

TEST REPORT

FCC: Magnadyne Corporation Applicant:

IC: MAGNADYNE CORPORATION

FCC: 1111 W. Victoria Street Compton, CA 90220 USA

Address: IC: 1111 WEST VICTORIA STEET, COMPTON, CA 90220

United States Of America

Product Name: Wireless/LTE Repeater

FCC ID: ZGM-RVLINK

IC: 23051-RVLINK

HVIN: RV2480

47 CFR Part 15, Subpart E(15.407)

RSS-247 Issue 3, August 2023

RSS-Gen, Issue 5, February 2021 Amendment 2 **Standard(s):**

ANSI C63.10-2013

KDB 789033 D02 General U-NII Test Procedures New Rules

v02r01

Report Number: 2402W44990E-RF-00A

Report Date: 2024/10/21

The above device has been tested and found compliant with the requirement of the relative standards by Bay Area Compliance Laboratories Corp. (Dongguan).

Reviewed By: Pedro Yun

Pedro Yun

Approved By: Ivan Cao

Title: Project Engineer

Title: EMC Manager

from Car

Bay Area Compliance Laboratories Corp. (Dongguan)

No.12, Pulong East 1st Road, Tangxia Town, Dongguan, Guangdong, China

Tel: +86-769-8685888 Fax: +86-769-86858891 www.baclcorp.com.cn

Note: The information marked ▲ is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report cannot be reproduced except in full, without prior written approval of the Company. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0. This report may contain data that are not covered by the accreditation scope and shall be marked with ★. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government. Each test item follows the test standard(s) without deviation.

CONTENTS

DOCUMENT REVISION HISTORY ······	
1. GENERAL INFORMATION	5
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)······	5
1.2 ACCESSORY INFORMATION	
1.3 ANTENNA INFORMATION DETAIL▲ ······	
1.4 EQUIPMENT MODIFICATIONS ······	6
2. SUMMARY OF TEST RESULTS ·····	7
3. DESCRIPTION OF TEST CONFIGURATION	8
3.1 OPERATION FREQUENCY DETAIL ·····	8
3.2 EUT OPERATION CONDITION	
3.3 SUPPORT EQUIPMENT LIST AND DETAILS	
3.4 SUPPORT CABLE LIST AND DETAILS ·······	
3.5 BLOCK DIAGRAM OF TEST SETUP·····	
3.6 TEST FACILITY ·····	12
3.7 MEASUREMENT UNCERTAINTY	12
4. REQUIREMENTS AND TEST PROCEDURES ······	13
4.1 AC LINE CONDUCTED EMISSIONS	13
4.1.1 Applicable Standard ······	13
4.1.2 EUT Setup	15
4.1.3 EMI Test Receiver Setup····································	15
4.1.4 Test Procedure 4.1.5 Corrected Amplitude & Margin Calculation	····· 16
4.1.6 Test Result	16
4.2 RADIATION SPURIOUS EMISSIONS	17
4.2.1 Applicable Standard · · · · · · · · · · · · · · · · · · ·	17
4.2.2 EUT Setup····································	19
4.2.4 Test Procedure	20
4.2.5 Corrected Result & Margin Calculation	22
4.2.6 Test Result · · · · · · · · · · · · · · · · · · ·	22
4.3 26DB ATTENUATED BELOW THE CHANNEL POWER	
4.3.1 Applicable Standard · · · · · · · · · · · · · · · · · · ·	23
4.3.2 EUT Setup····································	23
4.3.4 Test Result · · · · · · · · · · · · · · · · · · ·	
4.4 EMISSION BANDWIDTH · · · · · · · · · · · · · · · · · · ·	
4.4.1 Applicable Standard ······	24
4.4.2 EUT Setup····	25
4.4.3 Test Procedure 4.4.4 Test Result	25
4.4.4 Test Result 4.5 MAXIMUM CONDUCTED OUTPUT POWER	

4.5.1 Applicable Standard · · · · · · · · · · · · · · · · · · ·	27
4.5.2 EUT Setup·····	
4.5.3 Test Procedure	
4.5.4 Test Result	
4.6 MAXIMUM POWER SPECTRAL DENSITY	
4.6.1 Applicable Standard · · · · · · · · · · · · · · · · · · ·	29
4.6.2 EUT Setup·····	
4.6.3 Test Procedure	
4.6.4 Test Result	
4.7.1 EUT Setup·····	31
4.7.2 Test Procedure	31
4.7.3 Judgment	31
4.8 ANTENNA REQUIREMENT ·····	
4.8.1 Applicable Standard · · · · · · · · · · · · · · · · · · ·	32
4.8.2 Judgment · · · · · · · · · · · · · · · · · · ·	32
4.9 Additional requirement·····	
4.9.1 Applicable Standard · · · · · · · · · · · · · · · · · · ·	33
4.9.2 Judgment · · · · · · · · · · · · · · · · · · ·	34
5. Test DATA AND RESULTS	35
5.1 AC LINE CONDUCTED EMISSIONS	35
5.2 RADIATION SPURIOUS EMISSIONS	
5.3 26DB ATTENUATED BELOW THE CHANNEL POWER ·····	
5.4 EMISSION BANDWIDTH · · · · · · · · · · · · · · · · · · ·	77
5.5 99% OCCUPIED BANDWIDTH·····	82
5.6 MAXIMUM CONDUCTED OUTPUT POWER ·····	87
5.7 POWER SPECTRAL DENSITY ·····	90
5.8 DUTY CYCLE	
EXHIBIT A - EUT PHOTOGRAPHS ·····	101
EVHIDIT D TEST SETIID DUOTOCDADUS	

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
1.0	2402W44990E-RF-00A	Original Report	2024/10/21

Report Template Version: FCC+IC-WiFi5-indoor AP-V1.2

1. GENERAL INFORMATION

1.1 Product Description for Equipment under Test (EUT)

ELITE M	W' 1 /I MED	
EUT Name:	Wireless/LTE Repeater	
EUT Model:	RV2480	
Multiple Model:	RV2460	
Operation Frequency:	5150-5250 MHz: 5180-5240 MHz(802.11a/n ht20/ac vht20) 5190-5230 MHz(802.11n ht40/ac vht40) 5210 MHz(802.11ac vht80) 5725-5850 MHz: 5745-5825 MHz (802.11a/n ht20/ac vht20) 5755-5795 MHz(802.11n ht40/ac vht40) 5775 MHz(802.11ac vht80)	
Maximum Average Output Power	18.02 dBm(5150-5250 MHz)	
(Conducted):	19.69 dBm(5725-5850 MHz)	
Maximum Average Output Power (EIRP):		
Modulation Type:	802.11a/n/ac: OFDM-BPSK, QPSK, 16QAM, 64QAM,256QAM	
Rated Input Voltage:	DC 12V from adapter	
Serial Number:	CE/RE:2QDZ-1 RF Conducted:2QDZ-4	
EUT Received Date:	2024/8/22	
EUT Received Status:	Good	
Note: The multiple models are electrica more detail, which was provided by ma	lly identical with the test model. Please refer to the declaration letter for nufacturer.	

1.2 Accessory Information

Accessory Description	Manufacturer	Model	Parameters
Adapter	TECHNICS ELECTRONIC CO., LTD.	TS121X150- 1201CNS	Input:100-240Vac 50/60Hz 0.45A Output:12Vdc 1A

1.3 Antenna Information Detail ▲

2.4G +5G module:

Antenna	Antenna Manufacturer	Antenna Type	input impedance (Ohm)	Frequency Range	Antenna Gain
ANT 2	Shenzhen	DCD.	50	5.15~5.25GHz	2.62dBi
(Chain 0)	Yingjia Chuang	PCB 50		5.725~5.85GHz	3.31dBi
ANT 3	Electronic Technology Co.,	PCB	50	5.15~5.25GHz	2.62dBi
(Chain 1)	LTD.	РСБ	30	5.725~5.85GHz	3.31dBi

Note:

The system supports 2T2R at 802.11n/ac modes.

Per KDB 662911 D01 Multiple Transmitter Output v02r01:

For power measurements:

CDD Mode:

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$

directional gain=2.62 dBi for 5150-5250MHz

directional gain=3.31 dBi for 5725-5850MHz

For power spectral density (PSD) measurements:

Array Gain = $10 \log(N_{ANT}/N_{SS}) dB$.

directional gain=2.62dBi+3dB=5.62dBi for 5150-5250MHz

directional gain=3.31dBi+3dB=6.31dBi for 5725-5850MHz

The	design	of	compli	ance	with	§15.2	03:
	r •4			41	44 1	1	4

Unit uses a permanently attached antenna.
Unit uses a unique coupling to the intentional radiator.
Unit was professionally installed, and installer shall be responsible for verifying that the correct
antenna is employed with the unit.

1.4 Equipment Modifications

No modifications are made to the EUT during all test items.

Standard(s) Section	Test Items	Result
§15.207(a) RSS-Gen Clause 8.8	AC line conducted emissions	Compliant
FCC§15.205& §15.209 &§15.407(b) RSS-247 Clause 6.2	Undesirable Emission& Restricted Bands	Compliant
RSS-247 Clause 6.2.1.2	26dB attenuated below the channel power	Compliant
FCC§15.407(a) (e) RSS-247 Clause 6.2 RSS-Gen Clause 6.7	Emission Bandwidth	Compliant
FCC§15.407(a) RSS-247 Clause 6.2	Maximum Conducted Output Power	Compliant
FCC§15.407 (a) RSS-247 Clause 6.2	Power Spectral Density	Compliant
§15.203 RSS-Gen Clause 6.8	Antenna Requirement	Compliant
RSS-247 Clause 6.4	Additional requirements	Compliant

Note 1: For AC line conducted emissions, the maximum output power mode and channel was tested.

Note 2: For Radiated Spurious Emissions 9kHz~ 1GHz, the maximum output power mode and channel was

3. DESCRIPTION OF TEST CONFIGURATION

3.1 Operation Frequency Detail

For 802.11a/n ht20/ac vht20:

5150-5250MHz Band		5725-585	50MHz Band
Channel	Frequency (MHz)	Channel	Frequency (MHz)
36	5180	149	5745
40	5200	153	5765
44	5220	157	5785
48	5240	161	5805
/	/	165	5825

For 802.11n ht40/ac vht40:

5150-5250MHz Band		5725-585	50MHz Band
Channel	Frequency (MHz)	Channel	Frequency (MHz)
38	5190	151	5755
46	5230	159	5795

For 802.11ac vht80:

5150-5250MHz Band		5725-585	50MHz Band
Channel	Frequency (MHz)	Channel	Frequency (MHz)
42	5210	155	5775

3.2 EUT Operation Condition

The system was configured for testing in Engineering Mode, which was provided by the manufacturer.

The EUT configuration is below:

EUT Exercise Software: QRCT3

The software was provided by manufacturer. The maximum power was configured as below, that was provided by the manufacturer **\(\Delta \)**:

5150-5250 MHz Band:

Test Modes	Test	Test Frequency	Data rate	Power Level Setting	
Test Modes	Channels	(MHz)	Data late	Chain 0	Chain 1
	Lowest	5180	6Mbps	28	30
802.11a	Middle	5200	6Mbps	28	30
	Highest	5240	6Mbps	28	30
	Lowest	5180	MCS0	29	29
802.11n ht20	Middle	5200	MCS0	29	29
	Highest	5240	MCS0	29	29
802.11n ht40	Lowest	5190	MCS0	23	23
802.11n nt40	Highest	5230	MCS0	23	23
802.11ac vht80	Middle	5210	MCS0	20	20

5725-5850 MHz Band:

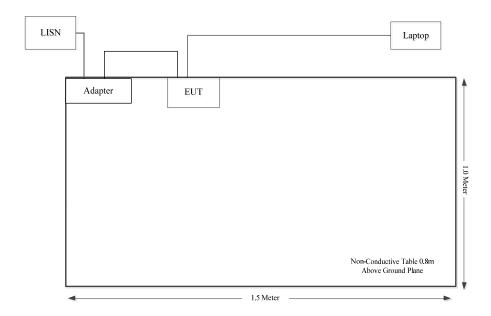
Took Modes	Test	Test Frequency	Doto voto	Power Level Setting	
Test Modes	Channels (MHz)		Data rate	Chain 0	Chain 1
	Lowest	5745	6Mbps	25	25
802.11a	Middle	5785	6Mbps	25	25
	Highest	5825	6Mbps	25	25
	Lowest	5745	MCS0	20	20
802.11n ht20	Middle	5785	MCS0	20	20
	Highest	5825	MCS0	20	20
802.11n ht40	Lowest	5755	MCS0	20	20
802.1111 11140	Highest	5795	MCS0	20	20
802.11ac vht80	Middle	5775	MCS0	20	20

Note:

- 1. The system support 802.11a/n ht20/n ht40/ac vht20/vht40/vht80, the vht20/vht40 were reduced since the identical parameters with 802.11n ht20 and ht40.
- 2. The above are the worst-case data rates, which are determined for each mode based upon investigations by measuring the average power and PSD across all data rates, bandwidths, and modulations.
- 3. The device supports SISO in all modes, and MIMO 2T2R in 802.11n/ac modes, per pretest, 2T2R mode was the worst mode and reported for 802.11 n/ac modes.

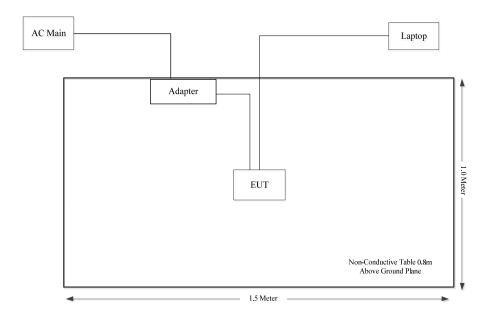
Report No.: 2402W44990E-RF-00A

3.3 Support Equipment List and Details

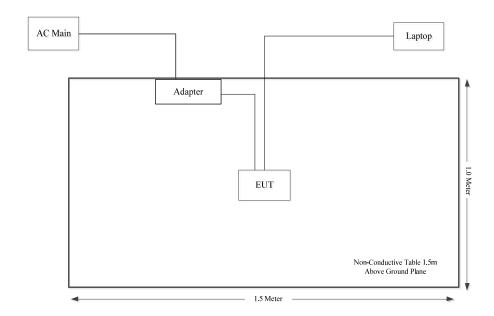

Manufacturer	Description	Model	Serial Number
Lenovo	Laptop	E450	PF-OMR8KV

3.4 Support Cable List and Details

Cable Description	Shielding Type	Ferrite Core	Length (m)	From Port	То
DC Cable	NO	NO	1.6	EUT	Adapter
RJ45 Cable	NO	NO	5	EUT	Laptop


3.5 Block Diagram of Test Setup

AC line conducted emissions:



Radiated Spurious Emissions:

Below 1G:

Above 1G:

3.6 Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.12, Pulong East 1st Road, Tangxia Town, Dongguan, Guangdong, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 829273, the FCC Designation No. : CN5044.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0022.

3.7 Measurement Uncertainty

Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty. The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval.

Parameter	Measurement Uncertainty		
Occupied Channel Bandwidth	±5 %		
RF output power, conducted	±0.61dB		
Power Spectral Density, conducted	±0.61 dB		
Unwanted Emissions, radiated	9kHz~30MHz: 3.3dB, 30MHz~200MHz: 4.55 dB, 200MHz~1GHz: 5.92 dB, 1GHz~6GHz: 4.98 dB, 6GHz~18GHz: 5.89 dB, 18GHz~26.5GHz:5.47 dB, 26.5GHz~40GHz:5.63 dB		
Unwanted Emissions, conducted	±2.47 dB		
Temperature	±1°C		
Humidity	±5%		
DC and low frequency voltages	±0.4%		
Duty Cycle	1%		
AC Power Lines Conducted Emission	3.11 dB (150 kHz to 30 MHz)		

4. REQUIREMENTS AND TEST PROCEDURES

4.1 AC Line Conducted Emissions

4.1.1 Applicable Standard

FCC§15.207(a).

(a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

	Conducted limit (dBµV)		
Frequency of emission (MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

^{*}Decreases with the logarithm of the frequency.

- (b) The limit shown in paragraph (a) of this section shall not apply to carrier current systems operating as intentional radiators on frequencies below 30 MHz. In lieu thereof, these carrier current systems shall be subject to the following standards:
- (1) For carrier current system containing their fundamental emission within the frequency band 535-1705 kHz and intended to be received using a standard AM broadcast receiver: no limit on conducted emissions.
- (2) For all other carrier current systems: $1000 \,\mu\text{V}$ within the frequency band 535-1705 kHz, as measured using a 50 $\mu\text{H}/50$ ohms LISN.
- (3) Carrier current systems operating below 30 MHz are also subject to the radiated emission limits in §15.205, §15.209, §15.221, §15.223, or §15.227, as appropriate.
- (c) Measurements to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines. Devices that include, or make provisions for, the use of battery chargers which permit operating while charging, AC adapters or battery eliminators or that connect to the AC power lines indirectly, obtaining their power through another device which is connected to the AC power lines, shall be tested to demonstrate compliance with the conducted limits.

