Report ID: 31422-EMC-00005 FCC ID: AZ489FT3850 IC: 109U-89FT3850 CERTIFICATE 2518.08 MS ISO/IEC 17025 TESTING SAMM NO. 0825 MOTOROLA PENANG ADV. COMM. LABORATORY Motorola Solutions Malaysia SDN BHD, Plot 2A, Medan Bayan Lepas, Mukim 12 S.W.D, 11900 Bayan Lepas, Penang, Malaysia. TEST REPORT **Report Revision** : Rev.B **Date/s Tested** : 23-Septe mber-2021 to 07-October-2021 **Report Issue Date** : 07-October-2021 Manufacturer : Motorola Solutions Malaysia SDN BHD Manufacturer Address : Plot 2A, Medan Bayan Lepas, Mukim 12 SWD, 11900 Bayan Lepas, Penang, Malaysia Requestor : CHEW LOOI WONG Product Type : Portable Product Version (PMN) : XPR 3500e Model Number (HVIN) : AAH02JDH9VA1AN-1; IC model: PMUD2938AABNAA Frequency Band : 136-174 MHz Max RF Output Power : 6 Watts **Applicant Name** : Motorola Solutions Inc Applicant Address : 8000 West Sunrise Boulevard, Fort Lauderdale, Florida 33322 ISED Registrations : MY0001 FCC Registrations : 461337 Firmware Version (FVIN) : I02.21.01.1058 The equipment was tested accordance to the requirement listed below: (LMR) FCC 47 CFR Part 2/22/74/80/90 IS ED RSS-Gen Issue5/119 Issue12/182 Issue6 **PASS** This report shall not be reproduced without written approval from an officially designated representative of the Motorola Penang Adv. Comm. Laboratory. The results and statements contained in this report pertain only to the device(s) evaluated. Prepared By: Approved Signatory: FARIS ABDULLAH SOON OI MAY Test Personnel Responsible Engineer ### Table of Contents | Report Revi | ision History | 3 | |------------------|--|----------| | | eral Information | | | 2.0 Sum | nmary of Test Results | 5 | | 3.0 Mea | asurement Uncertainty | <i>6</i> | | | ipment List | | | 5.0 Test | t Condition | 8 | | | ransmitter Test Conditions | | | | nsmitter Test Parameters | | | | F Output Power | | | 6.1.1. | Test Setup | | | 6.1.2. | | | | | requency Stability | | | 6.2.1. | Test Setup | | | 6.2.2. | Test Result | | | 6.2.3. | | | | | Audio Frequency Response | | | 6.3.1. | Test Setup | | | 6.3.2. | Test Result | | | 6.3.3. | Test Limit | | | | Audio Low Pass Filter Response | | | 6.4.1. | Test Setup | | | 6.4.2.
6.4.3. | Test Result | | | | Test Limit Modulation Limiting | | | 6.5.1. | Test Setup | | | 6.5.2. | Test Result | | | 6.5.3. | Test Limit | | | | Occupied Bandwidth | | | 6.6.1. | Test Setup (Analog) | | | 6.6.2. | Test Result (Analog) | | | 6.6.3. | Test Setup (Digital) | | | 6.6.4. | Test Result (Digital) | | | 6.6.5. | Test Limit | | | | and Edge Conducted Spurious Emission (Part 22) | | | 6.7.1. | Test Setup (Analog) | | | 6.7.2. | Test Result (Analog) | | | 6.7.3. | Test Setup (Digital) | | | 6.7.4. | Test Result (Digital) | | | 6.7.5. | Test Limit | | | 6.8. Ti | ransient Frequency Behavior | 20 | | 6.8.1. | Test Setup | 20 | | 6.8.2. | Test Result | 20 | | 6.8.3. | Test Limit | | | 6.9. A | Adjacent Channel Power | | | 6.9.1. | Test Setup (Analog) | | | 6.9.2. | Test Result | | | 6.9.3. | Test Setup (Digital) | 23 | Report ID: 31422-EMC-00005 FCC ID: AZ489FT3850 IC: 109U-89FT3850 | 6.9.4. | Test Result | 23 | |------------|-------------------------------|----| | 6.9.5. | Test Limit | 24 | | 6.10. Cor | nducted Spurious Emission | 26 | | 6.10.1. | Test Setup | 26 | | 6.10.2. | Test Result (Analog) | 27 | | 6.10.3. | Test Result (Digital) | 27 | | 6.10.4. | Test Limit | | | 6.11. Rad | diated Spurious Emission | 28 | | 6.11.1. | Test Setup | 28 | | 6.11.2. | Test Result (Analog) | 29 | | 6.11.3. | Test Result (Digital) | 32 | | 6.11.4. | Test Limit | | | 6.12. Effe | ective Radiated Power (ERP) | 35 | | 6.12.1. | Test Setup. | | | 6.12.2. | Test Result | 35 | | 6.12.3. | Test Limit | 35 | | 6.13. GN | ISS (EIRP for 1559 - 1610MHz) | 36 | | 6.13.1. | Test Setup | | | 6.13.1. | Test Result | | | 6.13.2 | Test Limit | | ### **Report Revision History** | Revision
History | Description | Date | Originator | |---------------------|--------------------|--------------|----------------| | Rev. A | Initial Report | 27-Sept-2021 | Faris Abdullah | | Rev. B | Added test channel | 07-Oct-2021 | Faris Abdullah | #### 1.0 General Information #### **EUT Description:** | Technologies | Land Mobile Radio (LMR) | |------------------------|-------------------------| | Modulation Type | Analog & Digital | The EUT contains following accessory devices and data cable: | Item | Brand | Model or P/N | |---|----------|--------------| | BELIZE NON-TIA HIGH CAP LV LI- ION BATTERY 2950M3000T | MOTOROLA | PMNN4493A | #### **General Description of Applied Standards** The EUT is a RF Product. According to the specifications of the manufacturer, the EUT is to comply with the requirements of the following standards: #### ANSI C63.26-2015 No modifications were done to the UUT to facilitate the tests in this report. #### **Deviation from standard** Not applicable as no deviation from standard test method #### Antenna gain disclaimer Antenna gain information is provided by customer. The validity of the results is dependent upon this information. The lab will not be held accountable in the event the supplied information affects compliance. #### **Test configuration of EUT** All relevant configurations involving radio models and accessories (including chargers, batteries, and antennas) were assessed. Only worst case configurations will be included in this report. Report ID: 31422-EMC-00005 FCC ID: AZ489FT3850 IC: 109 U-89 FT3850 #### 2.0 Summary of Test Results | FCC General
Rules Part
(47CFR) | ISED General
Rules Part | Test Item | Result | Remarks | Serial number tested | |--|-------------------------------------|--|--------|---|----------------------| | 2.1046(a),
22.565(f),
74.461, 80.215 | RSS-Gen,
RSS-182 (7.4) | RF Power Output | NA | See Note1&2 | | | 2.1055, 22.355,
74.464, 80.209 | RSS-Gen,
RSS-182(7.4) | Frequency Stability | NA | See Note1&2 | | | 2.1047 | - | Audio Frequency
Response | NA | See Note1&2 | | | 2.1047 | - | Audio Low Pass Filter
Response | NA | See Note1&2 | | | 2.1047, 74.463,
80.213 | - | Modulation limiting | NA | See Note1&2 | | | 2.1049, 22.359,
90.21, 74.462,
80.211(b), (c) | RSS-Gen,
RSS-182 (7.9) | Occupied Bandwidth | NA | See Note1&2 | | | 2.1051, 22.359
(a), (b) | - | Band Edge Conducted
Spurious Emission | NA | See Note1&2 | | | 90.214 | RSS-119 (5.9) | Transient Frequency
Behavior | NA | See Note1&2 | | | 90.543(a), (b) | RSS-119 (4.3), (5.8.9.1) | Adjacent Channel
Power | NA | | | | 2.1051, 22.359,
90.210
74.462(c),
80.211(c) | RSS-Gen,
RSS-119 (4.2),
(5.8) | Conducted Spurious
Emissions | NA | See Note1&2 | | | 2.1051, 22.359,
90.210
74.462(c),
80.211(c) | RSS-Gen,
RSS-182 (7.9) | Radiated Spurious
Emission | Pass | Worst case
Emission:
-59.5264dBm
(Noise floor)
(margin:
39.5264dB) | 867TXH3326 | | - | - | GNSS (EIRP for 1559
- 1610MHz) | NA | | | | - | - | Effective Radiated
Power (ERP) | NA | See Note1&2 | | #### $NA \rightarrow Not Applicable$ Note1: References data from FCC: AZ489FT7126/ ISED: 109U-89FT7126. Note2: The LMR section is identical to FCC: AZ489FT7126/ ISED: 109U-89FT7126. Hence the conducted parameters will inherit from FCC: AZ489FT7126/ ISED: 109U-89FT7126. Radiated parameter is repeated as sanity check for the depopulation of components in a different subsection circuitry. As per KDB 484596 D01v01, the applicant takes full responsibility that data referenced represents compliance to the relevant rules for this current FCC ID. Report Template Document Number: FCD-0084 Report Template Revision Number: Rev. M Report Template Revision Number: Rev. M FCC ID: AZ489FT3850 IC: 109 U-89 FT3850 ### 3.0 Measurement Uncertainty | Measurement | Frequency | Expended Uncertainty (k=1.96) (±) | |--|-----------------|-----------------------------------| | AC Power Line Conducted Spurious Emission | 150KHz ~ 30MHz | 3.48 dB | | Radiated Emissions up to 1 GHz dBµV/m | 30MHz ~ | 5.88 dB | | (Field Strength) | 1000MHz | | | | | | | Radiated Emissions above 1 GHz dBµV/m | 1GHz ~ 18GHz | 5.84 dB | | (Field Strength) | 18GHz ~ 40GHz | 6.02 dB | | Radiated Emissions dBm (ERP/EiRP) | 30MHz ~ 18GHz | 4.03 dB | | Conducted Spurious Emissions | 9kHz ~ 12.75GHz | 2.82 dB | | Frequency Stability | 9kHz ~ 12.75GHz | 0.0085 ppm | | Audio Frequency Response / Low Pass Filter | 300Hz – 20kHz | | | Response | 300HZ — 20KHZ | 4.09 % | | Modulation Limiting | 300Hz – 3kHz | 1.15 % | | Occupied Bandwidth | 9kHz ~ 12.75GHz | 2.82 dB | | Band Edge Conducted Spurious Emission | 9kHz ~ 12.75GHz | 2.82 dB | | Transient Frequency Behavior | 9kHz ~ 12.75GHz | 5.4 ms | | Adjacent Channel Power | 9kHz ~ 12.75GHz | 2.82 dB | ### 4.0 Equipment List FCC Analog ATE#1: Not Applicable FCC Transient ATE #1: Not Applicable Conducted Spur Emission ATE # 1: Not Applicable #### **Radiated Emission Station:** | EMC Chamber 1 | | | | | |------------------------------|------------------------------|------------------|---------------------|-------------------------| | DESCRIPTION | MODEL | SERIAL
NUMBER | CALIBRATION
DATE | CALIBRATION DUE
DATE | | DRG HORN FREQ. | SAS-571 | 720 | 06-Apr-21 | 06-Apr-23 | | DRG HORN FREQ. | SAS-571 | 566 | 22-Oct-19 | 22-Oct-21 | | POWER SUPPLY | N7976A | MY53410110 | 24-May-21 | 24-May-22 | | SIGNAL GENERATOR | SMB 100A | 181117 | 8-Nov-18 | 8-Nov-21 | | EMI TEST RECEIVER | ESW44 | 101750 | 15-Jan-21 | 15-Jan-22 | | EMI TEST RECEIVER | ESIB26 | 827769/009 | 11-Mar-21 | 11-Mar-22 | | 5m SEMI-ANECHOIC CHAMBER | S800-HX | J2308 | No Cal. Reg'd | No Cal. Regid | | BILOG ANTENNA | CBL6112D | 55546 | 06-Jun-21 | 06-Jun-22 | | BILOG ANTENNA | CBL6112B | 2964 | 4-May-21 | 4-May-22 | | HYGRO-THERMOMETER | SDL500 | A.016800 | 18-May-21 | 18-May-22 | | SYSTEM CONTROLLER | SC104V | 050806-1 | No Cal. Regid | No Cal. Regid | | TURNTABLE FLUSH MOUNT 2M | FM2011 | NA | No Cal. Regid | No Cal. Reg'd | | ANTENNA POSITIONING
TOWER | TLT2 | NA | No Cal. Reg'd | No Cal. Reg'd | | BROAD-BAND HORN ANTENNA | BBHA9170 | BBHA9170255 | 4-Feb-21 | 4-Feb-22 | | AMPLIFIER | JS44-
18004000-33-
8P | 2034566 | 12-June-19 | 12-June-22 | | PREAMPLIFIER | PAM-0118P | 361 | 11-Sep-20 | 11-Sep-23 | | LOOP ANTENNA | 6502 | 00203479 | 5-Feb-21 | 5-Feb-22 | | TEST SOFTWARE | EMC FCC IC BLUETOOTH RE TEST | | | | | VERSION | EMC FCC RE v1.6.2 | | | | Report Template Document Number: FCD-0084 Report ID: 31422-EMC-00005 Report Template Revision Number: Rev. M FCC ID: AZ489FT3850 IC: 109U-89FT3850 #### **5.0 Test Condition** #### **Transmitter Test Conditions** 5.1. | Test Item, | Power | Modulation | Test Frequency | Tested By | Environmental | |---|--------------|------------|----------------|-----------|-----------------| | (Channel Spacing) | (W) | | (MHz) | | conditions | | RF Output Power | NA | NA | NA | | | | Frequency Stability | NA | NA | NA | | | | Audio Frequency Response (NA) | NA | NA | NA | | | | Audio Low Pass Filter Response
(NA) | NA | NA | NA | | | | Modulation limiting (NA) | NA | NA | NA | | | | Occupied Bandwidth (NA) | NA | NA | NA | | | | Band Edge Conducted Spurious
Emissions (Part 22)
(NA) | NA | NA | NA | | | | Transient Frequency Behavior (UHF & VHF Band) (NA) | NA | NA | NA | | | | Adjacent Channel Power (700MHz Band) (NA) | NA | NA | NA | | | | Conducted Spurious Emissions-
(NA) | NA | NA | NA | | | | Radiated Spurious Emission | Low, | Analog, | *158.55, | Faris | Temp(Deg): 22.8 | | (12.5kHz, 25kHz) | Max | Digital | *161.7 | | Hum(%RH): 70.0 | | GNSS (EIRP for 1559 - 1610MHz)
(NA) | NA | NA | NA | | , , | | Effective Radiated Power (ERP) (NA) | NA | NA | NA | | | NA → Not Applicable *The tested channel selected is based on the worst case radiated emission result from FCC: AZ489FT7126/ ISED: 109U-89FT7126. #### **6.0** Transmitter Test Parameters ### 6.1. RF Output Power #### **6.1.1.** Test Setup - 1) The DUT transmitter connected to Power Meter using the 30 dB attenuator and power sensor with above setup. - 2) Path loss for the measurement included. - 3) All the measurement was done at low, mid, high frequency for each band. - 4) Record the power into the test report. ## 6.1.2. Test Result Not Applicable #### **6.2.** Frequency Stability #### **6.2.1.** Test Setup - 1) The DUT transmitter output port was connected to Modulation / Spectrum Analyzer. - 2) Path loss for the measurement included. - 3) Transmit the DUT and record the freq in MCF_{MHz} . - 4) Test in 2 conditions: - Temperature: The frequency of the transmitter was measured from -30°C to 50°C. - Supply Voltage: - -Mobile: The frequency of the transmitter was measured from 85% to 115% of the nominal operating input voltage. - -Portable: The frequency of the transmitter was measured from nominal \pm x % as specified by the manufacturer - 5) Calculate the ppm frequency error by the following: $$ppm \ error = \left(\frac{MCF_{MHz}}{ACF_{MHz}} - 1\right) * 10^{6}$$ Where: MCF_{MHz} is the Measured Carrier Frequency in MHz ACF_{MHz} is the Assigned Carrier Frequency in MHz 6.2.2. Test Result Not Applicable #### 6.2.3. Test Limit As per manufacturer declared spec +/- #.#ppm #### **6.3.** Audio Frequency Response #### **6.3.1.** Test Setup - 1) The DUT transmitter output port was connected to Modulation Analyzer. - 2) Path loss for the measurement included. - 3) Set the audio bandwidth filter to 15 kHz and 50 kHz. - 4) Transmit the radio and set the audio analyzer to 1 kHz audio frequency and 20% of the Full rated system deviation. - 5) On audio analyzer, set the rated level as reference to zero. - 6) Vary the audio frequency from 300 Hz to 3 kHz. Record the change in dB on the audio analyzer. ### 6.3.2. Test Result Not Applicable #### 6.3.3. Test Limit #### Note: - o There are additional 6 dB per octave attenuation is allowed from 2.5KHz to 3KHz in equipment 25MHz to 869MHz radio. - Additional 6 dB per octave attenuation is allowed from 2.3KHz to 2.7KHz & additional 12 dB per octave attenuation is allowed from 2.7KHz to 3KHz in equipment 896MHz to 940MHz radio. #### 6.4. Audio Low Pass Filter Response - 1) The DUT transmitter output port was connected to Modulation Analyzer. - 2) Path loss for the measurement included. - 3) Press 23.1SPCL on modulation analyzer to enable the external LO from Sigen. - 4) Set the Sigen frequency to Fc + 1.5 MHz, RF output level to 0dBm without modulation. - 5) Transmit the radio and set the audio analyzer to 1 kHz audio frequency and 60% of the Full rated system deviation. - 6) Up the amplitude by 20dB. - 7) On DSA, get the reference point to 0dB. - 8) Vary the frequency on audio analyzer from 3 kHz to 20 kHz, record the audio tone from DSA. ### 6.4.2. Test Result Not Applicable Report ID: 31422-EMC-00005 FCC ID: AZ489FT3850 IC: 109 U-89 FT3850 #### 6.4.3. Test Limit For audio frequencies above 3000 Hz, the audio response of the post limiter low-pass filter shall meet or exceed the following requirements: a) For equipment operating on 20, 25 or 30 kHz channel bandwidth in the 25 MHz to 174 MHz range: At frequencies from 3000 Hz through 15,000 Hz the attenuation shall be greater than the attenuation at 1000 Hz by at least: $40 \log_{10} (f/3000) dB$ where: f is the audio frequency in Hz. At frequencies above 15,000 Hz, the attenuation shall be greater than the attenuation at 1000 Hz, by at least: 28 dB. b) For equipment operating with 25 kHz bandwidth channels between 406 and 512 MHz through 896 MHz, and between 929 MHz through 930 MHz: At frequencies from 3000 Hz through 20,000 Hz, the attenuation shall be greater than the attenuation at 1000 Hz by at least: $60 \log_{10} (f/3000)$ dB where: f is the audio frequency in Hz. At frequencies above 20,000 Hz the attenuation shall be greater than the attenuation at 1000 Hz by at least: 50 dB. c) For equipment operating on channels between 896 MHz through 901 MHz, between 935 MHz through 940 MHz, and 12.5 or 15 kHz spaced channels in the frequency range 138-174 MHz and 406-512 MHz. At frequencies from 3000 Hz through 20,000 Hz the attenuation shall be greater than the attenuation at 1000 Hz by at least: $100 \log_{10} (f/3000) dB$ where: f is the audio frequency in Hz. #### **6.5.** Modulation Limiting #### **6.5.1.** Test Setup - 1) The DUT transmitter output port was connected to Modulation Analyzer. - 2) Path loss for the measurement included. - 3) Set the audio bandwidth filter to 15 kHz. - 4) Transmit the radio and set the audio analyzer to 1 kHz audio frequency and 60% of the Full rated system deviation. - 5) Record the frequency deviation as 0dB input level at 1kHz audio frequency. - 6) Repeat the step and record the frequency deviation from -20 dB to 20dB by 5 dB increments and different audio freq 300 Hz, 2.5 kHz and 3 kHz. ### 6.5.2. Test Result Not Applicable #### 6.5.3. Test Limit Modulation Limiting shall not exceed 100 percent. #### **6.6.** Occupied Bandwidth #### 6.6.1. Test Setup (Analog) - 1) The DUT transmitter output port was connected to Modulation Analyzer. - 2) Set the audio bandwidth filter to 15 kHz low pass filter and 50 kHz high pass filter. - 3) Transmit the radio and set the audio analyzer to 2.5 kHz audio frequency and 50% of the rated deviation. Up the amplitude by 16 dB. Dekey the DUT. - 4) Path loss for the measurement included. - 5) Select the Occupied Bandwidth measurement for 99% Emissions Bandwidth Measurement. - 6) Key in the Fc and Resolution Bandwidth ($1 \sim 5$ % of emission designator). - 7) Transmit the DUT and record the occupied Bandwidth frequency. - 8) Preset the spectrum analyzer for sideband spectrum measurement. - 9) Set the span and Resolution Bandwidth (according to FCC/ ISED standard). - 10) Save the screen shot as modulated signal - 11) Remove the audio tone from audio analyzer to capture unmodulated signal. - * Only HPF added for Mask 80.211 measurement with attenuator. - * 99% Bandwidth measurement is computed by the spectrum analyzer and is consistent with the C63.26 5.4.4 method. ### 6.6.2. Test Result (Analog) Not Applicable #### 6.6.3. Test Setup (Digital) - 1) Program and set radio to operate in desire test frequency and digital mode with modulation. (*4FSK, C4FM or other digital modulation form). - 2) Path loss for the measurement included. - 3) Select the Occupied Bandwidth measurement for 99% Emissions Bandwidth Measurement. - 4) Key in the Fc and Resolution Bandwidth ($1 \sim 5$ % of emission designator). - 5) Transmit the DUT and record the occupied Bandwidth frequency. - 6) Preset the spectrum analyzer for modulation emission spectrum measurement. - 7) Set the span and Resolution Bandwidth (according to FCC/ ISED standard). - 8) Capture the screen shot as modulated signal. *99% Bandwidth measurement is computed by the spectrum analyzer and is consistent with the C63.26 5.4.4 method. #### *Note: - For Digital Modulation, 12.5 kHz Data F1D & FXD would be the same. Therefore only measurements with F1D modulation shown below. - For Digital Modulation, 12.5 kHz Data F1E & FXE would be the same. Therefore only measurements with F1E modulation shown below. ### 6.6.4. Test Result (Digital) Not Applicable #### **6.6.5.** Test Limit The 99% occupied bandwidth is the width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5% of the total mean transmitted power. #### 6.7. Band Edge Conducted Spurious Emission (Part 22) #### **6.7.1.** Test Setup (Analog) - 1) The DUT transmitter output port was connected to Modulation Analyzer. - 2) Set the audio bandwidth filter to 15 kHz low pass filter and 50 kHz high pass filter. - 3) Transmit the radio and set the audio analyzer to 2.5 kHz audio frequency and 50% of the rated deviation. Up the amplitude by 16 dB. Dekey the DUT. - 4) Path loss for the measurement included. - 5) Select the Occupied Bandwidth measurement for 99% and 26dB Emissions Bandwidth Measurement. - 6) Key in the Fc and Resolution Bandwidth. - 7) Transmit the DUT and record the occupied Bandwidth frequencies. - 8) Preset the spectrum analyzer for band edge measurement. - 9) The band edges of lowest and highest channels were measured. - 10) Key in the Lowest and highest channel frequency, span is 60 kHz and Resolution Bandwidth is at least 1% of Emission Bandwidth. - 11) Save the screen shot as modulated signal. - 12) Remove the audio tone from audio analyzer to capture unmodulated signal. #### *Note: • For emission designator ending with F3E, 16K0F3E is the worst case and therefore only 16K0F3E will be shown. ### 6.7.2. Test Result (Analog) Not Applicable #### 6.7.3. Test Setup (Digital) - 1) Program and set radio to operate in desire test frequency and digital mode with modulation. (*4FSK, C4FM or other digital modulation form). - 2) Path loss for the measurement included. - 3) Select the Occupied Bandwidth measurement for 99% and 26dB Emissions Bandwidth Measurement. - 4) Key in the Fc and Resolution Bandwidth. - 5) Transmit radio record the occupied Bandwidth frequencies. - 6) Preset the spectrum analyzer for band edge measurement. - 7) Key in the lowest and highest channels frequency, span is 60 kHz and Resolution Bandwidth is at least 1% of Emission Bandwidth. - 8) Save the screen shot. #### *Note: - For Digital Modulation, 12.5 kHz Data F1D & FXD would be the same. Therefore only measurements with F1D modulation shown below. - For Digital Modulation, 12.5 kHz Data F1E & FXE would be the same. Therefore only measurements with F1E modulation shown below. # 6.7.4. Test Result (Digital) Not Applicable #### **6.7.5.** Test Limit The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$. #### 6.8. Transient Frequency Behavior #### **6.8.1.** Test Setup - 1) Connect the setup as figure above. - 2) Path loss for the measurement included. - 3) Set on Sigen with the assigned center frequency, internal 1 kHz FM tone. FM Deviation: Analog 25kHz Channel Spacing = 25 kHz Analog 12.5 kHz Channel Spacing = 12.5 kHz C4FM = 12.5 kHz - 4) Turn on 50 kHz high pass filter and 15 kHz low pass filter on modulation analyzer. - 5) Supply sufficient attenuation ATT to provide the output power of \leq -11dBm into power meter when DUT is keying up. - 6) Note the power level on power meter and dekey the DUT. - 7) Adjust the amplitude of the signal generator to the level power meter, maintained the amplitude throughout the rest of the measurement. - 8) Connect the output to modulation analyzer. - 9) Reduce 30dB attenuation and transmit the radio to get the trigger line. - 10) Capture the screen shot for key-up (rising edge) and de-key (falling edge) mode. ### 6.8.2. Test Result Not Applicable Report ID: 31422-EMC-00005 FCC ID: AZ489FT3850 IC: 109 U-89 FT3850 #### 6.8.3. Test Limit Transmitters designed to operate in the 150-174 MHz and 421-512 MHz frequency bands must maintain transient frequencies within the maximum frequency difference limits during the time intervals indicated: | 1.2 | Maximum | All equipment | | | | |------------------------------|---|-------------------------|-------------------------|--|--| | Time intervals ¹² | frequency
difference ³ | 150 to 174 MHz | 421 to 512 MHz | | | | Transient Freque | ency Behavior for Equi | pment Designed to Opera | ate on 25 kHz Channels | | | | t_1^4 | ±25.0 kHz | 5.0 ms | 10.0 ms | | | | t_2 | ±12.5 kHz | 20.0 ms | 25.0 ms | | | | t_3^4 | ±25.0 kHz | 5.0 ms | 10.0 ms | | | | Transient Frequer | ncy Behavior for Equip | ment Designed to Operat | te on 12.5 kHz Channels | | | | t_1^4 | ±12.5 kHz | 5.0 ms | 10.0 ms | | | | t_2 | ±6.25 kHz | 20.0 ms | 25.0 ms | | | | t_3^4 | ±12.5 kHz | 5.0 ms | 10.0 ms | | | | Transient Frequer | Transient Frequency Behavior for Equipment Designed to Operate on 6.25 kHz Channels | | | | | | t_1^4 | ±6.25 kHz | 5.0 ms | 10.0 ms | | | | t_2 | ±3.125 kHz | 20.0 ms | 25.0 ms | | | | t_3^4 | ±6.25 kHz | 5.0 ms | 10.0 ms | | | ¹ on is the instant when a 1 kHz test signal is completely suppressed, including any capture time due to phasing. Difference between the actual transmitter frequency and the assigned transmitter frequency. t_1 is the time period immediately following t_{on} . t_2 is the time period immediately following t_1 . t_3 is the time period from the instant when the transmitter is turned off until t_{off} . t_{off} is the instant when the 1 kHz test signal starts to rise. During the time from the end of t₂ to the beginning of t₃, the frequency difference must not exceed the limits specified in §90.213. If the transmitter carrier output power rating is 6 watts or less, the frequency difference during this time period may exceed the maximum frequency difference for this time period. #### 6.9. Adjacent Channel Power #### 6.9.1. Test Setup (Analog) - 1) The DUT transmitter output port was connected to modulation analyzer. - 2) Transmit the radio and turn on 1st audio analyzer with audio frequency 650Hz, 50% rated deviation, and record the amplitude value as AmpT1. - 3) Turn off Audio analyzer 1 and turn on audio analyzer 2, set the audio frequency to 2.2 kHz and 50% deviation. Record the amplitude as AmpT2. - 4) Turn both audio analyzers ON and up 10dB amplitude level. - 5) Connect the output to PSA and set to assigned center frequency. - 6) Set Span, Resolution Bandwidth and Video Bandwidth per rules part. - 7) Transmit the radio and record the Adjacent Channel Power value in dBc. ### 6.9.2. Test Result Not Applicable #### 6.9.3. Test Setup (Digital) - 1) Program and set radio to operate in desire test frequency and digital mode with modulation. (4FSK, C4FM or other digital modulation form). - 2) Prepare setup as per picture. - 3) Turn on the ACP Measurement Press Measure, ACP. - 4) Set Span, Resolution Bandwidth and Video Bandwidth as per rules part. - 5) Transmit the radio and record the Adjacent Channel Power value in dBc. ### 6.9.4. Test Result Not Applicable #### **6.9.5.** Test Limit #### 12.5 kHz Mobile Transmitter ACP Requirements | Offset from center
frequency
(kHz) | Measurement bandwidth (kHz) | Maximum ACP relative (dBc) | |--|-----------------------------|----------------------------| | 9.375 | 6.25 | -40 | | 15.625 | 6.25 | -60 | | 21.875 | 6.25 | -60 | | 37.50 | 25.00 | -60 | | 62.50 | 25.00 | -65 | | 87.50 | 25.00 | -65 | | 150.00 | 100 | -65 | | 250.00 | 100 | -65 | | 350.00 | 100 | -65 | | >400 to 12 MHz | 30 (s) | -75 | | 12 MHz to paired receive band | 30 (s) | -75 | | In the paired receive band | 30 (s) | -100 | #### 25 KHz Mobile Transmitter ACP Requirements | Offset from center frequency (kHz) | Measurement bandwidth (kHz) | Maximum ACP relative
(dBc) | |------------------------------------|-----------------------------|-------------------------------| | 15.625 | 6.25 | -40 | | 21.875 | 6.25 | -60 | | 37.50 | 25 | -60 | | 62.50 | 25 | -65 | | 87.50 | 25 | -65 | | 150.00 | 100 | -65 | | 250.00 | 100 | -65 | | 350.00 | 100 | -65 | | >400 kHz to 12 MHz | 30 (s) | -75 | | 12 MHz to paired receive band | 30 (s) | -75 | | In the paired receive band | 30 (s) | -100 | #### 12.5 kHz Base Transmitter ACP Requirements | Offset from center
frequency
(kHz) | Measurement bandwidth (kHz) | Maximum ACP
(dBc) | |--|-----------------------------|----------------------| | 9.375 | 6.25 | -40 | | 15.625 | 6.25 | -60 | | 21.875 | 6.25 | -60 | | 37.5 | 25 | -60 | | 62.5 | 25 | -65 | | 87.5 | 25 | -65 | | 150 | 100 | -65 | | 250 | 100 | -65 | | 350.00 | 100 | -65 | | >400 kHz to 12 MHz | 30 (s) | -80 | | 12 MHz to paired receive band | 30 (s) | -80 | | In the paired receive band | 30 (s) | ¹ -85 | #### 25 KHz Base Transmitter ACP Requirements | Offset from center frequency (kHz) | Measurement bandwidth (kHz) | Maximum ACP
(dBc) | |------------------------------------|-----------------------------|----------------------| | 15.625 | 6.25 | -40 | | 21.875 | 6.25 | -60 | | 37.5 | 25 | -60 | | 62.5 | 25 | -65 | | 87.5 | 25 | -65 | | 150 | 100 | -65 | | 250 | 100 | -65 | | 350 | 100.00 | -65 | | >400 kHz to 12 MHz | 30 (s) | -80 | | 12 MHz to paired receive band | 30 (s) | -80 | | In the paired receive band | 30 (s) | ¹ -85 | Report Template Document Number: FCD-0084 Report Template Revision Number: Rev. M Report Template Revision Number: Rev. M FCC ID: AZ489FT3850 IC: 109 U-89 FT3850 #### 6.10. Conducted Spurious Emission #### **6.10.1.** Test Setup - 1) The DUT transmitter output port was connected to Spectrum Analyzer with above setup. - 2) Program and set radio to operate in desire test frequency and mode. (Analog / digital modulation form). - 3) Path loss for the measurement included. - 4) Set the PSA Resolution Bandwidth as per rules part. - 5) Set the Ref offset from the pathloss offset calibration file. - 6) Adjust the center frequency of the spectrum analyzer for incremental coverage of the range from: - a. 9 KHz to Fc Test Bandwidth - b. Fc + Test Bandwidth to 2Fc 5MHz. - 7) Key up the DUT, Peak Search the highest Spur and record the levels of spurious emissions - 8) Dekey the DUT. - 9) Turn On High Pass Filter path and Key up the DUT. - 10) Adjust the PSA Freq for incremental coverage of range from 2Fc to 10Fc - 11) Key up the DUT and record the highest spur levels of spurious emissions. 6.10.2. Test Result (Analog) Not Applicable # 6.10.3. Test Result (Digital) Not Applicable #### **6.10.4.** Test Limit Table below summarized the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least | Channel
Spacing | Part 22 | Part 24D | Part 74 | Part 80 | Part 90
(UHF, VHF,
800, 900) | Part 90
(700) | |--------------------|---------------|---------------|---------------|---------------|------------------------------------|------------------| | 12.5kHz | | 43 + log10(P) | | Not | 50 + log10(P) | 43 + log10(P) | | 12.3KHZ | 43 + log10(P) | (-13 dBm) | 43 + log10(P) | Applicable | (-20 dBm) | (-13 dBm) | | 25kHz | (-13 dBm) | Not | (-13 dBm) | 43 + log10(P) | 43 + log10(P) | 43 + log10(P) | | ZOKITZ | | Applicable | | (-13 dBm) | (-13 dBm) | (-13 dBm) | | Channel
Spacing | RSS 134 | RSS 182 | RSS 119
(UHF, VHF, 800, 900) | RSS 119
(700) | |--------------------|----------------------------|----------------------------|---------------------------------|----------------------------| | 12.5kHz | 43 + log10(P)
(-13 dBm) | Not Applicable | 50 + log10(P)
(-20 dBm) | 43 + log10(P)
(-13 dBm) | | 25kHz | Not Applicable | 43 + log10(P)
(-13 dBm) | 43 + log10(P)
(-13 dBm) | 43 + log10(P)
(-13 dBm) | Report Template Document Number: FCD-0084 Report Template Revision Number: Rev. M Report Template Revision Number: Rev. M FCC ID: AZ489FT3850 IC: 109 U-89 FT3850 #### **6.11.** Radiated Spurious Emission #### **6.11.1.** Test Setup - 1) The Resolution Bandwidth for scanning Radiated Emission below 1 GHz is 100 kHz with Video Bandwidth = 300 kHz and Resolution Bandwidth for above 1 GHz is 1 MHz with Video Bandwidth = 3 MHz. Detector mode is positive peak. - 2) In the semi- anechoic chamber, setup as illustrated above the DUT placed on the 0.8m height (for Fc < 1GHz) or 1.5m height (for Fc > 1GHz) of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value. - 3) The substitution antenna is substituted for DUT at the same position and signals generator (S.G) export the CW signal to the substitution antenna via a TX cable. The receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum radiation power. Record the power level of maximum radiation power from spectrum. So, the measured substitution value = Ref level of S.G + TX cables loss Substituted Antenna Gain. - 4) Final Radiated Spurious Emission = "Read Value" + Measured substitution value. Model Number: AAH02JDH9VA1AN-1 6.11.2. Test Result (Analog) Report ID: 31422-EMC-00005 FCC ID: AZ489FT3850 IC: 109U-89FT3850 FCC ID: AZ489FT3850 IC ID: 89FT3850 Motorola Solutions. SAC Transmitter Radiated Emission: S/N: 867TXH3326 SR:31422-EMC-00005 Battery Part No: PMNN4493A Accy Part No: NA 7 Test Mode: TX Analog 158.550000 MHz 25 kHz 6.000 Watt(s) /Max Power | Frequency
(MHz) | Limit | Horizontal Measured Emission Equiv
Pwr Into Ideal Dipole (dBm) | Vertical Measured Emission Equiv Pwr
Into ideal Dipole (dBm) | |--------------------|----------|---|---| | 317.1000 | -13.0000 | -84.4889 ** | -83.6982 ** | | 475.6500 | -13.0000 | -79.2000 ** | -78.8338 ** | | 634.2000 | -13.0000 | -77.6438 ** | -77.4541 ** | | 792.7500 | -13.0000 | -77.0331 ** | -76.0795 ** | | 951.3000 | -13.0000 | -76.4547 ** | -75.3429 ** | | 1109.8500 | -13.0000 | -61.7767 ** | -63.7364 ** | | 1268.4000 | -13.0000 | -61.8120 ** | -62.3365 ** | | 1426.9500 | -13.0000 | -60.2846 ** | -59.8256 ** | | 1585.5000 | -13.0000 | -60.2854 ** | -59.6908 ** | The data presented here was taken using the substitution method as found in the ANSI C63.26-2015 document. Motorola Penang EMC Lab - Test Performed by: Faris(Nazirul) Thu, 07 Oct, 2021 Remarks: ** Indicates the spurious emission could not be detected due to noise limitations or ambient. *Pursuant to CFR 47 Part 2.1057 (c), emissions attenuated more than 20 dB below the permissible limit are not reported Temp(Deg): 22.8 Hum(%RH): 70.0 System MU: 4.03 dB | System Mo. 4.00 db | | | | | | |--------------------|----------------|------------------|----------------|--|--| | Remarks: | Passed Results | Marginal Results | Failed Results | | | 161.700000 MHz Motorola Solutions. Report ID: 31422-EMC-00005 FCC ID: AZ489FT3850 IC: 109U-89FT3850 FCC ID: AZ489FT3850 IC ID: 89FT3850 SAC Transmitter Radiated Emission: Model Number: AAH02JDH9VA1AN-1 S/N: 867TXH3326 SR:31422-EMC-00005 Accy Part No: NA Battery Part No: PMNN4493A Test Mode: TX Analog 25 kHz 1.000 Watt(s) /Low Power | Frequency
(MHz) | Limit | Horizontal Measured Emission Equiv
Pwr Into Ideal Dipole (dBm) | Vertical Measured Emission Equiv Pwr
Into ideal Dipole (dBm) | |--------------------|----------|---|---| | 323.4000 | -13.0000 | -84.9749 ** | -84.5442 ** | | 485.1000 | -13.0000 | -78.5800 ** | -77.2989 ** | | 646.8000 | -13.0000 | -78.0595 ** | -77.0683 ** | | 808.5000 | -13.0000 | -76.0246 ** | -76.3693 ** | | 970.2000 | -13.0000 | -75.1393 ** | -73.4367 ** | | 1131.9000 | -13.0000 | -61.3852 ** | -62.4507 ** | | 1293.6000 | -13.0000 | -61.0461 ** | -61.7298 ** | | 1455.3000 | -13.0000 | -60.4492 ** | -60.7999 ** | | 1617.0000 | -13.0000 | -59.9289 ** | -58.2663 ** | The data presented here was taken using the substitution method as found in the ANSI C63.26-2015 document. Motorola Penang EMC Lab - Test Performed by: Faris(Nazirul) Fri, 24 Sep, 2021 Remarks: ** Indicates the spurious emission could not be detected due to noise limitations or ambient. *Pursuant to CFR 47 Part 2.1057 (c), emissions attenuated more than 20 dB below the permissible limit are not reported Temp(Deg): 22.8 Hum(%RH): 70.0 System MU: 4.03 dB | System Mo. 4.00 db | | | | | | |--------------------|----------------|------------------|----------------|--|--| | Remarks: | Passed Results | Marginal Results | Failed Results | | | 161.700000 MHz Motorola Solutions. Report ID: 31422-EMC-00005 FCC ID: AZ489FT3850 IC: 109 U-89 FT3850 FCC ID: AZ489FT3850 IC ID: 89FT3850 SR:31422-EMC-00005 SAC Transmitter Radiated Emission: Model Number: AAH02JDH9VA1AN-1 S/N: 867TXH3326 Accy Part No: NA Battery Part No: PMNN4493A Test Mode: TX Analog 25 kHz 6.000 Watt(s) /Max Power | Frequency
(MHz) | Limit | Horizontal Measured Emission Equiv
Pwr Into Ideal Dipole (dBm) | Vertical Measured Emission Equiv Pwr
Into ideal Dipole (dBm) | |--------------------|----------|---|---| | 323.4000 | -13.0000 | -84.2416 ** | -85.6031 ** | | 485.1000 | -13.0000 | -79.1744 ** | -78.7560 ** | | 646.8000 | -13.0000 | -78.0242 ** | -75.6502 ** | | 808.5000 | -13.0000 | -76.9327 ** | -76.2339 ** | | 970.2000 | -13.0000 | -74.2595 ** | -75.4935 ** | | 1131.9000 | -13.0000 | -61.3251 ** | -61.7472 ** | | 1293.6000 | -13.0000 | -60.8861 ** | -61.4381 ** | | 1455.3000 | -13.0000 | -60.3573 ** | -61.0320 ** | | 1617.0000 | -13.0000 | -60.1179 ** | -59.5664 ** | The data presented here was taken using the substitution method as found in the ANSI C63.26-2015 document. Motorola Penang EMC Lab - Test Performed by: Faris(Nazirul) Fri, 24 Sep, 2021 Remarks: ** Indicates the spurious emission could not be detected due to noise limitations or ambient. *Pursuant to CFR 47 Part 2.1057 (c), emissions attenuated more than 20 dB below the permissible limit are not reported Temp(Deg): 22.8 Hum(%RH): 70.0 System MU: 4.03 dB | • | | | | |----------|----------------|------------------|----------------| | Remarks: | Passed Results | Marginal Results | Failed Results | Motorola Solutions. 6.11.3. Test Result (Digital) Report ID: 31422-EMC-00005 FCC ID: AZ489FT3850 6.000 Watt(s) /Max Power IC: 109U-89FT3850 FCC ID: AZ489FT3850 IC ID: 109U-89FT3850 SAC Transmitter Radiated Emission: Model Number: AAH02JDH9VA1AN-1 S/N: 867TXH3326 Accy Part No: NA SR:31422-EMC-00005 Battery Part No: PMNN4493A ACCY Part No. N. Test Mode: TX Digital 161.700000 MHz 12.5 kHz | Frequency
(MHz) | Limit | Horizontal Measured Emission Equiv
Pwr Into Ideal Dipole (dBm) | Vertical Measured Emission Equiv Pwr
Into ideal Dipole (dBm) | |--------------------|----------|---|---| | 323.4000 | -20.0000 | -83.9704 ** | -84.7666 ** | | 485.1000 | -20.0000 | -78.3632 ** | -79.7890 ** | | 646.8000 | -20.0000 | -77.3751 ** | -76.0411 ** | | 808.5000 | -20.0000 | -76.8832 ** | -75.6642 ** | | 970.2000 | -20.0000 | -74.9510 ** | -74.8801 ** | | 1131.9000 | -20.0000 | -62.4669 ** | -61.8967 ** | | 1293.6000 | -20.0000 | -61.4514 ** | -61.5405 ** | | 1455.3000 | -20.0000 | -60.9608 ** | -61.0048 ** | | 1617.0000 | -20.0000 | -59.5264 ** | -60.6563 ** | The data presented here was taken using the substitution method as found in the ANSI C63.26-2015 document. Motorola Penang EMC Lab - Test Performed by: Faris(Nazirul) Fri, 24 Sep, 2021 Remarks: ** Indicates the spurious emission could not be detected due to noise limitations or ambient. *Pursuant to CFR 47 Part 2.1057 (c), emissions attenuated more than 20 dB below the permissible limit are not reported Temp(Deg): 22.8 Hum(%RH): 70.0 System MU: 4.03 dB Remarks: Passed Results Marginal Results Failed Results Motorola Solutions. Report ID: 31422-EMC-00005 FCC ID: AZ489FT3850 IC: 109U-89FT3850 > FCC ID: AZ489FT3850 IC ID: 109U-89FT3850 SAC Transmitter Radiated Emission: Model Number: AAH02JDH9VA1AN-1 S/N: 867TXH3326 SR:31422-EMC-00005 Battery Part No: PMNN4493A 4493A Accy Part No: NA Test Mode: TX Digital 161.700000 MHz 12.5 12.5 kHz 1.000 Watt(s) /Low Power | Frequency
(MHz) | Limit | Horizontal Measured Emission Equiv
Pwr Into Ideal Dipole (dBm) | Vertical Measured Emission Equiv Pwr
Into ideal Dipole (dBm) | |--------------------|----------|---|---| | 323.4000 | -20.0000 | -83.7569 ** | -84.6355 ** | | 485.1000 | -20.0000 | -79.0463 ** | -79.9072 ** | | 646.8000 | -20.0000 | -77.6027 ** | -78.3166 ** | | 808.5000 | -20.0000 | -77.6550 ** | -75.7250 ** | | 970.2000 | -20.0000 | -73.2474 ** | -75.2260 ** | | 1131.9000 | -20.0000 | -62.5252 ** | -62.8327 ** | | 1293.6000 | -20.0000 | -61.6603 ** | -61.2434 ** | | 1455.3000 | -20.0000 | -59.9026 ** | -59.5871 ** | | 1617.0000 | -20.0000 | -60.1009 ** | -59.9663 ** | #### RADIATED SPURIOUS EMISSIONS 0 □ Horizontal Measured -10 **Emission Equiv Pwr Into** Ideal Dipole (dBm) Vertical Measured -20 Emission Level (dBm) -30 **Emission Equiv Pwr Into** -40 Ideal Dipole (dBm) Failing Limit -50 -60 -70 -80 -90 -100 808.5 Frequency (MHz) 1131.9 323.4 485.1 646.8 1293.6 1455.3 1617 The data presented here was taken using the substitution method as found in the ANSI C63.26-2015 document. Motorola Penang EMC Lab - Test Performed by: Faris(Nazirul) Fri, 24 Sep, 2021 Remarks: ** Indicates the spurious emission could not be detected due to noise limitations or ambient. *Pursuant to CFR 47 Part 2.1057 (c), emissions attenuated more than 20 dB below the permissible limit are not reported Temp(Deg): 22.8 Hum(%RH): 70.0 System MU: 4.03 dB | Remarks: | Passed Results | Marginal Results | Failed Results | | | |----------|----------------|------------------|----------------|--|--| | | | | | | | #### **6.11.4.** Test Limit Table below summarized the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least | Channel
Spacing | Part 22 | Part 24D | Part 74 | Part 80 | Part 90
(UHF, VHF,
800, 900) | Part 90
(700) | |--------------------|---------------|---------------|---------------|---------------|------------------------------------|------------------| | 12.5kHz | | 43 + log10(P) | | Not | 50 + log10(P) | 43 + log10(P) | | | 43 + log10(P) | (-13 dBm) | 43 + log10(P) | Applicable | (-20 dBm) | (-13 dBm) | | 25kHz | (-13 dBm) | Not | (-13 dBm) | 43 + log10(P) | 43 + log10(P) | 43 + log10(P) | | | | Applicable | | (-13 dBm) | (-13 dBm) | (-13 dBm) | | Channel
Spacing | RSS 134 | RSS 182 | RSS 119
(UHF, VHF, 800, 900) | RSS 119
(700) | |--------------------|----------------------------|----------------------------|---------------------------------|----------------------------| | 12.5kHz | 43 + log10(P)
(-13 dBm) | Not Applicable | 50 + log10(P)
(-20 dBm) | 43 + log10(P)
(-13 dBm) | | 25kHz | Not Applicable | 43 + log10(P)
(-13 dBm) | 43 + log10(P)
(-13 dBm) | 43 + log10(P)
(-13 dBm) | #### **6.12.** Effective Radiated Power (ERP) #### **6.12.1.** Test Setup - 1) The Resolution Bandwidth for Equivalent Radiated Power (ERP) below 1 GHz is 100 kHz with Video Bandwidth = 300 kHz and Resolution Bandwidth for EIRP above 1 GHz is 1 MHz with Video Bandwidth = 3 MHz. Detector Mode is RMS. - 2) In the semi-anechoic chamber, setup as illustrated above the DUT placed on the 0.8m height (for Fc < 1GHz) or 1.5m (for Fc > 1GHz) of Turn Table, rotated the table 45 degree each interval to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power for each degree interval. The "Read Value" is the spectrum reading of maximum power value. - 3) The substitution antenna is substituted for DUT at the same position and signals generator (S.G) export the CW signal to the substitution antenna via a TX cable. The receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum radiation power. Record the power level of maximum radiation power from spectrum. So, the Measured substitution value = Ref level of S.G + TX cables loss Substituted Antenna Gain. # 6.12.2. Test Result Not Applicable #### **6.12.3.** Test Limit The maximum output power of the transmitter for mobile stations is 100 watts (20 dB). Power is given in terms of effective radiated power (ERP). Report ID: 31422-EMC-00005 FCC ID: AZ489FT3850 IC: 109 U-89 FT3850 #### 6.13. GNSS (EIRP for 1559 - 1610MHz) #### **6.13.1.** Test Setup - 4) The Resolution Bandwidth for Equivalent Isotropically Radiated Power (EIRP) below 1 GHz is 100 kHz with Video Bandwidth = 300 kHz and Resolution Bandwidth for EIRP above 1 GHz is 1 MHz with Video Bandwidth = 3 MHz. Detector Mode is RMS. - 5) In the semi-anechoic chamber, setup as illustrated above the DUT placed on the 0.8m height of Turn Table, rotated the table 45 degree each interval to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power for each degree interval. The "Read Value" is the spectrum reading of maximum power value. - 6) The substitution antenna is substituted for DUT at the same position and signals generator (S.G) export the CW signal to the substitution antenna via a TX cable. The receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum radiation power. Record the power level of maximum radiation power from spectrum. So, the Measured substitution value = Ref level of S.G + TX cables loss Substituted Antenna Gain. - 7) EIRP = "Read Value" + Measured substitution value + 2.15. # 6.13.1. Test Result Not Applicable #### **6.13.2.** Test Limit For operations in the 758-775 MHz and 788-805 MHz bands, all emissions including harmonics in the band 1559-1610 MHz shall be limited to -70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. Report ID: 31422-EMC-00005 FCC ID: AZ489FT3850 IC: 109U-89FT3850 ~ End of Test Report ~