<Dipole Verification Data> - D3700 V2, serial no. 1006(Data of Measurement : 06.19.2023) 3700MHz - Head IFBW 70 kHz Stop 3.9 GHz Cor SPORTON INTERNATIONAL INC. 1 Start 3.5 GHz # <Dipole Verification Data> - D3700 V2, serial no. 1006 (Data of Measurement : 06.18.2024) 3700MHz - Head SPORTON INTERNATIONAL INC. Report No.: FA4D1633 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerlscher Kallbrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Taoyuan City Certificate No. D3700V2-1022_Jul24 ### **CALIBRATION CERTIFICATE** Object D3700V2 - SN: 1022 Calibration procedure(s) QA CAL-22.v7 Calibration Procedure for SAR Validation Sources between 3 - 10 GHz Calibration date July 10, 2024 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID: | Cal Date (Certificate No.) | Scheduled Cal | |--|------------|---------------------------------------|---------------| | Power Sensor R&S NRP-33T | SN: 100967 | 28-Mar-24 (No. 217-04038) | Mar-25 | | Power Sensor R&S NRP18A | SN: 101859 | 21-Mar-24 (No. 4030A315007801) | Mar-25 | | Spectrum Analyzer R&S FSV40 | SN: 101832 | 25-Jan-24 (No. 4030-315007551) | Jan-25 | | Mismatch; Short [S4188] Attenuator [S4423] | SN: 1152 | 28-Mar-24 (No. 217-04050) | Mar-25 | | OCP DAK-12 | SN: 1016 | 05-Oct-23 (No. OCP-DAK12-1016_Oct23) | Oct-24 | | OCP DAK-3.5 | SN: 1249 | 05-Oct-23 (No. OCP-DAK3.5-1249_Oct23) | Oct-24 | | Reference Probe EX3DV4 | SN: 7349 | 03-Jun-24 (No. EX3-7349 Jun24) | Jun-25 | | DAE4in | SN: 1836 | 10-Jan-24 (No. DAE4ip-1836_Jan24) | Jan-25 | | DALHID | | | | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | |------------------------------|------------|--|-----------------| | ACAD Source Box | SN: 1000 | 28-May-24 (No. 675-ACAD_Source_Box-240528) | May-25 | | Signal Generator R&S SMB100A | SN: 182081 | 28-May-24 (No. 0001-300719404) | May-25 | | Mismatch: SMA | SN: 1102 | 22-May-24 (No. 675-Mismatch_SMA-240522) | May-25 | Name Function Signature Calibrated by Paulo Pina Laboratory Technician Approved by Sven Kühn Technical Manager Issued: July 10, 2024 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D3700V2-1022_Jul24 Report No.: FA4D1633 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards - IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528; Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation** DASY System Handbook ### Methods Applied and Interpretation of Parameters - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - · SAR measured: SAR measured at the stated antenna input power. - · SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D3700V2-1022_Jul24 Page 2 of 6 D3700V2 - SN: 1022 July 10, 2024 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY8 Module SAR | 16.4.0 | |------------------------------|-------------------------------|-------------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with spacer | | Zoom Scan Resolution | dx, $dy = 5mm$, $dz = 1.4mm$ | Graded Ratio = 1.5 mm (Z direction) | | Frequency | 3700MHz ±1MHz | | ### Head TSL parameters at 3700 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|---------------|--------------|----------------| | Nominal Head TSL parameters | 22.0 °C | 37.7 | 3.12 mho/m | | Measured Head TSL parameters | (22.0 ±0.2)°C | 38.2 ±6% | 3.08 mho/m ±6% | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 3700 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR for nominal Head TSL parameters | 20 dBm input power | 6.81 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 68.1 W/kg ±19.9% (k = 2) | | Condition | | |--------------------|--------------------------| | 20 dBm input power | 2.52 W/kg | | normalized to 1W | 25.2 W/kg ±19.5% (k = 2) | | | 20 dBm input power | Certificate No: D3700V2-1022_Jul24 D3700V2 - SN: 1022 July 10, 2024 Report No.: FA4D1633 ### Appendix (Additional assessments outside the scope of SCS 0108) ### Antenna Parameters with Head TSL at 3700 MHz | Impedance | 52.3 Ω – 5.3 jΩ | |-------------|-----------------| | Return Loss | -25.0 dB | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.125 ns | |----------------------------------|------------| | Electrical Delay (one direction) | SALISEUMS. | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufacture (Bu) | SPEAG | |------------------|-------| | Manufactured by | | Certificate No: D3700V2-1022_Jul24 Page 4 of 6 Report No.: FA4D1633 D3700V2 - SN: 1022 July 10, 2024 Disabled Positive / Negative #### System Performance Check Report Graded Grid Grading Ratio Surface Detection Scan Method MAIA | Summary | | | | | | 1000 1000 | | | |----------------------|--------------------|------|--------------|---------------------|--------------------|-------------------|--------------------------|------------------| | Dipole | | 3 | requency [MH | z | TSL | Power (d8m) | | | | D3700V2 - SN1022 | | | 3700 | | HSL | 20 | | | | Exposure Condition | s | | | | | | | | | Phantom Section, TSL | Test Distance [mm] | Band | Group, UID | Frequency (MHz) | Channel Number | Conversion Factor | TSt. Conductivity [\$/m] | TSL Permittivity | | Plat | τα | | CW. 0 | 3700.0 | | 6.34 | 3,08 | 38.2 | | Hardware Setup | | | | | | | race - France V | | | Phantom | TSL, Measured D | ate | Pr | ope, Calibration Da | ite | DAE, | Calibration Date | | | MEP V8.0 Right | HSL, 2024-07-1 | o. | Đ | (30V4 - SN7349, 2 | 024-06-03 | DAE | Hp Sm1836, 2024-01-10 | | | Scans Setup | | | | | Measureme | nt Results | | | | | | | | Zoom Scan | | | | Zoom Scan | | Grid Extents (mm) | | | | 28 × 28 × 28 | Date | | | 2024-07-10 | | Grid Steps (mm) | 5,0 × 5.0 × 3.4 | | psSARTg TW/ | Kgj | | 6.81 | | | | Sensor Surface (mm) | | | | 1,4 | psSAR10g (W | /Kg) | | 2.52 | | Craded Grid | | | | Yes | Yes Power Drift (d | | | -0.01 | 1.5 NIA VMS + 6p Measured Power Scaling TSL Correction Scaling Factor [dB] 0 d8 = 18.5 W/Kg Report No.: FA4D1633 D3700V2 - SN: 1022 ## Impedance Measurement Plot
