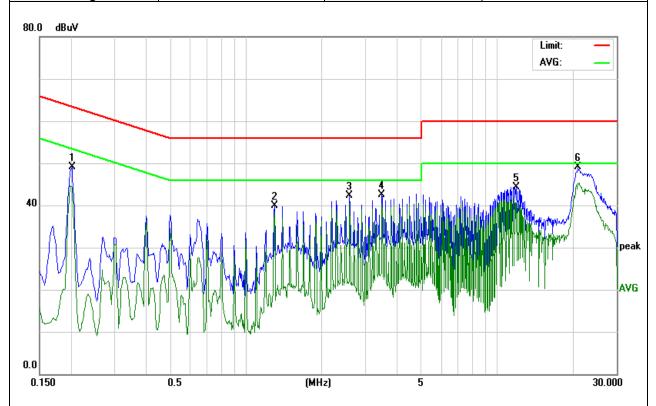
Test method Refer as ANSI 63.10:2013 clause 6.2,

- The EUT was placed on a non-conducted table, which is 0.8m above horizontal ground plane and 0.4m above vertical ground plane.
- EUT connected to the line impedance stabilization network (LISN) 2.
- 3. Receiver set RBW of 9kHz and Detector Peak, and note as quasi-peak and average.
- Maximum procedure was performed on the six highest emissions to ensure EUT 4. compliance.
- Recorded Line for Neutral and Line.

4.1.3 **Test Setup**


Test Result 4.1.4

PASS


Test Data

Test Mode	Mode 1	Temp/Hum	27(°C)/ 53%RH
Phase	Line	Test Date	Jan 03, 2017
Test Engineer	Jim Lian		

Frequency (MHz)	Reading (dBuV)	Factor (dB)	Result (dB)	Limit (dBuV)	Margin (dBuV)	Detector (dBuV)
0.2020	38.83	10.10	48.93	63.52	-14.59	peak
1.2980	30.21	10.17	40.38	56.00	-15.62	peak
2.5939	32.02	10.32	42.34	56.00	-13.66	peak
3.4900	32.07	10.33	42.40	56.00	-13.60	peak
11.7698	34.36	10.67	45.03	60.00	-14.97	peak
21.0457	38.52	11.22	49.74	60.00	-10.26	peak

Test Mode:	Mode 1	Temp/Hum	27(℃)/ 53%RH
Phase:	Neutral	Test Date	Jan 03, 2017
Test Engineer	Jim Lian		

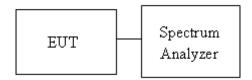
Frequency (MHz)	Reading (dBuV)	Factor (dB)	Result (dB)	Limit (dBuV)	Margin (dBuV)	Detector (dBuV)
0.2020	38.97	10.10	49.07	63.52	-14.45	peak
1.2980	29.79	10.17	39.96	56.00	-16.04	peak
2.5939	32.02	10.32	42.34	56.00	-13.66	peak
3.4900	32.20	10.33	42.53	56.00	-13.47	peak
11.9699	33.71	10.68	44.39	60.00	-15.61	peak
21.1460	37.86	11.24	49.10	60.00	-10.90	peak

4.220DB BANDWIDTH AND OCCUPIED BANDWIDTH(99%)

4.2.1 Test Limit

According to §15.247(a) (1), RSS-247 section 5.2(1) and RSS-GEN 6.6,

20 dB Bandwidth : For reporting purposes only.

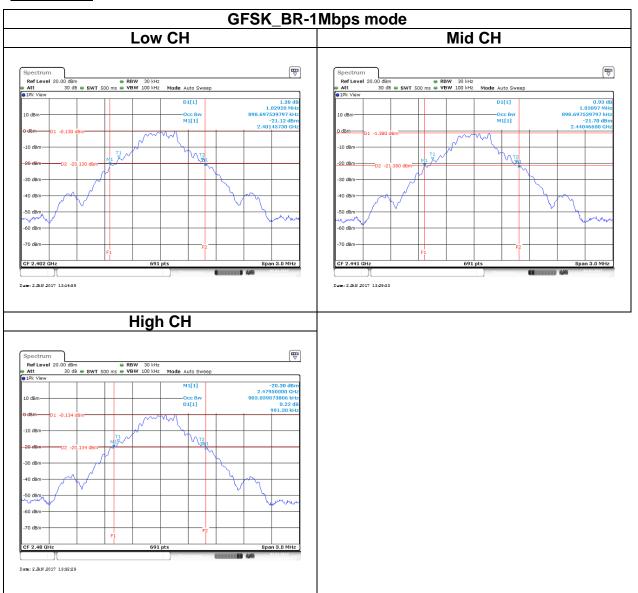

Occupied Bandwidth(99%) : For reporting purposes only.

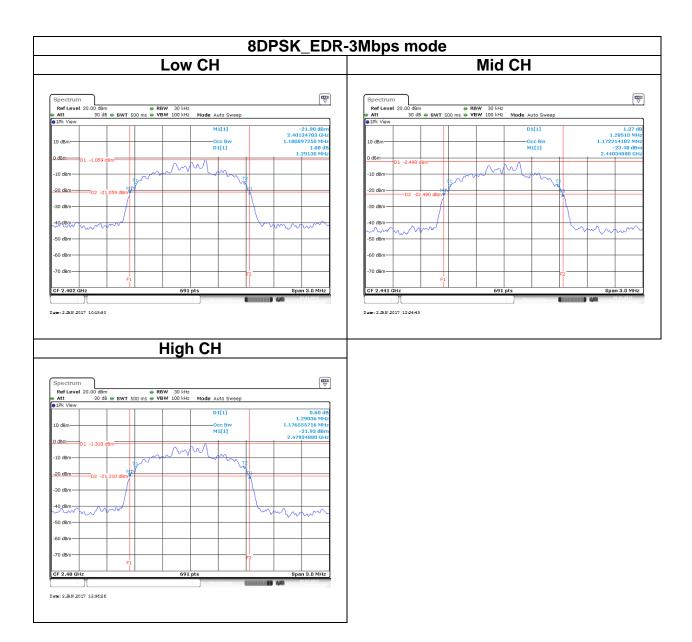
4.2.2 Test Procedure

Test method Refer as ANSI 63.10:2013 clause 6.9.3.

- The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. SA set RBW = 30kHz, VBW = 100kHz and Detector = Peak, to measurement 20 dB Bandwidth and 99% Bandwidth.
- Measure and record the result of 20 dB Bandwidth and 99% Bandwidth in the test report.

