

TEST REPORT

No.24T04N001383-002-BT

for

HMD Global Oy

Mobile Phone

Model Name: TA-1659

with

Hardware Version: FF646-MB-V0.2

Software Version: 0.2422.11.01

FCC ID: 2AJOTTA-1659

Issued Date: 2024-08-16

Designation Number: CN1210

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of SAICT.

Test Laboratory:

SAICT, Shenzhen Academy of Information and Communications Technology

 $\label{eq:continuous} \textbf{Building G, Shenzhen International Innovation Center, No. 1006 Shennan Road, Futian District, Shenzhen, and the state of t$

Guangdong, P. R. China 518000.

 $Tel: +86(0)755-33322000, \quad Fax: +86(0)755-33322001$

Email: yewu@caict.ac.cn. www.saict.ac.cn

REPORT HISTORY

Report Number	Revision	Description	Issue Date
24T04N001383-002-BT	Rev.0	1st edition	2024-08-16

Note: the latest revision of the test report supersedes all previous versions.

CONTENTS

1. SUMMARY OF TEST REPORT	4
1.1. Test Items	4
1.2. Test Standards	4
1.3. TEST RESULT	4
1.4. TESTING LOCATION	4
1.5. Project data	4
1.6. Signature	4
2. CLIENT INFORMATION	5
2.1. APPLICANT INFORMATION	5
2.2. MANUFACTURER INFORMATION	5
3. EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	6
3.1. ABOUT EUT	6
3.2. Internal Identification of EUT used during the test	6
3.3. INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	6
3.4. GENERAL DESCRIPTION	6
4. REFERENCE DOCUMENTS	8
4.1. DOCUMENTS SUPPLIED BY APPLICANT	8
4.2. Reference Documents for testing	8
5. TEST RESULTS	9
5.1. Testing Environment	9
5.2. Test Results	9
5.3. STATEMENTS	9
6. TEST EQUIPMENTS UTILIZED	10
7. LABORATORY ENVIRONMENT	11
8. MEASUREMENT UNCERTAINTY	12
ANNEX A: DETAILED TEST RESULTS	13
TEST CONFIGURATION	13
A.0 Antenna requirement	16
A.1 MAXIMUM PEAK OUTPUT POWER	17
A.2 BAND EDGES COMPLIANCE	18
A.3 CONDUCTED EMISSION	25
A.4 RADIATED EMISSION	31
A.5 20dB Bandwidth	43
A.6 TIME OF OCCUPANCY (DWELL TIME)	49
A.7 Number of Hopping Channels	53
A.8 CARRIER FREQUENCY SEPARATION	56
A.9 AC POWER LINE CONDUCTED EMISSION	59

1. Summary of Test Report

1.1. Test Items

Description Mobile Phone Model Name TA-1659

Applicant's name HMD Global Oy Manufacturer's Name HMD Global Oy

1.2. <u>Test Standards</u>

FCC Part15-2023; ANSI C63.10-2013.

1.3. Test Result

Pass

Please refer to "5.2.Test Results"

1.4. Testing Location

Address: Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China 51800

1.5. Project data

Testing Start Date: 2024-06-27 Testing End Date: 2024-07-20

1.6. Signature

Lin Zechuang

(Prepared this test report)

An Ran

(Reviewed this test report)

Zhang Bojun

(Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name: HMD Global Oy

Address: Bertel Jungin aukio 9,02600 Espoo,Finland

Contact Person reza.serafat

E-Mail reza.serafat@hmdglobal.com

Telephone: +491735287964

Fax: /

2.2. Manufacturer Information

Company Name: HMD Global Oy

Address: Bertel Jungin aukio 9,02600 Espoo,Finland

Contact Person reza.serafat

E-Mail reza.serafat@hmdglobal.com

Telephone: +491735287964

Fax: /

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1.About EUT

Description Mobile Phone TA-1659 Model Name

Frequency Band ISM 2400MHz~2483.5MHz

Bluetooth® BR/EDR Equipment type

GFSK/π/4 DQPSK/8DPSK Type of Modulation

Number of Channels 79

Antenna Type Integrated antenna

0.41dBi. Antenna Gain

Power Supply 3.7V DC by Battery FCC ID 2AJOTTA-1659

Condition of EUT as received No abnormality in appearance

Note: Components list, please refer to documents of the manufacturer; it is also included in the original test record of Shenzhen Academy of Information and Communications Technology.

3.2. Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version	Date of Receipt
UT07aa	351368850001534	FF646-MB-V0.2	0.2422.11.01	2024-07-02
UT03aa	351368850001997	FF646-MB-V0.2	0.2422.11.01	2024-06-27
UT02aa	351368850001872	FF646-MB-V0.2	0.2422.11.01	2024-06-27

^{*}EUT ID: is used to identify the test sample in the lab internally.

UT07aa is used for conduction test, UT03aa is used for radiation test and UT02aa is used for AC Power line Conducted Emission test.

3.3. Internal Identification of AE used during the test

AE No.	Description	AE ID*
AE1	Battery	1
AE1		
Model	BA-L4M	
Manufacturer	Guangdong Fenghu	a New Energy Co.,Ltd
Capacity	1450mAh	
Nominal Voltage	e 3.7V	

^{*}AE ID and AE Label: is used to identify the test sample in the lab internally.

3.4. General Description

The Equipment under Test (EUT) is a model of Mobile Phone with integrated antenna and battery. Manual and specifications of the EUT were provided to fulfil the test.

Samples undergoing test were selected by the client.

According to the customer's description, TA-1659 is a variant product of TA-1667. The differences

No.24T04N001383-002-BT

between them do not affect the following test cases. Each test item has been spot check and the test results have not deteriorated. All results can be referred to the initial model. For detail information please check the declaration provided by the manufacturer. The initial model report number is 24T04N001372-002-BT.