RSS-Gen Clause 8.8

Unless stated otherwise in the applicable RSS, for radio apparatus that are designed to be connected to the public utility AC power network, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the range 150 kHz to 30 MHz shall not exceed the limits in table 4, as measured using a 50 μH / 50 Ω line impedance stabilization network. This requirement applies for the radio frequency voltage measured between each power line and the ground terminal of each AC power-line mains cable of the EUT. For an EUT that connects to the AC power lines indirectly, through another device, the requirement for compliance with the limits in table 4 shall apply at the terminals of the AC power-line mains cable of a representative support device, while it provides power to the EUT. The lower limit applies at the boundary between the frequency ranges. The device used to power the EUT shall be representative of typical applications.

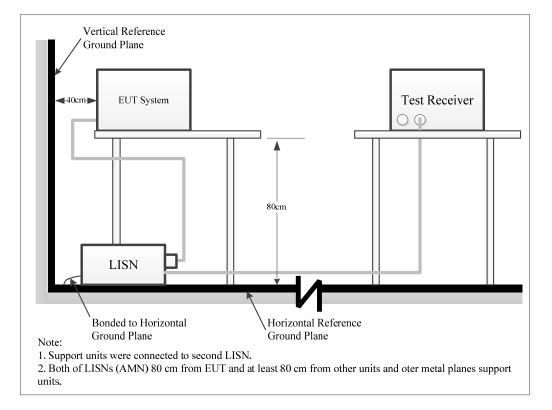
 Frequency (MHz)
 Conducted limit (dBμV)

 0.15 - 0.5
 Quasi-peak
 Average

 0.5 - 5
 56 to 46¹
 46

 5 - 30
 60
 50

Table 4 – AC power-line conducted emissions limits


Note 1: The level decreases linearly with the logarithm of the frequency.

For an EUT with a permanent or detachable antenna operating between 150 kHz and 30 MHz, the AC power-line conducted emissions must be measured using the following configurations:

- (a) Perform the AC power-line conducted emissions test with the antenna connected to determine compliance with the limits of table 4 outside the transmitter's fundamental emission band.
- (b) Retest with a dummy load instead of the antenna to determine compliance with the limits of table 4 within the transmitter's fundamental emission band. For a detachable antenna, remove the antenna and connect a suitable dummy load to the antenna connector. For a permanent antenna, remove the antenna and terminate the RF output with a dummy load or network that simulates the antenna in the fundamental frequency band.

Report No.: 2402W44990E-RF-00A

4.1.2 EUT Setup

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207, RSS-Gen limits.

The spacing between the peripherals was 10 cm.

The adapter or EUT was connected to the main LISN with a 120 V/60 Hz AC power source.

4.1.3 EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W	
150 kHz – 30 MHz	9 kHz	

4.1.4 Test Procedure

The frequency and amplitude of the six highest ac power-line conducted emissions relative to the limit, measured over all the current-carrying conductors of the EUT power cords, and the operating frequency or frequency to which the EUT is tuned (if appropriate), should be reported, unless such emissions are more than 20 dB below the limit. AC power-line conducted emissions measurements are to be separately carried out only on each of the phase ("hot") line(s) and (if used) on the neutral line(s), but not on the ground [protective earth] line(s). If less than six emission frequencies are within 20 dB of the limit, then the noise level of the measuring instrument at representative frequencies should be reported. The specific conductor of the power-line cord for each of the reported emissions should be identified. Measure the six highest emissions with respect to the limit on each current-carrying conductor of each power cord associated with the EUT (but not the power cords of associated or peripheral equipment that are part of the test configuration). Then, report the six highest emissions with respect to the limit from among all the measurements identifying the frequency and specific current-carrying conductor identified with the emission. The six highest emissions should be reported for each of the current-carrying conductors, or the six highest emissions may be reported over all the current-carrying conductors.

4.1.5 Corrected Amplitude & Margin Calculation

The basic equation is as follows:

Result = Reading + Factor

Factor = attenuation caused by cable loss + voltage division factor of AMN

The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. The equation for margin calculation is as follows:

Margin = Limit - Result

4.1.6 Test Result

Please refer to section 5.1.

4.2 Radiation Spurious Emissions

4.2.1 Applicable Standard

FCC §15.407 (b);

Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the

- (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of _ 27 dBm/MHz.
- (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz
- band shall not exceed an e.i.r.p. of _ 27 dBm/MHz.

 (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of _ 27 dBm/MHz.
- (4) For transmitters operating solely in the 5.725-5.850 GHz band:
- (i) All emissions shall be limited to a level of _ 27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.
- (ii) Devices certified before March 2, 2017 with antenna gain greater than 10 dBi may demonstrate compliance with the emission limits in § 15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease by March 2, 2018. Devices certified before March 2, 2018 with antenna gain of 10 dBi or less may demonstrate compliance with the emission limits in § 15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease before March 2, 2020.
- (8) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.
- (9) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in § 15.207.

 (10) The provisions of § 15.205 apply to intentional radiators operating under this section.
- (11) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency band edges as the design of the equipment permits.
- (c) The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signalling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals. Applicants shall include in their application for equipment authorization a description of how this requirement is met.

Frequency band 5150-5250 MHz:

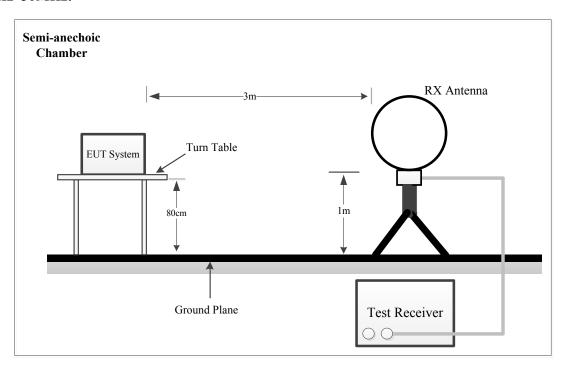
RSS-247 Clause 6.2.1.2

For transmitters with operating frequencies in the band 5150-5250 MHz, all emissions outside the band 5150-5350 MHz shall not exceed -27 dBm/MHz e.i.r.p. Any unwanted emissions that fall into the band 5250-5350 MHz shall be attenuated below the channel power by at least 26 dB, when measured using a resolution bandwidth between 1 and 5% of the occupied bandwidth (i.e. 99% bandwidth), above 5250 MHz. The 26 dB bandwidth may fall into the 5250-5350 MHz band; however, if the occupied bandwidth also falls within the 5250-5350 MHz band, the transmission is considered as intentional and the devices shall comply with all requirements in the band 5250-5350 MHz including implementing dynamic frequency selection (DFS) and TPC, on the portion of the emission that resides in the 5250-5350 MHz band.

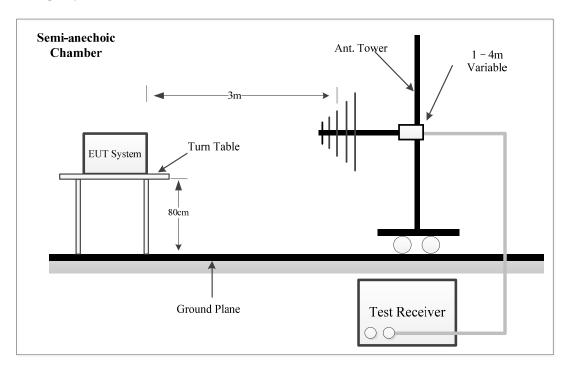
Frequency band 5725-5850 MHz

RSS-247 Clause 6.2.4.3

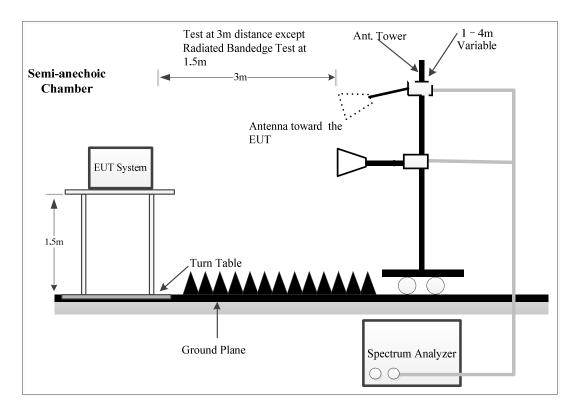
Devices operating in the band 5725-5850 MHz with antenna gain greater than 10 dBi can have unwanted emissions that comply with either the limits in this section or in section 5.5 until six (6) months after the publication date of this standard for certification. Certified devices that do not comply with emission limits in this section shall not be manufactured, imported, distributed, leased, offered for sale or sold after April 1, 2018.


Devices operating in the band 5725-5850 MHz with antenna gain of 10 dBi or less can have unwanted emissions that comply with either the limits in this section or in section 5.5 until April 1, 2018 for certification. Certified devices that do not comply with emission limits in this section shall not be manufactured, imported, distributed, leased, offered for sale or sold after April 1, 2020. Devices operating in the band 5725-5850 MHz shall have e.i.r.p. of unwanted emissions comply with the following:

- a) 27 dBm/MHz at frequencies from the band edges decreasing linearly to 15.6 dBm/MHz at 5 MHz above or below the band edges;
- b) 15.6 dBm/MHz at 5 MHz above or below the band edges decreasing linearly to 10 dBm/MHz at 25 MHz above or below the band edges;
- c) 10 dBm/MHz at 25 MHz above or below the band edges decreasing linearly to -27 dBm/MHz at 75 MHz above or below the band edges; and
- d) -27 dBm/MHz at frequencies more than 75 MHz above or below the band edges.


Report Template Version: FCC+IC-WiFi5-indoor AP-V1.2

4.2.2 EUT Setup


9kHz~30MHz:

30MHz~1GHz:

Above 1GHz:

The radiated emission tests were performed in the semi-anechoic chamber, using the setup accordance with the ANSI C63.10-2013. The specification used was FCC 15.209, FCC 15.407, RSS-247, RSS-Gen limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

For 9kHz-30MHz test, the lowest height of the magnetic antenna shall be 1 m above the ground and three antenna orientations (parallel, perpendicular, and ground-parallel) shall be measured.

4.2.3 EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 9 kHz to 40 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

9kHz-1000MHz:

Frequency Range	Measurement	RBW	Video B/W	IF B/W
9 kHz – 150 kHz	QP/AV	200 Hz	1 kHz	200 Hz
150 kHz – 30 MHz	QP/AV	9 kHz	30 kHz	9 kHz
30 MHz – 1000 MHz	PK	100 kHz	300 kHz	/
30 MHZ – 1000 MHZ	QP	/	/	120 kHz

1GHz-40GHz:

Pre-scan:

Measurement	Duty cycle	RBW	Video B/W
PK	Any	1MHz	3 MHz
Avia	>98%	1MHz	5kHz
Ave.	<98%	1MHz	1/T, not less than 5kHz

Final measurement for emission identified during the pre-scan:

Measurement	Duty cycle	RBW	Video B/W
PK	Any	1MHz	3 MHz
Avia	>98%	1MHz	10 Hz
Ave.	<98%	1MHz	1/T

Note: T is minimum transmission duration

If the maximized peak measured value is under the QP limit by more than 6dB, then it is unnecessary to perform an QP measurement.

If the maximized peak measured value is under the average limit, then it is unnecessary to perform an OP measurement.

4.2.4 Test Procedure

Data was recorded in Quasi-peak detection mode for frequency range of 9 kHz -1 GHz, except 9-90 kHz, 110-490 kHz, employing an average detector, peak and Average detection modes for frequencies above 1 GHz.

According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01, emission shall be computed as: $E [dB\mu V/m] = EIRP[dBm] + 95.2$, for d = 3 meters.

For Radiated Bandedge test, which was performed at 1.5 m distance, according to C63.10, the test result shall be extrapolated to the specified distance using an extrapolation Factor of 20dB/decade from 3m to 1.5m

Distance extrapolation Factor = 20 log (specific distance [3m]/test distance [1.5m]) dB= 6.0 dB

4.2.5 Corrected Result & Margin Calculation

The basic equation except radiated bandedge test is as follows:

Factor = Antenna Factor + Cable Loss- Amplifier Gain

Result = Reading + Factor

For Radiated Bandedge test:

Factor = Antenna Factor + Cable Loss-Distance extrapolation Factor

Result = Reading + Factor

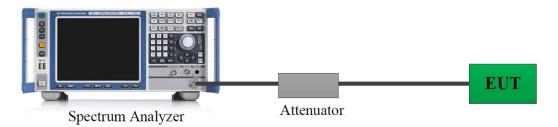
The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. The equation for margin calculation is as follows:

Margin = Limit - Result

For the spurious emission below 30MHz, the limit was convert from $dB\mu A/m$ to $dB\mu V/m$ by adding 51.5 dB.

4.2.6 Test Result

Please refer to section 5.2.


4.3 26dB Attenuated Below The Channel Power

4.3.1 Applicable Standard

RSS-247 Clause 6.2.1.2

For transmitters with operating frequencies in the band 5150-5250 MHz, all emissions outside the band 5150-5350 MHz shall not exceed -27 dBm/MHz e.i.r.p. Any unwanted emissions that fall into the band 5250-5350 MHz shall be attenuated below the channel power by at least 26 dB, when measured using a resolution bandwidth between 1 and 5% of the occupied bandwidth (i.e. 99% bandwidth), above 5250 MHz. The 26 dB bandwidth may fall into the 5250-5350 MHz band; however, if the occupied bandwidth also falls within the 5250-5350 MHz band, the transmission is considered as intentional and the devices shall comply with all requirements in the band 5250-5350 MHz including implementing dynamic frequency selection (DFS) and TPC, on the portion of the emission that resides in the 5250-5350 MHz band.

4.3.2 EUT Setup

A short RF cable with low cable loss connected to the EUT antenna port, which was provided by manufacturer.

4.3.3 Test Procedure

- a) Set RBW = $1\%\sim5\%$ of the emission bandwidth.
- b) Set the VBW > RBW.
- c) Detector = RMS.
- d) Trace mode = max hold
- e) Measure the emission attenuated below the channel power

4.3.4 Test Result

Please refer to section 5.3.

4.4 Emission Bandwidth

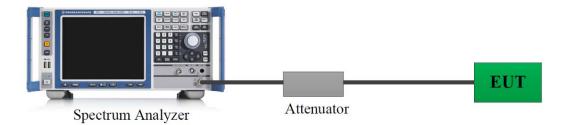
4.4.1 Applicable Standard

FCC §15.407 (a),(h)

(h)(2) Radar Detection Function of Dynamic Frequency Selection (DFS). U-NII devices operating with any part of its 26 dB emission bandwidth in the 5.25-5.35 GHz and 5.47-5.725 GHz bands shall employ a DFS radar detection mechanism to detect the presence of radar systems and to avoid co-channel operation with radar systems.

FCC §15.407 (e)

Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.


RSS-247 Clause 6.2.1.2

For transmitters with operating frequencies in the band 5150-5250 MHz, all emissions outside the band 5150-5350 MHz shall not exceed -27 dBm/MHz e.i.r.p. Any unwanted emissions that fall into the band 5250-5350 MHz shall be attenuated below the channel power by at least 26 dB, when measured using a resolution bandwidth between 1 and 5% of the occupied bandwidth (i.e. 99% bandwidth), above 5250 MHz. The 26 dB bandwidth may fall into the 5250-5350 MHz band; however, if the occupied bandwidth also falls within the 5250-5350 MHz band, the transmission is considered as intentional and the devices shall comply with all requirements in the band 5250-5350 MHz including implementing dynamic frequency selection (DFS) and TPC, on the portion of the emission that resides in the 5250-5350 MHz band.

RSS-247 Clause 6.2.4.2

For equipment operating in the band 5725-5850 MHz, the minimum 6 dB bandwidth shall be at least 500 kHz.

4.4.2 EUT Setup

A short RF cable with low cable loss connected to the EUT antenna port, which was provided by manufacturer.

4.4.3 Test Procedure

26dB Emission Bandwidth:

According to ANSI C63.10-2013 Section 12.4.1

- a) Set RBW = approximately 1% of the emission bandwidth.
- b) Set the VBW > RBW.
- c) Detector = peak.
- d) Trace mode = max hold
- e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

6 dB emission bandwidth:

According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \geq 3 RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Note: The automatic bandwidth measurement capability of a spectrum analyzer or EMI receiver may be employed if it implements the functionality described in this section. For devices that use channel aggregation refer to III.A and III.C for determining emission bandwidth.

99% Occupied Bandwidth:

According to ANSI C63.10-2013 Section 12.4.2&6.9.3

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:

- emission. The following procedure shall be used for measuring 99% power bandwidth:
 a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.
- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.
- d) Step a) through step c) might require iteration to adjust within the specified range.
- e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
- g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.
- h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

4.4.4 Test Result

Please refer to section 5.4 and section 5.5.