4.2.3 Test Setup


4.2.4 Test Result


Test mode: GFSK_BR-1Mbps mode / 2402-2480 MHz			
Channel	Frequency (MHz)	OBW(99%) (kHz)	20dB BW (MHz)
Low	2402	898.6975	1.0292
Mid	2441	898.6975	1.0209
High	2480	903.0390	0.9913

Test mode: 8DPSK_EDR-3Mbps mode / 2402-2480 MHz				
Channel	Frequency (MHz)	OBW(99%) (MHz)	20dB BW (MHz)	
Low	2402	1.1808	1.2913	
Mid	2441	1.1722	1.2851	
High	2480	1.1765	1.2903	

Test Data

4.3 OUTPUT POWER MEASUREMENT

4.3.1 Test Limit

According to §15.247(b)(1) and RSS-247 section 5.4(2)

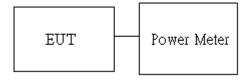
Peak output power:

FCC

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

IC

For FHSs operating in the band 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1.0 W and the e.i.r.p. shall not exceed 4 W if the hopset uses 75 or more hopping channels.


Limit	Antenna not exceed 6 dBi : 21dBm Antenna with DG greater than 6 dBi : 21dBm
	[Limit = $30 - (DG - 6)$]

Average output power: For reporting purposes only.

4.3.2 Test Procedure

- The EUT RF output connected to the power meter by RF cable. 1.
- 2. Setting maximum power transmit of EUT.
- 3. The path loss was compensated to the results for each measurement.
- 4. Measure and record the result of Peak output power and Average output power. in the test report.

4.3.3 Test Setup

4.3.4 Test Result

Peak output power:

		•	•	ВТ	•	•	•	
Config.	СН	Freq. (MHz)	PK Power (dBm)	EIRP PK Power (dBm)	PK Power (W)	EIRP PK Power (W)	FCC/IC Limit (dBm)	IC EIRP Limit (dBm)
GFSK	0	2402	6.32	9.07	0.0043	0.0081		
BR-1Mbps	39	2441	4.91	7.66	0.0031	0.0058		
(DH5)	78	2480	7.46	10.21	0.0056	0.0105	21	27
8DPSK	0	2402	5.54	8.29	0.0036	0.0067	21	21
EDR-3Mbps		7.02	0.0027	0.0050				
(DH5)	78	2480	6.73	9.48	0.0047	0.0089		

Average output power:

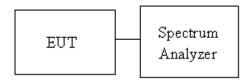
	В	Т	
Config.	СН	Freq. (MHz)	AV Power (dBm)
GFSK	0	2402	3.88
BR-1Mbps	39	2441	2.47
(DH5)	78	2480	5.07
8DPSK	0	2402	1.18
EDR-3Mbps	39	2441	0.06
(DH5)	78	2480	2.24

4.4 FREQUENCY SEPARATION

4.4.1 Test Limit

According to §15.247(a)(1) and RSS-247 section 5.1(2)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

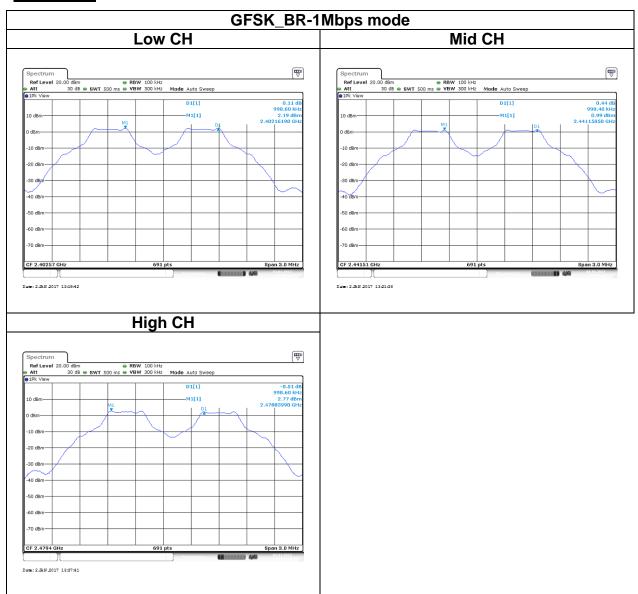

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

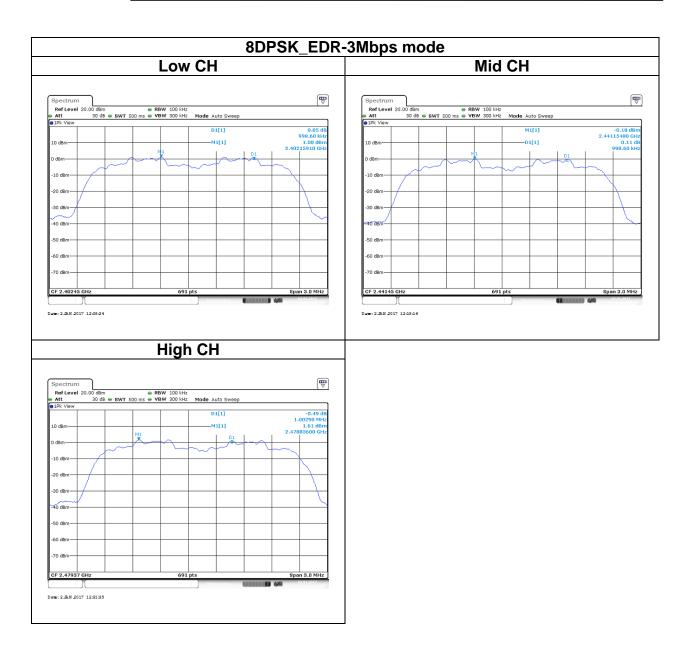
Limit	> two-thirds of the 20 dB bandwidth
-------	-------------------------------------

4.4.2 Test Procedure

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. EUT RF output port connected to the SA by RF cable.
- 3. Set the spectrum analyzer as RBW = 100kHz, VBW = 300kHz, Sweep = auto. Max hold, mark 3 peaks of hopping channel and record the 3 peaks frequency

4.4.3 Test Setup


4.4.4 Test Result


Test mode: GFSK_BR-1Mbps mode / 2402-2480 MHz				
Channel	Frequency (MHz)	Channel Separation (kHz)	Channel Separation Limits (MHz)	Result
Low	2402	998.60	0.6861	PASS
Mid	2441	998.40	0.6806	PASS
High	2480	998.60	0.6608	PASS

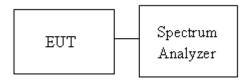
	Test mode: 8DPSK_EDR-3Mbps mode / 2402-2480 MHz			
Channel	Frequency (MHz)	Channel Separation (MHz)	Channel Separation Limits (MHz)	Result
Low	2402	0.9986	0.8608	PASS
Mid	2441	0.9986	0.8567	PASS
High	2480	1.0029	0.8602	PASS

Test Data

4.5 NUMBER OF HOPPING

4.5.1 Test Limit

According to §15.247(a)(1)(iii) and RSS-247 section 5.1(4)


Frequency hopping system in the 2400-2483.5MHz band shall use at least 15 channels.

