

Shenzhen HTT Technology Co., Ltd.

Report No.: HTT202407167F01

TEST Report

Applicant: Shenzhen Information Infinity Co., Ltd

Address of Applicant: 1st Floor, Building B, Clean Sunshine Park, No.15, Keji North

2nd Road, Songpingshan Community, Xili Street, Nanshan

District, Shenzhen, China

Manufacturer: Shenzhen Information Infinity Co., Ltd

Address of 1st Floor, Building B, Clean Sunshine Park, No.15, Keji North

Manufacturer: 2nd Road, Songpingshan Community, Xili Street, Nanshan

District, Shenzhen, China

Equipment Under Test (EUT)

Product Name: True wireless Bluetooth headphone

Model No.: Monster Airmars XKO06

Series model: N/A

Trade Mark:

FCC ID: 2A8PV-QSMXKO06

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: Jul. 02, 2024

Date of Test: Jul. 02, 2024 ~ Jul. 08, 2024

Date of report issued: Jul. 08, 2024

Test Result: PASS *

^{*} In the configuration tested, the EUT complied with the standards specified above.

1. Version

Version No.	Date	Description
00	Jul. 08, 2024	Original

Tested/ Prepared By	Heber He	Date:	Jul. 08, 2024
	Project Engineer		
Check By:	Bruce Zhu	Date:	Jul. 08, 2024
	Reviewer	_	
Approved By :	Kein Yang HT	Date:	Jul. 08, 2024
	Authorized Signature		

2. Contents

	Page
1. VERSION	2
2. CONTENTS	
3. TEST SUMMARY	
4. GENERAL INFORMATION	
4.1. GENERAL DESCRIPTION OF EUT4.2. TEST MODE	
4.3. DESCRIPTION OF SUPPORT UNITS	
4.4. DEVIATION OF SUPPORT UNITS	
4.5. ABNORMALITIES FROM STANDARD CONDITIONS	
4.6. Test Facility	
4.7. TEST LOCATION	
4.8. ADDITIONAL INSTRUCTIONS	7
5. TEST INSTRUMENTS LIST	8
6. TEST RESULTS AND MEASUREMENT DATA	9
6.1. CONDUCTED EMISSIONS	9
6.2. CONDUCTED PEAK OUTPUT POWER	
6.3. 20DB EMISSION BANDWIDTH	
6.4. FREQUENCIES SEPARATION	16
6.5. HOPPING CHANNEL NUMBER	
6.6. DWELL TIME	
6.7. BAND EDGE	
6.7.1. Conducted Emission Method	
6.7.2. Radiated Emission Method	
6.8. Spurious Emission	
6.8.2. Radiated Emission Method	
6.9. ANTENNA REQUIREMENT	
7. TEST SETUP PHOTO	
8 FUT CONSTRUCTIONAL DETAILS	42

3. Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)(iii)	Pass
Dwell Time	15.247 (a)(1)(iii)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

•						
Test Item	Frequency Range	Measurement Uncertainty	Notes			
Radiated Emission	30~1000MHz	3.45 dB	(1)			
Radiated Emission	1~18GHz	3.54 dB	(1)			
Radiated Emission	18-40GHz	5.38 dB	(1)			
Conducted Disturbance	0.15~30MHz	2.66 dB	(1)			
Note (1): The measurement unc	Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.					

4. General Information

4.1. General Description of EUT

Product Name:	True wireless Bluetooth headphone
Model No.:	Monster Airmars XKO06
Series model:	N/A
Test sample(s) ID:	HTT202407167-1(Engineer sample)
	HTT202407167-2(Normal sample)
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK, π/4-DQPSK
Antenna Type:	Chip Antenna
Antenna gain:	2.36 dBi
Power Supply:	DC 3.7V From Battery and DC 5V From External Circuit
Adapter Information	Mode: GS-0500200
(Auxiliary test provided by the lab):	Input: AC100-240V, 50/60Hz, 0.3A max
	Output: DC 5V, 2A

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

4.2. Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

4.3. Description of Support Units

None.

4.4. Deviation from Standards

None.

4.5. Abnormalities from Standard Conditions

None.

4.6. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 779513 Designation Number: CN1319

Shenzhen HTT Technology Co.,Ltd. has been accredited on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6435.01

Shenzhen HTT Technology Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

4.7. Test Location

All tests were performed at:

Shenzhen HTT Technology Co.,Ltd.

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

Tel: 0755-23595200 Fax: 0755-23595201

4.8. Additional Instructions

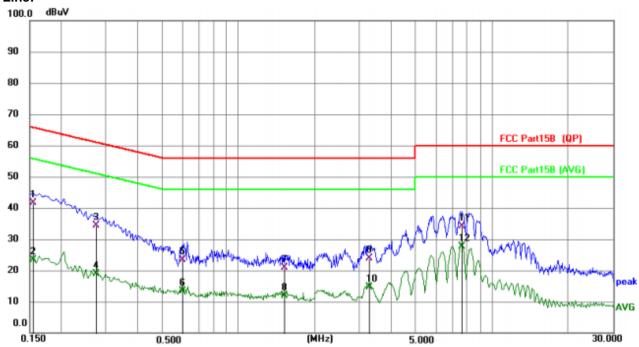
Test Software	Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode
Power level setup	Default

