

CTC Laboratories, Inc.

1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel: +86-755- 27521059 Fax: +86-755- 27521011 Http://www.sz-ctc.org.cn

Т	EST REPOR	Г		
Report No:	CTC20211259E06			
FCC ID	2AYD5-I21M01			
Applicant:	Imin Technology Pte Ltd	Imin Technology Pte Ltd		
Address	11 Bishan Street 21, #03-05 I	Bosch Building, Singapore 573943		
Manufacturer	Imin Technology Pte Ltd			
Address	11 Bishan Street 21, #03-05 I	Bosch Building, Singapore 573943		
Product Name:	Mobile POS			
Trade Mark	iMin			
Model/Type reference:	I21M01			
Listed Model(s):	N/A			
Standard:	FCC CFR Title 47 Part 15 Subpart C Section 15.225			
Date of receipt of test sample:	Sep. 10, 2021			
Date of testing	Sep. 11, 2021 ~ Oct. 22, 2021			
Date of issue	Oct. 23, 2021			
Result	PASS			
Compiled by: (Printed name + signature)	Terry Su	Terry Su		
Supervised by: (Printed name + signature)	Miller Ma	Tenny Su Miller Ma		
Approved by: (Printed name + signature)	Totti Zhao	Joenas		
Testing Laboratory Name::	CTC Laboratories, Inc.			
Address	1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China			
This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CTC. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver.				

Any objections must be raised to CTC within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely correspond to the test sample.

Table of Contents

Page

1.	TEST	SUMMARY	3
	1.1.	Test Standards	z
	1.2.	REPORT VERSION	
	1.3.	Test Description	
	1.4.	TEST FACILITY	
	1.5.	MEASUREMENT UNCERTAINTY	
	1.6.	ENVIRONMENTAL CONDITIONS	
	1.7.	EUT OPERATION STATE	
1.	GENI	ERAL INFORMATION	7
	1.1.	CLIENT INFORMATION	7
	1.2.	GENERAL DESCRIPTION OF EUT	
	1.3.	ACCESSORY EQUIPMENT INFORMATION	
	1.4.	Measurement Instruments List	
_		ITEM AND RESULTS	_
2.	TEST	ITEM AND RESULTS	9
	2.1.	CONDUCTED EMISSION	9
	2.2.	RADIATED EMISSION	.12
	2.3.	20dB Bandwidth	.20
	2.4.	FIELD STRENGTH OF THE FUNDAMENTAL	22
	2.5.	FREQUENCY STABILITY	
	2.6.	ANTENNA REQUIREMENT	.27

EN

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

<u>FCC Rules Part 15.225</u>: Operation within the band 13.110-14.010MHz. <u>ANSI C63.10-2013</u>: American National Standard for Testing Unlicensed Wireless Devices.

1.2. Report version

Revised No.	Date of issue	Description
01	Oct. 23, 2021	Original

1.3. Test Description

FCC Part 15.225						
Test Item	Standard Section	Result	Test Engineer			
Conducted Emission	15.207	Pass	Ice Lu			
Radiated Emissions	15.209&15.225(d)	Pass	Terry Su			
Field Strength of the Fundamental	15.209&15.225(d)	Pass	Terry Su			
Occupied Bandwidth and 20dB Bandwidth	15.215	Pass	Terry Su			
Antenna requirement	15.203	Pass	Terry Su			
Frequency Stability	15.225(e)	Pass	Terry Su			

Note: N/A: Not applicable.

The measurement uncertainty is not included in the test result.

1.4. Test Facility

Address of the report laboratory

CTC Laboratories, Inc.

Add: 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L5365

CTC Laboratories, Inc. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation. Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025:2017 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 4340.01

CTC Laboratories, Inc. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

Industry Canada (Registration No.: 9783A, CAB Identifier: CN0029)

CTC Laboratories, Inc. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: 9783A on Jan, 2016.

FCC (Registration No.: 951311, Designation Number CN1208)

CTC Laboratories, Inc. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained inour files. Registration 951311, Aug 26, 2017.

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement characteristics; Part 2" and is documented in the CTC Laboratories, Inc. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Below is the best measurement capability for CTC Laboratories, Inc.

CTC Laboratories, Inc.

Measurement Uncertainty	Notes
0.42 dB	(1)
2.14 dB	(1)
1.60 dB	(1)
2.20 dB	(1)
3.20 dB	(1)
4.70 dB	(1)
5.00 dB	(1)
5.54 dB	(1)
	(1)
	0.42 dB 2.14 dB 1.60 dB 2.20 dB 3.20 dB 4.70 dB 5.00 dB

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

1.6. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C
Relative Humidity:	30~60 %
Air Pressure:	950~1050mba

1.7. EUT Operation state

The EUT has been tested under typical operating condition. The Applicant provides software to control the EUT for staying in continuous transmitting mode for testing.

1. GENERAL INFORMATION

1.1. Client Information

Applicant:	Imin Technology Pte Ltd
Address:	11 Bishan Street 21, #03-05 Bosch Building, Singapore 573943
Manufacturer:	Imin Technology Pte Ltd
Address:	11 Bishan Street 21, #03-05 Bosch Building, Singapore 573943

1.2. General Description of EUT

Product Name:	Mobile POS	
Trade Mark:	iMin	
Model/Type reference:	I21M01	
Listed Model(s):	N/A	
Power supply:	5Vdc/2A from AC/DC Adapter 7.4Vdc from 2600mAh Li-ion Battery	
Adapter Model:	TPA-46050200UU Input:100-240V~ 50/60Hz 0.3A Output: 5Vdc/2A	
Hardware version:	Z2PRO_MB_UM512_V2.0	
Software version:	Neostra_Z2Pro_testinage_003_20210714	
RF Parameter (The NFC function is optional)		
Operation frequency:	13.56MHz	
Antenna type:	PCB Antenna	

1.3. Accessory Equipment information

Equipment Information						
Name	Model	S/N	Manufacturer			
1	1	1	/			
1	1	1	/			
Cable Information	Cable Information					
Name	Shielded Type	Ferrite Core	Length			
1	1	1	1			
Test Software Information						
Name	1	1	1			
nfc-tools-pro-v3.4cn -2017-03-07.apk	1	1	1			

CTC Laboratories, Inc.

1.4. Measurement Instruments List

Tonsce	Tonscend JS0806-2 Test system					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until	
1	Spectrum Analyzer	Rohde & Schwarz	FSU26	100105	Dec. 25, 2021	
2	Spectrum Analyzer	Rohde & Schwarz	FUV40-N	101331	Mar. 15, 2022	
3	MXG Vector Signal Generator	Agilent	N5182A	MY47420864	Dec. 25, 2021	
4	Signal Generator	Agilent	E8257D	MY46521908	Dec. 25, 2021	
5	Power Sensor	Agilent	U2021XA	MY5365004	Mar. 15, 2022	
6	Power Sensor	Agilent	U2021XA	MY5365006	Mar. 15, 2022	
7	High and low temperature box	ESPEC	MT3035	N/A	Mar. 24, 2022	
8	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	102414	Dec. 25, 2021	
9	300328 v2.2.2 test system	TONSCEND	v2.6	/	/	

Radiated emission

Raulat	Radiated emission					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until	
1	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	9168-1013	Jan.12, 2022	
2	Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-647	Dec. 24, 2021	
3	Spectrum Analyzer	R&S	FSU26	100105	Dec. 25, 2021	
4	Spectrum Analyzer	R&S	FSV40-N	101331	Mar. 15, 2022	
5	Pre-Amplifier	SONOMA	310	186194	Dec. 25, 2021	
6	Low Noise Pre-Amplifier	EMCI	EMC051835	980075	Dec. 25, 2021	
7	Test Receiver	R&S	ESCI7	100967	Dec. 25, 2021	
8	Loop Antenna	LAPLAC	RF300	9138	Dec. 25, 2021	
9	Loop Antenna	ETS	6507	146	Dec. 25, 2021	

Condu	Conducted Emission					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until	
1	LISN	R&S	ENV216	101112	Dec. 25, 2021	
2	LISN	R&S	ENV216	101113	Dec. 25, 2021	
3	EMI Test Receiver	R&S	ESCS30	100353	Dec. 25, 2021	

Note:1. The Cal. Interval was one year.

2. The cable loss has calculated in test result which connection between each test instruments.

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

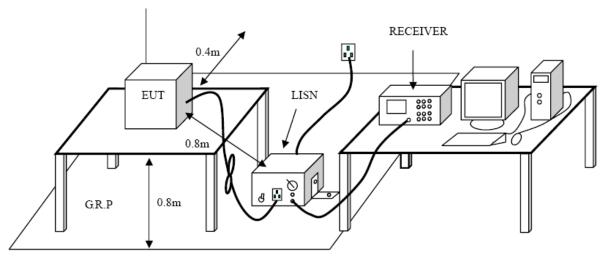
2. TEST ITEM AND RESULTS

2.1. Conducted Emission

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.207/ RSS-Gen 7.2:

Frequency range (MHz)	Limit (dBuV)				
Frequency range (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			


Notes:

(1) *Decreasing linearly with logarithm of the frequency.

(2) The lower limit shall apply at the transition frequencies.

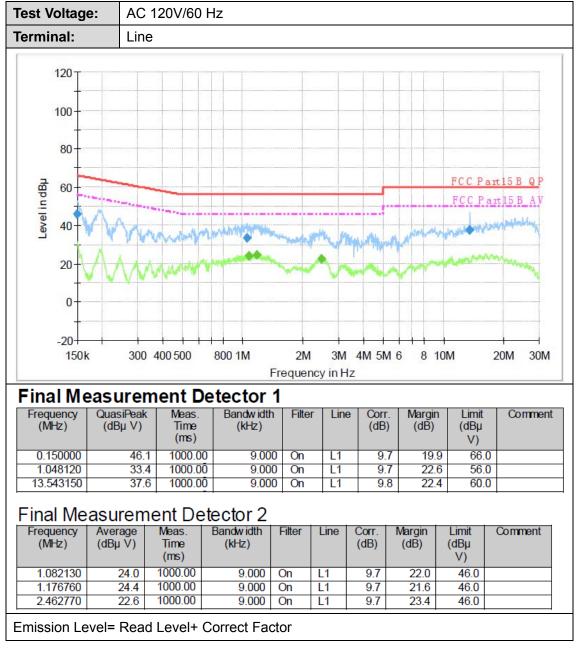
(3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

Test Configuration

Test Procedure

- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 4. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 5. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 6. Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 7. During the above scans, the emissions were maximized by cable manipulation.

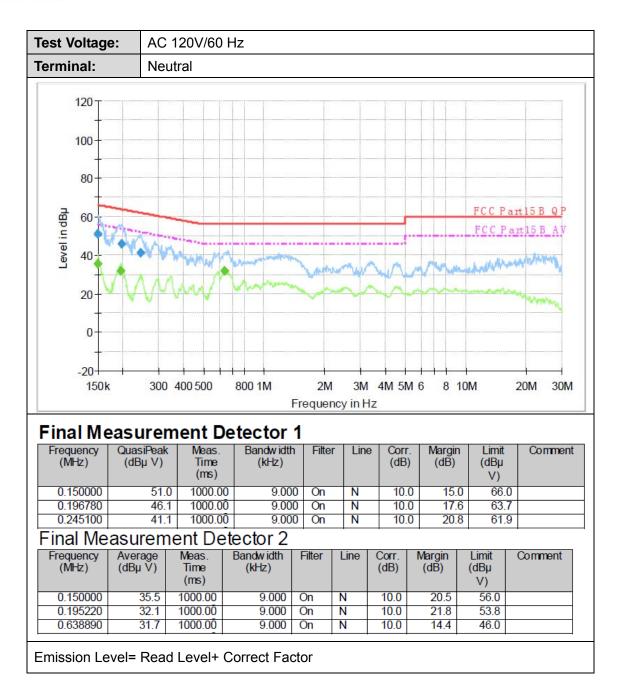
CTC Laboratories, Inc.


2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会

Test Mode:

Please refer to the clause 1.7.

Test Results



2/F., Building 1 and 1-2/F., Building 2, Jiaguan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 =N

Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

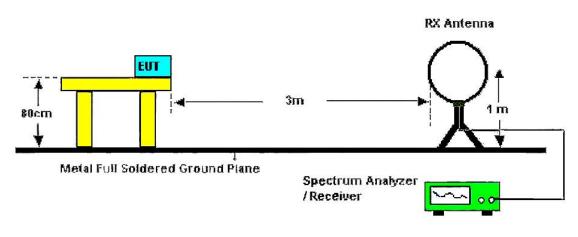
CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

2.2. Radiated Emission

Limit

	FCC Part 15.209											
Frequency	Field Streng Limitation		Field Strength Limitation at 3m Measurement Dist									
(MHz)	(uV/m)	Dist	(uV/m)	(dBuV/m)								
0.009 - 0.490	2400 / F(KHz)	300m	10000 * 2400/F(KHz)	20log 2400/F(KHz) + 80								
0.490 - 1.705	24000 / F(KHz)	30m	100 * 24000/F(KHz)	20log 24000/F(KHz) + 40								
1.705 – 30.00	30	30m	100* 30	20log 30 + 40								
30.0 - 88.0	100	3m	100	20log 100								
88.0 - 216.0	150	3m	150	20log 150								
216.0 - 960.0	200	3m	200	20log 200								
Above 960.0	500	3m	500	20log 500								

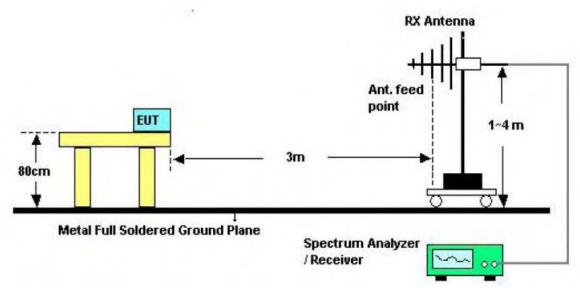

NOTE:

- (1) The tighter limit shall apply at the boundary between two frequency range.
- (2) Limitation expressed in dBuV/m is calculated by 20log Emission Level (uV/m).
- (3) If measurement is made at 3m distance, then F.S Limitation at 3m distance is adjusted by using the formula of $L_{d1} = L_{d2} * (d_2/d_1)^2$.
 - Example:

F.S Limit at 30m distance is 30uV/m, then F.S Limitation at 3m distance is adjusted as $L_{d1} = L_1 =$ $30 \text{uV/m} * (10)^2 = 100 * 30 \text{ uV/m}$

(4) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor(if use) Margin Level = Measurement Value - Limit Value

Test Configuration



Below 30MHz Test Setup

CTC Laboratories, Inc.

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013
- The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;

(2) Below 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

Test Mode

Please refer to the clause 1.7.

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会

Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Test Result

9 KHz~150 KHz

nt. I	Pol.		Hori	zon	tal										
40.0	dBu∀/m														
30															
20			-	_		_								(9K-3	OM)
10											Marg	ih -6	10		_
00															
30 -															
'0								*			5				6 X
50		1 X	Marth	-	2 	and the second	3	A Constanting of the second	non when	myun	5	Pyr-M	~p~v	w	person and and
50 🂾	wl/statesof (***)	China Contraction			·										
10															
30 -															
20.0															
0.009	9						(MHz								0.1
	E.		•	De	adina		actor	Lev		1.5	mit	N	101		
No	. "	equen (MHz)	•		eading BuV)	1	dB/m)	(dBuV	-				dl) (dl	gin 3)	Detector
		· · · ·				· ·				•		-	·	<u> </u>	
1		0.0122	2	6	4.63	· ·	6.20	58.4	3	12	5.68	-	67	.25	peak
2		0.0223	3	6	8.21	-	8.75	59.4	6	120	0.47	-	61	.01	peak
3		0.0313	}	7	1.06	-	10.70	60.3	86	11	7.55	-	57	.19	peak
4		0.0485	;	7	4.76	_	11.39	63.3	37	11:	3.77	-	50	.40	peak
5		0.0719			4.51		11.76	62.7			0.37			.62	peak
		0.1324			0.03		13.47	66.5			5.10			.54	peak
0		0.1524	·	0	0.05	-	13.47	00.0	0	10	5.10		-56	.54	peak

Remarks: 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

3

4

5

6 *

EN

Remarks:

0.0412

0.0719

0.0995

0.1327

2.Margin value = Level -Limit value

Ant	. Po	I. Ve	rtical												
140.0) dBu	W/m									_				-
130											_				-
120									-	FUL P	art 1	5.200) (9K-3		
110										Margin	-8	10	_		
110															1
100											_				
90															-
80															
70										4	-	5	1	6 X	-1-
						2	2			X		×		and the property of the	
				1 . X	R. J. Martin and	2	3	-	my han	Monthe	~~~~	, -,×	im	ward and	
	murv	water a start and a start a st	ware	1 	e	\$	3	www.eereetee	m the s	Manun		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	hom	romon Francher	
		and a start and a start	her all the second	1 hter Kyrngergeneteren	e	2	3	www.eereste	wrynewr)	Vien un		~~~ ⁸	Em	rsonget Breecher	
50 40	hinnal ^{an} v	and the second second second	water and	1 here	8	<u> </u>	<u>.</u>	www.aprate	Mar Mun A	-	/~~@/	~~^ð	hom	rsonge Prosite	
50 40 30	sev	and the state of the second	41.024 - 1	1 Martine	e e constante de la constante d	2	3		Anger Hyperson ()		,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		r sonoph Derecht	
50 40 30 20.0		walk from the constrained	4.000 A.	1 	8				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			~~~~*		, ₍₁ , 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	
50 40 30 20.0	V	and a second second second	141.4334	1	8.4***/1774##	g (MHz			Mr. Yuu A			~~ ⁸		, ₍₁ , 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	150
50 40 30 20.0					6	(MHz								0.	150
50 40 30 20.0 0.1		Frequency	Re	ading	1	(MHz Factor	Lev	/el	Li	mit		Mai	rgin	0.	1 <u>50</u>
50 40 30 20.0 0.1	009		Re		1	(MHz		/el	Li	mit		Mai		0.	
50 40 30 20.0 0.1	009 O.	Frequency	Re (d	ading	(0	(MHz Factor	Lev	/el √/m)	Li (dBu	mit)	/lai (d	rgin	0.	or

-11.09

-11.76

-13.65

-13.47

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

60.84

64.75

65.13

67.06

115.17

110.37

107.56

105.08

-54.33

-45.62

-42.43

-38.02

peak

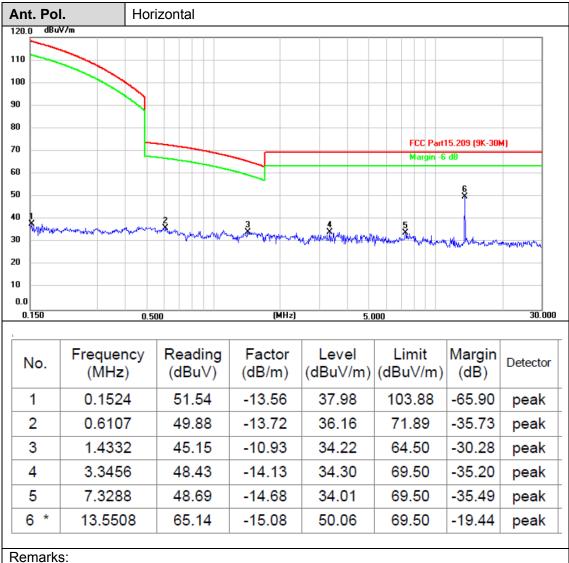
peak

peak

peak

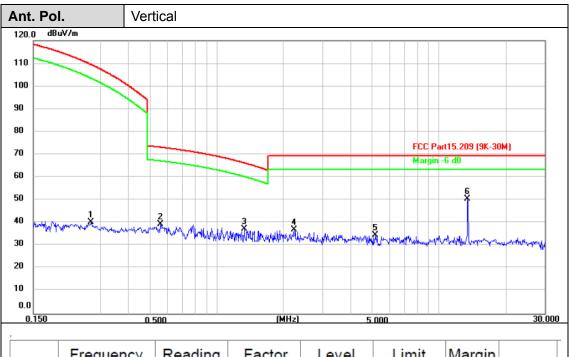
71.93

76.51


78.78

80.53

150 KHz~30 MHz

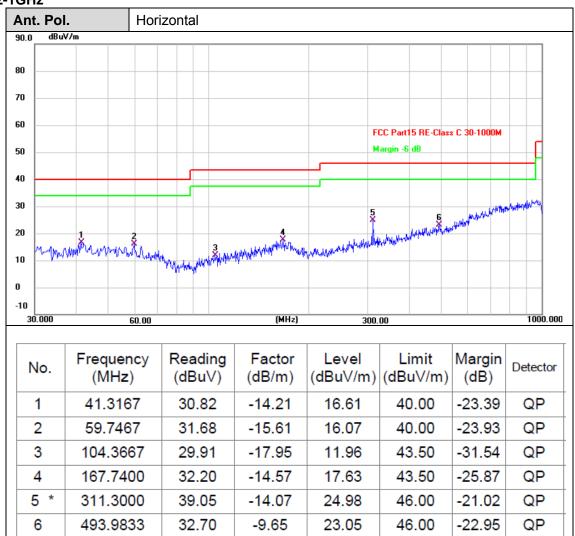

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc. 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 中国国家认证认可监督管理委员会

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	0.2726	53.82	-13.62	40.20	98.86	-58.66	peak
2	0.5611	53.12	-13.72	39.40	72.63	-33.23	peak
3	1.3306	48.55	-11.11	37.44	65.15	-27.71	peak
4	2.2366	51.10	-13.96	37.14	69.50	-32.36	peak
5	5.1660	48.74	-14.16	34.58	69.50	-34.92	peak
6 *	13.4792	65.51	-15.08	50.43	69.50	-19.07	peak

Remarks:


EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc. 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会

Remarks:

=È

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc. 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 不可 anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

۱nt	. Pol.	Vertical				
90.0	dBuV/m					
80						
'o						
50				FCC Part1	5 RE-Class C 30-1000M	
50				Margin -6	dB	
40				, ,	6	
30			and the state of t		5 martinet water	programme
20	. An weather	1	2 h l h	and metal profit with shope a forth	Wigewahan	
10	an anda a nama	Martin Ar Al Martin Andrew	where the second s	Median .		
) 10						
L	.000	60.00	(MHz)	300.00		1000.0

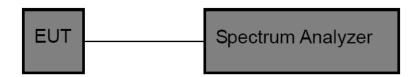
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	66.5367	33.13	-16.96	16.17	40.00	-23.83	QP
2	98.5467	30.03	-18.54	11.49	43.50	-32.01	QP
3	147.3700	31.83	-14.57	17.26	43.50	-26.24	QP
4	178.7332	32.40	-15.89	16.51	43.50	-26.99	QP
5	445.4833	32.11	-10.39	21.72	46.00	-24.28	QP
6 *	743.5967	35.58	-3.80	31.78	46.00	-14.22	QP

Remarks:

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc. 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 日中国国家认证认可监督管理委员会


2.3. 20dB Bandwidth

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.215

Intentional radiators must be designed to ensure that the 20dB emission bandwidth in the specific band. 13.553~13.567MHz.

Test Configuration

Test Procedure

- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. Spectrum Setting:
 - (1) Set RBW \geq 1% of the 20dB bandwidth.
 - (2) Set the video bandwidth (VBW) \ge RBW.
 - (3) Detector = Peak.
 - (4) Trace mode = Max hold.
 - (5) Sweep = Auto couple.

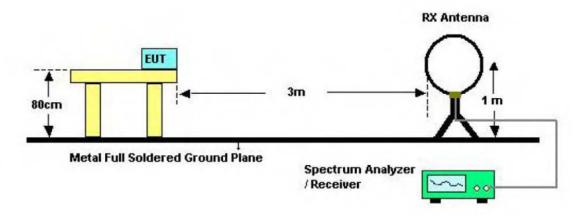
Test Mode

Please refer to the clause 1.7.

Test Results

Channel Frequency(MHz)	F _L >13.553	F _H <13.567	20dB Bandwidth (kHz)	Result
13.56	13.559	13.561	2.431	PASS
	30 dB SWT 1.9 ms	Spectrum 3 X RBW 1 kHz VBW 1 kHz VBW 1 kHz Mode Auto FFT M1[1]	-21.29 dBm 13.5587840 MHz	
0 dBm -10 dB <u>-20 dB</u> -30 dB -40 dB	mD1 -21.920 dBm	M2[1]	-1.92 dBm 13.5599850 MHz	
-50 de -60 de -70 de -80 de	im-			
CF 13 Marke	r.56 MHz	1000 pts	Span 30.0 kHz	
	Ref Trc X-value 1 13.558784 MHz M1 1 2.431 kHz	Y-value Function -21.29 dBm -0.13 dB -0.13 dB -1.92 dBm	Function Result	
Date:	20.0CT.2021 15:27:49			

2.4. Field Strength of the Fundamental


Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.225(a)(b)(c)

Fundamental frequency(MHz)	Field strength of fundamental (uV/m @30m)	Field strength of fundamental (dBuV/m @3m)
13.553-13.567	15848	124.0
13.410-13.553&13.567-13.710	334	90.5
13.110-13.410&13.710-14.010	106	80.5

Note: Limit dBuV/m @3m =Limit dBuV/m @30m +40*log(30/3)= Limit dBuV/m @30m + 40.

Test Configuration

Below 30MHz Test Setup

Test Procedure

1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.

2. The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.

3. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is 4. repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.

Test Mode

Please refer to the clause 1.7.

中国国家认证认

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaguan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and 可监督管理委员会

Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

<u>Test Result</u>

20.0 dB	uV/m							
				T P				
10								
00								
o						1		
0							FCC Par	
0							Margin -	6 db
0				3				
0				X				
D								
	manne	1	2	mouring	4	5	configuration of	6
			All m all more a		A	And the second life over a	all have a new place a	All and a second second
o								
0.0								
13.110	13.20	13.29	13.38	13.47 (MHz)) 13.65	13.74 13.	83 13.5	92 14.
No.	Freque (MHz	-	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	13.27	02	44.78	-15.08	29.70	80.50	-50.80	peak
-	13.43	93	44.49	-15.08	29.41	90.50	-61.09	peak
2				-15.08	51.82	124.00	-72.18	peak
2 3	13.56	00	66.90	-15.06	51.62	124.00	12.10	•
	13.56 13.63		66.90 44.49	-15.08	29.41	90.50	-61.09	peak
3		56						

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

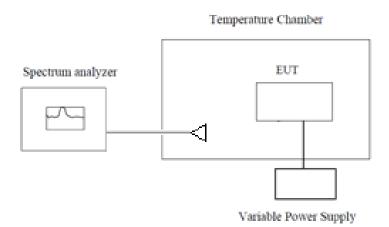
2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

EN

20.0	dBu¥	/m							
Γ					F				
10									
ן יינ									
י -			_				7		
, _								FCC Par Margin	rt15.225
,								maiyin	-6 UB
'									
ן נ			_						
) -									
,									
' [1			
נ 🔒	with	man	monton	- and an Administration of	monorman	human	4 5	6 	0.000000000
, _				constant in a state of	v · · · · · · · · · · · · · · · · · · ·				Cont to the
) -									
).0 13.1	10	13.20 1	3.29	13.38	13.47 (MH	z) 13.65	13.74 13.	83 13.	92 14
					12111 [11				
						-			52 14.
		Frequer		Peedin	a Factor		1		
No	o.	Frequen		Readin	•	Level	Limit	Margin	
No	o.	Frequer (MHz)		Readin (dBuV	•	Level	1	Margin	
No 1)) (dB/m)	Level	Limit	Margin	
1		(MHz) 13.209) 7	(dBu∨ 44.79) (dB/m) -15.09	Level (dBuV/m) 29.70	Limit (dBuV/m) 80.50	Margin (dB) -50.80	Detector peak
1 2	*	(MHz) 13.209 13.378) 7 9	(dBuV 44.79 44.90) (dB/m) -15.09 -15.08	Level (dBuV/m) 29.70 29.82	Limit (dBuV/m) 80.50 80.50	Margin (dB) -50.80 -50.68	Detector peak peak
1	*	(MHz) 13.209) 7 9	(dBu∨ 44.79) (dB/m) -15.09 -15.08	Level (dBuV/m) 29.70	Limit (dBuV/m) 80.50	Margin (dB) -50.80	Detector peak
1 2	*	(MHz) 13.209 13.378 13.560) 7 9 0	(dBu∨ 44.79 44.90 66.47) (dB/m) -15.09 -15.08 -15.08	Level (dBuV/m) 29.70 29.82 51.39	Limit (dBuV/m) 80.50 80.50 124.00	Margin (dB) -50.80 -50.68 -72.61	Detector peak peak peak
1 2 3 4	*	(MHz) 13.209 13.378 13.560 13.744) 7 9 0 5	(dBu∨ 44.79 44.90 66.47 44.53) (dB/m) -15.09 -15.08 -15.08 -15.07	Level (dBuV/m) 29.70 29.82 51.39 29.46	Limit (dBuV/m) 80.50 80.50 124.00 80.50	Margin (dB) -50.80 -50.68 -72.61 -51.04	Detector peak peak peak peak
1 2 3	*	(MHz) 13.209 13.378 13.560) 7 9 0 5	(dBu∨ 44.79 44.90 66.47) (dB/m) -15.09 -15.08 -15.08 -15.07	Level (dBuV/m) 29.70 29.82 51.39	Limit (dBuV/m) 80.50 80.50 124.00	Margin (dB) -50.80 -50.68 -72.61	Detector peak peak peak
1 2 3 4	*	(MHz) 13.209 13.378 13.560 13.744) 7 9 0 5 7	(dBu∨ 44.79 44.90 66.47 44.53) (dB/m) -15.09 -15.08 -15.08 -15.07 -15.07 -15.07	Level (dBuV/m) 29.70 29.82 51.39 29.46	Limit (dBuV/m) 80.50 80.50 124.00 80.50	Margin (dB) -50.80 -50.68 -72.61 -51.04	Detector peak peak peak peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc. 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 日中国国家认证认可监督管理委员会



2.5. Frequency Stability

<u>Limit</u>

The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

Test Configuration

Test Procedure

- 1. The equipment under test was connected to an external power supply.
- 2. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators.
- 3. The EUT was placed inside the temperature chamber.
- 4. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 25° C operating frequency as reference frequency.

5. Turn EUT off and set the chamber temperature to 0° C. After the temperature stabilized for approximately 30 minutes recorded the frequency.

6. Repeat step measure with 10° increased per stage until the highest temperature of +50° reached.

Test Mode

Please refer to the clause 1.7

Test Result

Test Env	vironment	Frequency	Frequency	Limit	Result
Voltage	Temperature(°C)	Reading(MHz)	Error(%)		
	-20	13.56020	0.0015%	±0.01%	Pass
	-10	13.56013	0.0010%	±0.01%	Pass
	0	13.56021	0.0015%	±0.01%	Pass
DC 7.40V	10	13.56012	0.0009%	±0.01%	Pass
DC 7.40V	20	13.56015	0.0011%	±0.01%	Pass
	30	13.56014	0.0010%	±0.01%	Pass
	40	13.56009	0.0007%	±0.01%	Pass
	50	13.56004	0.0003%	±0.01%	Pass
DC 8.14V	25	13.56012	0.0009%	±0.01%	Pass
DC 6.66V	25	13.56011	0.0008%	±0.01%	Pass

CTC Laboratories, Inc. 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 日 中国国家认证认可监督管理委员会 Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

2.6. Antenna requirement

Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

The directional gain of the antenna less than 6dBi, please refer to the below antenna photo.