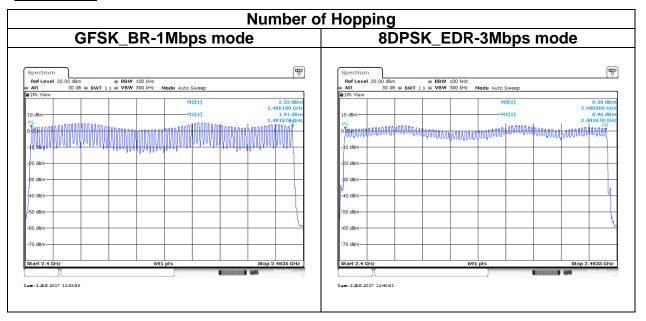
4.5.2 Test Procedure

Test method Refer as ANSI 63.10:2013 clause 7.8.3

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. EUT RF output port connected to the SA by RF cable.
- 3. Set spectrum analyzer Start Freq. = 2400 MHz, Stop Freq. = 2483.5 MHz, RBW =100KHz, VBW = 300KHz.
- 4. Max hold, view and count how many channel in the band.

4.5.3 Test Setup

4.5.4 Test Result


		Number of Hoppi	ng	
Mode	Frequency (MHz)	Hopping Channel Number	Hopping Channel Number Limits	Result
BR-1Mbps	2402-2480	79	15	Door
EDR-3Mbps	2402-2480	79	15	Pass

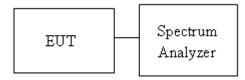
REMARK:

The frequency spectrum was broken up in to two sub-range to clearly show all of the hopping frequencies. In the AFH mode, this device operation was using 20 channels, so the requirement for minimum number of hopping channels is satisfied

Test Data

4.6 CONDUCTED BANDEDGE AND SPURIOUS EMISSION

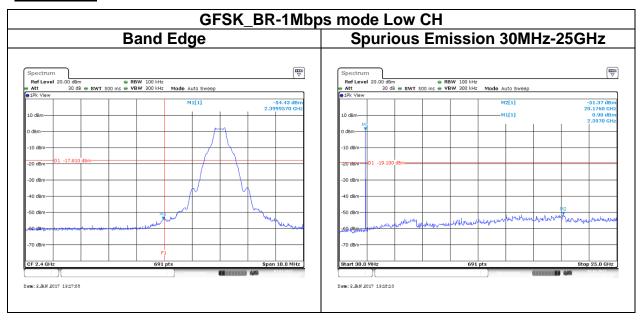
4.6.1 Test Limit

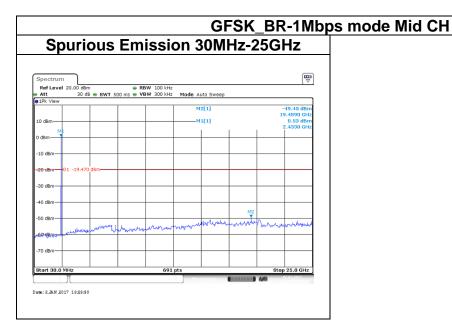

According to §15.247(d) and RSS-247 section 5.5

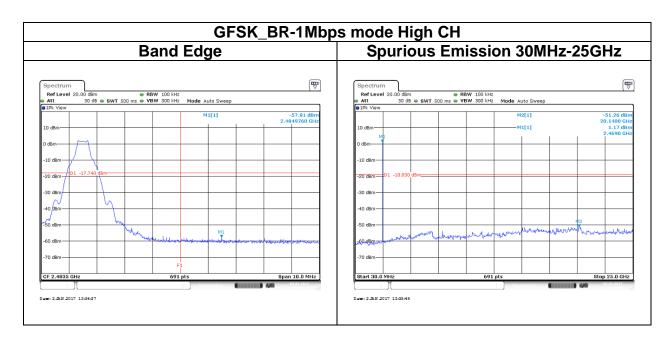
Limit -20 dBc

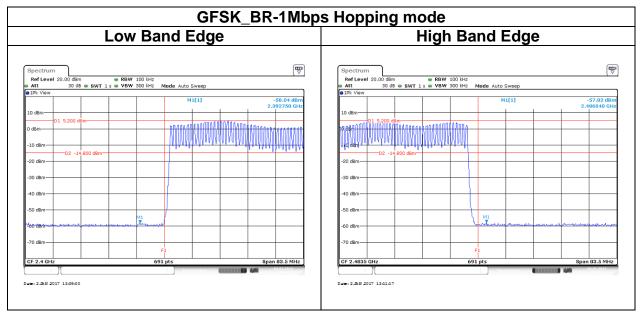
4.6.2 Test Procedure

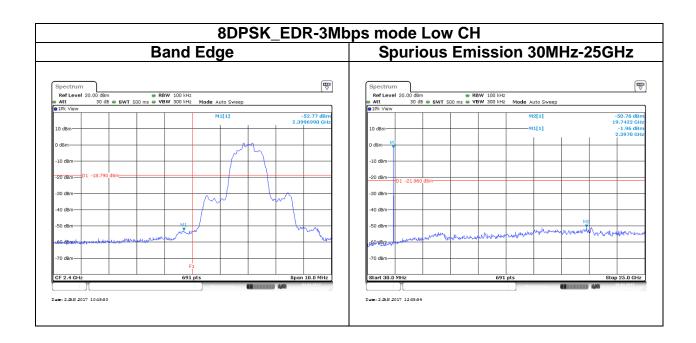
- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. The Band Edge at 2.4GHz and 2.4835GHz are investigated with normal hopping mode.

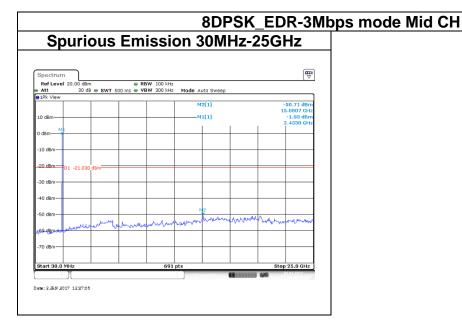

4.6.3 Test Setup

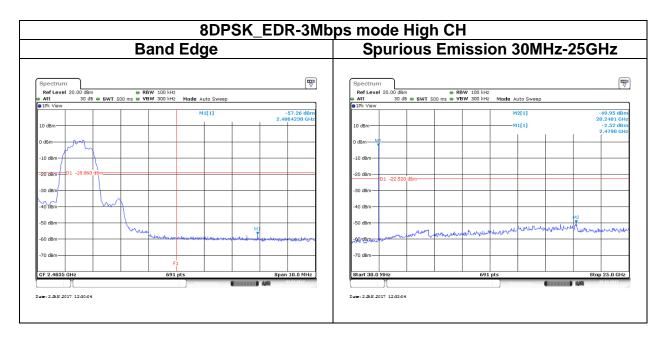


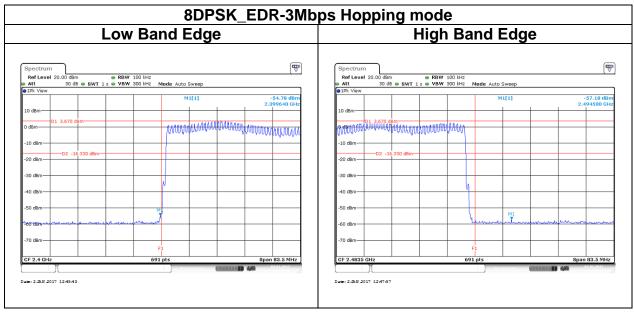

4.6.4 Test Result


Test Data



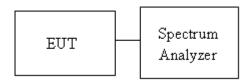






4.7 TIME OF OCCUPANCY (DWELL TIME)

4.7.1 Test Limit


According to §15.247(a)(1)(iii)and RSS-247 section 5.1(4)