for Head TSL Report No.: FA4D1633 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Certificate No: D3900V2-1017 Apr22 ### **CALIBRATION CERTIFICATE** Object D3900V2 - SN:1017 Calibration procedure(s) QA CAL-22.v6 Calibration Procedure for SAR Validation Sources between 3-10 GHz Calibration date: April 22, 2022 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 04-Apr-22 (No. 217-03525/03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-22 (No. 217-03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-22 (No. 217-03525) | Apr-23 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 04-Apr-22 (No. 217-03527) | Apr-23 | | Type-N mismatch combination | SN: 310982 / 06327 | 04-Apr-22 (No. 217-03528) | Apr-23 | | Reference Probe EX3DV4 | SN: 3503 | 08-Mar-22 (No. EX3-3503_Mar22) | Mar-23 | | DAE4 | SN: 601 | 01-Nov-21 (No. DAE4-601_Nov21) | Nov-22 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-22 | | | Name | Function | Signature | | Calibrated by: | Joanna Lleshaj | Laboratory Technician | dhuy | | Approved by: | Sven Kühn | Deputy Manager | 56- | Issued: April 28, 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D3900V2-1017_Apr22 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D3900V2-1017_Apr22 Page 2 of 7 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--------------------------------------|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 3900 MHz ± 1 MHz
4100 MHz ± 1 MHz | | ## Head TSL parameters at 3900 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.5 | 3.32 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 36.5 ± 6 % | 3.25 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | 00000 | ### SAR result with Head TSL at 3900 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.89 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 68.7 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.41 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.9 W/kg ± 19.5 % (k=2) | Head TSL parameters at 4100 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.2 | 3.53 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 36.3 ± 6 % | 3.42 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | 722 | | #### SAR result with Head TSL at 4100 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.84 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 68.3 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.38 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.7 W/kg ± 19.5 % (k=2) | Certificate No: D3900V2-1017_Apr22 Page 3 of 7 ### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL at 3900 MHz | Impedance, transformed to feed point | 49.4 Ω - 7.0 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 23.0 dB | | #### Antenna Parameters with Head TSL at 4100 MHz | Impedance, transformed to feed point | $60.1 \Omega + 0.0 j\Omega$ | | | |--------------------------------------|-----------------------------|--|--| | Return Loss | - 20.8 dB | | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.104 ns | | |----------------------------------|----------|--| |----------------------------------|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | | |-----------------|-------|--| |-----------------|-------|--| Certificate No: D3900V2-1017_Apr22 Page 4 of 7 ### **DASY5 Validation Report for Head TSL** Date: 22.04.2022 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 3900 MHz; Type: D3900V2; Serial: D3900V2 - SN:1017 Communication System: UID 0 - CW; Frequency: 3900 MHz, Frequency: 4100 MHz Medium parameters used: f = 3900 MHz; σ = 3.25 S/m; ϵ_r = 36.5; ρ = 1000 kg/m³, Medium parameters used: f = 4100 MHz; σ = 3.42 S/m; ϵ_r = 36.3; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: - Probe:
EX3DV4 SN3503; ConvF(7.39, 7.39, 7.39) @ 3900 MHz, ConvF(7.26, 7.26, 7.26) @ 4100 MHz; Calibrated: 08.03.2022 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 01.11.2021 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ## Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3900MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.24 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 19.6 W/kg ## SAR(1 g) = 6.89 W/kg; SAR(10 g) = 2.41 W/kg Smallest distance from peaks to all points 3 dB below = 8.2 mm Ratio of SAR at M2 to SAR at M1 = 73.9% Maximum value of SAR (measured) = 13.7 W/kg ## Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=4100MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.78 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 19.4 W/kg ## SAR(1 g) = 6.84 W/kg; SAR(10 g) = 2.38 W/kg Smallest distance from peaks to all points 3 dB below = 8.4 mm Ratio of SAR at M2 to SAR at M1 = 74.1% Maximum value of SAR (measured) = 13.5 W/kg Certificate No: D3900V2-1017_Apr22 Page 5 of 7 ### Impedance Measurement Plot for