4.5 Maximum Conducted Output Power

4.5.1 Applicable Standard

FCC §15.407(a) (1)(ii)

For an indoor access point operating in the band 5.15–5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

FCC §15.407(a) (3)(i)

For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

RSS-247 Clause 6.2.1.1

For OEM devices installed in vehicles, the maximum e.i.r.p. shall not exceed 30 mW or 1.76 + 10 log₁₀B, dBm, whichever is less stringent. Devices shall implement transmitter power control (TPC) in order to have the capability to operate at least 3 dB below the maximum permitted e.i.r.p. of 30 mW.

For other devices, the maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10B, dBm, whichever power is less. B is the 99% emission bandwidth in megahertz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

RSS-247 Clause 6.2.4.2

The maximum conducted output power shall not exceed 1 W. The output power spectral density shall not exceed 30 dBm in any 500 kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the output power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed point-to-point operations exclude the use of point-to-multipoints systems, omnidirectional applications and multiple collocated transmitters transmitting the same information.

4.5.2 EUT Setup

A short RF cable with low cable loss connected to the EUT antenna port, which was provided by manufacturer. The cable loss of this RF cable was offset into the setting of test equipment, which was provided by manufacturer **\(\Lambda \)**.

4.5.3 Test Procedure

According to ANSI C63.10-2013 Section 12.3.3.1

Method PM-G is measurement using a gated RF average power meter.

Measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Because the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.

4.5.4 Test Result

Please refer to section 5.6.

4.6 Maximum Power Spectral Density

4.6.1 Applicable Standard

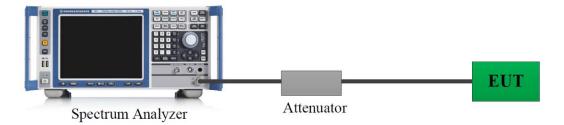
FCC §15.407(a) (1)(ii)

For an indoor access point operating in the band 5.15–5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

FCC §15.407(a) (3)(i)

For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

RSS-247 Clause 6.2.1.1


For OEM devices installed in vehicles, the maximum e.i.r.p. shall not exceed 30 mW or 1.76 + 10 log10B, dBm, whichever is less stringent. Devices shall implement transmitter power control (TPC) in order to have the capability to operate at least 3 dB below the maximum permitted e.i.r.p. of 30 mW.

For other devices, the maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10B, dBm, whichever power is less. B is the 99% emission bandwidth in megahertz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

RSS-247 Clause 6.2.4.2

The maximum conducted output power shall not exceed 1 W. The output power spectral density shall not exceed 30 dBm in any 500 kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the output power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed point-to-point operations exclude the use of point-to-multipoints systems, omnidirectional applications and multiple collocated transmitters transmitting the same information.

4.6.2 EUT Setup

A short RF cable with low cable loss connected to the EUT antenna port, which was provided by manufacturer. The cable loss of this RF cable was offset into the setting of test equipment, which was provided by manufacturer **\(\Lambda \)**.

4.6.3 Test Procedure

According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01

Duty cycle ≥98%

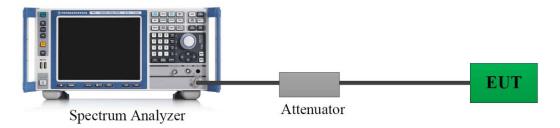
KDB 789033 D02 General UNII Test Procedures New Rules v02r01 Method SA-1 should be applied.

Duty cycle <98%, duty cycle variations are less than $\pm 2\%$

KDB 789033 D02 General UNII Test Procedures New Rules v02r01 Method SA-2 should be applied.

Duty cycle <98%, duty cycle variations exceed $\pm 2\%$

KDB 789033 D02 General UNII Test Procedures New Rules v02r01 Method SA-3 should be applied.


4.6.4 Test Result

Please refer to section 5.7.

Report No.: 2402W44990E-RF-00A

4.7 Duty Cycle

4.7.1 EUT Setup

A short RF cable with low cable loss connected to the EUT antenna port, which was provided by manufacturer.

4.7.2 Test Procedure

According to ANSI C63.10-2013 Section 12.2

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the ON and OFF times of the transmitted signal:

- 1) Set the center frequency of the instrument to the center frequency of the transmission.
- 2) Set RBW ≥ OBW if possible; otherwise, set RBW to the largest available value.
 3) Set VBW ≥ RBW. Set detector = peak or average.
- 4) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring the duty cycle shall not be used if $T \le 16.7$ μs.)

4.7.3 Judgment

Report Only. Please refer to section 5.8.

4.8 Antenna Requirement

4.8.1 Applicable Standard

FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §§15.211, 15.213, 15.217, 15.219, 15.221, or §15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

RSS-Gen Clause 6.8

The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.

For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report (and in the notice to be included in the user manual, provided below). When measurements at the antenna port are used to determine the RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna's manufacturer

The test report shall state the RF power, output power setting and spurious emission measurements with each antenna type that is used with the transmitter being tested.

For licence-exempt equipment with detachable antennas, the user manual shall also contain the following notice in a conspicuous location:

This radio transmitter [enter the device's ISED certification number] has been approved by Innovation, Science and Economic Development Canada to operate with the antenna types listed below, with the maximum permissible gain indicated. Antenna types not included in this list that have a gain greater than the maximum gain indicated for any type listed are strictly prohibited for use with this device.

Immediately following the above notice, the manufacturer shall provide a list of all antenna types which can be used with the transmitter, indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna type.

4.8.2 Judgment

Compliant. Please refer to the Antenna Information detail in Section 1.3.

Report Template Version: FCC+IC-WiFi5-indoor AP-V1.2

4.9 Additional requirement

4.9.1 Applicable Standard

According to RSS-247 Clause 6.4 Additional requirement

The following requirements shall apply:

- a) The device shall automatically discontinue transmission in cases of absence of information to transmit, or operational failure. A description on how this is done shall accompany the application for equipment certification. Note that this is not intended to prohibit transmission of control or signalling information or the use of repetitive codes where required by the technology.
- All LE-LAN devices must contain security features to protect against modification of software by unauthorized parties.

Manufacturers must implement security features in any digitally modulated devices capable of operating in any of the frequency ranges within the 5 GHz band, so that third parties are not able to reprogram the device to operate outside the parameters for which the device was certified. The software must prevent the user from operating the transmitter with operating frequencies, output power, modulation types or other radio frequency parameters outside those that were approved for the device. Manufacturers may use various means, including the use of a private network that allows only authenticated users to download software, electronic signatures in software or coding in hardware that is decoded by software to verify that new software can be legally loaded into a device to meet these requirements and must describe the methods in their application for equipment certification.

Manufacturers must take steps to ensure that DFS functionality cannot be disabled by the operator of the LE-LAN device.

- c) The user manual for LE-LAN devices shall contain instructions related to the restrictions mentioned in the above sections, namely that:
 - the device for operation in the band 5150–5250 MHz is only for indoor use to reduce the potential for harmful interference to co-channel mobile satellite systems;⁴
 - for devices with detachable antenna(s), the maximum antenna gain permitted for devices in the bands 5250-5350 MHz and 5470-5725 MHz shall be such that the equipment still complies with the e.i.r.p. limit;
 - for devices with detachable antenna(s), the maximum antenna gain permitted for devices in the band 5725-5850 MHz shall be such that the equipment still complies with the e.i.r.p. limits as appropriate; and
 - iv. where applicable, antenna type(s), antenna models(s), and worst-case tilt angle(s) necessary to remain compliant with the e.i.r.p. elevation mask requirement set forth in section 6.2.2.3 shall be clearly indicated.

Report Template Version: FCC+IC-WiFi5-indoor AP-V1.2

4.9.2 Judgment

RSS-247 Clause 6.4 a):

The device shall automatically discontinue transmission in cases of absence of information to transmit, or operational failure. Please refer to the declaration

RSS-247 Clause 6.4 b):

The devices must contain security features to protect against modification of software by unauthorized parties. Please refer to the declaration.

RSS-247 Clause 6.4 c):

- i). The device is only for indoor use.
- ii). The antenna unit uses a permanently attached antenna, and all the EIPR compliance with RSS-247 requirement. Please refer to the conducted output power test result.

Report Template Version: FCC+IC-WiFi5-indoor AP-V1.2

5. Test DATA AND RESULTS

5.1 AC Line Conducted Emissions

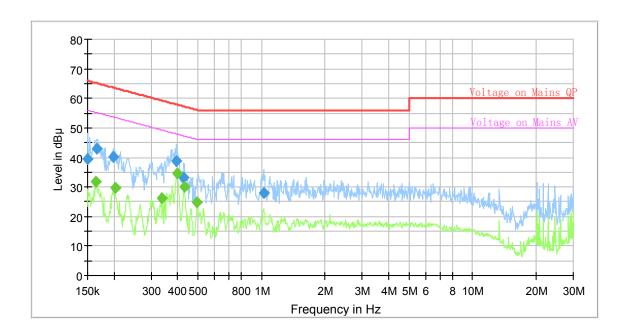
Serial Number:	2QDZ-1	Test Date:	2024/9/5
Test Site:	CE	Test Mode:	Transmitting
Tester:	Lane Sun	Test Result:	Pass

Environmental Conditions:

Temperature: (°C) 26.4	Relative Humidity: 60	ATM Pressure: (kPa) 99.4
------------------------	--------------------------	--------------------------

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	LISN	ENV216	101614	2023/10/18	2024/10/17
MICRO-COAX	Coaxial Cable	C-NJNJ-50	C-0200-01	2023/9/7	2024/9/6
R&S	EMI Test Receiver	ESCI	100035	2024/8/18	2025/8/17
R&S	Test Software	EMC32	V9.10.00	N/A	N/A

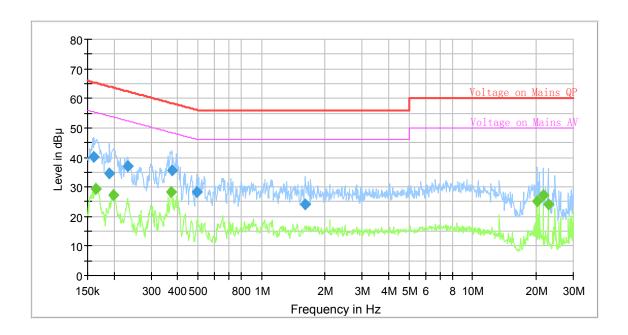

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Project No: 2402W44990E-RF

Test Engineer: Lane Sun Test Date: 2024-9-5 Port: L

Test Mode: Transmitting Power Source:

AC 120V/60Hz 802.11a 5825MHz Chain 0 Note:


Frequency	QuasiPeak	Average	Limit	Margin	Bandwidth	Line	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	(kHz)		(dB)
0.150750	39.56		65.96	26.40	9.000	L1	10.8
0.164089		31.85	55.25	23.40	9.000	L1	10.8
0.165734	43.11		65.17	22.06	9.000	L1	10.8
0.198331	40.04		63.68	23.64	9.000	L1	10.8
0.202328		29.68	53.51	23.83	9.000	L1	10.8
0.336506		26.15	49.29	23.14	9.000	L1	10.8
0.396710	38.91		57.92	19.01	9.000	L1	10.8
0.398694		34.75	47.88	13.13	9.000	L1	10.8
0.427528	33.16		57.30	24.14	9.000	L1	10.8
0.431814		30.02	47.22	17.20	9.000	L1	10.8
0.496531		24.81	46.06	21.25	9.000	L1	10.8
1.023352	27.82		56.00	28.18	9.000	L1	10.8

Project No: 2402W44990E-RF

Test Engineer: Lane Sun Test Date: 2024-9-5 Port: N

Test Mode: Transmitting Power Source:

AC 120V/60Hz 802.11a 5825MHz Chain 0 Note:

Frequency	QuasiPeak	Average	Limit	Margin	Bandwidth	Line	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	(kHz)		(dB)
0.160848	40.14		65.42	25.28	9.000	N	10.9
0.164910		29.23	55.21	25.98	9.000	N	10.9
0.190573	34.59		64.01	29.42	9.000	N	10.9
0.199323		27.37	53.64	26.27	9.000	N	10.9
0.231493	37.11		62.40	25.29	9.000	N	10.8
0.371804		28.29	48.46	20.17	9.000	N	10.8
0.375532	35.64		58.38	22.74	9.000	N	10.8
0.496531	28.21		56.06	27.85	9.000	N	10.7
1.619208	24.15		56.00	31.85	9.000	N	10.9
20.199004		25.03	50.00	24.97	9.000	N	10.9
21.659819		27.09	50.00	22.91	9.000	N	10.9
22.881343		24.05	50.00	25.95	9.000	N	10.9

5.2 Radiation Spurious Emissions

1) 9kHz - 1GHz

Serial Number:	2QDZ-1	Test Date:	2024/8/30
Test Site:	Chamber10m	Test Mode:	Transmitting
Tester:	Zoo Zou	Test Result:	Pass

Environmental Conditions:						
Temperature: (°C)	29.4	Relative Humidity: (%) 59	ATM Pressure: (kPa)	100.7		

Test Equipment List and Details:

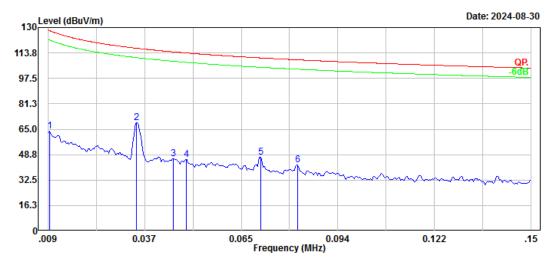
Test Equipment List and Details.							
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date		
EMCO	Passive Loop Antenna	6512	9706-1206	2023/10/21	2026/10/20		
Sunol Sciences	Hybrid Antenna	JB3	A060611-1	2023/9/6	2026/9/5		
Narda	Coaxial Attenuator	779-6dB	04269	2023/9/6	2026/9/5		
Unknown	Coaxial Cable	C-NJNJ-50	C-1000-01	2024/8/1	2025/7/31		
Unknown	Coaxial Cable	C-NJNJ-50	C-0400-04	2024/8/1	2025/7/31		
Unknown	Coaxial Cable	C-NJNJ-50	C-0530-01	2024/8/1	2025/7/31		
Sonoma	Amplifier	310N	185914	2024/8/1	2025/7/31		
R&S	EMI Test Receiver	ESCI	100224	2024/8/26	2025/8/25		
Audix	Test Software	E3	191218 V9	N/A	N/A		

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:

Please refer to the below table and plots.

After pre-scan in the X, Y and Z axes of orientation, the worst case is refer to table and plots.


Report No.: 2402W44990E-RF-00A

9kHz~30MHz

Three antenna orientations (parallel, perpendicular, and ground-parallel) was measured, the worst orientations was below:

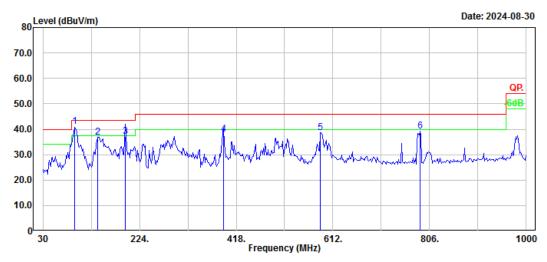
Project No.: 2402W44990E-RF Serial No.: 2QDZ-1
Polarization: Parallel Tester: Zoo Zou
Test Mode: Transmitting

Note: 802.11 a 5825MHz Chain 2

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Margin (dB)	Detector
1	0.01	10.63	53.02	63.65	127.99	64.34	Peak
2	0.03	22.32	46.67	68.99	116.74	47.75	Peak
3	0.05	1.32	44.80	46.12	114.41	68.29	Peak
4	0.05	1.60	44.16	45.76	113.74	67.98	Peak
5	0.07	6.59	40.41	47.00	110.57	63.57	Peak
6	0.08	3.34	38.61	41.95	109.35	67.40	Peak

Project No.: 2402W44990E-RF Serial No.: 2QDZ-1
Polarization: Parallel Tester: Zoo Zou

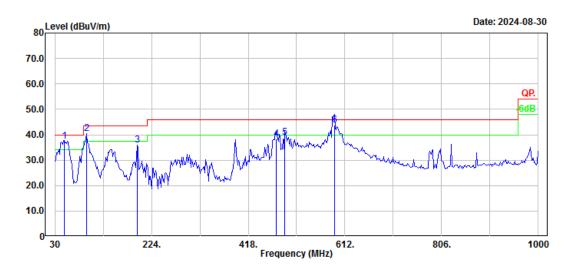
Test Mode: Transmitting Note: 802.11 a 5825MHz Chain 2



No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Margin (dB)	Detector
1	0.63	16.79	22.20	38.99	71.61	32.62	Peak
2	0.69	16.16	21.57	37.73	70.77	33.04	Peak
3	0.75	16.55	21.00	37.55	70.01	32.46	Peak
4	0.80	16.61	20.56	37.17	69.45	32.28	Peak
5	0.91	17.89	18.39	36.28	68.32	32.04	Peak
6	1.30	18.75	15.22	33.97	65.13	31.16	Peak

30MHz-1GHz

Project No.: 2402W44990E-RF Serial No.: 2QDZ-1
Polarization: Horizontal Tester: Zoo Zou
Test Mode: Transmitting


Note: 802.11 a 5825MHz Chain 2

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Margin (dB)	Detector
1	94.02	56.71	-15.64	41.07	43.50	2.43	QP
2	140.58	47.19	-10.49	36.70	43.50	6.80	Peak
3	194.90	48.89	-11.82	37.07	43.50	6.43	QP
4	392.78	45.30	-7.16	38.14	46.00	7.86	QP
5	586.78	41.85	-3.06	38.79	46.00	7.21	Peak
6	786.60	38.99	0.26	39.25	46.00	6.75	Peak

Project No.: 2402W44990E-RF Serial No.: 2QDZ-1
Polarization: Vertical Tester: Zoo Zou

Test Mode: Transmitting
Note: 802.11 a 5825MHz Chain 2

No.	Frequency (MHz)	Reading (dBµV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Margin (dB)	Detector
1	49.40	53.70	-16.14	37.56	40.00	2.44	QP
2	94.02	56.11	-15.64	40.47	43.50	3.03	QP
3	194.90	47.83	-11.83	36.00	43.50	7.50	Peak
4	474.26	43.21	-4.84	38.37	46.00	7.63	QP
5	491.72	43.40	-4.46	38.94	46.00	7.06	QP
6	590.66	46.80	-3.02	43.78	46.00	2.22	QP

2) 1-40GHz:

Serial Number:	2QDZ-1	Test Date:	2024/9/9~2024/10/21
Test Site:	Chamber B	Test Mode:	Transmitting
Tester:	Colin Yang	Test Result:	Pass

Environmental Conditions:

Temperature: $(^{\circ}\mathbb{C})$	26.2~28.2	Relative Humidity:	37~45	ATM Pressure: (kPa)	100.2~101.3

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
ETS-Lindgren	Horn Antenna	3115	000 527 35	2023/9/7	2026/9/6
Ducommun Technologies	Horn Antenna	ARH-4223-02	1007726-02 1304	2023/2/22	2026/2/21
Ducommun Technologies	Horn Antenna	ARH-2823-02	1007726-01 1302	2023/2/22	2026/2/21
Xinhang Macrowave	Coaxial Cable	XH750A-N/J- SMA/J-10M	20231117004 #0001	2023/11/17	2024/11/16
Xinhang Macrowave	Coaxial Cable	XH360A-2.92/J- 2.92/J-6M-A	20231208001 #0001	2023/12/11	2024/12/10
AH	Preamplifier	PAM-0118P	469	2024/4/15	2025/4/15
AH	Preamplifier	PAM-1840VH	191	2024/9/5	2025/9/4
Audix	Test Software	E3	191218 (V9)	N/A	N/A
Sinoscite	Band Rejection Filter	BSF5150-5850MN	0899003	2024/2/21	2025/2/20
Mini-Circuits	High Pass Filter	VHF-6010+	31118	2023/12/1	2024/11/30
R&S	Spectrum Analyzer	FSV40	101944	2024/9/6	2025/9/5

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp.(Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:

Please refer to the below table and plots.

After pre-scan in the X, Y and Z axes of orientation, the worst case is refer to table and plots.

Report No.: 2402W44990E-RF-00A

Report No.: 2402W44990E-RF-00A

802.11a_U-NII-1 Chain 0

602.11a_ U-1	/11-1						Chain v
Frequency	Reading	Detector	Polar	Factor	Corrected Amplitude	Limit	Margin
MHz	dΒμV	PK/QP/AV	H/V	dB/m	dBμV/m	dBμV/m	dB
		Lo	w channel	5180	MHz		
5150.00	49.30	PK	Н	6.53	55.83	74.00	18.17
5150.00	39.50	AV	Н	6.53	46.03	54.00	7.97
5150.00	50.48	PK	V	6.53	57.01	74.00	16.99
5150.00	39.41	AV	V	6.53	45.94	54.00	8.06
10360.00	51.89	PK	Н	0.33	52.22	68.20	15.98
10360.00	51.48	PK	V	0.33	51.81	68.20	16.39
15540.00	49.77	PK	Н	0.6	50.37	74.00	23.63
15540.00	40.78	AV	Н	0.6	41.38	54.00	12.62
15540.00	50.61	PK	V	0.6	51.21	74.00	22.79
15540.00	40.90	AV	V	0.6	41.50	54.00	12.50
		Midd	lle channel	5200	MHz		
10400.00	52.63	PK	Н	0.4	53.03	68.20	15.17
10400.00	51.78	PK	V	0.4	52.18	68.20	16.02
15600.00	49.63	PK	Н	0.58	50.21	74.00	23.79
15600.00	39.82	AV	Н	0.58	40.40	54.00	13.60
15600.00	50.77	PK	V	0.58	51.35	74.00	22.65
15600.00	39.24	AV	V	0.58	39.82	54.00	14.18
		Hiş	gh channel	5240	MHz		
5350.00	50.29	PK	Н	7.1	57.39	74.00	16.61
5350.00	39.43	AV	Н	7.1	46.53	54.00	7.47
5350.00	48.58	PK	V	7.1	55.68	74.00	18.32
5350.00	39.48	AV	V	7.1	46.58	54.00	7.42
10480.00	52.10	PK	Н	0.56	52.66	68.20	15.54
10480.00	50.55	PK	V	0.56	51.11	68.20	17.09
15720.00	49.71	PK	Н	0.55	50.26	74.00	23.74
15720.00	39.99	AV	Н	0.55	40.54	54.00	13.46
15720.00	50.76	PK	V	0.55	51.31	74.00	22.69
15720.00	40.55	AV	V	0.55	41.10	54.00	12.90

Report No.: 2402W44990E-RF-00A

802.11a_U-NII-1 Chain 1

002.11a_C-1	111 1						Chain I
Frequency	Reading	Detector	Polar	Factor	Corrected Amplitude	Limit	Margin
MHz	dΒμV	PK/QP/AV	H/V	dB/m	dBμV/m	dBμV/m	dB
		Lo	w channel	5180	MHz		
5150.00	50.84	PK	Н	6.53	57.37	74.00	16.63
5150.00	39.90	AV	Н	6.53	46.43	54.00	7.57
5150.00	52.26	PK	V	6.53	58.79	74.00	15.21
5150.00	40.28	AV	V	6.53	46.81	54.00	7.19
10360.00	51.46	PK	Н	0.33	51.79	68.20	16.41
10360.00	52.58	PK	V	0.33	52.91	68.20	15.29
15540.00	48.65	PK	Н	0.6	49.25	74.00	24.75
15540.00	38.99	AV	Н	0.6	39.59	54.00	14.41
15540.00	49.88	PK	V	0.6	50.48	74.00	23.52
15540.00	39.78	AV	V	0.6	40.38	54.00	13.62
		Midd	lle channel	5200	MHz		
10400.00	51.24	PK	Н	0.4	51.64	68.20	16.56
10400.00	51.35	PK	V	0.4	51.75	68.20	16.45
15600.00	48.64	PK	Н	0.58	49.22	74.00	24.78
15600.00	39.19	AV	Н	0.58	39.77	54.00	14.23
15600.00	49.90	PK	V	0.58	50.48	74.00	23.52
15600.00	39.89	AV	V	0.58	40.47	54.00	13.53
		Hi	gh channel	5240	MHz		
5350.00	49.61	PK	Н	7.1	56.71	74.00	17.29
5350.00	39.50	AV	Н	7.1	46.60	54.00	7.40
5350.00	50.85	PK	V	7.1	57.95	74.00	16.05
5350.00	38.81	AV	V	7.1	45.91	54.00	8.09
10480.00	50.31	PK	Н	0.56	50.87	68.20	17.33
10480.00	52.12	PK	V	0.56	52.68	68.20	15.52
15720.00	48.65	PK	Н	0.55	49.20	74.00	24.80
15720.00	39.24	AV	Н	0.55	39.79	54.00	14.21
15720.00	49.95	PK	V	0.55	50.50	74.00	23.50
15720.00	40.08	AV	V	0.55	40.63	54.00	13.37

802.11n20_U-NII-1

Frequency	Reading	Detector	Polar	Factor	Corrected Amplitude	Limit	Margin	
MHz	dΒμV	PK/QP/AV	H/V	dB/m	dBμV/m	dBμV/m	dB	
		Lo	w channel	5180	MHz			
5150.00	50.70	PK	Н	6.53	57.23	74.00	16.77	
5150.00	39.84	AV	Н	6.53	46.37	54.00	7.63	
5150.00	51.74	PK	V	6.53	58.27	74.00	15.73	
5150.00	40.17	AV	V	6.53	46.70	54.00	7.30	
10360.00	53.59	PK	Н	0.33	53.92	68.20	14.28	
10360.00	55.19	PK	V	0.33	55.52	68.20	12.68	
15540.00	51.70	PK	Н	0.6	52.30	74.00	21.70	
15540.00	40.69	AV	Н	0.6	41.29	54.00	12.71	
15540.00	52.49	PK	V	0.6	53.09	74.00	20.91	
15540.00	40.61	AV	V	0.6	41.21	54.00	12.79	
		Midd	lle channel	5200	MHz			
10400.00	53.02	PK	Н	0.4	53.42	68.20	14.78	
10400.00	55.30	PK	V	0.4	55.70	68.20	12.50	
15600.00	49.75	PK	Н	0.58	50.33	74.00	23.67	
15600.00	39.03	AV	Н	0.58	39.61	54.00	14.39	
15600.00	52.92	PK	V	0.58	53.50	74.00	20.50	
15600.00	41.55	AV	V	0.58	42.13	54.00	11.87	
		Hi	gh channel	5240	MHz			
5350.00	51.30	PK	Н	7.1	58.40	74.00	15.60	
5350.00	40.24	AV	Н	7.1	47.34	54.00	6.66	
5350.00	50.90	PK	V	7.1	58.00	74.00	16.00	
5350.00	39.90	AV	V	7.1	47.00	54.00	7.00	
10480.00	53.12	PK	Н	0.56	53.68	68.20	14.52	
10480.00	55.45	PK	V	0.56	56.01	68.20	12.19	
15720.00	51.17	PK	Н	0.55	51.72	74.00	22.28	
15720.00	40.25	AV	Н	0.55	40.80	54.00	13.20	
15720.00	52.42	PK	V	0.55	52.97	74.00	21.03	
15720.00	40.88	AV	V	0.55	41.43	54.00	12.57	

802.11n40_U-NII-1

Frequency	Reading	Detector	Polar	Factor	Corrected Amplitude	Limit	Margin
MHz	dΒμV	PK/QP/AV	H/V	dB/m	dBμV/m	dBμV/m	dB
		Lo	w channel	5190	MHz		
5150.00	52.99	PK	Н	6.53	59.52	74.00	14.48
5150.00	41.91	AV	Н	6.53	48.44	54.00	5.56
5150.00	54.02	PK	V	6.53	60.55	74.00	13.45
5150.00	42.76	AV	V	6.53	49.29	54.00	4.71
10380.00	48.44	PK	Н	0.37	48.81	68.20	19.39
10380.00	48.41	PK	V	0.37	48.78	68.20	19.42
15570.00	48.56	PK	Н	0.59	49.15	74.00	24.85
15570.00	38.69	AV	Н	0.59	39.28	54.00	14.72
15570.00	49.68	PK	V	0.59	50.27	74.00	23.73
15570.00	39.17	AV	V	0.59	39.76	54.00	14.24
		Hi	gh channel	5230	MHz		
5350.00	50.82	PK	Н	7.1	57.92	74.00	16.08
5350.00	39.82	AV	Н	7.1	46.92	54.00	7.08
5350.00	50.96	PK	V	7.1	58.06	74.00	15.94
5350.00	40.08	AV	V	7.1	47.18	54.00	6.82
10460.00	50.09	PK	Н	0.51	50.60	68.20	17.60
10460.00	51.23	PK	V	0.51	51.74	68.20	16.46
15690.00	49.48	PK	Н	0.56	50.04	74.00	23.96
15690.00	38.81	AV	Н	0.56	39.37	54.00	14.63
15690.00	49.11	PK	V	0.56	49.67	74.00	24.33
15690.00	39.78	AV	V	0.56	40.34	54.00	13.66

802.11ac80_U-NII-1

Frequency	Reading	Detector	Polar	Factor	Corrected Amplitude	Limit	Margin
MHz	dΒμV	PK/QP/AV	H/V	dB/m	dBμV/m	dBμV/m	dB
		Midd	lle channel	5210	MHz		
5150.00	52.17	PK	Н	6.53	58.70	74.00	15.30
5150.00	40.69	AV	Н	6.53	47.22	54.00	6.78
5150.00	52.21	PK	V	6.53	58.74	74.00	15.26
5150.00	40.97	AV	V	6.53	47.50	54.00	6.50
5350.00	51.53	PK	Н	7.1	58.63	74.00	15.37
5350.00	39.98	AV	Н	7.1	47.08	54.00	6.92
5350.00	51.81	PK	V	7.1	58.91	74.00	15.09
5350.00	40.56	AV	V	7.1	47.66	54.00	6.34
10420.00	49.23	PK	Н	0.43	49.66	68.20	18.54
10420.00	49.72	PK	V	0.43	50.15	68.20	18.05
15630.00	48.92	PK	Н	0.57	49.49	74.00	24.51
15630.00	38.56	AV	Н	0.57	39.13	54.00	14.87
15630.00	48.54	PK	V	0.57	49.11	74.00	24.89
15630.00	39.21	AV	V	0.57	39.78	54.00	14.22

Report No.: 2402W44990E-RF-00A

802.11a_U-NII-3 Chain 0

002.11a_U-1	111-5	1				Chain		
Frequency	Reading	Detector	Polar	Factor	Corrected Amplitude	Limit	Margin	
MHz	dΒμV	PK/QP/AV	H/V	dB/m	dBμV/m	dBμV/m	dB	
		Lo	w channel	5745	MHz			
5725.00	60.71	PK	Н	8.03	68.74	122.20	53.46	
5720.00	52.12	PK	Н	8.02	60.14	110.80	50.66	
5700.00	51.07	PK	Н	7.98	59.05	105.20	46.15	
5650.00	51.28	PK	Н	7.89	59.17	68.20	9.03	
5725.00	61.98	PK	V	8.03	70.01	122.20	52.19	
5720.00	52.41	PK	V	8.02	60.43	110.80	50.37	
5700.00	51.16	PK	V	7.98	59.14	105.20	46.06	
5650.00	51.49	PK	V	7.89	59.38	68.20	8.82	
11490.00	58.73	PK	Н	1.55	60.28	74.00	13.72	
11490.00	48.89	AV	Н	1.55	50.44	54.00	3.56	
11490.00	56.89	PK	V	1.55	58.44	74.00	15.56	
11490.00	44.88	AV	V	1.55	46.43	54.00	7.57	
17235.00	55.67	PK	Н	4.2	59.87	68.20	8.33	
17235.00	57.45	PK	V	4.2	61.65	68.20	6.55	
		Midd	lle channel	5785	MHz		•	
11570.00	58.33	PK	Н	1.59	59.92	74.00	14.08	
11570.00	48.59	AV	Н	1.59	50.18	54.00	3.82	
11570.00	56.33	PK	V	1.59	57.92	74.00	16.08	
11570.00	44.58	AV	V	1.59	46.17	54.00	7.83	
17355.00	55.39	PK	Н	4.37	59.76	68.20	8.44	
17355.00	57.70	PK	V	4.37	62.07	68.20	6.13	
		Hi	gh channel	5825	MHz			
5850.00	52.82	PK	Н	8.2	61.02	122.20	61.18	
5855.00	50.63	PK	Н	8.21	58.84	110.80	51.96	
5875.00	48.48	PK	Н	8.28	56.76	105.20	48.44	
5925.00	50.18	PK	Н	8.4	58.58	68.20	9.62	
5850.00	52.79	PK	V	8.2	60.99	122.20	61.21	
5855.00	50.73	PK	V	8.21	58.94	110.80	51.86	
5875.00	50.92	PK	V	8.28	59.20	105.20	46.00	
5925.00	50.65	PK	V	8.4	59.05	68.20	9.15	
11650.00	59.59	PK	Н	1.59	61.18	74.00	12.82	
11650.00	50.00	AV	Н	1.59	51.59	54.00	2.41	
11650.00	57.37	PK	V	1.59	58.96	74.00	15.04	
11650.00	45.94	AV	V	1.59	47.53	54.00	6.47	
17475.00	54.35	PK	Н	4.56	58.91	68.20	9.29	
17475.00	57.75	PK	V	4.56	62.31	68.20	5.89	

Report No.: 2402W44990E-RF-00A

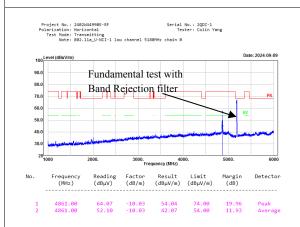
802.11a_U-NII-3 Chain 1

002.11a_U-N	111-5	1				Chain i	
Frequency	Reading	Detector	Polar	Factor	Corrected Amplitude	Limit	Margin
MHz	dΒμV	PK/QP/AV	H/V	dB/m	dBμV/m	dBμV/m	dB
		Lo	w channel	5745	MHz		
5725.00	53.24	PK	Н	8.03	61.27	122.20	60.93
5720.00	51.56	PK	Н	8.02	59.58	110.80	51.22
5700.00	50.73	PK	Н	7.98	58.71	105.20	46.49
5650.00	49.99	PK	Н	7.89	57.88	68.20	10.32
5725.00	59.41	PK	V	8.03	67.44	122.20	54.76
5720.00	53.16	PK	V	8.02	61.18	110.80	49.62
5700.00	51.90	PK	V	7.98	59.88	105.20	45.32
5650.00	50.83	PK	V	7.89	58.72	68.20	9.48
11490.00	57.51	PK	Н	1.55	59.06	74.00	14.94
11490.00	48.46	AV	Н	1.55	50.01	54.00	3.99
11490.00	55.71	PK	V	1.55	57.26	74.00	16.74
11490.00	46.39	AV	V	1.55	47.94	54.00	6.06
17235.00	57.55	PK	Н	4.2	61.75	68.20	6.45
17235.00	54.54	PK	V	4.2	58.74	68.20	9.46
		Midd	lle channel	5785	MHz		•
11570.00	57.62	PK	Н	1.59	59.21	74.00	14.79
11570.00	48.52	AV	Н	1.59	50.11	54.00	3.89
11570.00	55.86	PK	V	1.59	57.45	74.00	16.55
11570.00	46.31	AV	V	1.59	47.90	54.00	6.10
17355.00	58.91	PK	Н	4.37	63.28	68.20	4.92
17355.00	54.40	PK	V	4.37	58.77	68.20	9.43
		Hi	gh channel	5825	MHz		
5850.00	53.31	PK	Н	8.2	61.51	122.20	60.69
5855.00	51.76	PK	Н	8.21	59.97	110.80	50.83
5875.00	51.93	PK	Н	8.28	60.21	105.20	44.99
5925.00	51.26	PK	Н	8.4	59.66	68.20	8.54
5850.00	56.41	PK	V	8.2	64.61	122.20	57.59
5855.00	54.72	PK	V	8.21	62.93	110.80	47.87
5875.00	51.15	PK	V	8.28	59.43	105.20	45.77
5925.00	49.80	PK	V	8.4	58.20	68.20	10.00
11650.00	57.82	PK	Н	1.59	59.41	74.00	14.59
11650.00	48.42	AV	Н	1.59	50.01	54.00	3.99
11650.00	55.86	PK	V	1.59	57.45	74.00	16.55
11650.00	46.31	AV	V	1.59	47.90	54.00	6.10
17475.00	57.67	PK	Н	4.56	62.23	68.20	5.97
17475.00	54.58	PK	V	4.56	59.14	68.20	9.06

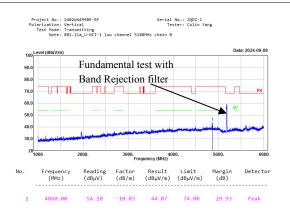
802.11n20_U-NII-3

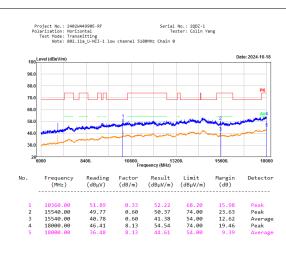
002.111120_U-1\11-3									
Frequency	Reading	Detector	Polar	Factor	Corrected Amplitude	Limit	Margin		
MHz	dΒμV	PK/QP/AV	H/V	dB/m	dBμV/m	dBμV/m	dB		
		Lo	w channel	5745	MHz				
5725.00	58.54	PK	Н	8.03	66.57	122.20	55.63		
5720.00	52.58	PK	Н	8.02	60.60	110.80	50.20		
5700.00	51.35	PK	Н	7.98	59.33	105.20	45.87		
5650.00	50.09	PK	Н	7.89	57.98	68.20	10.22		
5725.00	58.12	PK	V	8.03	66.15	122.20	56.05		
5720.00	53.58	PK	V	8.02	61.60	110.80	49.20		
5700.00	52.02	PK	V	7.98	60.00	105.20	45.20		
5650.00	51.71	PK	V	7.89	59.60	68.20	8.60		
11490.00	57.78	PK	Н	1.55	59.33	74.00	14.67		
11490.00	48.61	AV	Н	1.55	50.16	54.00	3.84		
11490.00	57.28	PK	V	1.55	58.83	74.00	15.17		
11490.00	47.13	AV	V	1.55	48.68	54.00	5.32		
17235.00	57.49	PK	Н	4.2	61.69	68.20	6.51		
17235.00	55.31	PK	V	4.2	59.51	68.20	8.69		
		Midd	lle channel	5785	MHz				
11570.00	57.88	PK	Н	1.59	59.47	74.00	14.53		
11570.00	48.74	AV	Н	1.59	50.33	54.00	3.67		
11570.00	57.48	PK	V	1.59	59.07	74.00	14.93		
11570.00	47.33	AV	V	1.59	48.92	54.00	5.08		
17355.00	57.49	PK	Н	4.37	61.86	68.20	6.34		
17355.00	55.39	PK	V	4.37	59.76	68.20	8.44		
		Hi	gh channel	5825	MHz		•		
5850.00	53.05	PK	Н	8.2	61.25	122.20	60.95		
5855.00	51.88	PK	Н	8.21	60.09	110.80	50.71		
5875.00	50.98	PK	Н	8.28	59.26	105.20	45.94		
5925.00	50.93	PK	Н	8.4	59.33	68.20	8.87		
5850.00	56.56	PK	V	8.2	64.76	122.20	57.44		
5855.00	53.29	PK	V	8.21	61.50	110.80	49.30		
5875.00	51.34	PK	V	8.28	59.62	105.20	45.58		
5925.00	50.87	PK	V	8.4	59.27	68.20	8.93		
11650.00	58.64	PK	Н	1.59	60.23	74.00	13.77		
11650.00	48.77	AV	Н	1.59	50.36	54.00	3.64		
11650.00	57.98	PK	V	1.59	59.57	74.00	14.43		
11650.00	47.63	AV	V	1.59	49.22	54.00	4.78		
17475.00	57.99	PK	Н	4.56	62.55	68.20	5.65		
17475.00	55.91	PK	V	4.56	60.47	68.20	7.73		

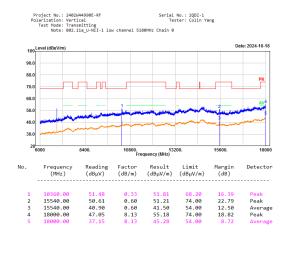
802.11n40_U-NII-3

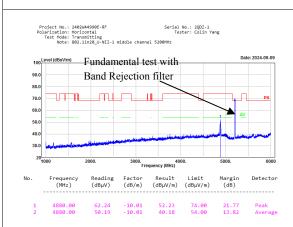

Frequency	Reading	Detector	Polar	Factor	Corrected Amplitude	Limit	Margin
MHz	dΒμV	PK/QP/AV	H/V	dB/m	dBμV/m	dBμV/m	dB
		Lo	w channel	5755	MHz		
5725.00	63.80	PK	Н	8.03	71.83	122.20	50.37
5720.00	51.28	PK	Н	8.02	59.30	110.80	51.50
5700.00	51.59	PK	Н	7.98	59.57	105.20	45.63
5650.00	51.20	PK	Н	7.89	59.09	68.20	9.11
5725.00	64.48	PK	V	8.03	72.51	122.20	49.69
5720.00	60.60	PK	V	8.02	68.62	110.80	42.18
5700.00	52.92	PK	V	7.98	60.90	105.20	44.30
5650.00	51.63	PK	V	7.89	59.52	68.20	8.68
11510.00	58.23	PK	Н	1.57	59.80	74.00	14.20
11510.00	48.59	AV	Н	1.57	50.16	54.00	3.84
11510.00	54.69	PK	V	1.57	56.26	74.00	17.74
11510.00	44.13	AV	V	1.57	45.70	54.00	8.30
17265.00	56.11	PK	Н	4.24	60.35	68.20	7.85
17265.00	52.64	PK	V	4.24	56.88	68.20	11.32
		Hiş	gh channel	5795	MHz		
5850.00	50.84	PK	Н	8.2	59.04	122.20	63.16
5855.00	51.18	PK	Н	8.21	59.39	110.80	51.41
5875.00	50.29	PK	Н	8.28	58.57	105.20	46.63
5925.00	50.94	PK	Н	8.4	59.34	68.20	8.86
5850.00	51.40	PK	V	8.2	59.60	122.20	62.60
5855.00	50.32	PK	V	8.21	58.53	110.80	52.27
5875.00	51.20	PK	V	8.28	59.48	105.20	45.72
5925.00	50.56	PK	V	8.4	58.96	68.20	9.24
11590.00	59.00	PK	Н	1.58	60.58	74.00	13.42
11590.00	49.83	AV	Н	1.58	51.41	54.00	2.59
11590.00	55.38	PK	V	1.58	56.96	74.00	17.04
11590.00	44.53	AV	V	1.58	46.11	54.00	7.89
17385.00	56.89	PK	Н	4.42	61.31	68.20	6.89
17385.00	53.89	PK	V	4.42	58.31	68.20	9.89

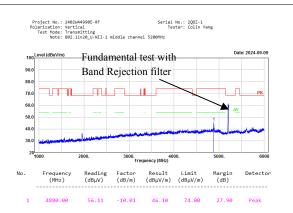
802.11ac80_U-NII-3

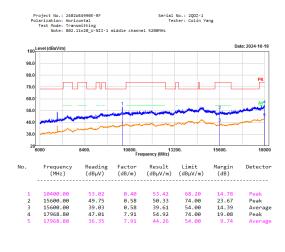

Frequency	Reading	Detector	Polar	Factor	Corrected Amplitude	Limit	Margin
MHz	dΒμV	PK/QP/AV	H/V	dB/m	dBμV/m	dBμV/m	dB
		Midd	le channel	5775	MHz		
5725.00	59.37	PK	Н	8.03	67.40	122.20	54.80
5720.00	56.45	PK	Н	8.02	64.47	110.80	46.33
5700.00	54.91	PK	Н	7.98	62.89	105.20	42.31
5650.00	51.33	PK	Н	7.89	59.22	68.20	8.98
5850.00	51.73	PK	Н	8.2	59.93	122.20	62.27
5855.00	50.81	PK	Н	8.21	59.02	110.80	51.78
5875.00	51.41	PK	Н	8.28	59.69	105.20	45.51
5925.00	50.33	PK	Н	8.4	58.73	68.20	9.47
5725.00	60.27	PK	V	8.03	68.30	122.20	53.90
5720.00	58.93	PK	V	8.02	66.95	110.80	43.85
5700.00	56.08	PK	V	7.98	64.06	105.20	41.14
5650.00	52.14	PK	V	7.89	60.03	68.20	8.17
5850.00	53.51	PK	V	8.2	61.71	122.20	60.49
5855.00	52.42	PK	V	8.21	60.63	110.80	50.17
5875.00	51.29	PK	V	8.28	59.57	105.20	45.63
5925.00	50.92	PK	V	8.4	59.32	68.20	8.88
11550.00	56.55	PK	Н	1.58	58.13	74.00	15.87
11550.00	45.73	AV	Н	1.58	47.31	54.00	6.69
11550.00	51.51	PK	V	1.58	53.09	74.00	20.91
11550.00	41.88	AV	V	1.58	43.46	54.00	10.54
17325.00	52.17	PK	Н	4.33	56.50	68.20	11.70
17325.00	49.35	PK	V	4.33	53.68	68.20	14.52

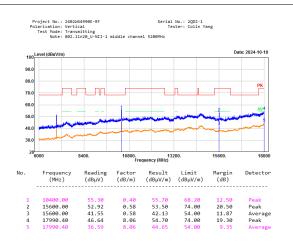

Worst Channel Test plots:

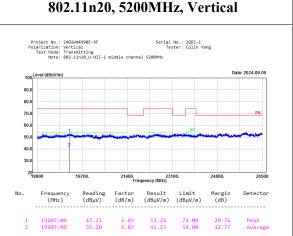

802.11a, 5180MHz, Chain 0, Horizontal

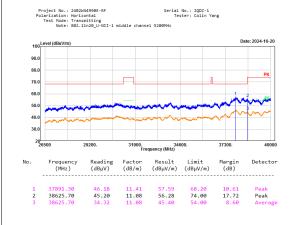

802.11a, 5180MHz, Chain 0, Vertical

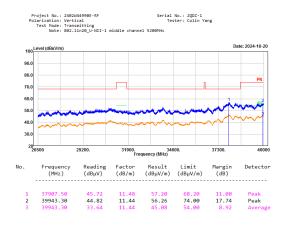


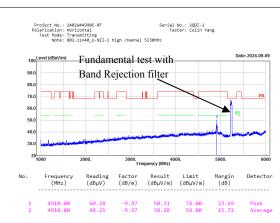


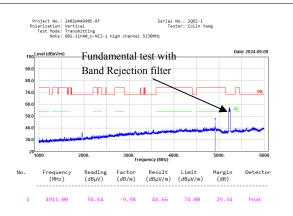

802.11n20, 5200MHz, Horizontal

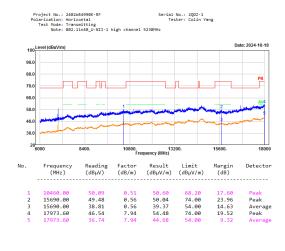

802.11n20, 5200MHz, Vertical

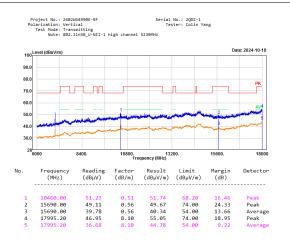


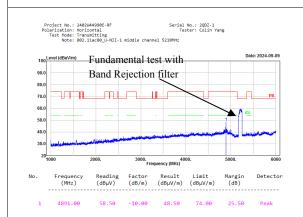


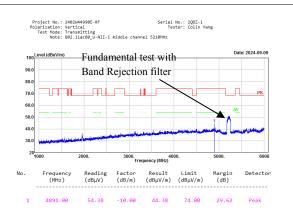


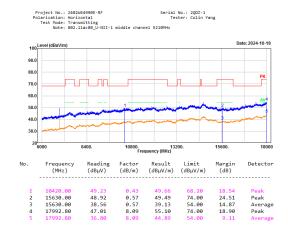


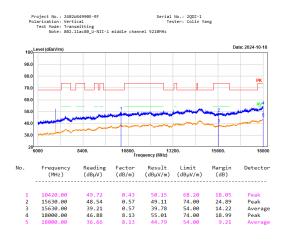


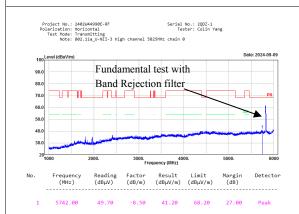

802.11n40, 5230MHz, Horizontal

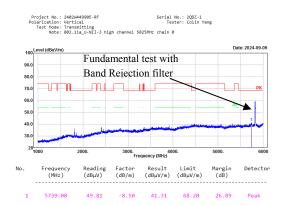

802.11n40, 5230MHz, Vertical

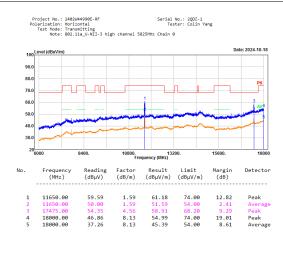


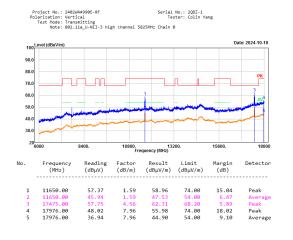


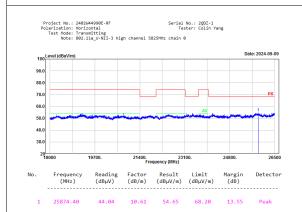

802.11ac80, 5210MHz, Horizontal

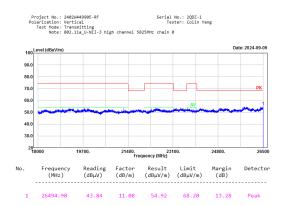

802.11ac80, 5210MHz, Vertical

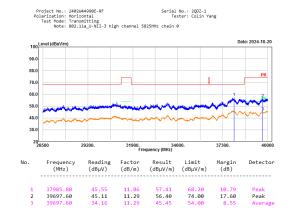


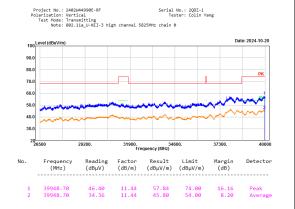


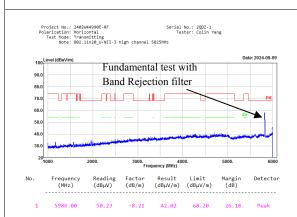

802.11a, 5825MHz, Chain 0, Horizontal

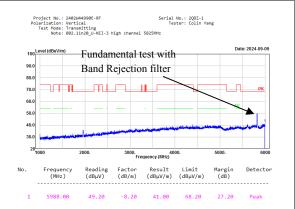

802.11a, 5825MHz, Chain 0, Vertical

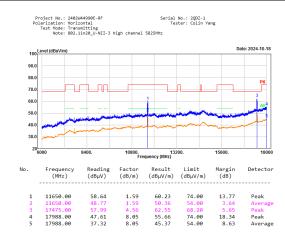


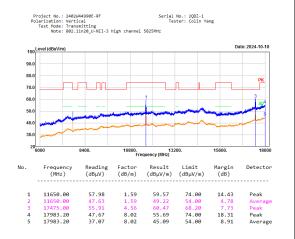


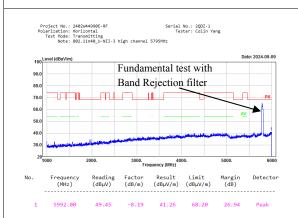

802.11a, 5825MHz, Chain 0, Horizontal

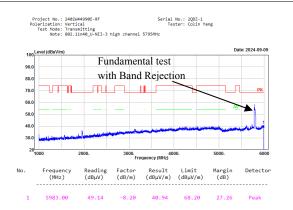

802.11a, 5825MHz, Chain 0, Vertical

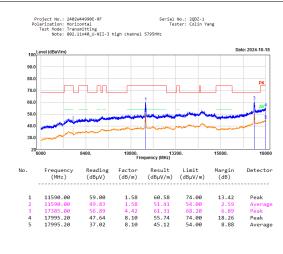


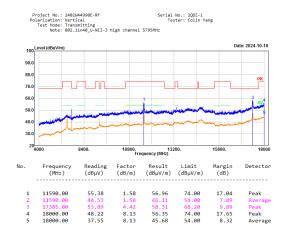


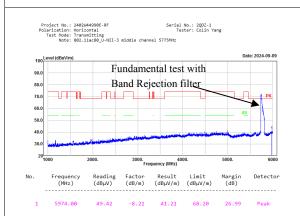

802.11n20, 5825MHz, Horizontal

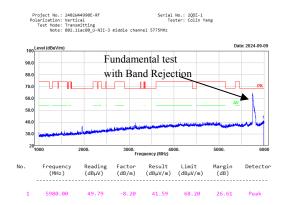

802.11n20, 5825MHz, Vertical

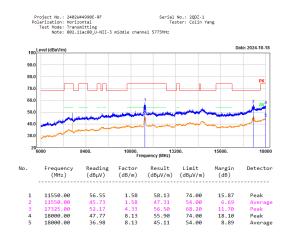


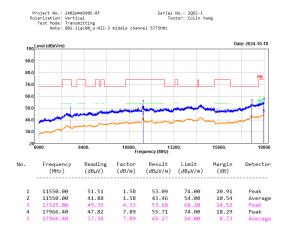



802.11n40, 5795MHz, Horizontal

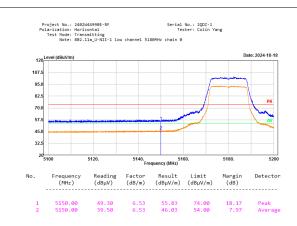

802.11n40, 5795MHz, Vertical

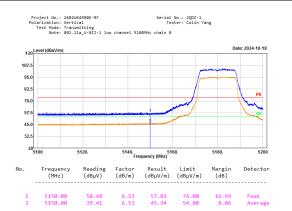




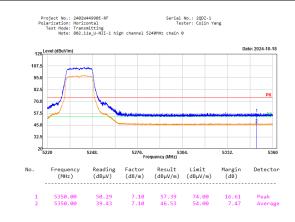

802.11ac80, 5775MHz, Horizontal

802.11ac80, 5775MHz, Vertical

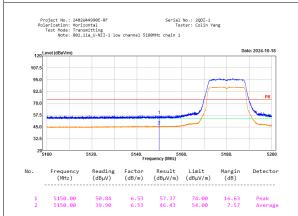


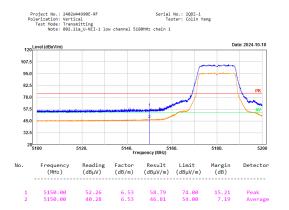


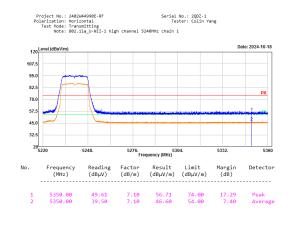
Bandedge:

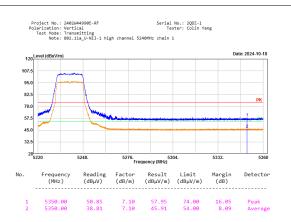

802.11a, 5180MHz, Chain 0, Bandedge, Horizontal

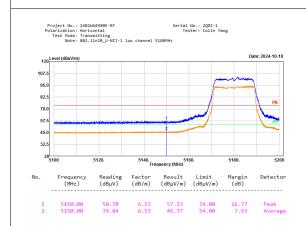

802.11a, 5180MHz, Chain 0, Bandedge, Vertical


802.11a, 5240MHz, Chain 0, Bandedge, Horizontal

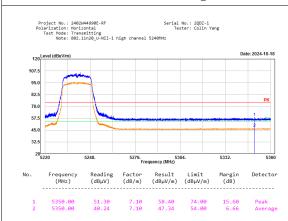

802.11a, 5240MHz, Chain 0, Bandedge, Vertical

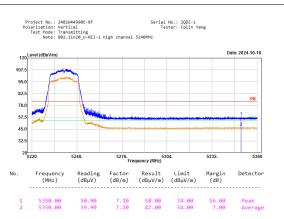

802.11a, 5180MHz, Chain 1, Bandedge, Horizontal

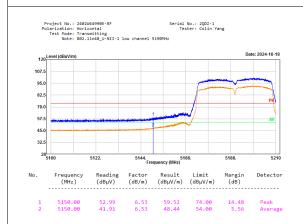

802.11a, 5180MHz, Chain 1, Bandedge, Vertical

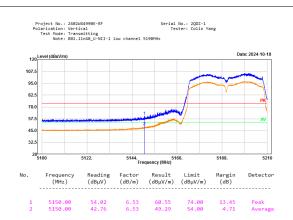

802.11a, 5240MHz, Chain 1, Bandedge, Horizontal

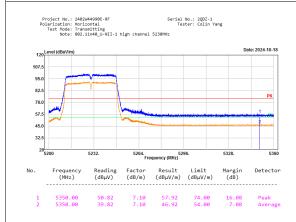
802.11a, 5240MHz, Chain 1, Bandedge, Vertical

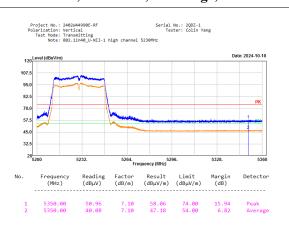

802.11n20, 5180MHz, Bandedge, Horizontal


802.11n20, 5180MHz, Bandedge, Vertical

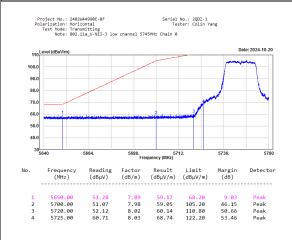

802.11n20, 5240MHz, Bandedge, Horizontal

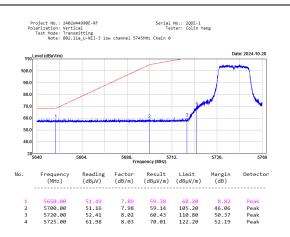

802.11n20, 5240MHz, Bandedge, Vertical


802.11n40, 5190MHz, Bandedge, Horizontal

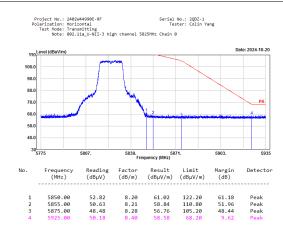

802.11n40, 5190MHz, Bandedge, Vertical

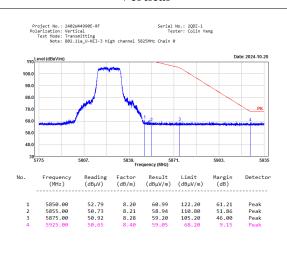
802.11n40, 5230MHz, Bandedge, Horizontal

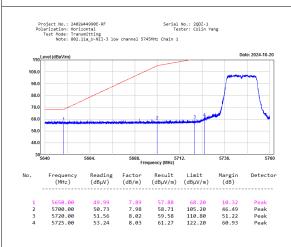

802.11n40, 5230MHz, Bandedge, Vertical

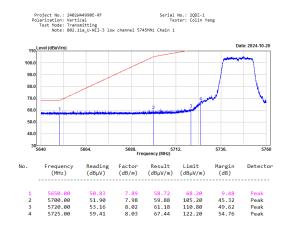

Section Note: 24203M4999F-RF | Section Note: 2002-1 | Tester: Calin Yeng | Tester: Calin Y

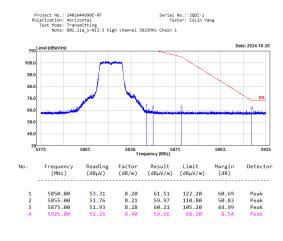
802.11ac80, 5210MHz, Bandedge, Vertical Project No.: 242044990E-RF Polarization: Vertical Test Rose: Invassitting Note: NO.: 112040-NII-1 middle channel 5210WHz Date: 2024-10-18 Date: 2024-

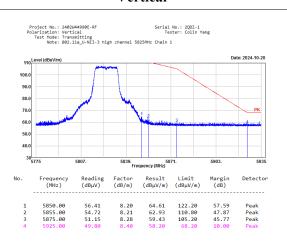

802.11a, 5745MHz,Chain 0,Bandedge, Horizontal

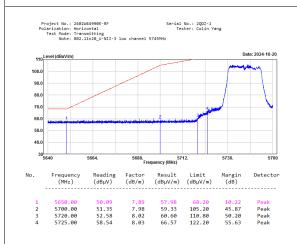

802.11a, 5745MHz, Chain 0, Bandedge, Vertical

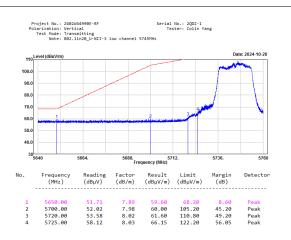

802.11a, 5825MHz, Chain 0,Bandedge, Horizontal

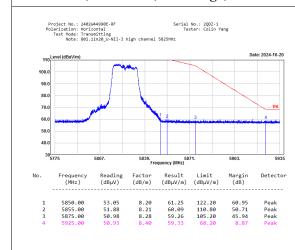

802.11a, 5825MHz, Chain 0, Bandedge, Vertical

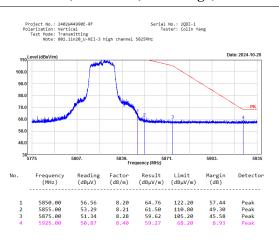

802.11a, 5745MHz, Chain 1,Bandedge, Horizontal

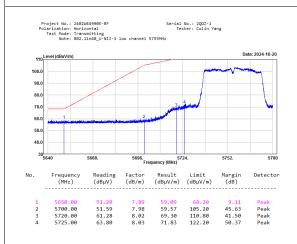

802.11a, 5745MHz, Chain 1, Bandedge, Vertical

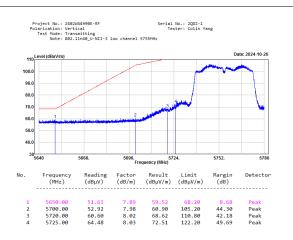

802.11a, 5745MHz, Chain 1,Bandedge, Horizontal


802.11a, 5745MHz, Chain 1, Bandedge, Vertical

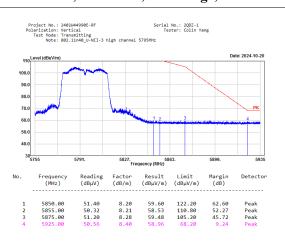

802.11n20, 5745MHz, Bandedge, Horizontal


802.11n20, 5745MHz, Bandedge, Vertical

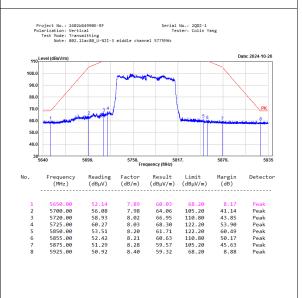

802.11n20, 5825MHz, Bandedge, Horizontal


802.11n20, 5825MHz, Bandedge, Vertical

802.11n40, 5755MHz, Bandedge, Horizontal


802.11n40, 5755MHz, Bandedge, Vertical

802.11n40, 5795MHz, Bandedge, Horizontal


802.11n40, 5795MHz, Bandedge, Vertical

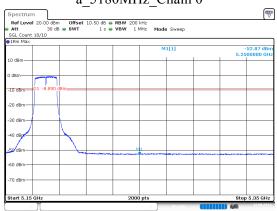
802.11ac80, 5775MHz, Bandedge, Horizontal

802.11ac80, 5775MHz, Bandedge, Vertical

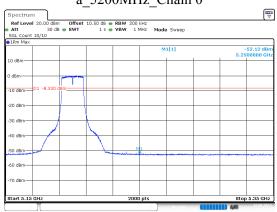
5.3 26dB attenuated below the channel power

Serial No.:	2QDZ-4	Test Date:	2024/09/11~2024/09/12
Test Site:	RF	Test Mode:	Transmitting
Tester:	Jojo Zhou	Test Result:	Pass

Environmental Conditions:

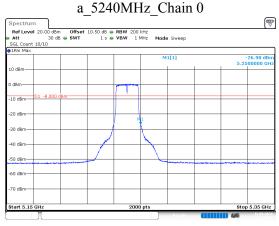

Temperature: (°C):	25.4~25.9	Relative Humidity: (%)	41~48	ATM Pressure: (kPa)	100.2~100.9
--------------------	-----------	------------------------------	-------	---------------------	-------------

Test Equipment List and Details:

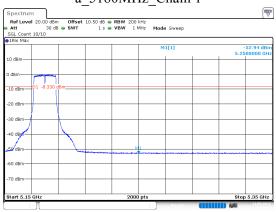

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSV40	101947	2024/9/5	2025/9/4
Eastsheep	Coaxial Attenuator	5W-N-JK-6G- 10dB	F-08-EM502	2024/06/07	2025/06/06

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

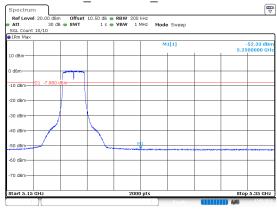
a 5180MHz Chain 0



$a_5200MHz_Chain\ 0$

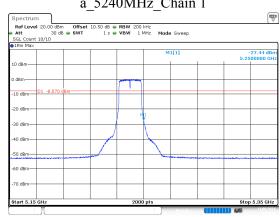

ProjectNo.:2402W44990E-RF Tester:Jojo Zhou Date: 12.SEP.2024 10:19:00

a_5240MHz_Chain 0



ProjectNo.:2402W44990E-RF Tester:Jojo Zhou Date: 12.SEP.2024 10:19:38

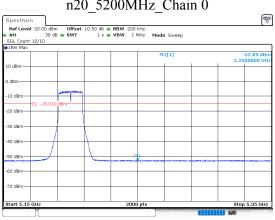
a_5180MHz_Chain 1



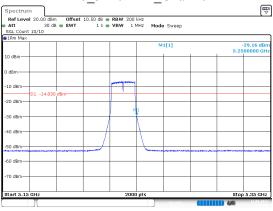
a_5200MHz_Chain 1

ProjectNo.:2402W44990E-RF Tester:Jojo Zhou Date: 11.SEP.2024 16:31:43

a_5240MHz_Chain 1

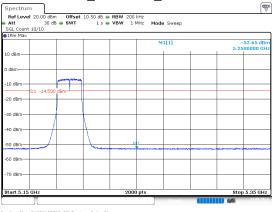


Date: 11.SEP.2024 16:34:11

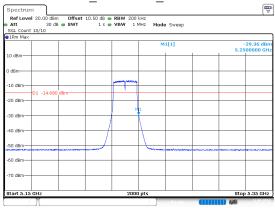

n20_5180MHz_Chain 0

n20_5200MHz_Chain 0

n20 5240MHz Chain 0

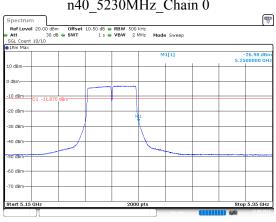


ProjectNo.:2402W44990E-RF Tester:Jojo Zhou

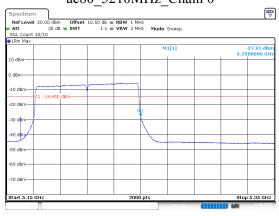

n20_5180MHz_Chain 1

n20_5200MHz_Chain 1

n20 5240MHz Chain 1



ProjectNo.:2402W44990E-RF Tester:Jojo Zhou

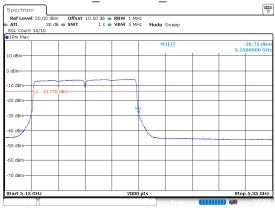

n40_5190MHz_Chain 0

n40_5230MHz_Chain 0



ac80 5210MHz Chain 0

ProjectNo.:2402W44990E-RF Tester:Jojo Zhou Date: 12.SEP.2024 10:24:50


n40_5190MHz_Chain 1

n40_5230MHz_Chain 1

ac80 5210MHz Chain 1

ProjectNo.:2402W44990E-RF Tester:Jojo Zhou

5.4 Emission Bandwidth

Serial No.:	2QDZ-4	Test Date:	2024/09/12
Test Site:	RF	Test Mode:	Transmitting
Tester:	Jojo Zhou	Test Result:	Pass

Environmental Conditions:

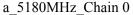
	Temperature: (°C):	25.9	Relative Humidity: (%)	48	ATM Pressure: (kPa)	100.9
--	--------------------	------	------------------------------	----	---------------------	-------

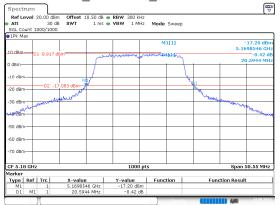
Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSV40	101947	2024/9/5	2025/9/4
Eastsheep	Coaxial Attenuator	5W-N-JK-6G- 10dB	F-08-EM502	2024/06/07	2025/06/06

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

26dB Emission Bandwidth:

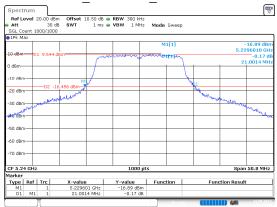

5150-5250MHz


Mode	Value (MHz)
a_5180MHz_Chain 0	20.594
a_5200MHz_ Chain 0	21.105
a_5240MHz_ Chain 0	21.001
n20_5180MHz_ Chain 0	23.375
n20_5200MHz_Chain 0	22.780
n20_5240MHz_Chain 0	22.936
n40_5190MHz_Chain 0	44.044
n40_5230MHz_Chain 0	44.545
ac80_5210MHz_Chain 0	88.088

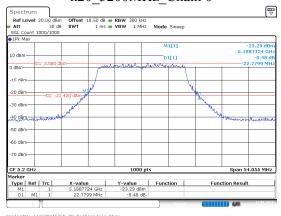
6dB Emission Bandwidth:

5725-5850MHz

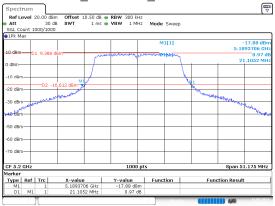
Mode	Value (MHz)	Limit (MHz)	Result
a_5745MHz_Chain 0	16.416	0.5	Pass
a_5785MHz_Chain 0	16.416	0.5	Pass
a_5825MHz_Chain 0	16.416	0.5	Pass
n20_5745MHz_Chain 0	17.768	0.5	Pass
n20_5785MHz_Chain 0	17.718	0.5	Pass
n20_5825MHz_Chain 0	17.718	0.5	Pass
n40_5755MHz_Chain 0	36.537	0.5	Pass
n40_5795MHz_Chain 0	36.336	0.5	Pass
ac80_5775MHz_Chain 0	76.677	0.5	Pass



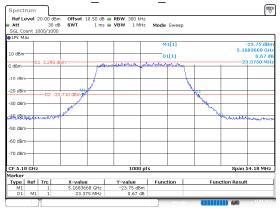
ProjectNo.:2402W44990E-RF Tester:Jojo Zhou


Date: 12.SBP.2024 09:07:36

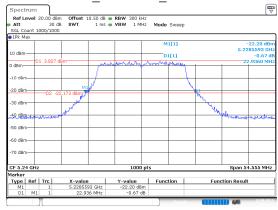
a_5240MHz_Chain 0


ProjectNo.:2402W44990E-RF Tester:Jojo Zhou Date: 12.SBP.2024 09:11:18

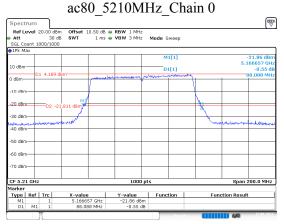
n20_5200MHz_Chain 0


ProjectNo.:2402W44990E-RF Tester:Jojo Zhou Date: 12.5EP.2024 09:17:53

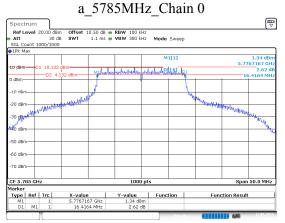
a_5200MHz_Chain 0


ProjectNo.:2402W44990E-RF Tester:Jojo Zhou

n20_5180MHz_Chain 0

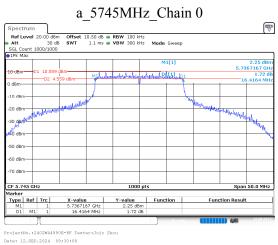

ProjectNo.:2402W44990E-RF Tester:Jojo Zhou Date: 12.SEP.2024 09:15:22

n20_5240MHz_Chain 0


ProjectNo.:2402W44990E-RF Tester:Jojo Zho

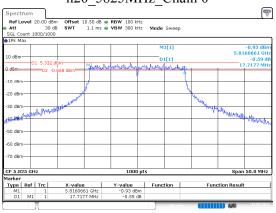
Property | Property

ProjectNo.:2402W44990E-RF Tester:Jojo Zhou Date: 12.SEP.2024 09:28:34


ProjectNo.:2402W44990E-RF Tester:Jojo Zhou Date: 12.SEP.2024 09:26:07

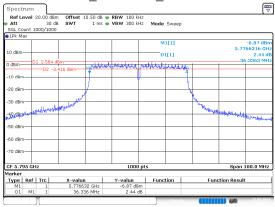
ProjectNo.:2402W44990E-RF Tester:Jojo Zhou Date: 12.SEP.2024 09:31:40

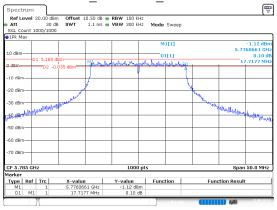
5725-5850MHz



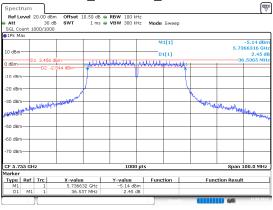
ProjectNo.:2402W44990E-RF Tester:Jojo Zho

Page | Page |

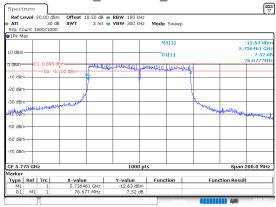

ProjectNo.:2402W44990E-RF Tester:Jojo Zhou Date: 12.SEP.2024 09:36:12


ProjectNo.:2402#44990E-RF Tester:Jojo Zhou Date: 12.SEP.2024 09:39:45

n40 5795MHz Chain 0


ProjectNo.:2402W44990E-RF Tester:Jojo Zhou

n20_5785MHz_Chain 0


ProjectNo.:2402W44990E-RF Tester:Jojo Zhou Date: 12.SEP.2024 09:38:21

n40 5755MHz Chain 0

ProjectNo.:2402W44990E-RF Tester:Jojo Zhou

ac80 5775MHz Chain 0

ProjectNo.:2402W44990E-RF Tester:Jojo Zhou Date: 12.SEP.2024 09:43:53

5.5 99% Occupied Bandwidth

Serial No.:	2QDZ-4	Test Date:	2024/09/12
Test Site:	RF	Test Mode:	Transmitting
Tester:	Jojo Zhou	Test Result:	/

Environmental Conditions:

	Temperature: (°C):	25.9	Relative Humidity: (%)	48	ATM Pressure: (kPa)	100.9
--	--------------------	------	------------------------------	----	---------------------	-------

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSV40	101947	2024/9/5	2025/9/4
Eastsheep	Coaxial Attenuator	5W-N-JK-6G- 10dB	F-08-EM502	2024/06/07	2025/06/06

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Report No.: 2402W44990E-RF-00A

Mode	99% OBW (MHz)
a_5180MHz_Chain 0	16.400
a_5200MHz_ Chain 0	16.500
a_5240MHz_ Chain 0	16.450
n20_5180MHz_ Chain 0	17.850
n20_5200MHz_Chain 0	17.850
n20_5240MHz_Chain 0	17.850
n40_5190MHz_Chain 0	36.600
n40_5230MHz_Chain 0	36.400
ac80_5210MHz_Chain 0	76.400

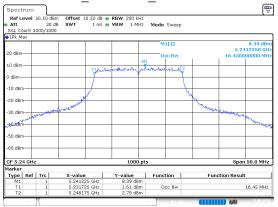
Note:

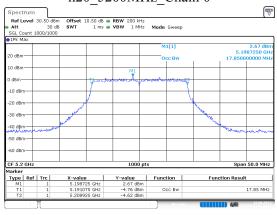
The 99% Occupied Bandwidth have not fall into the band 5250-5350MHz, please refer to the test plots of 99% Occupied Bandwidth.


5725-5850MHz

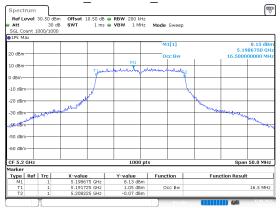
Mode	99% OBW (MHz)
a_5745MHz_Chain 0	16.750
a_5785MHz_Chain 0	16.700
a_5825MHz_Chain 0	16.700
n20_5745MHz_Chain 0	17.850
n20_5785MHz_Chain 0	17.850
n20_5825MHz_Chain 0	17.850
n40_5755MHz_Chain 0	36.500
n40_5795MHz_Chain 0	36.500
ac80_5775MHz_Chain 0	76.600

Note:

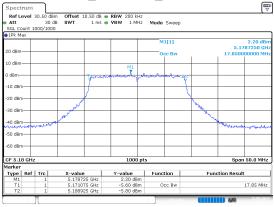

The 99% Occupied Bandwidth have not fall into the band 5470-5725MHz, please refer to the test plots of 99% Occupied Bandwidth.


ProjectNo.:2402W44990E-RF Tester:Jojo Zhou

a_5240MHz_Chain 0

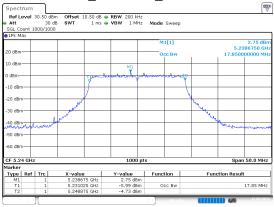

ProjectNo.:2402W44990E-RF Tester:Jojo Zhou Date: 12.SBP.2024 09:11:41

n20_5200MHz_Chain 0



Date: 12.SEP.2024 09:18:15

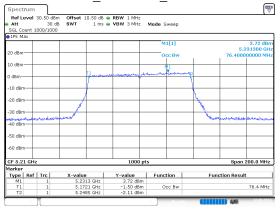
a 5200MHz Chain 0



n20_5180MHz_Chain 0

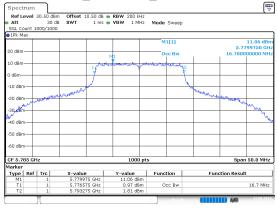
ProjectNo.:2402W44990E-RF Tester:Jojo Zhou Date: 12.SEP.2024 09:15:47

n20 5240MHz Chain 0

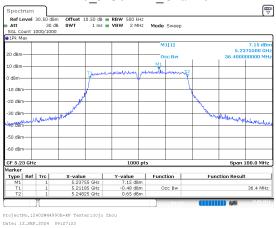


Date: 12.SEP.2024 09:24:56

Note | Part | Part


ProjectNo::2402W44990E-RF Tester:Jojo Zhou Date: 12.SEP.2024 09:26:22

ac80_5210MHz_Chain 0


ProjectNo.:2402W44990E-RF Tester:Jojo Zhou Date: 12.SEP.2024 09:28:52

a_5785MHz_Chain 0

ProjectNo.:2402W44990E-RF Tester:Jojo Zhou Date: 12.SEP.2024 09:32:14

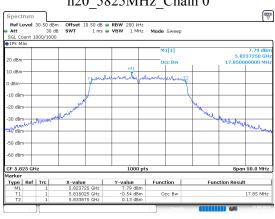

n40_5230MHz_Chain 0

5725-5850MHz

a_5745MHz_Chain 0

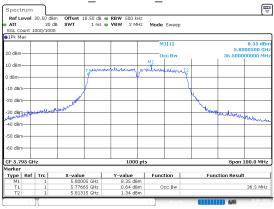
ProjectNo.:2402W44990E-RF Tester:Jojo Zhou Date: 12.SEP.2024 09:30:39

a_5825MHz_Chain 0

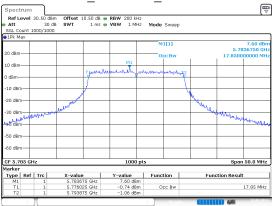


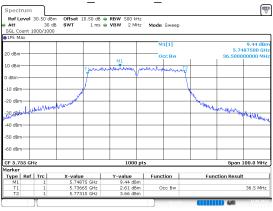
ProjectNo.:2402W44990E-RF Tester:Jojo Zho

n20_5745MHz_Chain 0 ♥ Offset 10.50 dB ● RBW 200 kHz SWT 1 ms ● VBW 1 MHz Mode Sweep -20 dBm alt'Alam Span 50.0 MHz X-value Y-value Function 5.743675 GHz 7.72 dBm 5.736025 GHz -0.36 dBm Occ Bw 5.753875 GHz 0.19 dBm Type Ref Trc Function Result 17.85 MHz

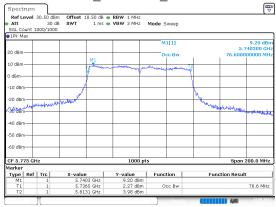

ProjectNo.:2402W44990E-RF Tester:Jojo Zhou Date: 12.SEP.2024 09:36:42

n20_5825MHz_Chain 0


ProjectNo.:2402W44990E-RF Tester:Jojo Zho


ProjectNo.:2402W44990E-RF Tester:Jojo Zhou

n20_5785MHz_Chain 0



ProjectNo.:2402W44990E-RF Tester:Jojo Zhou Date: 12.SEP.2024 09:38:55

n40 5755MHz Chain 0

ac80 5775MHz Chain 0

ProjectNo.:2402W44990E-RF Tester:Jojo Zhou

5.6 Maximum Conducted Output Power

Serial No.:	2QDZ-4	Test Date:	2024/09/11~2024/09/12
Test Site:	RF	Test Mode:	Transmitting
Tester:	Jojo Zhou	Test Result:	Pass

Environmental Conditions:

Temperature: (°C):	25.4~25.9	Relative Humidity: (%)	41~48	ATM Pressure: (kPa)	100.2~100.9
--------------------	-----------	------------------------------	-------	---------------------	-------------

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration	Calibration
Manufacturer	Description	Widdel	Scriai Mullibei	Date	Due Date
Anritsu	Microwave Peak Power Sensor	MA24418A	12618	2024/9/4	2025/9/3
Eastsheep	Coaxial Attenuator	5W-N-JK-6G- 10dB	F-08-EM502	2024/06/07	2025/06/06

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Mode Mode	Average Output Power (dBm)	FCC Limit (dBm)	EIRP (dBm)	EIRP Limit (dBm)
a_5180MHz_Chain 0	17.11	30	19.73	22.15
a_5180MHz_Chain 1	17.67	30	20.29	22.15
a_5200MHz_Chain 0	17.67	30	20.29	22.17
a_5200MHz_Chain 1	18.02	30	20.64	22.17
a_5240MHz_Chain 0	18.0	30	20.62	22.16
a_5240MHz_Chain 1	17.93	30	20.55	22.16
n20_5180MHz_Chain 0	10.46	30	13.08	22.52
n20_5180MHz_Chain 1	11.3	30	13.92	22.52
n20_5180MHz_Chain 0+Chain 1	13.91	30	16.53	22.52
n20_5200MHz_Chain 0	10.99	30	13.61	22.52
n20_5200MHz_Chain 1	11.5	30	14.12	22.52
n20_5200MHz_Chain 0+Chain 1	14.26	30	16.88	22.52
n20_5240MHz_Chain 0	11.17	30	13.79	22.52
n20_5240MHz_Chain 1	11.32	30	13.94	22.52
n20_5240MHz_Chain 0+Chain 1	14.26	30	16.88	22.52
n40_5190MHz_Chain 0	14.01	30	16.63	23
n40_5190MHz_Chain 1	14.69	30	17.31	23
n40_5190MHz_Chain 0+Chain 1	17.37	30	19.99	23
n40_5230MHz_Chain 0	14.13	30	16.75	23
n40_5230MHz_Chain 1	14.52	30	17.14	23
n40_5230MHz_Chain 0+Chain 1	17.34	30	19.96	23
ac80_5210MHz_Chain 0	11.55	30	14.17	23
ac80_5210MHz_Chain 1	12.23	30	14.85	23
ac80_5210MHz_Chain 0+Chain 1	14.91	30	17.53	23
Note: The device is a indoor AP.				

5725-5850MHz

Mode Mode	Average Output Power (dBm)	Limit (dBm)	Result
a_5745MHz_Chain 0	19.5	30	Pass
a_5745MHz_Chain 1	18.94	30	Pass
a_5785MHz_Chain 0	19.31	30	Pass
a_5785MHz_Chain 1	19.24	30	Pass
a_5825MHz_Chain 0	19.57	30	Pass
a_5825MHz_Chain 1	19.04	30	Pass
n20_5745MHz_Chain 0	16.08	30	Pass
n20_5745MHz_Chain 1	14.01	30	Pass
n20_5745MHz_Chain 0+Chain 1	18.18	30	Pass
n20_5785MHz_Chain 0	15.9	30	Pass
n20_5785MHz_Chain 1	15.8	30	Pass
n20_5785MHz_Chain 0+Chain 1	18.86	30	Pass
n20_5825MHz_Chain 0	16.0	30	Pass
n20_5825MHz_Chain 1	15.65	30	Pass
n20_5825MHz_Chain 0+Chain 1	18.84	30	Pass
n40_5755MHz_Chain 0	16.72	30	Pass
n40_5755MHz_Chain 1	16.49	30	Pass
n40_5755MHz_Chain 0+Chain 1	19.62	30	Pass
n40_5795MHz_Chain 0	15.68	30	Pass
n40_5795MHz_Chain 1	15.7	30	Pass
n40_5795MHz_Chain 0+Chain 1	18.70	30	Pass
ac80_5775MHz_Chain 0	16.77	30	Pass
ac80_5775MHz_Chain 1	16.58	30	Pass
ac80_5775MHz_Chain 0+Chain 1	19.69	30	Pass

Serial No.:	2QDZ-4	Test Date:	2024/09/11~2024/09/12
Test Site:	RF	Test Mode:	Transmitting
Tester:	Jojo Zhou	Test Result:	Pass

Environmental Conditions:

Temperature: (°C):	25.4~25.9	Relative Humidity: (%)	41~48	ATM Pressure: (kPa)	100.2~100.9
--------------------	-----------	------------------------------	-------	---------------------	-------------

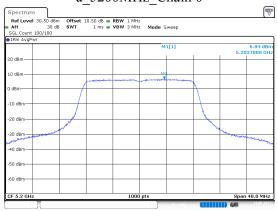
Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSV40	101947	2024/9/5	2025/9/4
Eastsheep	Coaxial Attenuator	5W-N-JK-6G- 10dB	F-08-EM502	2024/06/07	2025/06/06

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

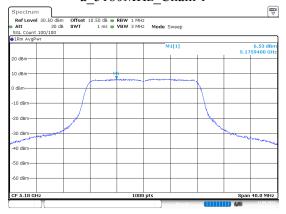
Report No.: 2402W44990E-RF-00A

5150-5250MHZ	Value	Duty Cycle	PSD	FCC Limit	EIRP	RSS-247
Mode	(dBm/MHz)	Factor(dB)	(dBm/MHz)	(dBm/MHz)	(dBm/MHz)	EIRP (dBm/MHz)
a_5180MHz_Chain 0	6.47	0.14	6.61	17	9.23	10
a_5180MHz_Chain 1	6.53	0.14	6.67	17	9.29	10
a_5200MHz_Chain 0	6.84	0.14	6.98	17	9.6	10
a_5200MHz_Chain 1	7.03	0.14	7.17	17	9.79	10
a_5240MHz_Chain 0	7.00	0.14	7.14	17	9.76	10
a_5240MHz_Chain 1	6.86	0.14	7	17	9.62	10
n20_5180MHz_Chain 0	0.69	0.12	0.81	17	3.43	10
n20_5180MHz_Chain 1	0.41	0.12	0.53	17	3.15	10
n20_5180MHz_Chain 0 +Chain 1	3.56	0.12	3.68	17	9.3	10
n20_5200MHz_Chain 0	0.46	0.12	0.58	17	3.2	10
n20_5200MHz_Chain 1	0.59	0.12	0.71	17	3.33	10
n20_5200MHz_Chain 0 +Chain 1	3.54	0.12	3.66	17	9.28	10
n20_5240MHz_Chain 0	0.18	0.12	0.3	17	2.92	10
n20_5240MHz_Chain 1	0.16	0.12	0.28	17	2.9	10
n20_5240MHz_Chain 0 +Chain 1	3.18	0.12	3.3	17	8.92	10
n40_5190MHz_Chain 0	0.69	0.22	0.91	17	3.53	10
n40_5190MHz_Chain 1	0.55	0.22	0.77	17	3.39	10
n40_5190MHz_Chain 0 +Chain 1	3.63	0.22	3.85	17	9.47	10
n40_5230MHz_Chain 0	0.46	0.22	0.68	17	3.3	10
n40_5230MHz_Chain 1	0.19	0.22	0.41	17	3.03	10
n40_5230MHz_Chain 0 +Chain 1	3.34	0.22	3.56	17	9.18	10
ac80_5210MHz_Chain 0	-5.19	0.61	-4.58	17	-1.96	10
ac80_5210MHz_Chain 1	-5.34	0.61	-4.73	17	-2.11	10
ac80_5210MHz_Chain 0 +Chain 1	-2.25	0.61	-1.64	17	3.98	10
Note: The device is a indoo	or AP.					


5725-5850MHz

Mode	Value (dBm/500kHz)	Duty Cycle Factor(dB)	PSD (dBm/500kHz)	Limit (dBm/500kHz)
a_5745MHz_Chain 0	5.21	0.14	5.35	30
a_5745MHz_Chain 1	5.07	0.14	5.21	30
a_5785MHz_Chain 0	6.46	0.14	6.6	30
a_5785MHz_Chain 1	6.29	0.14	6.43	30
a_5825MHz_Chain 0	6.21	0.14	6.35	30
a_5825MHz_Chain 1	6.12	0.14	6.26	30
n20_5745MHz_Chain 0	0.75	0.12	0.87	30
n20_5745MHz_Chain 1	0.24	0.12	0.36	30
n20_5745MHz_Chain 0+Chain 1	3.51	0.12	3.63	29.69
n20_5785MHz_Chain 0	2.19	0.12	2.31	30
n20_5785MHz_Chain 1	2.08	0.12	2.2	30
n20_5785MHz_Chain 0+Chain 1	5.15	0.12	5.27	29.69
n20_5825MHz_Chain 0	1.56	0.12	1.68	30
n20_5825MHz_Chain 1	1.94	0.12	2.06	30
n20_5825MHz_Chain 0+Chain 1	4.76	0.12	4.88	29.69
n40_5755MHz_Chain 0	0.06	0.22	0.28	30
n40_5755MHz_Chain 1	-0.42	0.22	-0.2	30
n40_5755MHz_Chain 0+Chain 1	2.84	0.22	3.06	29.69
n40_5795MHz_Chain 0	-1.30	0.22	-1.08	30
n40_5795MHz_Chain 1	-1.47	0.22	-1.25	30
n40_5795MHz_Chain 0+Chain 1	1.63	0.22	1.85	29.69
ac80_5775MHz_Chain 0	-3.59	0.61	-2.98	30
ac80_5775MHz_Chain 1	-3.42	0.61	-2.81	30
ac80_5775MHz_Chain 0+Chain 1	-0.49	0.61	0.12	29.69

a_5180MHz_Chain 0


$a_5200MHz_Chain\ 0$

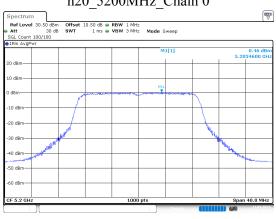
a_5240MHz_Chain 0

a_5180MHz_Chain 1



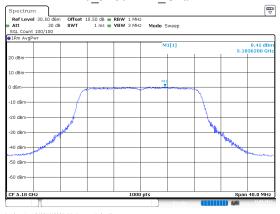
a_5200MHz_Chain 1

ProjectNo.:2402W44990B-RF Tester:Jojo Zhou Date: 11.SBP.2024 16:11:02


a_5240MHz_Chain 1

n20_5180MHz_Chain 0

n20_5200MHz_Chain 0

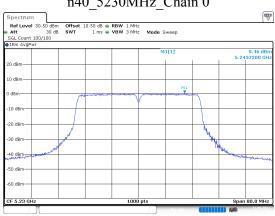


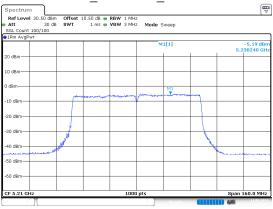
n20 5240MHz Chain 0

ProjectNo.:2402W44990E-RF Tester:Jojo Zhou Date: 11.SEP.2024 16:16:58

n20_5180MHz_Chain 1

n20_5200MHz_Chain 1


n20 5240MHz Chain 1


n40_5190MHz_Chain 0

n40_5230MHz_Chain 0



ac80_5210MHz_Chain 0

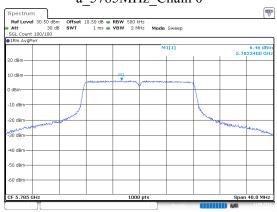
ProjectNo.:2402W44990E-RF Tester:Jojo Zhou Date: 11.SEP.2024 16:19:03

n40_5190MHz_Chain 1

n40_5230MHz_Chain 1

ac80 5210MHz Chain 1

5725-5850MHz


a_5745MHz_Chain 0

ProjectNo.:2402W44990E-RF Tester:Jojo Zhou

Date: 11.SEP.2024 16:20:09

a_5785MHz_Chain 0

ProjectNo.:2402W44990B-RF Tester:Jojo Zhou

a_5825MHz_Chain 0

ProjectNo.:2402W44990E-RF Tester:Jojo Zhou

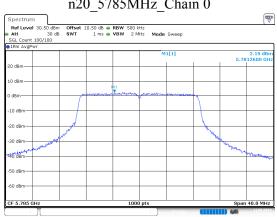
a_5745MHz_Chain 1

ProjectNo.:2402W44990E-RF Tester:Jojo Zhou Date: 12.SEP.2024 11:15:07

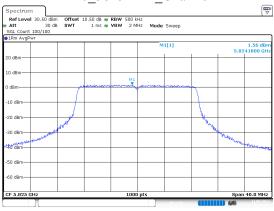
a_5785MHz_Chain 1

ProjectNo.:2402W44990B-RF Tester:Jojo Zhou Date: 12.SBP.2024 11:15:39

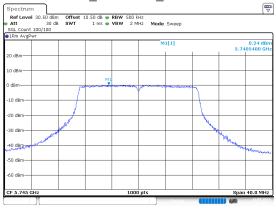
a_5825MHz_Chain 1



ProjectNo.:2402W44990E-RF Tester:Jojo Zho

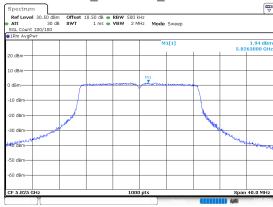

n20_5745MHz_Chain 0

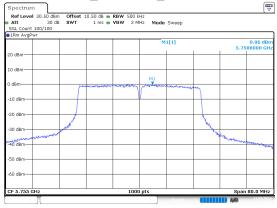
n20_5785MHz_Chain 0



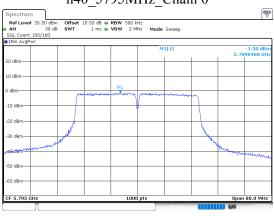
n20 5825MHz Chain 0

ProjectNo.:2402W44990E-RF Tester:Jojo Zhou Date: 11.SEP.2024 16:22:41

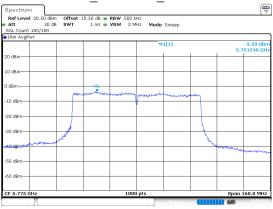

n20_5745MHz_Chain 1


n20_5785MHz_Chain 1

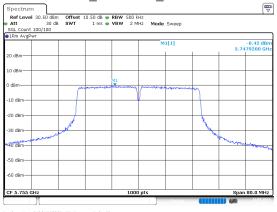
n20 5825MHz Chain 1



$n40_5755MHz_Chain\ 0$


ProjectNo.:2402W44990E-RF Tester:Jojo Zhou

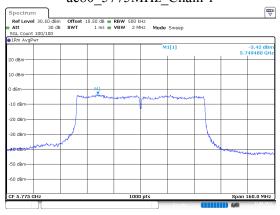
n40_5795MHz_Chain 0


ProjectNo.:2402W44990E-RF Tester:Jojo Zhou

ac80 5775MHz Chain 0

ProjectNo.:2402W44990E-RF Tester:Jojo Zhou Date: 11.SEP.2024 16:25:17

n40_5755MHz_Chain 1


ProjectNo.:2402W4499UE-RF Tester:Jojo Zhou

n40_5795MHz_Chain 1

ProjectNo.:2402W44990E-RF Tester:Jojo Zhou

ac80 5775MHz Chain 1

ProjectNo.:2402W44990E-RF Tester:Jojo Zho: Date: 12.SEP.2024 11:21:10

5.8 Duty Cycle

Serial No.:	2QDZ-4	Test Date:	2024/09/10
Test Site:	RF	Test Mode:	Transmitting
Tester:	Jojo Zhou	Test Result:	Pass

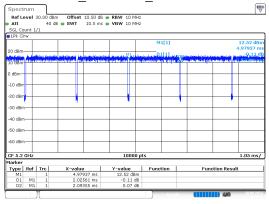
Environmental Conditions:

Temperature: (°C):	25.9	Relative Humidity: (%)	48	ATM Pressure: (kPa)	100.3
--------------------	------	------------------------------	----	---------------------	-------

Test Equipment List and Details:

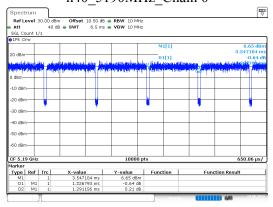
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSV40	101947	2024/9/5	2025/9/4
Eastsheep	Coaxial Attenuator	5W-N-JK-6G- 10dB	F-08-EM502	2024/06/07	2025/06/06

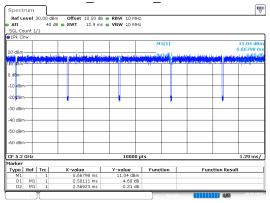
^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).


5150-5250MHz

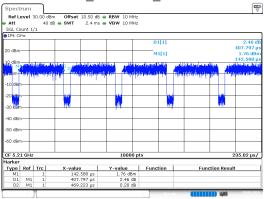
Mode	Ton (ms)	Ton+Toff (ms)	Duty Cycle (%)	Duty Cycle Factor(dB)	1/Ton (Hz)	VBW Setting (kHz)
a_5200MHz_Chain 0	2.026	2.094	96.75	0.14	494	0.500
n20_5200MHz_Chain 0	2.501	2.569	97.35	0.12	400	0.500
n40_5190MHz_Chain 0	1.227	1.291	95.04	0.22	815	1
ac80_5210MHz_Chain 0	0.408	0.469	86.99	0.61	2451	3

Duty Cycle = Ton/(Ton+Toff)*100%


Report No.: 2402W44990E-RF-00A


ProjectNo.:2402W44990E-RF Tester:Jojo Zhou Date: 10.SEP.2024 11:14:17

n40_5190MHz_Chain 0


ProjectNo.:2402W44990E-RF Tester:Jojo Zhou Date: 10.SEP.2024 11:17:39

n20 5200MHz Chain 0

ProjectNo.:2402W44990E-RF Tester:Jojo Zhou Date: 10.SEP.2024 11:15:55

ac80_5210MHz_Chain 0

ProjectNo.:2402W44990E-RF Tester:Jojo Zhou

Page 101 of 102

EXHIBIT A - EUT PHOTOGRAPHS

Please refer to the attachment 2402W44990E-RF-EXP EUT EXTERNAL PHOTOGRAPHS and 2402W44990E-RF-INP EUT INTERNAL PHOTOGRAPHS.

Report Template Version: FCC+IC-WiFi5-indoor AP-V1.2

EXHIBIT B - TEST SETUP PHOTOGRAPHS

Please refer to the attachment 2402W44990E-RF-00A-TSP TEST SETUP PHOTOGRAPHS.

***** END OF REPORT *****

Report Template Version: FCC+IC-WiFi5-indoor AP-V1.2

Page 102 of 102