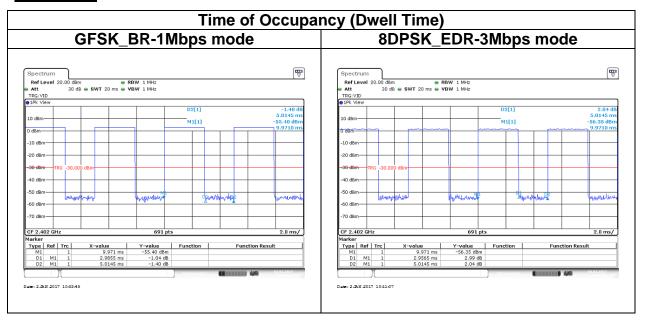
The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

4.7.2 Test Procedure

- 1. EUT RF output port connected to the SA by RF cable.
- 2. Set center frequency of spectrum analyzer = operating frequency.
- 3. Set the spectrum analyzer as RBW, VBW=1MHz, Sweep = 1 ms

4.7.3 Test Setup

4.7.4 Test Result


Time of Occupancy (Dwell Time)								
Mode	Frequency (MHz)	Pulse Time Per Hopping (ms)	Minimum Number of Hopping Freq.	Number of pulse in	Dwell Time IN	Dwell Time	Result	
				(0.4 * N sec)	(0.4 * N sec)	Limits (s)		
BR-1Mbps	2441	2.8841	79	106.67	0.3123	0.4		
EDR-3Mbps	2441	2.8841	79	106.67	0.3123	0.4	Pass	
AFH: DH5	2441	2.8841	20	53.33	0.1561	0.4		

Non-AFH: DH5 Packet permit maximum 1600/79/6 = 3.37 hops per second in each channel (5 time slots RX, 1 time slot TX). So, the dwell time is the time duration of the pulse times 3.37 * 0.4 *79 = 106.6

AFH: DH5 Packet permit maximum 800/20/6 = 6.666 hops per second in each channel (5 time slots RX, 1 time slot TX). So, the dwell time is the time duration of the pulse times 6.666*0.4*20 = 53.33

Test Data

4.8 RADIATION BANDEDGE AND SPURIOUS EMISSION

4.8.1 Test Limit

FCC according to §15.247(d), §15.209 and §15.205,

IC according to RSS-247 section 5.5, RSS-Gen, Section 8.9 and 8.10

In any 100 kHz bandwidth outside the authorized frequency band, all harmonic and spurious must be least 20 dB below the highest emission level with the authorized frequency band. Radiation emission which fall in the restricted bands must also follow the FCC section 15.209 as below limit in table.

Below 30 MHz

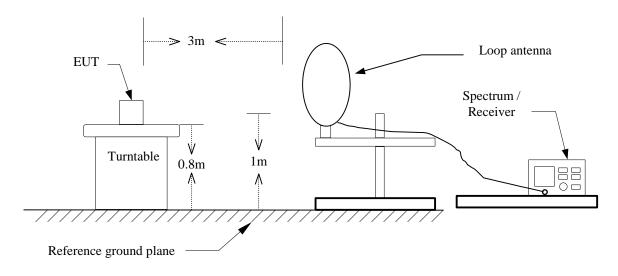
Frequency Field Strength (microvolts/m)		Magnetic H-Field (microamperes/m)	Measurement Distance (metres)	
9-490 kHz	2,400/F (F in kHz)	2,400/F (F in kHz)	300	
490-1,705 kHz	24,000/F (F in kHz)	24,000/F (F in kHz)	30	
1.705-30 MHz	30	N/A	30	

Above 30 MHz

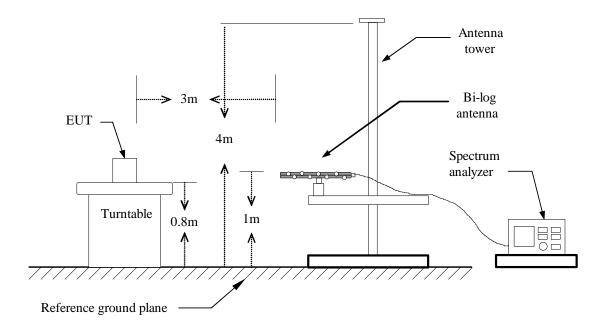
Frequency	Field Strength microvolts/m at 3 metres (watts, e.i.r.p.)			
(MHz)	Transmitters	Receivers		
30-88	100 (3 nW)	100 (3 nW)		
88-216	150 (6.8 nW)	150 (6.8 nW)		
216-960	200 (12 nW)	200 (12 nW)		
Above 960	500 (75 nW)	500 (75 nW)		

4.8.2 Test Procedure

Test method Refer as KDB 558074 D01 v03r05, Section 12.1.

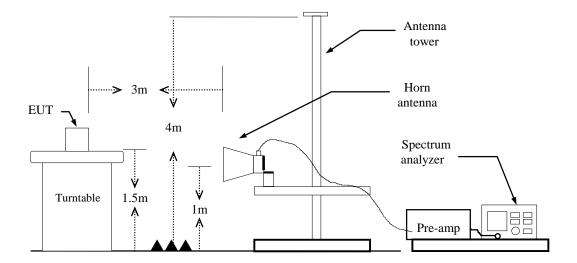

- 1. The EUT is placed on a turntable, Above 1 GHz is 1.5m and below 1 GHz is 0.8m above ground plane. The EUT Configured un accordance with ANSI C63.10, and the EUT set in a continuous mode.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. And EUT is set 3m away from the receiving antenna, which is scanned from 1m to 4m above the ground plane to find out the highest emissions. Measurement are made polarized in both the vertical and the horizontal positions with antenna.
- 3. Span shall wide enough to full capture the emission measured. The SA from 30MHz to 26.5GHz set to the low, Mid and High channels with the EUT transmit.
- 4. For harmonic, the worst case of output power was BR-1Mbps. Therefore only BR-1Mbps record in the report.
- 5. The SA setting following:
 - (1) Below 1G: RBW = 100kHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
 - (2) Above 1G:
 - (2.1) For Peak measurement : RBW = 1MHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
 - (2.2) For Average measurement : RBW = 1MHz, VBW
 - If Duty Cycle ≥ 98%, VBW=10Hz.
 - If Duty Cycle < 98%, VBW=1/T.