Head TSL Certificate No: D3900V2-1017_Apr22 Page 7 of 7 ### D3900V2, serial no. 1017 Extended Dipole Calibrations If dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. #### <Justification of the extended calibration> | D3900V2 – serial no. 1017 | | | | | | | |---------------------------|------------------|-----------|----------------------|-------------|---------------------------|-------------| | | | 3900MHZ | | | | | | Date of Measurement | Return-Loss (dB) | Delta (%) | Real Impedance (ohm) | Delta (ohm) | Imaginary Impedance (ohm) | Delta (ohm) | | 04.22.2022 | 22.007 | | 40.442 | | 7.0004 | | | (Cal. Report) | -22.997 | | 49.413 | | -7.0334 | | | 04.21.2023 | -22.064 | -4.06 | 51.756 | 2.343 | -4.9563 | 2.0771 | | (extended) | -22.004 | -4.00 | 31.730 | 2.545 | -4.9303 | 2.0771 | | 04.20.2024 | -20.770 | -9.68 | 48.489 | -0.924 | -6.951 | 0.0824 | | (extended) | -20.770 | -9.00 | 46.469 | -0.924 | -0.951 | 0.0624 | | | | | 410 | 0MHZ | | | | Date of Measurement | Return-Loss (dB) | Delta (%) | Real Impedance (ohm) | Delta (ohm) | Imaginary Impedance (ohm) | Delta (ohm) | | 04.22.2022 | -20.767 | | 60.079 | | 0.011025 | | | (Cal. Report) | -20.767 | | 60.079 | | 0.011025 | | | 04.21.2023 | -21.052 | 1.37 | 64.918 | 4.839 | -4.7317 | -4.74273 | | (extended) | -21.002 | 1.31 | 04.910 | 4.039 | -4.1311 | -4.14213 | | 04.20.2024 | -18.880 | -9.09 | 64.61 | 4.531 | -3.7864 | -3.79743 | | (extended) | -10.000 | -5.05 | 04.01 | 4.551 | -3.7004 | -0.18140 | The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. SPORTON INTERNATIONAL INC. # <Dipole Verification Data> - D3900V2, serial no. 1017 (Data of Measurement : 04.21.2023) 3900 MHz - Head SPORTON INTERNATIONAL INC. # <Dipole Verification Data> - D3900V2, serial no. 1017 (Data of Measurement : 04.20.2024) 3900 MHz - Head SPORTON INTERNATIONAL INC. ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton **Taoyuan City** Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 0108 Certificate No. D3900V2-1092_May23 ## CALIBRATION CERTIFICATE Object D3900V2 - SN:1092 Calibration procedure(s) QA CAL-22.v7 Calibration Procedure for SAR Validation Sources between 3-10 GHz Calibration date: May 15, 2023 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP2 | SN: 104778 | 30-Mar-23 (No. 217-03804/03805) | Mar-24 | | Power sensor NRP-Z91 | SN: 103244 | 30-Mar-23 (No. 217-03804) | Mar-24 | | Power sensor NRP-Z91 | SN: 103245 | 30-Mar-23 (No. 217-03805) | Mar-24 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 30-Mar-23 (No. 217-03809) | Mar-24 | | Type-N mismatch combination | SN: 310982 / 06327 | 30-Mar-23 (No. 217-03810) | Mar-24 | | Reference Probe EX3DV4 | SN: 3503 | 07-Mar-23 (No. EX3-3503_Mar23) | Mar-24 | | DAE4 | SN: 601 | 19-Dec-22 (No. DAE4-601_Dec22) | Dec-23 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-22) | In house check: Oct-24 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-22) | In house check: Oct-24 | | | Name | Function | Signature | | Calibrated by: | Jeton Kastrati | Laboratory Technician | + M. | | Approved by: | Sven Kühn | Assetta in the Assessina | 0 | | | | Technical Manager | | Issued: May 17, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D3900V2-1092_May23 Report No.: FA4D1633 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured Calibration is Performed According to the Following Standards: a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### Additional Documentation: c) DASY System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D3900V2-1092_May23 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DAOVEO | | |------------------------------|--------------------------------|----------------------------------| | THE TOTOICH | DASY52 | V52.10.4 | | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 3900 MHz ± 1 MHz | | | | 4100 MHz ± 1 MHz | | ### Head TSL parameters at 3900 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.5 | 3.32 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.0 ± 6 % | 3.23 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL at 3900 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.69 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 67.0 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.32 W/kg | | SAR for
nominal Head TSL parameters | normalized to 1W | 23.2 W/kg ± 19.5 % (k=2) | ## Head TSL parameters at 4100 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.2 | 3.53 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 36.7 ± 6 % | 3.40 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL at 4100 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.67 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 66.8 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.31 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.0 W/kg ± 19.5 % (k=2) | Report No.: FA4D1633 ## Appendix (Additional assessments outside the scope of SCS 0108) ### Antenna Parameters with Head TSL at 3900 MHz | Impedance, transformed to feed point | 49.2 Ω - 4.0 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 27.7 dB | | ### Antenna Parameters with Head TSL at 4100 MHz | Impedance, transformed to feed point | 56.0 Ω + 5.0 jΩ | |--------------------------------------|-----------------| | Return Loss | - 22.6 dB | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.112 