4. Reference Documents

4.1. Documents supplied by applicant

EUT feature information is supplied by the applicant or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version
FCC Part 15	FCC CFR 47, Part 15, Subpart C:	2023
	15.205 Restricted bands of operation;	
	15.209 Radiated emission limits, general requirements;	
	15.247 Operation within the bands 902–928MHz,	
	2400–2483.5 MHz, and 5725–5850 MHz	
ANSI C63.10	American National Standard of Procedures for Compliance	2013
	Testing of Unlicensed Wireless Devices	

5. Test Results

5.1. Testing Environment

Normal Temperature: $15\sim35^{\circ}$ C Relative Humidity: $20\sim75\%$

5.2. Test Results

No	Test cases	Sub-clause of Part 15C	Verdict
0	Antenna Requirement	15.203	Р
1	Maximum Peak Output Power	15.247 (b)	Р
2	Band Edges Compliance	15.247 (d)	Р
3	Conducted Spurious Emission	15.247 (d)	Р
4	Radiated Spurious Emission	15.247,15.205,15.209	Р
5	Occupied 20dB bandwidth	15.247(a)	1
6	Time of Occupancy(Dwell Time)	15.247(a)	Р
7	Number of Hopping Channel	15.247(a)	Р
8	Carrier Frequency Separation	15.247(a)	Р
9	AC Power line Conducted Emission	15.107,15.207	Р

See ANNEX A for details.

5.3. Statements

SAICT has evaluated the test cases requested by the applicant/manufacturer as listed in section 5.2 of this report, for the EUT specified in section 3, according to the standards or reference documents listed in section 4.2.

Disclaimer:

A. After confirmation with the customer, the sample information provided by the customer may affect the validity of the measurement results in this report, and the impact and consequences arising therefrom shall be borne by the customer.

B. The samples in this report are provided by the customer, and the test results are only applicable to the samples received.

6. Test Equipments Utilized

Conducted test system

No.	Equipment	Model	Serial Number	Manufacturer	Calibration Due date	Calibration Period
1	Vector Signal Analyzer	FSV40	100903	Rohde & Schwarz	2024-12-27	1 year
2	Power Sensor	U2021XA	MY55430013	Keysight	2024-12-27	1 year
3	Data Acquisition	U2531A	TW55443507	Keysight	/	1
4	RF Control Unit	JS0806-2	21C8060398	Tonscend	2025-05-06	1 year
5	Wireless Connective Tester	CMW270	100540	Rohde & Schwarz	2025-03-11	1 year
6	Shielding Room	S81	CT000986-1344	ETS-Lindgren	2026-09-12	5 years

Radiated test system

	Tradition tool by otom					
No.	Equipment	Model	Serial Number	Manufacturer	Calibration Due date	Calibration Period
1	Test Receiver	ESR7	101676	Rohde & Schwarz	2024-11-22	1 year
2	Hybrid antenna	VULB 9163	330	Schwarzbeck	2027-04-21	3 years
3	Horn Antenna	3117	00066577	ETS-Lindgren	2025-04-17	3 years
4	Anechoic Chamber	FACT3-2.0	1285	ETS-Lindgren	2025-05-28	2 years
5	Spectrum Analyzer	FSV40	101192	Rohde & Schwarz	2025-01-10	1 year
6	Loop Antenna	HLA6120	35779	TESEQ	2025-05-12	3 years
7	Horn Antenna	QSH-SL-1 8-26-S-20	17013	Q-par	2026-02-01	3 years
8	Test Receiver	ESCI	100702	Rohde & Schwarz	2025-01-10	1 year
9	LISN	ENV216	102067	Rohde & Schwarz	2024-10-07	1 year

Test software

No.	Equipment	Manufacturer	Version
1	JS1120-3	Tonscend	3.5
2	EMC32	Rohde & Schwarz	10.50.40

EUT is engineering software provided by the customer to control the transmitting signal.

The EUT was programmed to be in continuously transmitting mode.

7. Laboratory Environment

Shielded room

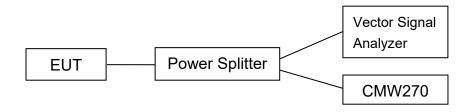
Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 20 %, Max. = 75 %
Shielding effectiveness	0.014MHz-1MHz> 60 dB; 1MHz-18000MHz>90 dB
Electrical insulation	> 2MΩ
Ground system resistance	< 4 Ω

Anechoic chamber

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 20 %, Max. = 75 %
Shielding effectiveness	0.014MHz-1MHz> 60 dB; 1MHz-18000MHz>90 dB
Electrical insulation	> 2MΩ
Ground system resistance	< 4 Ω
Normalised site attenuation (NSA)	<±4 dB, 3 m distance, from 30 to 1000 MHz
Voltage Standing Wave Ratio (VSWR)	≤ 6 dB, from 1 to 18 GHz, 3m distance
Uniformity of field strength	Between 0 and 6 dB, from 80 to 6000 MHz

8. Measurement Uncertainty

Test Name	Uncertainty (<i>k</i> =2)	
Maximum Peak Output Power	1.32	dB
2. Band Edges Compliance	1.92	dB
	30MHz≤f<1GHz	1.41dB
2. Transmitter Churique Emission Conducted	1GHz≤f<7GHz	1.92dB
Transmitter Spurious Emission - Conducted	7GHz≤f<13GHz	2.31dB
	13GHz≤f≤26GHz	2.61dB
	9kHz≤f<30MHz	1.70dB
4 Transmitter Courieus Emissian Dedicted	30MHz≤f<1GHz	4.80dB
Transmitter Spurious Emission - Radiated	1GHz≤f<18GHz	4.62dB
	18GHz≤f≤40GHz	2.36dB
5. 20dB Bandwidth	4.56kHz	
6. Time of Occupancy (Dwell Time) & Number of Hopping Channels	0.58ms	
7. Carrier Frequency Separation	4.56kHz	
8. AC Power line Conducted Emission	150kHz≤f≤30MHz	2.68dB

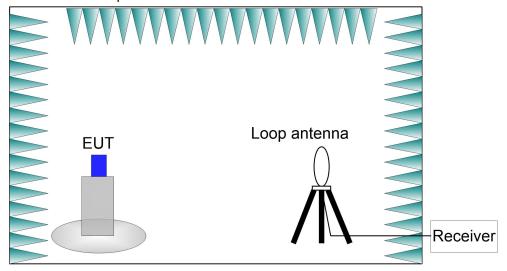

ANNEX A: Detailed Test Results

Test Configuration

The measurement is made according to ANSI C63.10.

1) Conducted Measurements

- 1. Connect the EUT to the test system correctly.
- 2. Set the EUT to the required work mode.
- 3. Set the EUT to the required channel.
- 4. Set the EUT hopping mode (hopping on or hopping off).
- 5. Set the spectrum analyzer to start measurement.
- 6. Record the values.

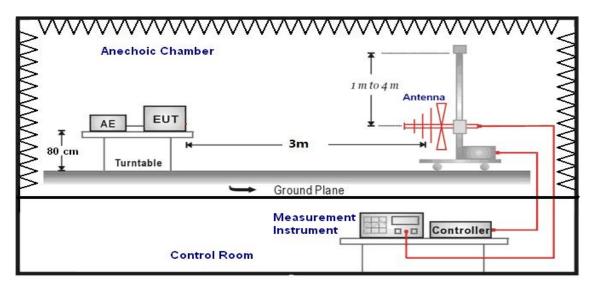


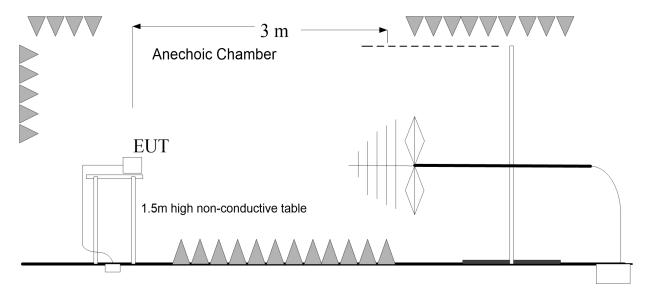
2) Radiated Measurements

Test setup:

9kHz-30MHz:

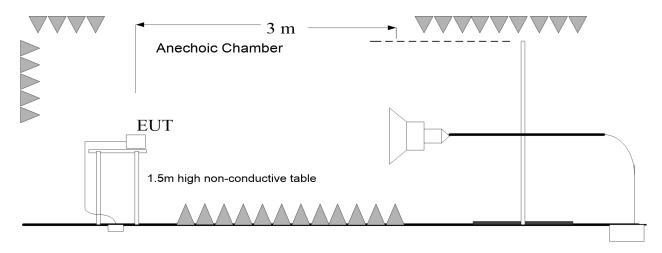
The EUT are measured in a anechoic chamber. The EUT is placed on a non-conductive stand of 80cm high, and at a measurement distance of 3m from the receiving antenna. The center of the receiving loop antenna is 1.0 meter above the ground. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT and adjusting the receiver antenna polarization.



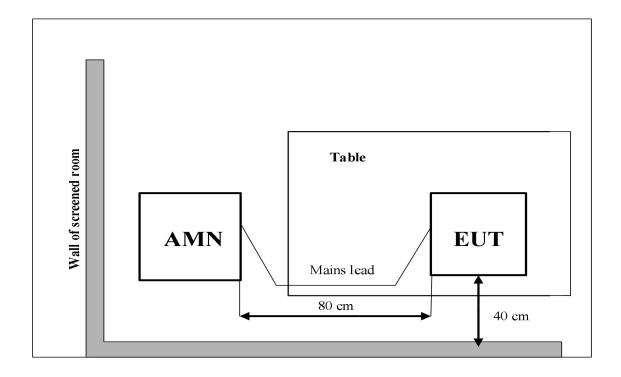

30MHz-26.5GHz:

The EUT are measured in a anechoic chamber. The EUT is placed on a non-conductive stand of 80cm high, and at a measurement distance of 3m from the receiving antenna. The center of the receiving antenna is 1.0 meter to 4.0 meter above the ground. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT and adjusting the receiver antenna polarization.

30MHz-1GHz:



1GHz-3GHz:



3GHz-26.5GHz:

3) AC Power line Conducted Emission Measurement

The EUT is working as Bluetooth terminal. A communication link of Bluetooth is set up with a System Simulator (SS). The EUT is commanded to operate at maximum transmitting power.

A.0 Antenna requirement

Measurement Limit:

Standard	Requirement
	An intentional radiator shall be designed to ensure that no antenna other than that
	furnished by the responsible party shall be used with the device. The use of a
	permanently attached antenna or of an antenna that uses a unique coupling to the
	intentional radiator shall be considered sufficient to comply with the provisions of
	this section. The manufacturer may design the unit so that a broken antenna can
	be replaced by the user, but the use of a standard antenna jack or electrical
FCC CRF Part	connector is prohibited. This requirement does not apply to carrier current devices
15.203	or to devices operated under the provisions of §15.211, §15.213, §15.217,
	§15.219, or §15.221. Further, this requirement does not apply to intentional
	radiators that must be professionally installed, such as perimeter protection
	systems and some field disturbance sensors, or to other intentional radiators
	which, in accordance with §15.31(d), must be measured at the installation site.
	However, the installer shall be responsible for ensuring that the proper antenna is
	employed so that the limits in this part are not exceeded.

Conclusion: The Directional gains of antenna used for transmitting is 0.41dBi.

The RF transmitter uses an integrate antenna without connector.

A.1 Maximum Peak Output Power

Method of Measurement: See ANSI C63.10-clause 7.8.5.

A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.

Measurement Limit:

Standard	Limit (dBm)
FCC CRF Part 15.247(b)	< 30

Measurement Results:

Mode	Peak Conducted Output Power (dBm)				
Mode	2402MHz (CH0)	2441MHz (CH39)	2480MHz (CH78)		
GFSK	8.62	8.69	8.20		
π/4 DQPSK	8.93	8.97	8.50		
8DPSK	9.07	9.12	8.67		

Conclusion: Pass

A.2 Band Edges Compliance

Method of Measurement: See ANSI C63.10-clause 7.8.6.

Measurement Limit:

Standard	Limit (dBc)
FCC 47 CFR Part 15.247 (d)	> 20

Measurement Result:

Mode	Frequency (MHz)	Hopping	Test Res	ults (dBc)	Conclusion
	2402(CH0)	OFF	Fig.1	54.07	Р
GFSK	2480(CH78)	OFF	Fig.2	53.42	Р
GFSK	2402(CH0)	ON	Fig.3	53.40	Р
	2480(CH78)	ON	Fig.4	48.27	Р
	2402(CH0)	OFF	Fig.5	42.72	Р
π/4 DQPSK	2480(CH78)	OFF	Fig.6	53.39	Р
II/4 DQPSK	2402(CH0)	ON	Fig.7	44.42	Р
	2480(CH78)	ON	Fig.8	52.86	Р
8DPSK	2402(CH0)	OFF	Fig.9	43.62	Р
	2480(CH78)	OFF	Fig.10	52.40	Р
	2402(CH0)	ON	Fig.11	45.58	Р
	2480(CH78)	ON	Fig.12	52.70	Р

See below for test graphs.

Conclusion: Pass

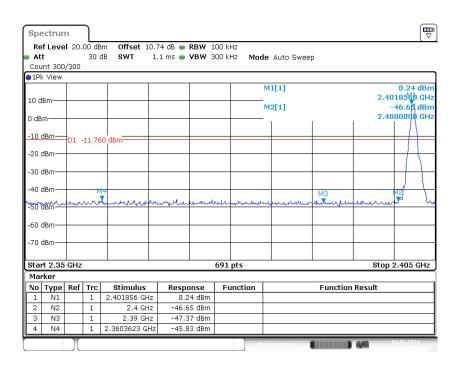


Fig. 1 Band Edges (GFSK, CH0, Hopping OFF)

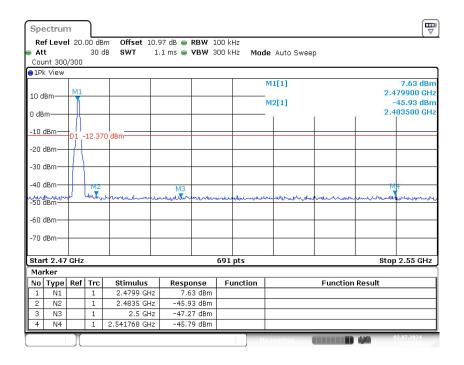


Fig. 2 Band Edges (GFSK, CH78, Hopping OFF)

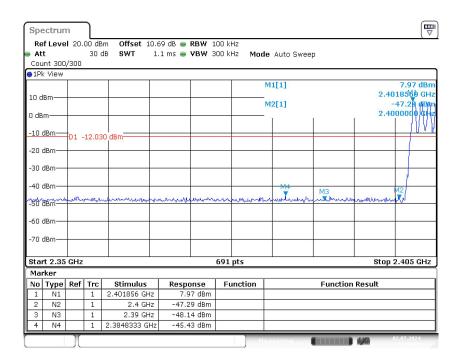


Fig. 3 Band Edges (GFSK, CH0, Hopping ON)

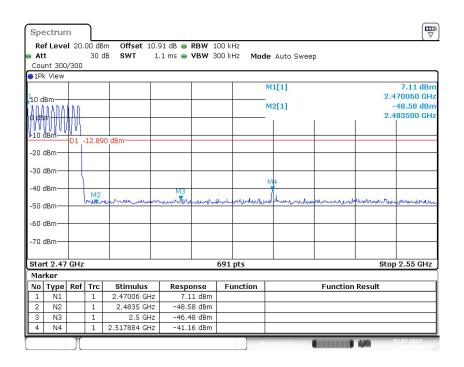


Fig. 4 Band Edges (GFSK, CH78, Hopping ON)

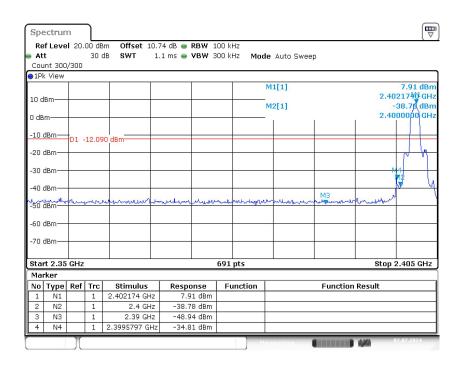


Fig. 5 Band Edges (π/4 DQPSK, CH0, Hopping OFF)

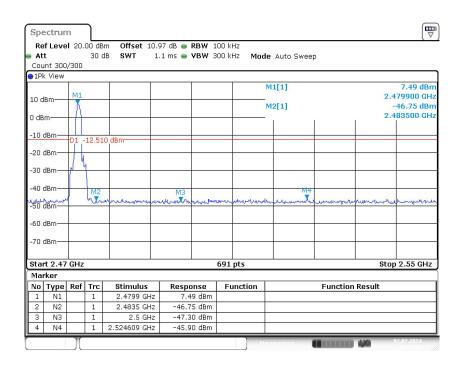


Fig. 6 Band Edges (π/4 DQPSK, CH78, Hopping OFF)

No.24T04N001383-002-BT

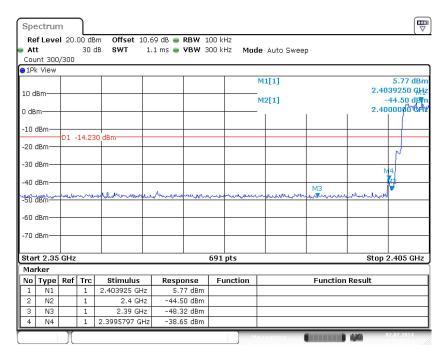


Fig. 7 Band Edges (π/4 DQPSK, CH0, Hopping ON)

Fig. 8 Band Edges (π/4 DQPSK, CH78, Hopping ON)

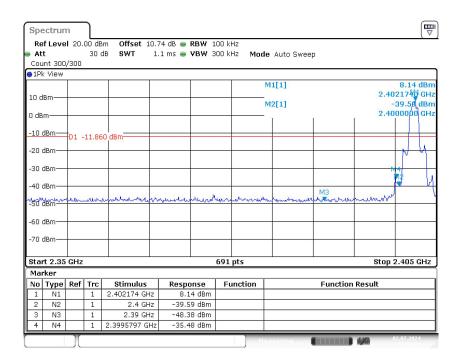


Fig. 9 Band Edges (8DPSK, CH0, Hopping OFF)

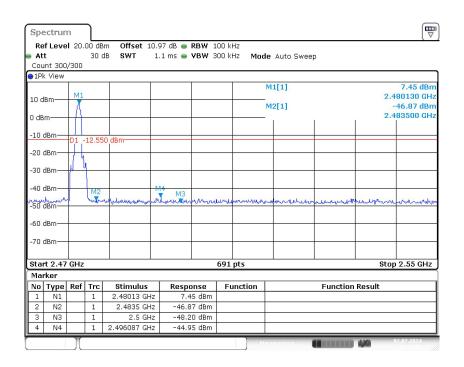


Fig. 10 Band Edges (8DPSK, CH78, Hopping OFF)

No.24T04N001383-002-BT

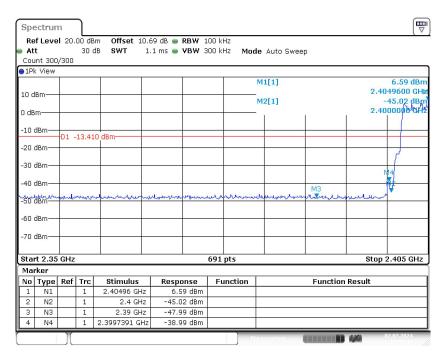


Fig. 11 Band Edges (8DPSK, CH0, Hopping ON)

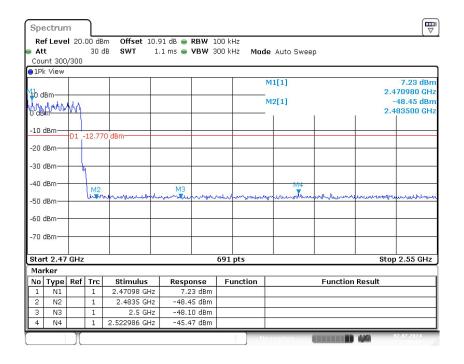


Fig. 12 Band Edges (8DPSK, CH78, Hopping ON)

A.3 Conducted Emission

Method of Measurement: See ANSI C63.10-clause 7.8.8.

Measurement Limit:

Standard	Limit (dBm)	
FCC 47 CFR Part 15.247 (d)	20dBm below peak output power in 100kHz	
FCC 47 CFR Fait 15.247 (u)	bandwidth	

Measurement Results:

Mode	Frequency (MHz)	Frequency Range	Test Results	Conclusion
	2402(CH0)	1GHz-26.5GHz	Fig.13	Р
GFSK	2441(CH39)	1GHz-26.5GHz	Fig.14	Р
	2480(CH78)	1GHz-26.5GHz	Fig.15	Р
/4	2402(CH0)	1GHz-26.5GHz	Fig.16	Р
π/4	2441(CH39)	1GHz-26.5GHz	Fig.17	Р
DQPSK	2480(CH78)	1GHz-26.5GHz	Fig.18	Р
	2402(CH0)	1GHz-26.5GHz	Fig.19	Р
8DPSK	2441(CH39)	1GHz-26.5GHz	Fig.20	Р
	2480(CH78)	1GHz-26.5GHz	Fig.21	Р
1	All channels	30MHz -1GHz	Fig.22	Р

See below for test graphs.

Conclusion: Pass

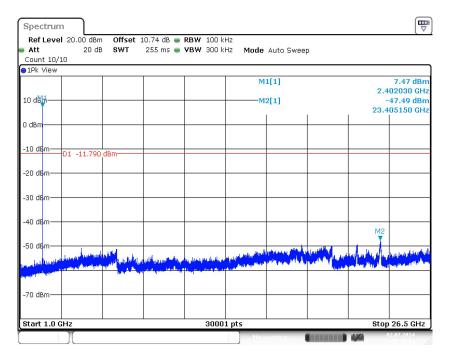


Fig. 13 Conducted Spurious Emission (GFSK, CH0, 1GHz-26.5GHz)

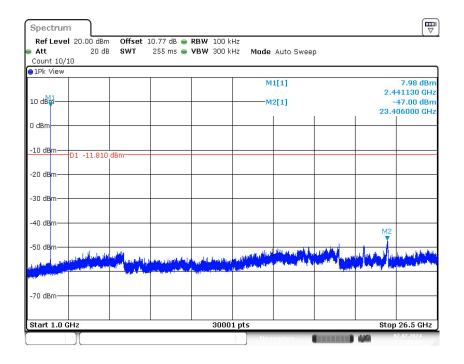


Fig. 14 Conducted Spurious Emission (GFSK, CH39, 1GHz-26.5GHz)

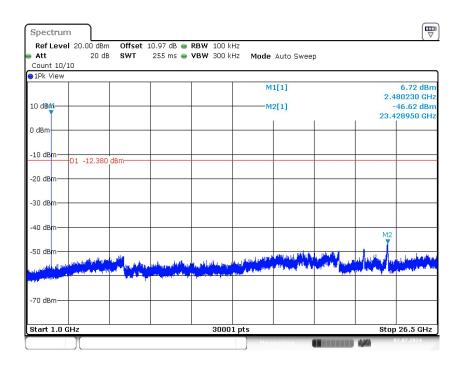


Fig. 15 Conducted Spurious Emission (GFSK, CH78, 1GHz-26.5GHz)

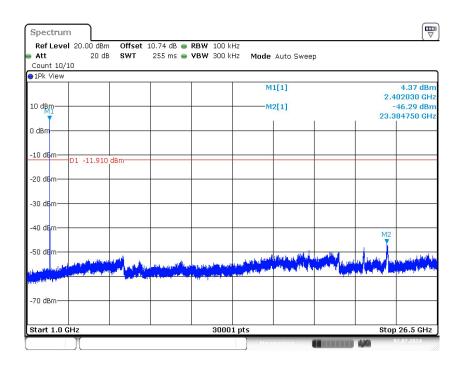


Fig. 16 Conducted Spurious Emission (π/4 DQPSK, CH0, 1GHz-26.5GHz)

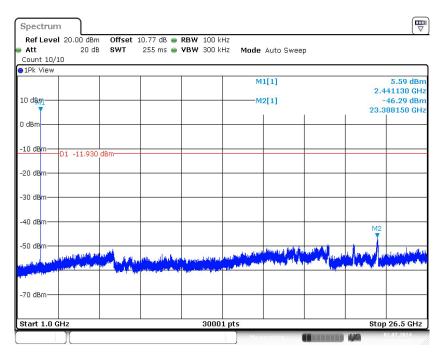


Fig. 17 Conducted Spurious Emission (π/4 DQPSK, CH39, 1GHz-26.5GHz)

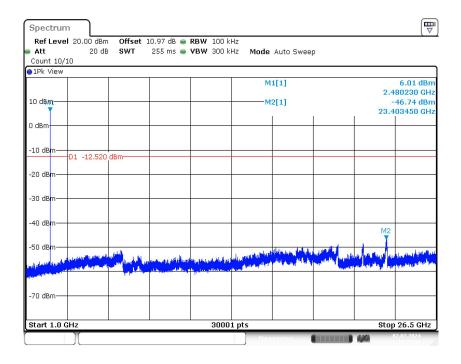


Fig. 18 Conducted Spurious Emission (π/4 DQPSK, CH78, 1GHz-26.5GHz)

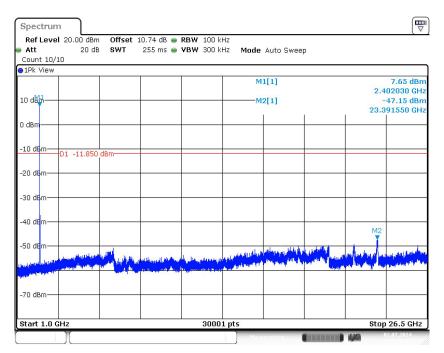


Fig. 19 Conducted Spurious Emission (8DPSK, CH0, 1GHz-26.5GHz)

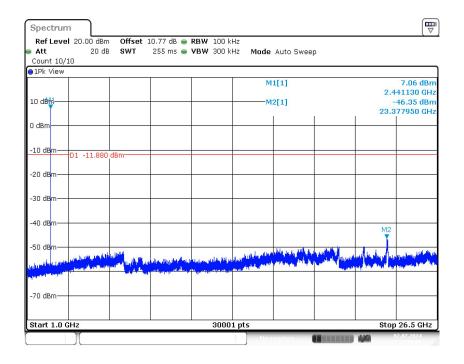


Fig. 20 Conducted Spurious Emission (8DPSK, CH39, 1GHz-26.5GHz)

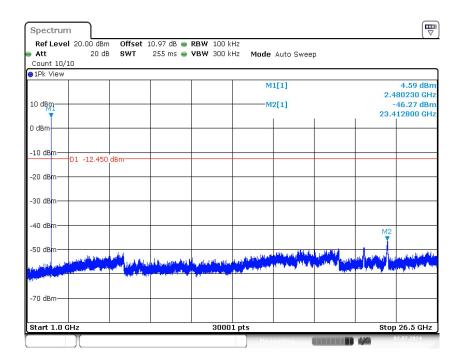


Fig. 21 Conducted Spurious Emission (8DPSK, CH78, 1GHz-26.5GHz)

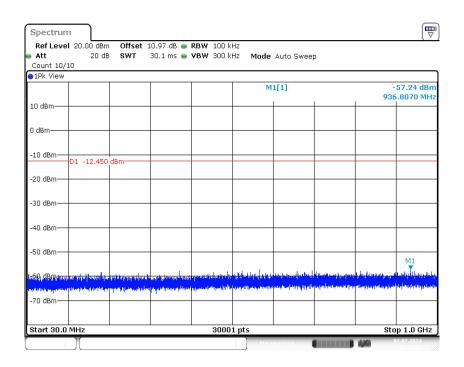


Fig. 22 Conducted Spurious Emission (All Channels, 30MHz -1GHz)

A.4 Radiated Emission

Method of Measurement: See ANSI C63.10-clause 6.3&6.4&6.5&6.6.

Measurement Limit:

Standard	Limit (dBm)
FCC 47 CFR Part 15.247, 15.205, 15.209	20dBm below peak output power

In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Limit in restricted band:

Frequency of emission (MHz)	Field strength(μV/m)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Test Condition:

The EUT was placed on a non-conductive table. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

•	•	<u> </u>
Frequency of emission (MHz)	RBW/VBW	Sweep Time(s)
30-1000	120kHz/300kHz	5
1000-4000	1MHz/3MHz	15
4000-18000	1MHz/3MHz	40
18000-26500	1MHz/3MHz	20

Note: According to the performance evaluation, the radiated emission margin of EUT is over 20dB in the band from 9kHz to 30MHz. Therefore, the measurement starts from 30MHz to tenth harmonic. The measurement results include the horizontal polarization and vertical polarization measurements. For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases were recorded in this report.

Measurement Results:

measurement Results:				
Mode	Frequency (MHz)	Frequency Range	Test Results	Conclusion
	2402(CH0)	1 GHz ~18 GHz	Fig.23	Р
	2441(CH39)	1 GHz ~18 GHz	Fig.24	Р
GFSK	2480(CH78)	1 GHz ~18 GHz	Fig.25	Р
	Restricted Band(CH0)	2.38 GHz ~ 2.45 GHz	Fig.26	Р
	Restricted Band (CH78)	2.45 GHz ~ 2.5 GHz	Fig.27	Р
	2402(CH0)	1 GHz ~18 GHz	Fig.28	Р
	2441(CH39)	1 GHz ~18 GHz	Fig.29	Р
π/4	2480(CH78)	1 GHz ~18 GHz	Fig.30	Р
DQPSK	Restricted Band (CH0)	2.38 GHz ~ 2.45 GHz	Fig.31	Р
	Restricted Band (CH78)	2.45 GHz ~ 2.5 GHz	Fig.32	Р
	2402(CH0)	1 GHz ~18 GHz	Fig.33	Р
	2441(CH39)	1 GHz ~18 GHz	Fig.34	Р
8DPSK	2480(CH78)	1 GHz ~18 GHz	Fig.35	Р
	Restricted Band (CH0)	2.38 GHz ~ 2.45 GHz	Fig.36	Р
	Restricted Band (CH78)	2.45 GHz ~ 2.5 GHz	Fig.37	Р
/		9 kHz ~30 MHz	Fig.38	Р
	All channels	30 MHz ~1 GHz	Fig.39	Р
		18 GHz ~26.5 GHz	Fig.40	Р

Worst Case Result GFSK CH39 (1-18GHz)

Frequency	MaxPeak	Limit	Margin	Pol	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)		(dB/m)
5399.700000	50.33	74.00	23.67	V	7.3
6745.714286	47.41	74.00	26.59	V	8.4
11715.857143	49.89	74.00	24.11	Н	11.9
13948.714286	50.62	74.00	23.38	V	13.0
16533.000000	53.83	74.00	20.17	Н	18.6
17537.142857	55.22	74.00	18.78	V	20.3

Frequency	Average	Limit	Margin	Pol	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)		(dB/m)
5399.700000	38.50	54.00	15.50	V	7.3
6745.714286	34.77	54.00	19.23	V	8.4
11715.857143	37.12	54.00	16.88	Н	11.9
13948.714286	38.03	54.00	15.97	V	13.0
16533.000000	41.28	54.00	12.72	Н	18.6
17537.142857	42.87	54.00	11.13	V	20.3

π/4 DQPSK CH39 (1-18GHz)

Frequency	MaxPeak	Limit	Margin	Pol	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)		(dB/m)
5361.300000	50.62	74.00	23.38	V	7.1
7939.285714	45.66	74.00	28.34	Н	7.0
10596.857143	47.50	74.00	26.50	Н	9.7
11792.571429	49.10	74.00	24.90	V	12.3
15573.000000	51.46	74.00	22.54	V	13.7
17670.428571	55.98	74.00	18.02	Н	20.6

Frequency (MHz)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Pol	Corr. (dB/m)
5361.300000	38.02	54.00	15.98	V	7.1
7939.285714	33.55	54.00	20.45	Н	7.0
10596.857143	35.09	54.00	18.91	Н	9.7
11792.571429	36.57	54.00	17.43	V	12.3
15573.000000	39.21	54.00	14.79	V	13.7
17670.428571	43.31	54.00	10.69	Н	20.6

8DPSK CH39 (1-18GHz)

Frequency	MaxPeak	Limit	Margin	Pol	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)		(dB/m)
5450.100000	50.33	74.00	23.67	V	7.4
6885.857143	46.54	74.00	27.46	V	7.8
8593.285714	46.02	74.00	27.98	Н	7.2
12339.428572	50.32	74.00	23.68	Н	12.8
16684.714286	54.91	74.00	19.09	V	19.0
17706.428571	55.78	74.00	18.22	Н	20.6

Frequency (MHz)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Pol	Corr. (dB/m)
5450.100000	38.48	54.00	15.52	V	7.4
6885.857143	34.31	54.00	19.69	V	7.8
8593.285714	33.63	54.00	20.37	Н	7.2
12339.428572	37.86	54.00	16.14	Н	12.8
16684.714286	42.59	54.00	11.41	V	19.0
17706.428571	43.45	54.00	10.55	Н	20.6

Note:

A "reference path loss" is established and the A_{Rpl} is the attenuation of "reference path loss", and Antenna Factor, the gain of the preamplifier, the cable loss. P_{Mea} is the field strength recorded from the instrument. The measurement results are obtained as described below:

Result= P_{Mea} +Cable Loss +Antenna Factor-Gain of the preamplifier.

See below for test graphs.

Conclusion: Pass

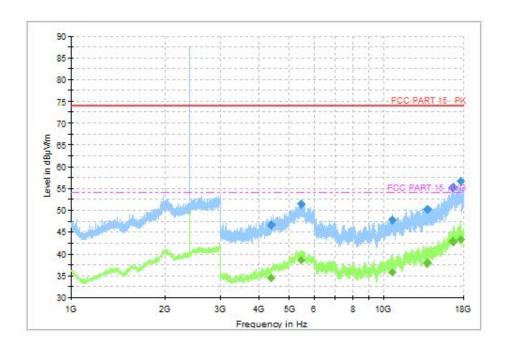


Fig. 23 Radiated Spurious Emission (GFSK, CH0, 1GHz ~18GHz)

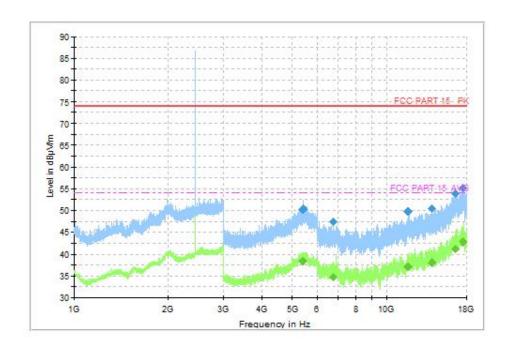


Fig. 24 Radiated Spurious Emission (GFSK, CH39, 1GHz ~18GHz)

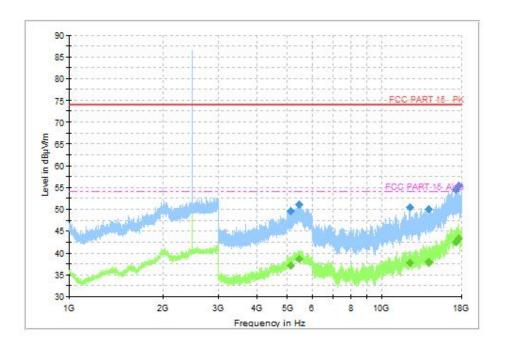


Fig. 25 Radiated Spurious Emission (GFSK, CH78, 1GHz ~18GHz)

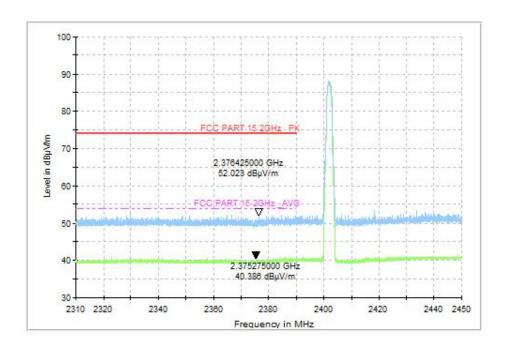


Fig. 26 Radiated Band Edges (GFSK, CH0, 2.38GHz~2.45GHz)

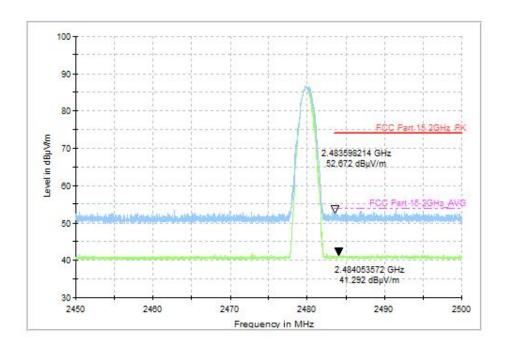


Fig. 27 Radiated Band Edges (GFSK, CH78, 2.45GHz~2.50GHz)

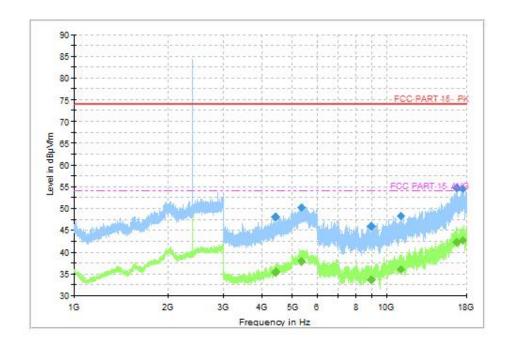


Fig. 28 Radiated Spurious Emission (π/4 DQPSK, CH0, 1GHz ~18GHz)

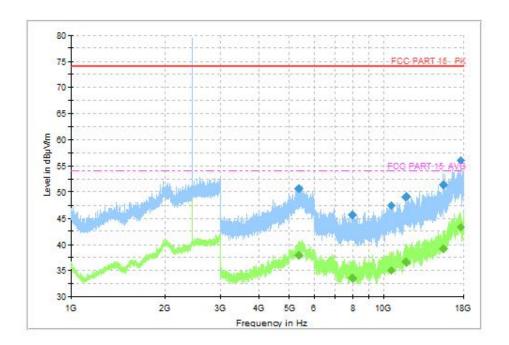


Fig. 29 Radiated Spurious Emission (π/4 DQPSK, CH39, 1GHz ~18GHz)

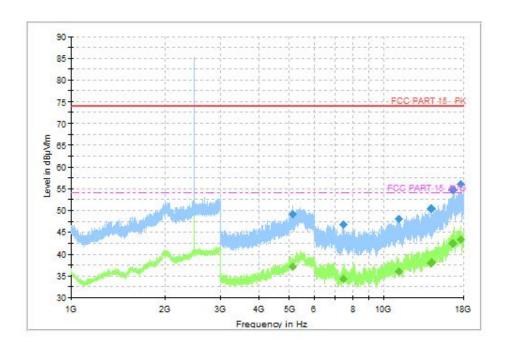


Fig. 30 Radiated Spurious Emission (π/4 DQPSK, CH78, 1GHz ~18GHz)

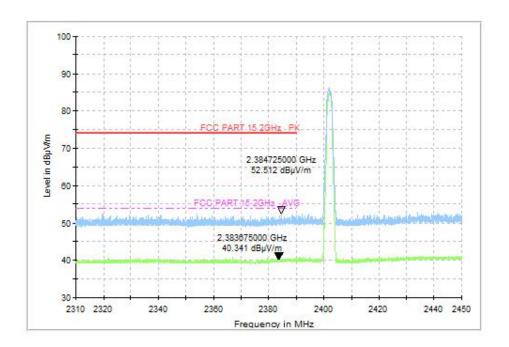


Fig. 31 Radiated Band Edges (π/4 DQPSK, CH0, 2.38GHz~2.45GHz)

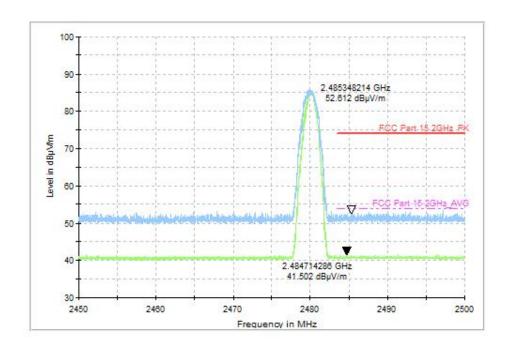


Fig. 32 Radiated Band Edges (π/4 DQPSK, CH78, 2.45GHz~2.50GHz)

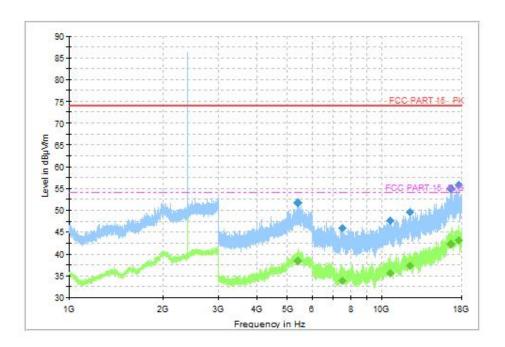


Fig. 33 Radiated Spurious Emission (8DPSK, CH0, 1GHz ~18GHz)

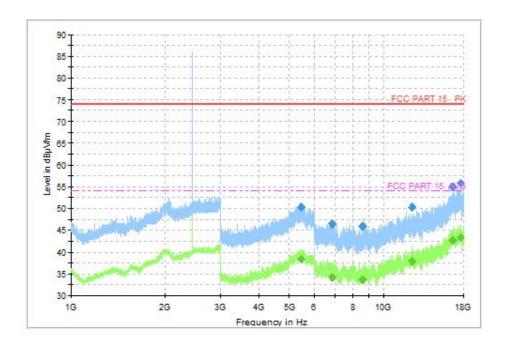


Fig. 34 Radiated Spurious Emission (8DPSK, CH39, 1GHz ~18GHz)