Configuration	Duty Cycle (%)	VBW
GFSK_BR-1Mbps	59.53 %	360Hz
8DPSK_EDR-3Mbps	58.96 %	360Hz



4.8.3 Test Setup

9kHz ~ 30MHz



30MHz ~ 1GHz

Above 1 GHz

4.8.4 Test Result

Band Edge Test Data

-	Test Mod	le:	GF	SK_BR Low (-1Mbps CH		Te	mp/Hu	m	27(℃)	/ 53%RH
	Test Iter	m		Band E	dge		Te	est Date	е	Jan 18, 2017	
	Polarize	Э	Horizontal			Tes	t Engin	eer	Ed (Chiang	
	Detecto	r	Peak								
120.0	dBuV/m										
										Lim Lim	
											2
80_											
	-and-Applications	delan de	ahmoray na vallangdan s	elielelere merlem seltenle	way takan sapasayaan	art. C. orberreps	mysedpaget	1 Handler op a broke	and particular	man a Malandaria	Washing.
0.0	0.000 2320.2	20 2330.	40 2340	100 00	50.80 23	61.00	2371.3	20 238 ⁻		391.60	2412.00 MH

No.	Frequency Reading		Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2375.484	51.77	-2.61	49.16	74.00	-24.84	peak
2	2401.800	96.89	-2.41	94.48	-	-	peak

Test Mode	:		_BR-1Mbps ow CH	Ter	mp/Hum	27(℃)/ 53%RH
Test Item		Bar	nd Edge	Te	st Date	Jan 18, 201
Polarize			rizontal	Test	Engineer	Ed Chiang
Detector		Average				
10.0 dBuV/m						
						Limit1: — Limit2: —
						2
70						
					1	
0.0		<u></u>			 	

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000	37.37	-2.49	34.88	54.00	-19.12	AVG
2	2401.902	96.36	-2.41	93.95	-	-	AVG

	Test Mo	ode:		GFS	K_BF High	R-1Mb CH	ps	T	emp/Hu	ım	27(°C))/ 53%RH
	Test It	em		Е	Band I	Edge		Test Date		te	Jan	18, 2017
	Polari	ize		Horizontal		Test Engineer		eer		Chiang		
	Detec	tor			Pea	ak						
120.0) dBuV/m											
												nit1: — nit2: —
		\										
80_												
) 	1	i i									
W.			Million L.	pendekan pelan julian di	Newstandalft	godensky wife	ngture, ducing	stength Myddytt	modern staken menseyeka	a_dhaadhaaqab ^a aqbaaaa	المعارية المأومين	more more described in such
40.0												

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2480.168	96.57	-2.03	94.54	-	-	peak
2	2483.858	59.90	-1.99	57.91	74.00	-16.09	peak

Test Mode:	GFSK_BR-1Mbps High CH	Temp/Hum	27(°C)/ 53%RH	
Test Item	Band Edge	Test Date	Jan 18, 2017	
Polarize	Horizontal	Test Engineer	Ed Chiang	
Detector	Average			
110.0 dBuV/m				
			Limit1: —	
1				
70				
30.0				

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2479.922	95.97	-2.03	93.94	-	-	AVG
2	2483.500	37.57	-1.99	35.58	54.00	-18.42	AVG

-	Test Mo	de:	8D	Low		T	Гетр/Ни	ım	27(°	C)/ 53%RH
	Test Ite	em		Band	Edge		Test Date		Jan 18, 2017	
	Polariz	<u>ze</u>	Horizontal			Te	st Engin	eer	E	d Chiang
	Detect	or		Pe	ak					
20.0	dBuV/m									
										Limit1: — Limit2: —
										2
80										
F		1.			May Marapart are quantify a Capital					1 h

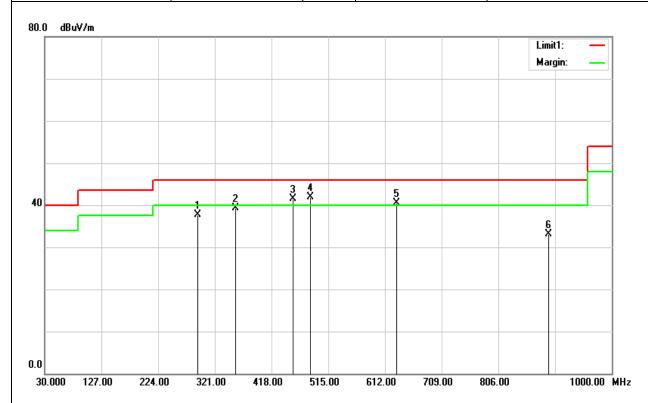
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2328.870	52.23	-2.94	49.29	74.00	-24.71	peak
2	2402.004	96.27	-2.41	93.86	-	-	peak

2311	0.000 2	320 20	2330.40	2340.60	2350.80	2361.00	2371.20	2381.40	2391.60	2412.00 MF
0.0									The state of the s	
									1	
70										
										\mathbb{N}
-										2
									Lin	nit2: —
0.0	dBuV/ı	m							Lin	nit1: —
		ector		Д	verage					
		arize			orizontal			Enginee		Chiang
	Test	Item			ind Edge)	Te	st Date	Jan	18, 2017
	Test	Mode	:		_EDR-3 .ow CH	Mbps	Ter	np/Hum	27(°C)/ 53%RH

١	lo.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
		(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
	1	2390.000	37.46	-2.49	34.97	54.00	-19.03	AVG
	2	2402.004	92.66	-2.41	90.25	-	-	AVG

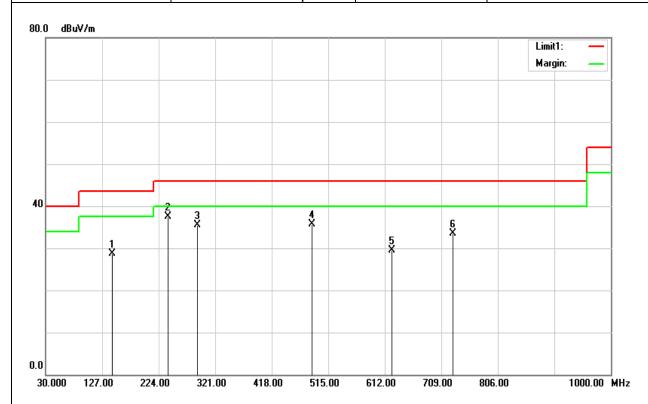
	Test Mode:		3	BDPS	K_EI High	OR-3N CH	Mbps	S	Temp/Hum		ım	27(°C)/ 53%RH		3%RH	
	Test It	em			Е	Band	Edge			Tes	st Dat	te	Jan 18, 2017		2017
	Polar	ize			Horizontal			Test	Engir	neer		Ed Ch			
	Detector				Peak										
20.0	dBuV/m											L			
														Limit1: Limit2:	
		1													
80															
	All I		2 X												
0.0	A Manuser			Manush	hayyiyad oyu haydayd	rational major	nt de description	yabanahirindi	المهرا المطاحة والمعربا	and Herman	helicitagenaticida	hat the hand who we have the	udoradkulosadó	arandaya, 4	y dyddynadiau dyddif