5. Test Instruments list

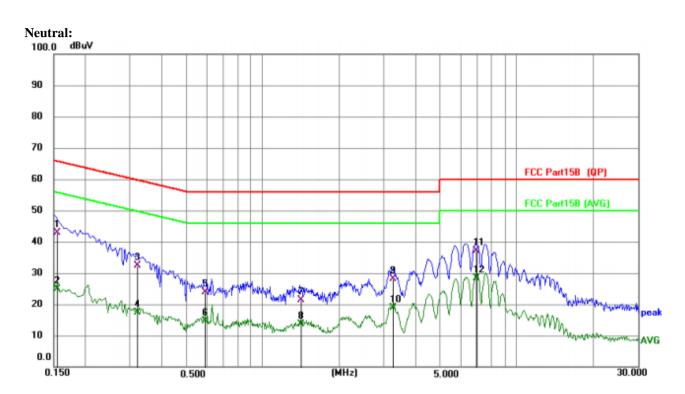
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	Shenzhen C.R.T technology co., LTD	9*6*6	HTT-E028	Aug. 10 2021	Aug. 09 2024
2	Control Room	Shenzhen C.R.T technology co., LTD	4.8*3.5*3.0	HTT-E030	Aug. 10 2021	Aug. 09 2024
3	EMI Test Receiver	Rohde&Schwar	ESCI7	HTT-E022	Apr. 26 2024	Apr. 25 2025
4	Spectrum Analyzer	Rohde&Schwar	FSP	HTT-E037	Apr. 26 2024	Apr. 25 2025
5	Coaxial Cable	ZDecl	ZT26-NJ-NJ-0.6M	HTT-E018	Apr. 26 2024	Apr. 25 2025
6	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-2M	HTT-E019	Apr. 26 2024	Apr. 25 2025
7	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-0.6M	HTT-E020	Apr. 26 2024	Apr. 25 2025
8	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-8.5M	HTT-E021	Apr. 26 2024	Apr. 25 2025
9	Composite logarithmic antenna	Schwarzbeck	VULB 9168	HTT-E017	May. 21 2024	May. 20 2025
10	Horn Antenna	Schwarzbeck	BBHA9120D	HTT-E016	May. 20 2024	May. 19 2025
11	Loop Antenna	Zhinan	ZN30900C	HTT-E039	Apr. 26 2024	Apr. 25 2025
12	Horn Antenna	Beijing Hangwei Dayang	OBH100400	HTT-E040	Apr. 26 2024	Apr. 25 2025
13	low frequency Amplifier	Sonoma Instrument	310	HTT-E015	Apr. 26 2024	Apr. 25 2025
14	high-frequency Amplifier	HP	8449B	HTT-E014	Apr. 26 2024	Apr. 25 2025
15	Variable frequency power supply	Shenzhen Anbiao Instrument Co., Ltd	ANB-10VA	HTT-082	Apr. 26 2024	Apr. 25 2025
16	EMI Test Receiver	Rohde & Schwarz	ESCS30	HTT-E004	Apr. 26 2024	Apr. 25 2025
17	Artificial Mains	Rohde & Schwarz	ESH3-Z5	HTT-E006	May. 23 2024	May. 22 2025
18	Artificial Mains	Rohde & Schwarz	ENV-216	HTT-E038	May. 23 2024	May. 22 2025
19	Cable Line	Robinson	Z302S-NJ-BNCJ-1.5M	HTT-E001	Apr. 26 2024	Apr. 25 2025
20	Attenuator	Robinson	6810.17A	HTT-E007	Apr. 26 2024	Apr. 25 2025
21	Variable frequency power supply	Shenzhen Yanghong Electric Co., Ltd	YF-650 (5KVA)	HTT-E032	Apr. 26 2024	Apr. 25 2025
22	Control Room	Shenzhen C.R.T technology co., LTD	8*4*3.5	HTT-E029	Aug. 10 2021	Aug. 09 2024
23	DC power supply	Agilent	E3632A	HTT-E023	Apr. 26 2024	Apr. 25 2025
24	EMI Test Receiver	Agilent	N9020A	HTT-E024	Apr. 26 2024	Apr. 25 2025
25	Analog signal generator	Agilent	N5181A	HTT-E025	Apr. 26 2024	Apr. 25 2025
26	Vector signal generator	Agilent	N5182A	HTT-E026	Apr. 26 2024	Apr. 25 2025
27	Power sensor	Keysight	U2021XA	HTT-E027	Apr. 26 2024	Apr. 25 2025
28	Temperature and humidity meter	Shenzhen Anbiao Instrument Co., Ltd	TH10R	HTT-074	Apr. 28 2024	Apr. 27 2025
29	Radiated Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
30	Conducted Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
31	RF Test Software	panshanrf	TST	N/A	N/A	N/A

6. Test results and Measurement Data

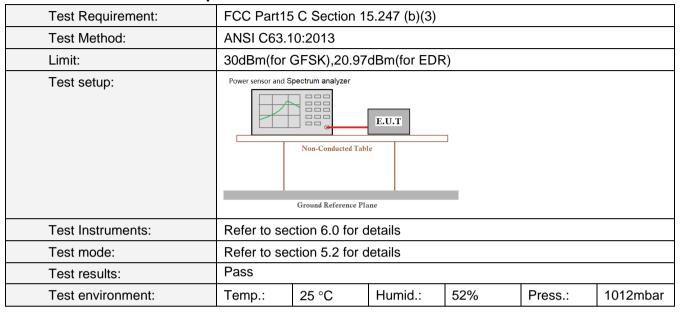
6.1. Conducted Emissions


Test Requirement:	FCC Part15 C Section 15.207				
Test Method:	ANSI C63.10:2013				
Test Frequency Range:	150KHz to 30MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto			
Limit:	Frequency range (MHz)	Limit	(dBuV)		
		Quasi-peak	Avei		
	0.15-0.5	66 to 56*		46*	
	0.5-5	56	4		
	5-30 * Decreases with the logarithm	60	5	0	
Test setup:		ror the frequency:			
Test procedure:	Reference Plane LISN				
	interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement.				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details		T		
Test environment:	Temp.: 25 °C Hum	nid.: 52%	Press.:	1012mbar	
Test voltage:	AC 120V, 60Hz				
Test results:	Pass				

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.


Measurement data:

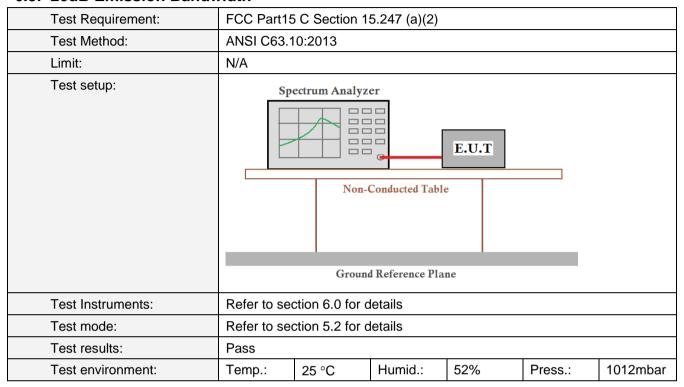
	Reading	Correct	Measure-			
c. Freq.	Level	Factor	ment	Limit	Over	
MHz		dB	dBuV	dBuV	dB	Detector
0.1545	31.43	10.16	41.59	65.75	-24.16	QP
0.1545	13.29	10.16	23.45	55.75	-32.30	AVG
0.2754	24.23	10.23	34.46	60.95	-26.49	QP
0.2754	8.77	10.23	19.00	50.95	-31.95	AVG
0.6029	13.18	10.32	23.50	56.00	-32.50	QP
0.6029	3.10	10.32	13.42	46.00	-32.58	AVG
1.5234	10.49	10.40	20.89	56.00	-35.11	QP
1.5234	1.59	10.40	11.99	46.00	-34.01	AVG
3.2871	13.38	10.53	23.91	56.00	-32.09	QP
3.2871	4.09	10.53	14.62	46.00	-31.38	AVG
7.5740	23.48	10.63	34.11	60.00	-25.89	QP
7.5740	16.93	10.63	27.56	50.00	-22.44	AVG
	MHz 0.1545 0.1545 0.2754 0.2754 0.6029 0.6029 1.5234 1.5234 3.2871 3.2871 7.5740	MHz 0.1545 31.43 0.1545 13.29 0.2754 24.23 0.2754 8.77 0.6029 13.18 0.6029 3.10 1.5234 10.49 1.5234 1.59 3.2871 13.38 3.2871 4.09 7.5740 23.48	MHz dB 0.1545 31.43 10.16 0.1545 13.29 10.16 0.2754 24.23 10.23 0.2754 8.77 10.23 0.6029 13.18 10.32 0.6029 3.10 10.32 1.5234 10.49 10.40 1.5234 1.59 10.40 3.2871 13.38 10.53 3.2871 4.09 10.53 7.5740 23.48 10.63	MHz dB dBuV 0.1545 31.43 10.16 41.59 0.1545 13.29 10.16 23.45 0.2754 24.23 10.23 34.46 0.2754 8.77 10.23 19.00 0.6029 13.18 10.32 23.50 0.6029 3.10 10.32 13.42 1.5234 10.49 10.40 20.89 1.5234 1.59 10.40 11.99 3.2871 13.38 10.53 23.91 3.2871 4.09 10.53 14.62 7.5740 23.48 10.63 34.11	MHz dB dBuV dBuV 0.1545 31.43 10.16 41.59 65.75 0.1545 13.29 10.16 23.45 55.75 0.2754 24.23 10.23 34.46 60.95 0.2754 8.77 10.23 19.00 50.95 0.6029 13.18 10.32 23.50 56.00 0.6029 3.10 10.32 13.42 46.00 1.5234 10.49 10.40 20.89 56.00 1.5234 1.59 10.40 11.99 46.00 3.2871 13.38 10.53 23.91 56.00 7.5740 23.48 10.63 34.11 60.00	MHz dB dBuV dBuV dB 0.1545 31.43 10.16 41.59 65.75 -24.16 0.1545 13.29 10.16 23.45 55.75 -32.30 0.2754 24.23 10.23 34.46 60.95 -26.49 0.2754 8.77 10.23 19.00 50.95 -31.95 0.6029 13.18 10.32 23.50 56.00 -32.50 0.6029 3.10 10.32 13.42 46.00 -32.58 1.5234 10.49 10.40 20.89 56.00 -35.11 1.5234 1.59 10.40 11.99 46.00 -34.01 3.2871 13.38 10.53 23.91 56.00 -32.09 3.2871 4.09 10.53 14.62 46.00 -31.38 7.5740 23.48 10.63 34.11 60.00 -25.89


		Reading	Correct	Measure-			
No. Mk.	Freq.	Level	Factor	ment	Limit	Over	
	MHz		dB	dBuV	dBuV	dB	Detector
1	0.1544	32.74	10.16	42.90	65.76	-22.86	QP
2	0.1544	14.69	10.16	24.85	55.76	-30.91	AVG
3	0.3200	22.04	10.24	32.28	59.71	-27.43	QP
4	0.3200	7.23	10.24	17.47	49.71	-32.24	AVG
5	0.5947	13.52	10.33	23.85	56.00	-32.15	QP
6	0.5947	4.38	10.33	14.71	46.00	-31.29	AVG
7	1.4174	11.06	10.35	21.41	56.00	-34.59	QP
8	1.4174	3.18	10.35	13.53	46.00	-32.47	AVG
9	3.2531	17.69	10.46	28.15	56.00	-27.85	QP
10	3.2531	8.44	10.46	18.90	46.00	-27.10	AVG
11	6.9496	26.45	10.69	37.14	60.00	-22.86	QP
12 *	6.9496	17.81	10.69	28.50	50.00	-21.50	AVG

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Los

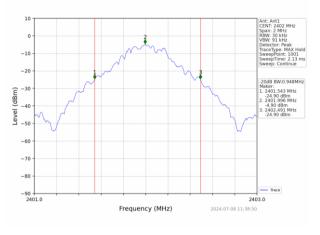
6.2. Conducted Peak Output Power



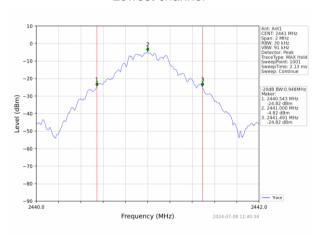
Measurement Data

Mode	Test channel Peak Output Power (dBm)		Limit (dBm)	Result	
	Lowest	-3.03			
GFSK	Middle	-3.04	30.00	Pass	
	Highest	-2.52			
	Lowest	-2.40			
π/4-DQPSK	Middle	-2.69	20.97	Pass	
	Highest	-2.26			

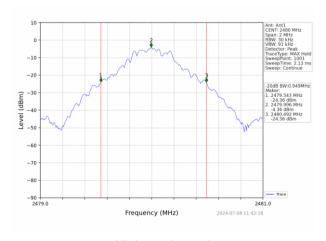
6.3. 20dB Emission Bandwidth


Measurement Data

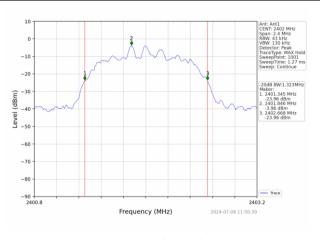
Mode	Test channel	20dB Emission Bandwidth (MHz)	Result	
	Lowest	0.948		
GFSK	Middle	0.948	Pass	
	Highest	0.949		
	Lowest	1.323		
π/4-DQPSK	Middle	1.339	Pass	
	Highest	1.369		

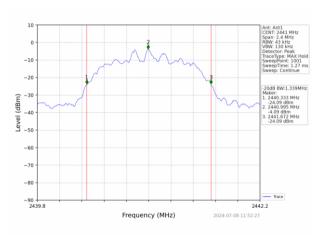


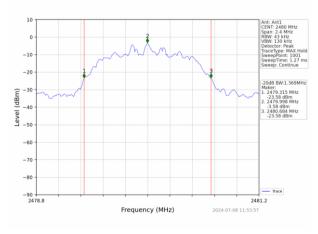
Test plot as follows:


Test mode: GFSK mode

Lowest channel


Middle channel


Highest channel


Test mode: $\pi/4$ -DQPSK mode

Lowest channel

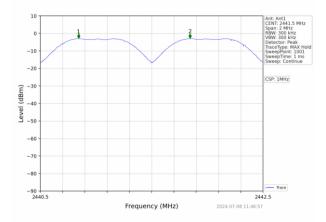
Middle channel

Highest channel

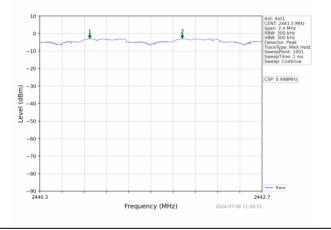
6.4. Frequencies Separation

	-1									
Test Requirement:	FCC Part15 C Section 15.247 (a)(1)									
Test Method:	ANSI C63.	ANSI C63.10:2013								
Receiver setup:	RBW=100KHz, VBW=300KHz, detector=Peak									
Limit:	GFSK: 20dB bandwidth π/4-DQPSK: 0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)									
Test setup:	Sp									
Test Instruments:	Refer to se	ction 6.0 for o	details							
Test mode:	Refer to section 5.2 for details									
Test results:	Pass									
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar				

Measurement Data


Micasarciniciti Date	и			
Mode	Test channel	Frequencies Separation (MHz)	Limit (kHz)	Result
			25KHz or	
GFSK	Middle	1.000	2/3*20dB	Pass
			bandwidth	
			25KHz or	
π/4-DQPSK	Middle	0.998	2/3*20dB	Pass
			bandwidth	

Remark: We have tested all mode at high, middle and low channel, and recorded worst case at middle



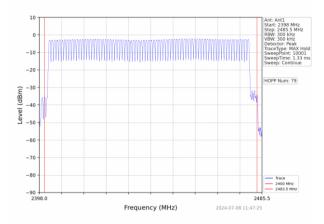
Test plot as follows:

Modulation mode: GFSK

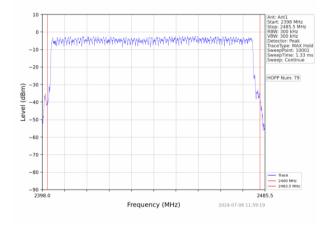
Test mode: π/4-DQPSK

6.5. Hopping Channel Number

Test Requirement:	FCC Part1	FCC Part15 C Section 15.247 (a)(1)(iii)							
Test Method:	ANSI C63.	ANSI C63.10:2013							
Receiver setup:		RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak							
Limit:	15 channel	S							
Test setup:	Spe	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to se	ction 6.0 for c	letails						
Test mode:	Refer to se	Refer to section 5.2 for details							
Test results:	Pass	Pass							
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar			


Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK	79	>45	Pass
π/4-DQPSK	79	≥15	Pass



Test plot as follows:

Test mode: GFSK

Test mode: $\pi/4$ -DQPSK

6.6. Dwell Time

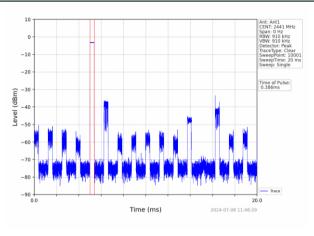
Test Requirement:	FCC Part15 C Section 15.247 (a)(1)(iii)							
Test Method:	ANSI C63.10:2013							
Receiver setup:	RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak							
Limit:	0.4 Second							
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to section 6.0 for details							
Test mode:	Refer to section 5.2 for details							
Test results:	Pass							
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mba							

Measurement Data

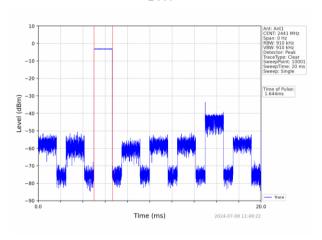
Modulation	Packet	Burst time (ms)	Dwell time (ms)	Limit (ms)	Result	
	DH1	0.386	123.134			
GFSK	DH3	1.644	256.464	400	Pass	
	DH5	2.894	338.598			
	2-DH1	0.396	125.928			
π/4DQPSK	2-DH3	1.656	266.616	400	Pass	
	2-DH5	2.898	295.596			

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

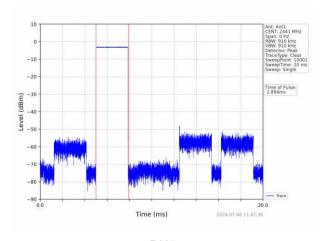
Dwell time=Pulse time (ms) \times (1600 \div 2 \div 79) \times 31.6 Second for DH1, 2-DH1

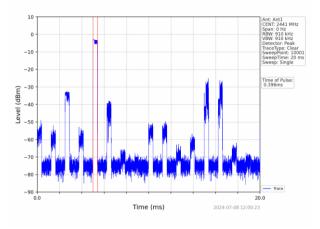

Dwell time=Pulse time (ms) x (1600 \div 4 \div 79) x31.6 Second for DH3, 2-DH3

Dwell time=Pulse time (ms) x (1600 \div 6 \div 79) x31.6 Second for DH5, 2-DH5

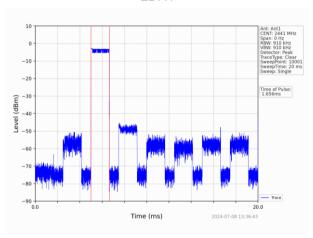


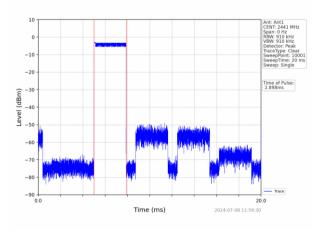
Test plot as follows:


GFSK mode



DH3

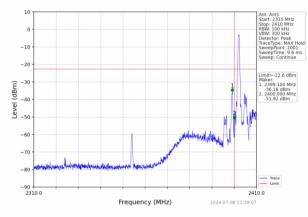


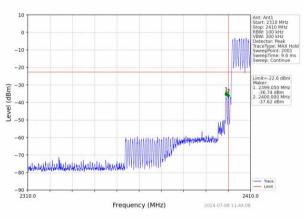

π/4-DQPSK mode

2DH1

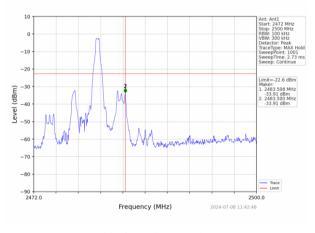
2DH3

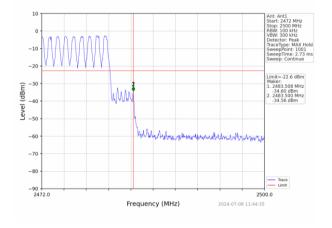
6.7. Band Edge


6.7.1. Conducted Emission Method


Test Requirement:									
	FCC Part15 C Section 15.247 (d)								
Test Method:	ANSI C63.1	ANSI C63.10:2013							
Receiver setup:	RBW=100k	Hz, VBW=30	00kHz, Detec	tor=Peak					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.								
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table								
Test Instruments:	Refer to section 6.0 for details								
Test mode:	Refer to section 5.2 for details								
Test results:	Pass								
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar			

Test plot as follows: GFSK Mode:

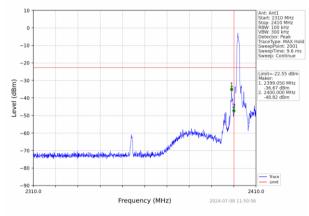


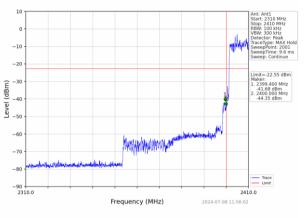

No-hopping mode

Hopping mode

Test channel:

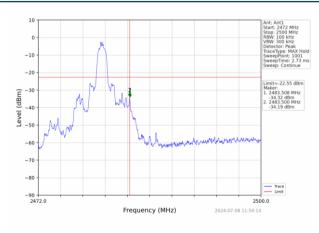
Highest channel

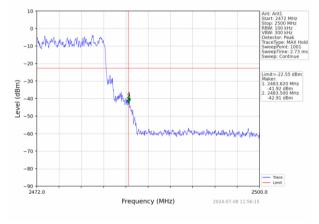

No-hopping mode


Hopping mode

π/4-DQPSK Mode:

Test channel Lowest channel




No-hopping mode

Hopping mode

Test channel:

Highest channel

No-hopping mode

Hopping mode

6.7.2. Radiated Emission Method

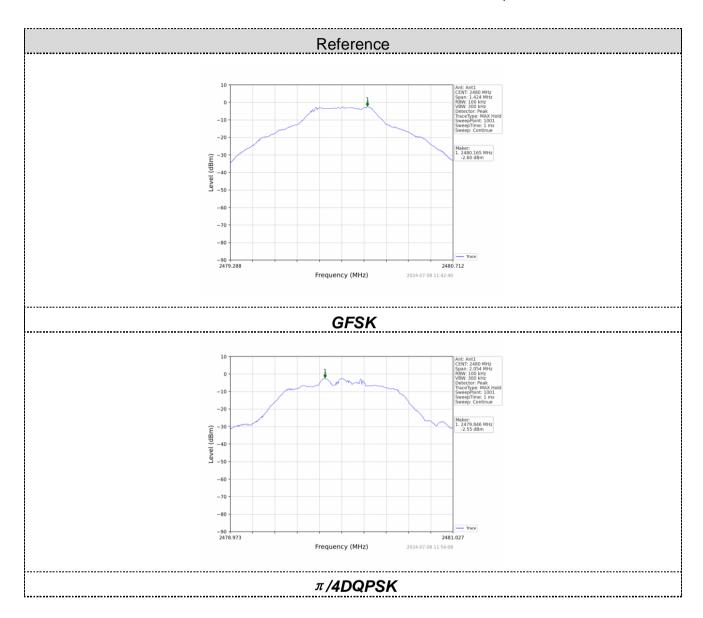
6.7.2. Radiated Effission Wethod										
Test Requirement:	FCC Part15 C Section 15.209 and 15.205									
Test Method:	ANSI C63.1	0:2013								
Test Frequency Range:		All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed.								
Test site:	Measureme	Measurement Distance: 3m								
Receiver setup:	Frequenc	y Detec	ctor	RBW	VBV	V Re	emark			
·	Above 1GI	Hz Pea		1MHz 1MHz	3MH 10H		k Value ge Value			
Limit:	Fre	equency	L	₋imit (dBu\	V/m @3n	n) Re	emark			
	Abo	ve 1GHz		54. 74.			ge Value k Value			
Test setup:		Test Antenna- Tum Table-								
Test Procedure:			on the	top of a ro						
	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or 									
Test Instruments:		tion 6.0 for c				in a data sh				
Test mode:	Refer to sec	tion 5.2 for c	letails							
Test results:	Pass									
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar									

Measurement Data

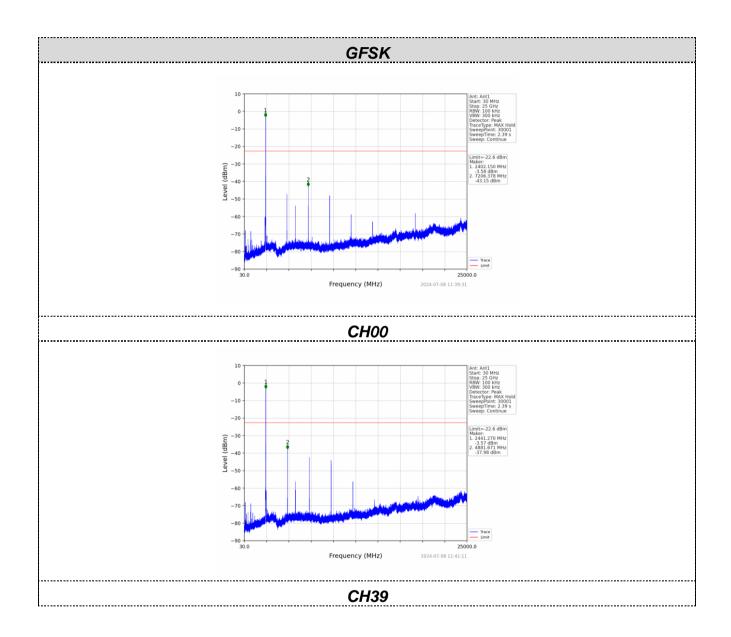
Remark: GFSK, Pi/4 DQPSK all have been tested, only worse case GFSK is reported.

Operation Mode: GFSK

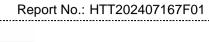
Freque	ncy(MHz)	:	24	02	Pola	arity:	Н	ORIZONTA	L
Frequency (MHz)	Emis Le [,] (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	61.22	PK	74	12.78	62.61	27.2	4.31	32.9	-1.39
2390.00	45.32	AV	54	8.68	46.71	27.2	4.31	32.9	-1.39
Freque	ncy(MHz)	:	24	02	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Le [,] (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	59.41	PK	74	14.59	60.80	27.2	4.31	32.9	-1.39
2390.00	46.16	AV	54	7.84	47.55	27.2	4.31	32.9	-1.39
Freque	ncy(MHz)	:	2480		P olarity:		HORIZONTAL		۸L
Frequency (MHz)	Emis Le [,] (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	57.15	PK	74	16.85	58.08	27.4	4.47	32.8	-0.93
2483.50	46.13	AV	54	7.87	47.06	27.4	4.47	32.8	-0.93
Freque	ncy(MHz)	:	24	80	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Le [,] (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	54.51	PK	74	19.49	55.44	27.4	4.47	32.8	-0.93
2483.50	43.32	AV	54	10.68	44.25	27.4	4.47	32.8	-0.93

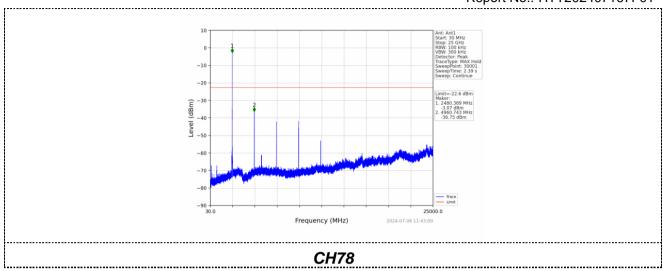


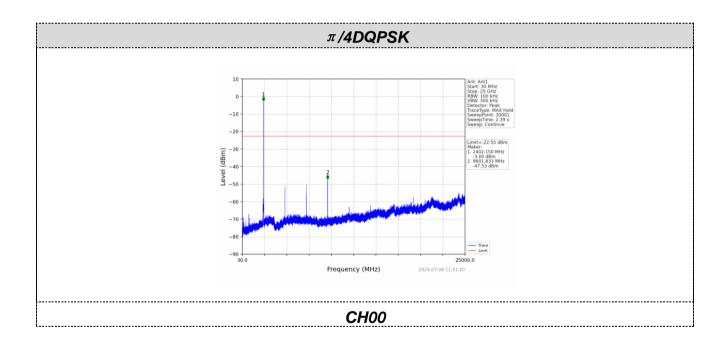
6.8. Spurious Emission

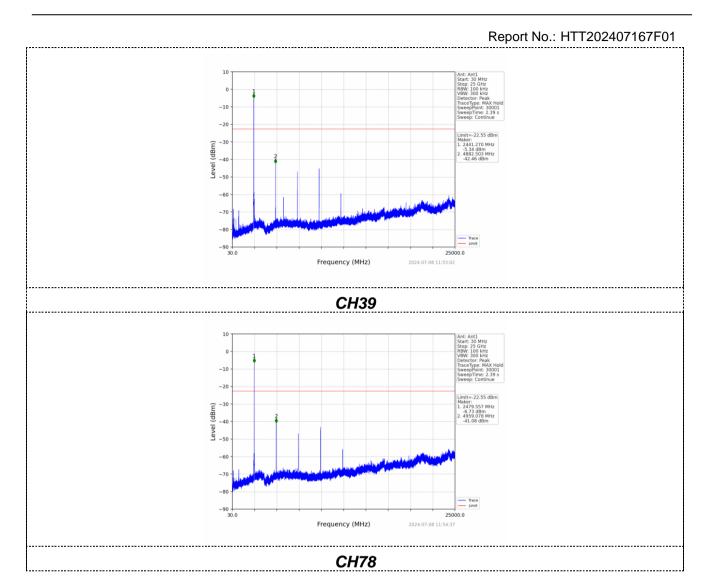

6.8.1. Conducted Emission Method

Test Requirement:	FCC Part15	FCC Part15 C Section 15.247 (d)								
Test Method:	ANSI C63.1	ANSI C63.10:2013								
Limit:	spectrum in is produced the 100 kHz	itentional rad by the inten bandwidth power, base	iator is opera tional radiato within the ba	e frequency bating, the radion shall be at long that contain RF conduct	o frequency pleast 20 dB bins the highes	oower that elow that in st level of				
Test setup:	Sp									
Test Instruments:	Refer to see	Refer to section 6.0 for details								
Test mode:	Refer to see	Refer to section 5.2 for details								
Test results:	Pass									
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar				



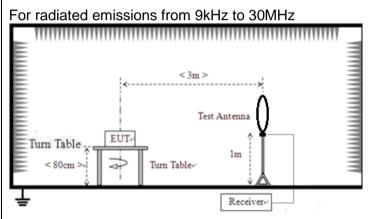


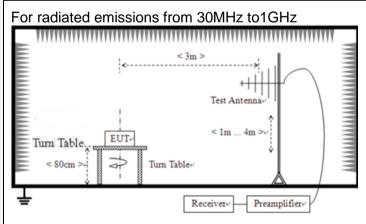




6.8.2. Radiated Emission Method

Test Requirement:	FCC Part15 C Section	on 15.209								
Test Method:	ANSI C63.10:2013									
Test Frequency Range:	9kHz to 25GHz									
Test site:	Measurement Distar	nce: 3m								
Receiver setup:	Frequency	Detector	RBW	VBW	Value					
	9KHz-150KHz	Quasi-peak	200Hz	600Hz	Quasi-peak					
	150KHz-30MHz	Quasi-peak	9KHz	30KHz	Quasi-peak					
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak					
	Above 1GHz	Above 1CHz Peak 1MHz 3MHz Peak								
	Above IGHZ	Peak	1MHz	10Hz	Average					


Tel: 0755-23595200 Fax: 0755-23595201


¹F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

Limit:	Frequency	Limit (uV/m)	Value	Measurement Distance
	0.009MHz-0.490MHz	2400/F(KHz)	QP	300m
	0.490MHz-1.705MHz	24000/F(KHz)	QP	30m
	1.705MHz-30MHz	30	QP	30m
	30MHz-88MHz	100	QP	
	88MHz-216MHz	150	QP	
	216MHz-960MHz	200	QP	3m
	960MHz-1GHz	500	QP	SIII
	Above 1GHz	500	Average	
	Above IGHZ	5000	Peak	

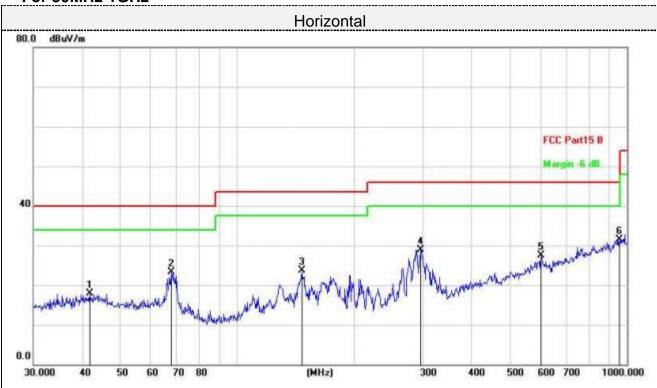
Test setup:

For radiated emissions above 1GHz

_				Report is	10.: H11202	407 1071 01
	Tum Table <150cm			Antenna- Am >- Preamplifier-		
Test Procedure:	and 1.5n table waradiation 2. The EUT antenna, tower. 3. The anter ground to horizonta measure 4. For each and then and the maximur 5. The test-Bandwid 6. If the emilimit spece EUT wood 10dB maximur	n for above 1 s rotated 360 . was set 3 m which was remandered and vertical and vertical and vertical and vertical and rota table was reading. receiver system with Maximission level of cified, then teading be reported argin would be	on the top of G) above the D degrees to conteres away from the maximum all polarizations emission, the was tuned to sturned from the maximum the defence of the EUT in the ed. Otherwise the re-tested or pecified and the content to the tested or pecified and the content to the tested or pecified and the content to the tested or the tested	ground at a determine the form the interference top of a value of the sof the anterest of the degrees to the degrees to the estopped are the emissione by one us	a meter can e position of ference-receriable-heigh four meters field strengthna are set anged to its n 1 meter to a 360 degree of Function at the peak ns that did ring peak, qui	nber. The the highest eiving at antenna a above the ch. Both to make the worst case 4 meters es to find the and Specified wer than the values of the lot have lasi-peak or
Test Instruments:		ction 6.0 for o		•		
Test mode:	Refer to see	ction 5.2 for o	details			
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar
Test voltage:	AC 120V, 6	0Hz	1		1	1
Test results:	Pass					

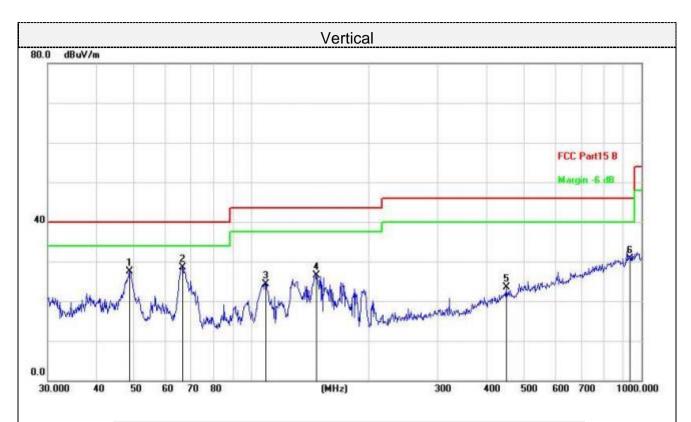
Measurement data:

Remarks:


- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK modulation, and found the GFSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.


For 30MHz-1GHz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dB/m	dB	Detector
1		41.8596	28.18	-10.25	17.93	40.00	-22.07	QP
2		67.6751	36.15	-12.92	23.23	40.00	-16.77	QP
3		146.3735	34.75	-11.04	23.71	43.50	-19.79	QP
4		296.1836	39.49	-10.60	28.89	46.00	-17.11	QP
5		601.4265	30.89	-3.44	27.45	46.00	-18.55	QP
6	*	955.4380	28.18	3.25	31.43	46.00	-14.57	QP

Final Level =Receiver Read level + Correct Factor

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dB/m	dB	Detector
1		48.6719	38.62	-11.07	27.55	40.00	-12.45	QP
2	*	66.4989	41.25	-12.73	28.52	40.00	-11.48	QP
3		108.6470	38.57	-14.17	24.40	43.50	-19.10	QP
4		146.8877	37.41	-10.97	26.44	43.50	-17.06	QP
5		449.5558	29.74	-6.31	23.43	46.00	-22.57	QP
6		935.5463	28.02	2.65	30.67	46.00	-15.33	QP

Final Level =Receiver Read level + Correct Factor

For 1GHz to 25GHz

Remark: For test above 1GHz GFSK,Pi/4 DQPSK were test at Low, Middle, and High

channel; only the worst result of GFSK was reported as below:

Freque	ncy(MHz)	:	24	02	Pola	arity:	Н	ORIZONTA	۸L
Frequency (MHz)	Emis		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	58.59	PK	74	15.41	52.89	31	(db) 6.5	31.8	5.7
4804.00	42.67	AV	54	11.33	36.97	31	6.5	31.8	5.7
7206.00	54.29	PK	74	19.71	41.64	36	8.15	31.5	12.65
7206.00	44.31	AV	54	9.69	31.66	36	8.15	31.5	12.65

Freque	ncy(MHz)):	24	02	Pola	arity:		VERTICAL	
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	58.43	PK	74	15.57	52.73	31	6.5	31.8	5.7
4804.00	43.27	AV	54	10.73	37.57	31	6.5	31.8	5.7
7206.00	52.72	PK	74	21.28	40.07	36	8.15	31.5	12.65
7206.00	42.58	AV	54	11.42	29.93	36	8.15	31.5	12.65

Freque	ncy(MHz)	:	24	41	Pola	arity:	Н	ORIZONTA	NL
Frequency (MHz)	Emis Le		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4882.00	60.40	PK	74	13.60	54.24	31.2	6.61	31.65	6.16
4882.00	44.26	AV	54	9.74	38.10	31.2	6.61	31.65	6.16
7323.00	52.07	PK	74	21.93	39.12	36.2	8.23	31.48	12.95
7323.00	44.80	AV	54	9.20	31.85	36.2	8.23	31.48	12.95

Freque	ncy(MHz)):	24	41	Pola	arity:		VERTICAL	
Frequency	Emission		Limit Margin		Raw	Antenna	Cable	Pre-	Correction
(MHz)	Le	vel	(dBuV/m)	(dB)	Value	Factor	Factor	amplifier	Factor
(1011 12)	(dBu	V/m)	(ubu v/III)	(ub)	(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
4882.00	61.55	PK	74	12.45	55.39	31.2	6.61	31.65	6.16
4882.00	43.37	AV	54	10.63	37.21	31.2	6.61	31.65	6.16
7323.00	54.13	PK	74	19.87	41.18	36.2	8.23	31.48	12.95
7323.00	44.65	AV	54	9.35	31.70	36.2	8.23	31.48	12.95

Freque	ncy(MHz)):	24	80	Polarity:		HORIZONTAL		
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	62.94	PK	74	11.06	56.28	31.4	6.76	31.5	6.66
4960.00	42.13	AV	54	11.87	35.47	31.4	6.76	31.5	6.66
7440.00	54.85	PK	74	19.15	41.55	36.4	8.35	31.45	13.3
7440.00	44.78	AV	54	9.22	31.48	36.4	8.35	31.45	13.3

Freque	ncy(MHz)	:	24	80	Pola	arity:		VERTICAL	
Frequency	Emis	sion	Limit Margin		Raw	Antenna	Cable	Pre-	Correction
	Le	vel		Ū	Value	Factor	Factor	amplifier	Factor
(MHz)	(dBu	V/m)	(dBuV/m)	(dB)	(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
4960.00	62.78	PK	74	11.22	56.12	31.4	6.76	31.5	6.66
4960.00	42.17	AV	54	11.83	35.51	31.4	6.76	31.5	6.66
7440.00	54.37	PK	74	19.63	41.07	36.4	8.35	31.45	13.3
7440.00	44.75	AV	54	9.25	31.45	36.4	8.35	31.45	13.3

Remark:

⁽¹⁾ Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

⁽²⁾ When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

6.9. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Antenna Connected Construction

The maximum gain of antenna was 2.36 dBi.

Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen HTT Technology Co., Ltd. does not assume any responsibility.

7. Test Setup Photo

Reference to the appendix I for details.

8. EUT Constructional Details

Reference to the appendix II for details.

-----End-----