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | I Manufactured by | CDEAG | |-------------------|-------| | | SPEAG | | | | Certificate No: D3900V2-1092_May23 ### **DASY5 Validation Report for Head TSL** Date: 15.05.2023 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 3900 MHz; Type: D3900V2; Serial: D3900V2 - SN:1092 Communication System: UID 0 - CW; Frequency: 3900 MHz, Frequency: 4100 MHz Medium parameters used: f = 3900 MHz; σ = 3.23 S/m; ϵ_r = 37.0; ρ = 1000 kg/m³ , Medium parameters used: f = 4100 MHz; σ = 3.40 S/m; ϵ_r = 36.7; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(7.39, 7.39, 7.39) @ 3900 MHz, ConvF(7.26, 7.26, 7.26) @ 4100 MHz; Calibrated: 07.03.2023 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 19.12.2022 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ## Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3900MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.57 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 18.8 W/kg SAR(1 g) = 6.69 W/kg; SAR(10 g) = 2.32 W/kg Smallest distance from peaks to all points 3 dB below = 7.9 mm Ratio of SAR at M2 to SAR at M1 = 74.2% Maximum value of SAR (measured) = 13.3 W/kg ### Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=4100MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.75 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 18.9 W/kg SAR(1 g) = 6.67 W/kg; SAR(10 g) = 2.31 W/kg Smallest distance from peaks to all points 3 dB below = 7.9 mm Ratio of SAR at M2 to SAR at M1 = 74% Maximum value of SAR (measured) = 13.4 W/kg Certificate No: D3900V2-1092_May23 Page 5 of 7 ### Impedance Measurement Plot for Head TSL Certificate No: D3900V2-1092_May23 Page 7 of 7 ### D3900V2, serial no. 1092 Extended Dipole Calibrations If dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. #### <Justification of the extended calibration> | D3900V2 – serial no. 1092 | | | | | | | |---------------------------|------------------|-----------|----------------------|-------------|---------------------------|-------------| | | | 3900MHZ | | | | | | Date of Measurement | Return-Loss (dB) | Delta (%) | Real Impedance (ohm) | Delta (ohm) | Imaginary Impedance (ohm) | Delta (ohm) | | 05.15.2023 | -27.7 | | 49.2 | | -4.0 | | | (Cal. Report) | -21.1 | | 49.2 | | -4.0 | | | 05.14.2024 | -25.7 | -7.22 | 49.9 | 0.7 | 5.7 | -1.7 | | (extended) | -23.1 | -1.22 | 49.9 | 0.7 | -5.7 | -1.7 | | | | | 410 | 0MHZ | | | | Date of Measurement | Return-Loss (dB) | Delta (%) | Real Impedance (ohm) | Delta (ohm) | Imaginary Impedance (ohm) | Delta (ohm) | | 05.15.2023 | -22.6 | | 56.0 | | 5.0 | | | (Cal. Report) | -22.0 | | 36.0 | | 5.0 | | | 05.14.2024 | -19.2 | -15.04 | 57.8 | 1.8 | 8.0 | 3.0 | | (extended) | -19.2 | -15.04 | 57.0 | 1.0 | 6.0 | 3.0 | The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. SPORTON INTERNATIONAL INC. # <Dipole Verification Data> - D3900V2, serial no. 1092 (Data of Measurement : 05.14.2024) 3900MHz - Head SPORTON INTERNATIONAL INC. ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Taoyuan City Certificate No: DAE4-661_May24 ### CALIBRATION CERTIFICATE Object DAE4 - SD 000 D04 BJ - SN: 661 Calibration procedure(s) QA CAL-06.v30 Calibration procedure for the data acquisition electronics (DAE) Calibration date: May 16, 2024 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | 10 # | Cal Date (Certificate No.) | Scheduled Calibration | |-------------------------------|--------------------|----------------------------|------------------------| | Keithley Multimeter Type 2001 | SN: 0810278 | 29-Aug-23 (No:37421) | Aug-24 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Auto DAE Calibration Unit | SE UWS 053 AA 1001 | 23-Jan-24 (in house check) | In house check: Jan-25 | | Calibrator Box V2.1 | SE UMS 006 AA 1002 | 23-Jan-24 (in house check) | In house check: Jan-25 | Calibrated by: Name Function Dominique Steffen Laboratory Technician Approved by Sven Kühn Technical Manager Issued: May 16, 2024 Signature This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ### Glossary DAE Connector angle data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system. ### Methods Applied and Interpretation of Parameters - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value
for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. ### **DC Voltage Measurement** A/D - Converter Resolution nominal High Range: $1LSB = 6.1\mu V$, full range = -100...+300 mV Low Range: 1LSB = 61nV, full range = -1......+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | X | Y | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 404.533 ± 0.02% (k=2) | 404.924 ± 0.02% (k=2) | 405.301 ± 0.02% (k=2) | | Low Range | 3.96982 ± 1.50% (k=2) | 3.98116 ± 1.50% (k=2) | 3.99930 ± 1.50% (k=2) | ### **Connector Angle** | Connector Angle to be used in DASY system | 207.0 ° ± 1 ° | |---|---------------| | [| | ## Appendix (Additional assessments outside the scope of SCS0108) 1. DC Voltage Linearity | High Range | Reading (μV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 199999.13 | 3.77 | 0.00 | | Channel X + Input | 20007.12 | 4,28 | 0.02 | | Channel X - Input | -20001.11 | 0.29 | -0.00 | | Channel Y + Input | 199997.27 | 2.06 | 0.00 | | Channel Y + Input | 20005.73 | 2.79 | 0.01 | | Channel Y - Input | -20001.25 | 0.02 | -0.00 | | Channel Z + Input | 199998.39 | 3.21 | 0.00 | | Channel Z + Input | 20006.42 | 3.37 | 0.02 | | Channel Z - Input | -20001.53 | -0.28 | 0.00 | | Low Range | Reading (μV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 2002.68 | 0.79 | 0.04 | | Channel X + Input | 202.20 | 0.09 | 0.04 | | Channel X - Input | -197.83 | -0.14 | 0.07 | | Channel Y + Input | 2001.79 | -0.20 | -0.01 | | Channel Y + Input | 200.88 | -1.34 | -0.66 | | Channel Y - Input | -198.08 | -0.47 | 0.24 | | Channel Z + Input | 2002.45 | 0.53 | 0.03 | | Channel Z + Input | 201.35 | -0.74 | -0.37 | | Channel Z - Input | -198.49 | -0.80 | 0,41 | ## Common mode sensitivity DASY measurement parameters: A arameters: Auto Zero Time: 3 sec: Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | 20.12 | 18.27 | | | - 200 | -17.56 | -19.43 | | Channel Y | 200 | -0.13 | -0.64 | | 771 | - 200 | -1.43 | -1.71 | | Channel Z | 200 | 10.38 | 10.23 | | | - 200 | -11.74 | -11.94 | 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (µV) | Channel Y (µV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | 8 | 0.35 | -3.24 | | Channel Y | 200 | 8.83 | | 1.45 | | Channel Z | 200 | 8.99 | 6.67 | | Certificate No: DAE4-661_May24 Report No.: FA4D1633 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 15666 | 14079 | | Channel Y | 16083 | 16367 | | Channel Z | 16329 | 15098 | 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MΩ | nput rowsz | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation (µV) | |------------|--------------|------------------|------------------|---------------------| | Channel X | 0.51 | -0.92 | 1.74 | 0.51 | | Channel Y | -0.32 | -2.15 | 1.06 | 0.59 | | Channel Z | -0.38 | -1.43 | 0.73 | 0.44 | 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance (Typical values for information) | | Zeroing (kOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | 200 | 200 | | Channel Y | 200 | 200 | | Channel Z | 200 | 200 | 8. Low Battery Alarm Voltage (Typical values for information) | Typical values | ues Alarm Level (VDC) | | |----------------|-----------------------|--| | Supply (+ Vcc) | +7.9 | | | Supply (- Vcc) | -7.6 | | 9. Power Consumption (Typical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | |----------------|-------------------|---------------|-------------------| | Supply (+ Vcc) | +0.01 | +6 | +14 | | Supply (- Vcc) | -0.01 | -8 | -9 | ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton **Taoyuan City** Certificate No: DAE4-703_Apr24 ### CALIBRATION CERTIFICATE DAE4 - SD 000 D04 BM - SN: 703 Object QA CAL-06.v30 Calibration procedure(s) Calibration procedure for the data acquisition electronics (DAE) April 22, 2024 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID # | Cal Date (Certificate No.) | Scheduled Calibration | |-------------------------------|--------------------|----------------------------|------------------------| | Keithley Multimeter Type 2001 | SN: 0810278 | 29-Aug-23 (No:37421) | Aug-24 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Auto DAE Calibration Unit | SE UWS 053 AA 1001 | 23-Jan-24 (in house check) | In house check: Jan-25 | | Calibrator Box V2.1 | SE UMS 006 AA 1002 | 23-Jan-24 (in house check) | In house check: Jan-25 | Calibrated by: Name Function Adrian Gehring Laboratory Technician Approved by: Sven Kühn Technical Manager Issued: April 22, 2024 Signature This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: DAE4-703_Apr24 Page 1 of 5 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary DAE Connector angle data acquisition electronics r angle information used in DASY system to align probe sensor X to the robot coordinate system. ### Methods Applied and Interpretation of Parameters - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. ## DC Voltage Measurement A/D - Converter Resolution nominal 1LSB = High Range: Low Range: 1LSB = 6.1µV 61nV. full range = -100...+300 mV full range = -1......+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | X | Y | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 404.998 ± 0.02% (k=2) | 404.550 ± 0.02% (k=2) | 404.973 ± 0.02% (k=2) | | Low Range | 3.98524 ± 1.50% (k=2) | 3.97453 ± 1.50% (k=2) | 3.99823 ± 1.50% (k=2) | ### Connector Angle | Connector Angle to be used in DASY system | 238.5 ° ± 1 ° |
--|--------------------| | The state of s | U/046202043 207505 | ### Appendix (Additional assessments outside the scope of SCS0108) 1. DC Voltage Linearity | High Range | Reading (μV) | Difference (μV) | Error (%) | | |-------------------|--------------|-----------------|-----------|--| | Channel X + Input | 199993.45 | -0.22 | -0.00 | | | Channel X + Input | 20003.53 | 1.98 | 0.01 | | | Channel X - Input | -19997.89 | 4.79 | -0.02 | | | Channel Y + Input | 199994.39 | 0.94 | 0.00 | | | Channel Y + Input | 20000.95 | -0.52 | -0.00 | | | Channel Y - Input | -20001.40 | 1.25 | -0.01 | | | Channel Z + Input | 199993.75 | 0.22 | 0.00 | | | Channel Z + Input | 20001.25 | -0.34 | -0.00 | | | Channel Z - Input | -20000.96 | 1.82 | -0.01 | | | Low Range | Reading (μV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 2000,43 | -0.05 | -0.00 | | Channel X + Input | 201.33 | 0.63 | 0.32 | | Channel X - Input | -198.69 | 0.32 | -0.16 | | Channel Y + Input | 2000.64 | 0.28 | 0.01 | | Channel Y + Input | 200.25 | -0.27 | -0.14 | | Channel Y - Input | -199.90 | -0.67 | 0.33 | | Channel Z + Input | 2000.41 | -0.08 | -0.00 | | Channel Z + Input | 199.54 | -1.14 | -0.57 | | Channel Z - Input | -199.26 | -0.23 | 0.12 | Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | 4.08 | 2.46 | | | - 200 | -1.78 | -2.93 | | Channel Y | 200 | 8.81 | 8.42 | | | - 200 | -10.66 | -10.60 | | Channel Z | 200 | -5.71 | -5.35 | | | - 200 | 3.02 | 2.89 | Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (µV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | œ | -1.59 | -3.56 | | Channel Y | 200 | 9.44 | 31 | -0.94 | | Channel Z | 200 | 4.41 | 7.48 | 2 | Report No.: FA4D1633 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 16066 | 16526 | | Channel Y | 16147 | 15339 | | Channel Z | 16147 | 15542 | 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MΩ | | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation (μV) | |-----------|--------------|------------------|------------------|---------------------| | Channel X | 0.91 | 0.07 | 2.20 | 0.36 | | Channel Y | -0.32 | -1.36 | 0.71 | 0.38 | | Channel Z | -0.42 | -1,31 | 0.58 | 0.34 | 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance (Typical values for information) | | Zeroing (kOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | 200 | 200 | | Channel Y | 200 | 200 | | Channel Z | 200 | 200 | 8. Low Battery Alarm Voltage (Typical values for information) | Typical values | Alarm Level (VDC) | | |----------------|-------------------|--| | Supply (+ Vcc) | +7.9 | | | Supply (- Vcc) | -7.6 | | 9. Power Consumption (Typical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | |----------------|-------------------|---------------|-------------------| | Supply (+ Vcc) | +0.01 | +6 | +14 | | Supply (- Vcc) | -0.01 | -8 | -9 | Report No.: FA4D1633 # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 Client Sporton **Taoyuan City** Certificate No: DAE4-1694 Nov24 # CALIBRATION CERTIFICATE Object DAE4 - SD 000 D04 BO - SN: 1694 QA CAL-06.v30 Calibration procedure(s) Calibration procedure for the data acquisition electronics (DAE) Calibration date: November 19, 2024 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-------------------------------|--------------------|----------------------------|------------------------| | Keithley Multimeter Type 2001 | SN: 0810278 | 27-Aug-24 (No:40547) | Aug-25 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Auto DAE Calibration Unit | SE UWS 053 AA 1001 | 23-Jan-24 (in house check) | In house check: Jan-25 | | Calibrator Box V2.1 | SE UMS 006 AA 1002 | 23-Jan-24 (in house check) | In house check: Jan-25 | Name Function Calibrated by: Adrian Gehring Laboratory Technician Approved by: Sven Kühn Technical Manager Issued: November 19, 2024 Signature This calibration certificate shall not be reproduced except in full without written approval of the laboratory, Certificate No: DAE4-1694_Nov24 Report No.: FA4D1633 # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ## Glossary DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. # Methods Applied and Interpretation of Parameters - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. -
Power consumption: Typical value for information. Supply currents in various operating modes. Certificate No: DAE4-1694_Nov24 # **DC Voltage Measurement** A/D - Converter Resolution nominal High Range: 1LSB = Low Range: 1LSB = $\begin{array}{lll} 6.1 \mu V \; , & \quad \text{full range} = & -100...+300 \; \text{mV} \\ 61 \text{nV} \; , & \quad \text{full range} = & -1.....+3 \text{mV} \end{array}$ DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | x | Y | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 405.377 ± 0.02% (k=2) | 405.056 ± 0.02% (k=2) | 405.344 ± 0.02% (k=2) | | Low Range | 4.00049 ± 1.50% (k=2) | 3.99588 ± 1.50% (k=2) | 4.01881 ± 1.50% (k=2) | # **Connector Angle** | Connector Angle to be used in DASY system | 101.5°±1° | |---|-----------| |---|-----------| # Appendix (Additional assessments outside the scope of SCS0108) 1. DC Voltage Linearity | High Range | Reading (µV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 200038.51 | 2.26 | 0.00 | | Channel X + Input | 20007.21 | 2.03 | 0.01 | | Channel X - Input | -20007,92 | -0.13 | 0.00 | | Channel Y + Input | 200037.54 | 1.44 | 0.00 | | Channel Y + Input | 20003.60 | -1.43 | -0.01 | | Channel Y - Input | -20008.98 | -1.13 | 0.01 | | Channel Z + Input | 200036.87 | 0.87 | 0.00 | | Channel Z + Input | 20003.77 | -1,20 | -0.01 | | Channel Z - Input | -20008.69 | -0.74 | 0.00 | | Low Range | Reading (μV) | Difference (µV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 2000.25 | 0.15 | 0.01 | | Channel X + Input | 199.74 | -0.17 | -0.08 | | Channel X - Input | -199.91 | -0.05 | 0.02 | | Channel Y + Input | 1999.99 | -0.13 | -0.01 | | Channel Y + Input | 199.04 | -0.89 | -0.44 | | Channel Y - Input | -201.29 | -1.36 | 0.68 | | Channel Z + Input | 1999.79 | -0.21 | -0.01 | | Channel Z + Input | 199.55 | -0.34 | -0.17 | | Channel Z - Input | -200.30 | -0.32 | 0.16 | Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | -10.56 | -12.40 | | | - 200 | 14.07 | 12.32 | | Channel Y | 200 | 0.16 | -0.29 | | | - 200 | -2.28 | -2.08 | | Channel Z | 200 | 0.17 | -0.08 | | | - 200 | -0.46 | -0.64 | Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (μV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | 340 | 2.73 | -1.92 | | Channel Y | 200 | 8.26 | | 5.14 | | Channel Z | 200 | 8.66 | 4.95 | - | Certificate No: DAE4-1694_Nov24 Appendix C Report No.: FA4D1633 # 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 16015 | 15666 | | Channel Y | 15687 | 14128 | | Channel Z | 16117 | 13898 | Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MΩ | | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation (µV) | |-----------|--------------|------------------|------------------|---------------------| | Channel X | 0.98 | 0.15 | 1.69 | 0.29 | | Channel Y | -0.67 | -1.82 | 0.06 | 0.29 | | Channel Z | 0.01 | -2.80 | 1.86 | 0.52 | ### 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance (Typical values for information) | | Zeroing (kOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | 200 | 200 | | Channel Y | 200 | 200 | | Channel Z | 200 | 200 | 8. Low Battery Alarm Voltage (Typical values for information) | Typical values | Alarm Level (VDC) | | |----------------|-------------------|--| | Supply (+ Vcc) | +7.9 | | | Supply (- Vcc) | -7.6 | | 9. Power Consumption (Typical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | |----------------|-------------------|---------------|-------------------| | Supply (+ Vcc) | +0.01 | +6 | +14 | | Supply (- Vcc) | -0.01 | -8 | -9 | Page 5 of 5 Certificate No: DAE4-1694_Nov24 # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Taoyuan City Certificate No: DAE4-1696_Sep24 # CALIBRATION CERTIFICATE DAE4 - SD 000 D04 BO - SN: 1696 Object QA CAL-06.v30 Calibration procedure(s) Calibration procedure for the data acquisition electronics (DAE) September 03, 2024 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-------------------------------|--------------------|----------------------------|------------------------| | Keithley Multimeter Type 2001 | SN: 0810278 | 27-Aug-24 (No:40547) | Aug-25 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Auto DAE Calibration Unit | SE UWS 053 AA 1001 | 23-Jan-24 (in house check) | In house check: Jan-25 | | Calibrator Box V2.1 | SE UMS 006 AA 1002 | 23-Jan-24 (in house check) | In house check: Jan-25 | Calibrated by: Name Function Adrian Gehring Laboratory Technician Approved by: Sven Kühn Technical Manager Issued: September 3, 2024 Signature This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ### Glossary DAE Connector angle data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system. ## Methods Applied and Interpretation of Parameters - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. # DC Voltage Measurement A/D - Converter Resolution nominal 1LSB = High Range: 1LSB = Low Range: 6.1µV, 61nV. full range = -100...+300 mV full range = -1.....+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | X | Y | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 404.312 ± 0.02% (k=2) | 404.640 ± 0.02% (k=2) | 404.761 ± 0.02% (k=2) | | Low Range | 3.97608 ± 1.50% (k=2) | 3.99946 ± 1.50% (k=2) | 4.00254 ± 1.50% (k=2) | # Connector Angle | Connector Angle to be used in DASY system | 25.0 ° ± 1 ° | |---|--------------| | Connector Angle to be used in DASY system | 25.0 ± 1 | Page 3 of 5 # Appendix (Additional assessments outside the scope of SCS0108) 1. DC Voltage Linearity | High Range | Reading (µV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 199997.25 | -0.38 | -0.00 | | Channel X + Input | 20002.29 | -0.53 | -0.00 | | Channel X -
Input | -19999.89 | 2.32 | -0.01 | | Channel Y + Input | 199996.12 | -0.98 | -0.00 | | Channel Y + Input | 20003.60 | 0.81 | 0.00 | | Channel Y - Input | -20003.41 | -1.12 | 0.01 | | Channel Z + Input | 199997.92 | 0.79 | 0.00 | | Channel Z + Input | 19999.86 | -2.82 | -0.01 | | Channel Z - Input | -20002.81 | -0.31 | 0.00 | | Low Range | Reading (µV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 2001.00 | -0.36 | -0.02 | | Channel X + Input | 201.55 | -0.02 | -0.01 | | Channel X - Input | -197.31 | 0.95 | -0.48 | | Channel Y + Input | 2001.33 | 0.11 | 0.01 | | Channel Y + Input | 201.10 | -0.19 | -0.09 | | Channel Y - Input | -198.76 | -0.35 | 0.18 | | Channel Z + Input | 2001.45 | 0.19 | 0.01 | | Channel Z + Input | 200.91 | -0.33 | -0.16 | | Channel Z - Input | -199.89 | -1.44 | 0.73 | 2. Common mode sensitivity ent parameters: Auto Zero Time: 3 sec: Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-------------------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | 9.36 | 8.13 | | - HONOY 1 A 11 CM | - 200 | -6.27 | -8.03 | | Channel Y | 200 | 11.83 | 11.42 | | | - 200 | -13.94 | -13.63 | | Channel Z | 200 | -26.76 | -26.81 | | | - 200 | 26.18 | 25.93 | Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time; 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (µV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | - | 3.91 | -3.66 | | Channel Y | 200 | 7.25 | * | 5.14 | | Channel Z | 200 | 8.85 | 4.93 | 19 | Report No.: FA4D1633 AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 16307 | 16714 | | Channel Y | 15872 | 15086 | | Channel Z | 16196 | 15358 | 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MO | nput rowsz | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation (µV) | |------------|--------------|------------------|------------------|---------------------| | Channel X | 0.32 | -1.76 | 1.90 | 0.51 | | Channel Y | -0.61 | -2.41 | 0.80 | 0.39 | | Channel Z | -0.78 | -2.29 | 0.67 | 0.43 | 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance (Typical values for information) | | Zeroing (kOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | 200 | 200 | | Channel Y | 200 | 200 | | Channel Z | 200 | 200 | 8. Low Battery Alarm Voltage (Typical values for information) | Typical values | Alarm Level (VDC) | | |----------------|-------------------|--| | Supply (+ Vcc) | +7.9 | | | Supply (- Vcc) | -7.6 | | 9. Power Consumption (Typical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | |----------------|-------------------|---------------|-------------------| | Supply (+ Vcc) | +0.01 | +6 | +14 | | Supply (- Vcc) | -0.01 | -8 | -9 | Report No.: FA4D1633 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Taoyuan City Certificate No: DAE4-1697_Nov24 Accreditation No.: SCS 0108 # CALIBRATION CERTIFICATE Object DAE4 - SD 000 D04 BO - SN: 1697 Calibration procedure(s) QA CAL-06.v30 Calibration procedure for the data acquisition electronics (DAE) Calibration date: November 14, 2024 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |--------------------------------|--------------------|----------------------------|------------------------| | Keithley Multimeter Type 2001 | SN: 0810278 | 27-Aug-24 (No:40547) | Aug-25 | | Secondary Standards | ID.# | Check Date (in house) | Scheduled Check | | Auto DAE Calibration Unit | SE UWS 053 AA 1001 | 23-Jan-24 (in house check) | In house check: Jan-25 | | Auto Dritt Odilbi dilori Oriii | | | | Name Function Signature Calibrated by: Adrian Gehring Laboratory Technician Approved by: Sven Kühn Technical Manager Issued: November 14, 2024 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: DAE4-1697_Nov24 Report No.: FA4D1633 # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ### Glossary DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. ### Methods Applied and Interpretation of Parameters - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. # **DC Voltage Measurement** A/D - Converter Resolution nominal High Range: 1LSB = Low Range: 1LSB = 6.1µV , 61nV , full range = -100...+300 mV full range = -1.....+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | x | Y | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 404.426 ± 0.02% (k=2) | 404.728 ± 0.02% (k=2) | 404.610 ± 0.02% (k=2) | | Low Range | 4.00009 ± 1.50% (k=2) | 4.00643 ± 1.50% (k=2) | 3.94430 ± 1.50% (k=2) | # **Connector Angle** | 0.5°±1° | |---------| | | Certificate No: DAE4-1697_Nov24 Appendix C Report No.: FA4D1633 # Appendix (Additional assessments outside the scope of SCS0108) 1. DC Voltage Linearity | High Range | Reading (µV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 199995.80 | -0.23 | -0.00 | | Channel X + Input | 20001.99 | -0.70 | -0.00 | | Channel X - Input | -20000.26 | 1.88 | -0.01 | | Channel Y + Input | 199995.90 | 0.08 | 0.00 | | Channel Y + Input | 19999.26 | -3.35 | -0.02 | | Channel Y - Input | -20002,72 | -0.46 | 0.00 | | Channel Z + Input | 199997.62 | 1.71 | 0.00 | | Channel Z + Input | 20000.59 | -1.97 | -0.01 | | Channel Z - Input | -20004.64 | -2.23 | 0.01 | | Low Range | Reading (μV) | Difference (µV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 2001.50 | 0.27 | 0.01 | | Channel X + Input | 201.99 | 0.51 | 0.25 | | Channel X - Input | -197.84 | 0.39 | -0.20 | | Channel Y + Input | 2001.06 | -0.07 | -0.00 | | Channel Y + Input | 201.34 | -0.01 | -0.01 | | Channel Y - Input | -199.56 | -1.19 | 0.60 | | Channel Z + Input | 2000.77 | -0.31 | -0.02 | | Channel Z + Input | 200.42 | -0.99 | -0.49 | | Channel Z - Input | -200.06 | -1.68 | 0.85 | 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | -3.22 | -4.49 | | | - 200 | 6.28 | 4.62 | | Channel Y | 200 | -17.76 | -18.06 | | | - 200 | 17.73 | 17.20 | | Channel Z | 200 | 5.20 | 5.23 | | | - 200 | -7.19 | -7.95 |
Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (µV) | Channel Y (μV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | | 1.05 | -3.17 | | Channel Y | 200 | 6.36 | 187 | 1.98 | | Channel Z | 200 | 8.87 | 4.23 | 5 | Report No.: FA4D1633 # 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 16235 | 14779 | | Channel Y | 16222 | 14845 | | Channel Z | 16033 | 16512 | # 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MΩ | | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation (μV) | |-----------|--------------|------------------|------------------|---------------------| | Channel X | 0.84 | 0.08 | 1.42 | 0.29 | | Channel Y | -0.29 | -1.14 | 0.65 | 0.37 | | Channel Z | -0.62 | -1.79 | 0.31 | 0.37 | ### 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance (Typical values for information) | | Zeroing (kOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | 200 | 200 | | Channel Y | 200 | 200 | | Channel Z | 200 | 200 | 8. Low Battery Alarm Voltage (Typical values for information) | Typical values | Alarm Level (VDC) | | |----------------|-------------------|--| | Supply (+ Vcc) | +7.9 | | | Supply (- Vcc) | -7.6 | | 9. Power Consumption (Typical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | |----------------|-------------------|---------------|-------------------| | Supply (+ Vcc) | +0.01 | +6 | +14 | | Supply (- Vcc) | -0.01 | -8 | -9 | Certificate No: DAE4-1697_Nov24 Page 5 of 5