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2480.004	95.52	-2.03	93.49	-	-	peak
2	2483.694	58.37	-1.99	56.38	74.00	-17.62	peak


	Test Mode:		8DPSK_EDR-3Mbps High CH		Temp/Hum			27(°ℂ)/ 53%RI		
	Test Iter	n	Ba	and Edge		Tes	t Date	Jan	Jan 18, 2017	
	Polarize			orizontal		Test E	ngineer		Ed Chiang	
	Detector		Į.	Average						
10.0	dBuV/m				•			•		_
Γ									imit1: —	1
								L	imit2: —	4
										1
	1.									
	M									1
		1								
										1
										\dashv
70										┪
	}									
\perp										+
Ļ										4
-										4
		1_								4
ļ		2 *								_
0.0										

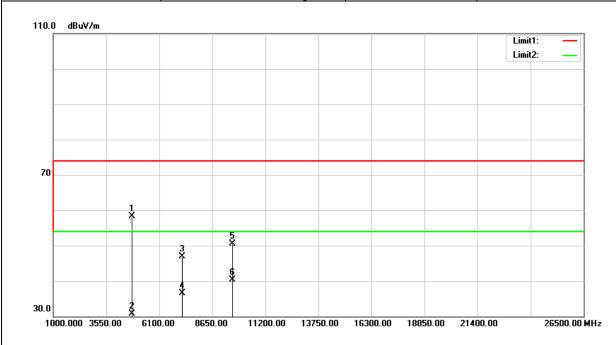
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2480.086	91.70	-2.03	89.67	-	-	AVG
2	2483.500	37.64	-1.99	35.65	54.00	-18.35	AVG

Below 1G Test Data


Test Mode:	BT Mode	Temp/Hum	27(°ℂ)/ 53%RH
Test Item	30MHz-1GHz	Test Date	Jan 17, 2017
Polarize	Vertical	Test Engineer	Ed Chiang
Detector	Peak and Qusi-peak		

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
291.9000	52.01	-14.39	37.62	46.00	-8.38	peak
356.8900	52.07	-12.73	39.34	46.00	-6.66	peak
454.8600	51.68	-10.10	41.58	46.00	-4.42	QP
484.9300	51.35	-9.53	41.82	46.00	-4.18	QP
632.3700	47.40	-6.99	40.41	46.00	-5.59	QP
892.3300	36.46	-3.28	33.18	46.00	-12.82	peak

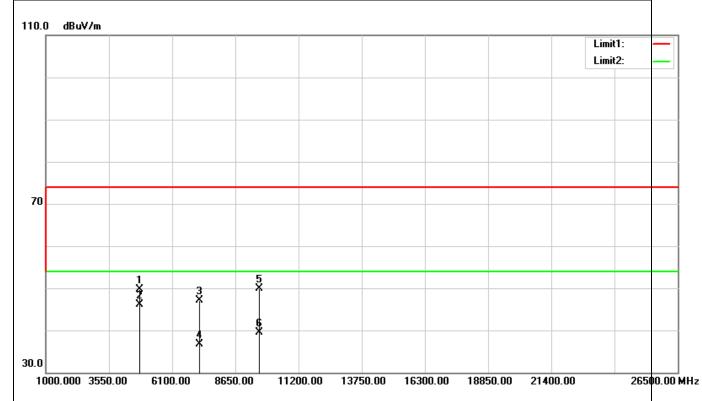
Test Mode:	BT Mode	Temp/Hum	27(°C)/ 53%RH
Test Item	30MHz-1GHz	Test Date	Jan 17, 2017
Polarize	Horizontal	Test Engineer	Ed Chiang
Detector	Peak and Qusi-peak		_



Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
144.4600	44.52	-15.91	28.61	43.50	-14.89	peak
240.4900	54.09	-16.50	37.59	46.00	-8.41	peak
290.9300	50.00	-14.41	35.59	46.00	-10.41	peak
486.8700	45.16	-9.49	35.67	46.00	-10.33	peak
623.6400	36.70	-7.20	29.50	46.00	-16.50	peak
729.3700	38.84	-5.39	33.45	46.00	-12.55	peak

Above 1G Test Data

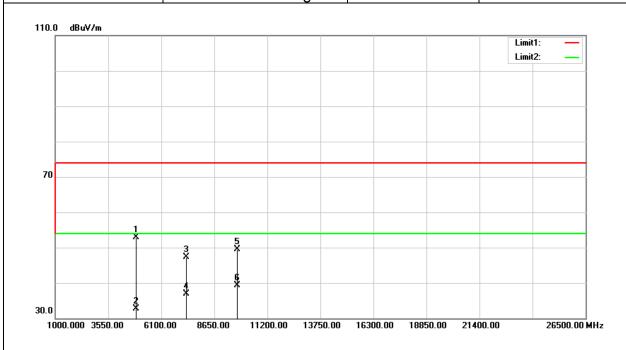
Test Mode:	GFSK_BR-1Mbps Low CH	Temp/Hum	27(°ℂ)/ 53%RH
Test Item	Harmonic	Test Date	Jan 18, 2017
Polarize	Vertical	Test Engineer	Kevin Kuo
Detector	Peak and Average		



Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4806.000	53.31	5.05	58.36	74.00	-15.64	peak
4806.000	25.64	5.05	30.69	54.00	-23.31	AVG
7206.000	34.21	12.62	46.83	74.00	-27.17	peak
7206.000	23.86	12.62	36.48	54.00	-17.52	AVG
9608.000	32.82	17.60	50.42	74.00	-23.58	peak
9608.000	22.71	17.60	40.31	54.00	-13.69	AVG

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

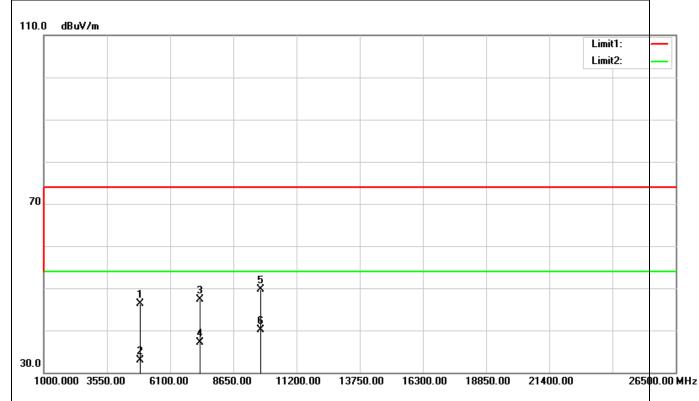
Test Mode:	GFSK_BR-1Mbps Low CH	Temp/Hum	27(°ℂ)/ 53%RH
Test Item	Harmonic	Test Date	Jan 18, 2017
Polarize	Horizontal	Test Engineer	Kevin Kuo
Detector	Peak and Average		



Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4804.000	44.76	5.04	49.80	74.00	-24.20	peak
4804.000	41.13	5.04	46.17	54.00	-7.83	AVG
7206.000	34.40	12.62	47.02	74.00	-26.98	peak
7206.000	24.06	12.62	36.68	54.00	-17.32	AVG
9608.000	32.21	17.60	49.81	74.00	-24.19	peak
9608.000	21.92	17.60	39.52	54.00	-14.48	AVG

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

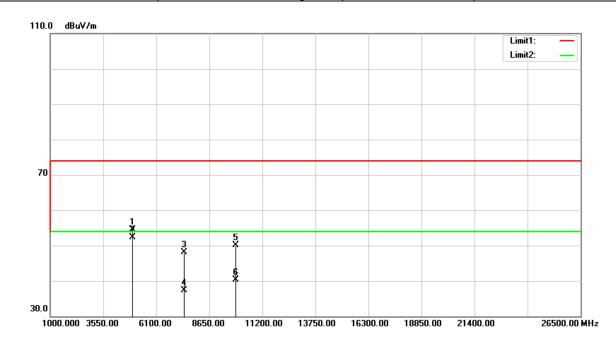
Test Mode:	GFSK_BR-1Mbps Mld CH	Temp/Hum	27(℃)/ 53%RH
Test Item	Harmonic	Test Date	Jan 18, 2017
Polarize	Vertical	Test Engineer	Kevin Kuo
Detector	Peak and Average		



Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4883.000	47.72	5.26	52.98	74.00	-21.02	peak
4883.000	27.38	5.26	32.64	54.00	-21.36	AVG
7323.000	34.34	12.98	47.32	74.00	-26.68	peak
7323.000	23.83	12.98	36.81	54.00	-17.19	AVG
9764.000	31.99	17.60	49.59	74.00	-24.41	peak
9764.000	21.67	17.60	39.27	54.00	-14.73	AVG

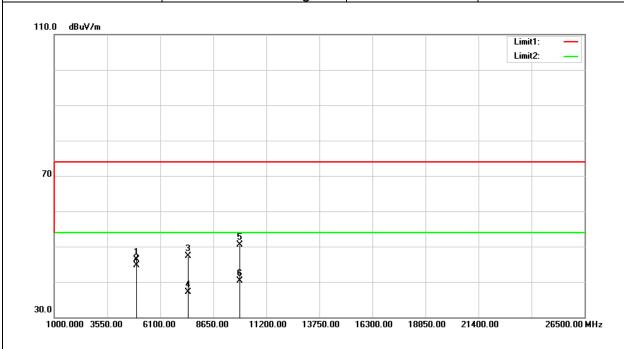
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode:	GFSK_BR-1Mbps Mid CH	Temp/Hum	27(°ℂ)/ 53%RH
Test Item	Harmonic	Test Date	Jan 18, 2017
Polarize	Horizontal	Test Engineer	Kevin Kuo
Detector	Peak and Average		



Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4883.000	41.08	5.26	46.34	74.00	-27.66	peak
4883.000	27.57	5.26	32.83	54.00	-21.17	AVG
7323.000	34.34	12.98	47.32	74.00	-26.68	peak
7323.000	24.07	12.98	37.05	54.00	-16.95	AVG
9764.000	32.16	17.60	49.76	74.00	-24.24	peak
9764.000	22.53	17.60	40.13	54.00	-13.87	AVG

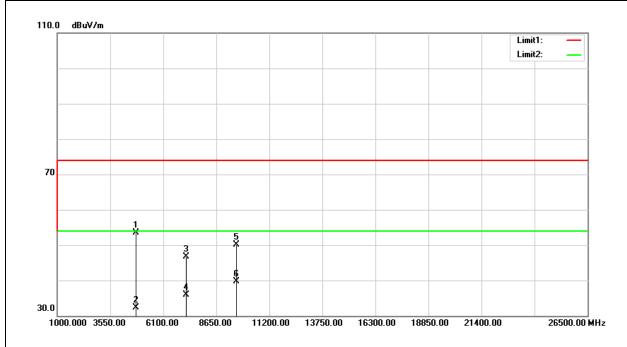
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit


Test Mode:	GFSK_BR-1Mbps High CH	Temp/Hum	27(℃)/ 53%RH
Test Item	Harmonic	Test Date	Jan 18, 2017
Polarize	Vertical	Test Engineer	Kevin Kuo
Detector	Peak and Average		

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4960.000	49.05	5.46	54.51	74.00	-19.49	peak
4960.000	46.79	5.46	52.25	54.00	-1.75	AVG
7440.000	34.80	13.33	48.13	74.00	-25.87	peak
7440.000	24.05	13.33	37.38	54.00	-16.62	AVG
9920.000	32.53	17.60	50.13	74.00	-23.87	peak
9920.000	22.67	17.60	40.27	54.00	-13.73	AVG

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

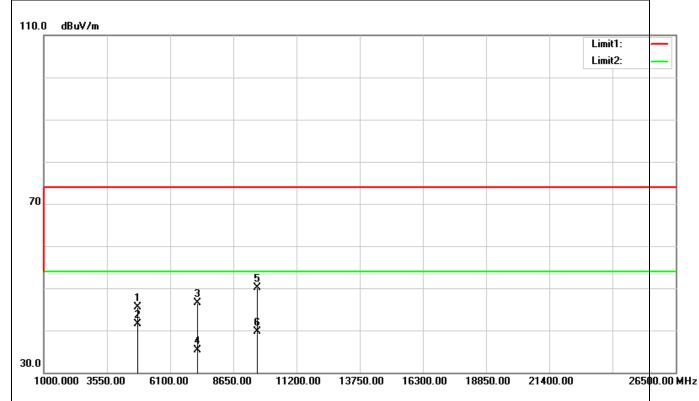
Test Mode:	GFSK_BR-1Mbps High CH	Temp/Hum	27(℃)/ 53%RH
Test Item	Harmonic	Test Date	Jan 18, 2017
Polarize	Polarize Horizontal		Kevin Kuo
Detector	Peak and Average		



Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4960.000	40.74	5.46	46.20	74.00	-27.80	peak
4960.000	39.28	5.46	44.74	54.00	-9.26	AVG
7440.000	34.01	13.33	47.34	74.00	-26.66	peak
7440.000	23.85	13.33	37.18	54.00	-16.82	AVG
9920.000	32.96	17.60	50.56	74.00	-23.44	peak
9920.000	22.62	17.60	40.22	54.00	-13.78	AVG

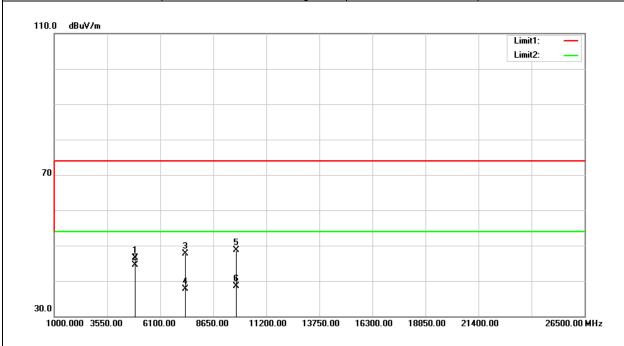
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode:	8DPSK_BR-1Mbps Low CH	Temp/Hum	27 (℃)/ 53%RH
Test Item	Harmonic	Test Date	Jan 18, 2017
Polarize	Vertical	Test Engineer	Kevin Kuo
Detector	Peak and Average		



Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4806.000	48.39	5.05	53.44	74.00	-20.56	peak
4806.000	27.23	5.05	32.28	54.00	-21.72	AVG
7206.000	34.15	12.62	46.77	74.00	-27.23	peak
7206.000	23.27	12.62	35.89	54.00	-18.11	AVG
9608.000	32.41	17.60	50.01	74.00	-23.99	peak
9608.000	22.07	17.60	39.67	54.00	-14.33	AVG

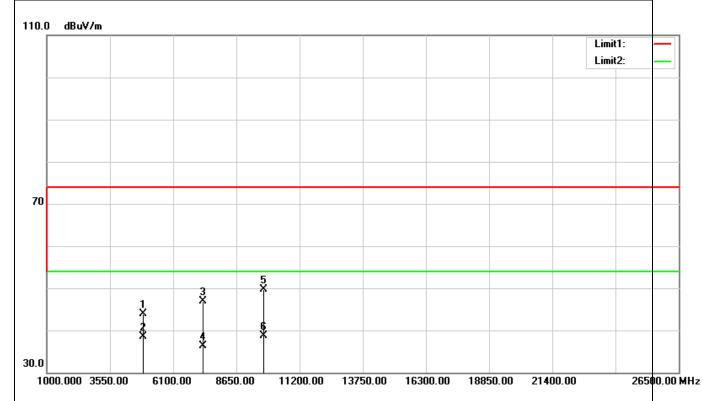
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit


Test Mode:	8DPSK_BR-1Mbps Low CH	Temp/Hum	27(°ℂ)/ 53%RH
Test Item	Harmonic	Test Date	Jan 18, 2017
Polarize	Horizontal	Test Engineer	Kevin Kuo
Detector	Peak and Average		

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4804.000	40.56	5.04	45.60	74.00	-28.40	peak
4804.000	36.43	5.04	41.47	54.00	-12.53	AVG
7206.000	33.94	12.62	46.56	74.00	-27.44	peak
7206.000	22.76	12.62	35.38	54.00	-18.62	AVG
9608.000	32.57	17.60	50.17	74.00	-23.83	peak
9608.000	22.12	17.60	39.72	54.00	-14.28	AVG

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

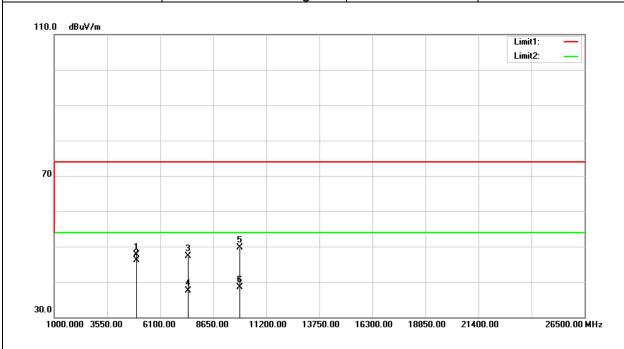
Test Mode:	8DPSK_BR-1Mbps MId CH	Temp/Hum	27(℃)/ 53%RH
Test Item	Harmonic	Test Date	Jan 18, 2017
Polarize	Vertical	Test Engineer	Kevin Kuo
Detector	Peak and Average		



Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4882.000	41.17	5.25	46.42	74.00	-27.58	peak
4882.000	39.33	5.25	44.58	54.00	-9.42	AVG
7323.000	34.80	12.98	47.78	74.00	-26.22	peak
7323.000	24.63	12.98	37.61	54.00	-16.39	AVG
9764.000	31.15	17.60	48.75	74.00	-25.25	peak
9764.000	20.93	17.60	38.53	54.00	-15.47	AVG

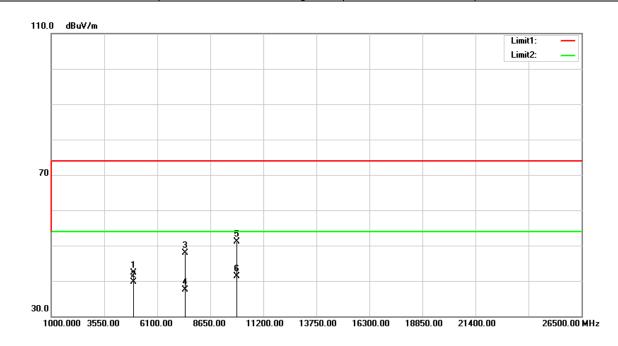
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode:	8DPSK_BR-1Mbps Mid CH	Temp/Hum	27(°C)/ 53%RH
Test Item	Harmonic	Test Date	Jan 18, 2017
Polarize	Horizontal	Test Engineer	Kevin Kuo
Detector	Peak and Average		



Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4882.000	38.69	5.25	43.94	74.00	-30.06	peak
4882.000	33.31	5.25	38.56	54.00	-15.44	AVG
7323.000	33.87	12.98	46.85	74.00	-27.15	peak
7323.000	23.37	12.98	36.35	54.00	-17.65	AVG
9764.000	32.06	17.60	49.66	74.00	-24.34	peak
9764.000	21.12	17.60	38.72	54.00	-15.28	AVG

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit


Test Mode:	8DPSK_BR-1Mbps High CH	Temp/Hum	27 (℃)/ 53%RH
Test Item	Harmonic	Test Date	Jan 18, 2017
Polarize	Vertical	Test Engineer	Kevin Kuo
Detector	Peak and Average		

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4960.000	42.29	5.46	47.75	74.00	-26.25	peak
4960.000	40.66	5.46	46.12	54.00	-7.88	AVG
7440.000	34.01	13.33	47.34	74.00	-26.66	peak
7440.000	24.20	13.33	37.53	54.00	-16.47	AVG
9920.000	32.07	17.60	49.67	74.00	-24.33	peak
9920.000	20.82	17.60	38.42	54.00	-15.58	AVG

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode:	8DPSK_BR-1Mbps High CH	Temp/Hum	27(℃)/ 53%RH
Test Item	Harmonic	Test Date	Jan 18, 2017
Polarize	Horizontal	Test Engineer	Kevin Kuo
Detector	Peak and Average		

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4960.000	36.91	5.46	42.37	74.00	-31.63	peak
4960.000	34.16	5.46	39.62	54.00	-14.38	AVG
7440.000	34.56	13.33	47.89	74.00	-26.11	peak
7440.000	24.09	13.33	37.42	54.00	-16.58	AVG
9920.000	33.55	17.60	51.15	74.00	-22.85	peak
9920.000	23.67	17.60	41.27	54.00	-12.73	AVG

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit