

SAR Test Report

Report No.: AGC12845231102FH01

FCC ID : 2A2LL-P1

APPLICATION PURPOSE: Original Equipment

PRODUCT DESIGNATION: FJD Trion P1 LiDAR Scanner

BRAND NAME : FJ Dynamics

MODEL NAME : P1

APPLICANT: FJ Dynamics Co., Ltd

DATE OF ISSUE : Jan. 04, 2024

IEEE Std. 1528:2013

STANDARD(S) : FCC 47 CFR Part 2§2.1093

IEEE Std C95.1 ™-2005

REPORT VERSION: V1.0

Attestation of Global Confidence (Shenzhen) Co., Ltd.

Page 2 of 57

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	Jan. 04, 2024	Valid	Initial Release

Page 3 of 57

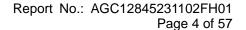
Test Report					
Applicant Name	FJ Dynamics Co., Ltd				
Applicant Address	1709, WeiXing Building 61 GaoXin South 9th Rd Nanshan District, Shenzhen				
Manufacturer Name	FJ Dynamics Co., Ltd				
Manufacturer Address	1709, WeiXing Building 61 GaoXin South 9th Rd Nanshan District, Shenzhen				
Factory Name	FJ Dynamics Co.,Ltd				
Factory Address	4th floor building 2, Nangang Second Industrial Park, Nanshan District, Shenzhen				
Product Designation	FJD Trion P1 LiDAR Scanner				
Brand Name	FJ Dynamics				
Model Name	P1				
EUT Voltage	DC 10.8V				
Applicable Standard	IEEE Std. 1528:2013 FCC 47 CFR Part 2§2.1093 IEEE Std C95.1 ™-2005				
Date of receipt of test item	Dec. 26, 2023				
Test Date	Jan. 02, 2024 to Jan. 04, 2024				
Report Template	AGCRT-US-5G/SAR (2021-04-20)				

Note: The results of testing in this report apply to the product/system which was tested only.

Reviewed By

Calvin Liu
(Reviewer)

Alan Duan
(Project Engineer)


Calvin Liu
(Reviewer)

Jan. 04, 2024

Approved By

Max Zhang
Authorized Officer

Jan. 04, 2024

TABLE OF CONTENTS

1. SUMMARY OF MAXIMUM SAR VALUE	5
2. GENERAL INFORMATION	6
2.1. EUT DESCRIPTION	6
3. SAR MEASUREMENT SYSTEM	7
3.1. THE SATIMO SYSTEM USED FOR PERFORMING COMPLIANCE TESTS CONSISTS OF FOLLOWING ITEMS 3.2. COMOSAR E-FIELD PROBE	8 8
3.4. VIDEO POSITIONING SYSTEM 3.5. DEVICE HOLDER 3.6. SAM TWIN PHANTOM	9 10
4. SAR MEASUREMENT PROCEDURE	
4.1. SPECIFIC ABSORPTION RATE (SAR)	12
5. TISSUE SIMULATING LIQUID	15
5.1. THE COMPOSITION OF THE TISSUE SIMULATING LIQUID	15
6. SAR SYSTEM CHECK PROCEDURE	17
6.1. SAR SYSTEM CHECK PROCEDURES	
7. EUT TEST POSITION	20
7.1. Body Worn Position	20
8. SAR EXPOSURE LIMITS	21
9. TEST FACILITY	22
10. TEST EQUIPMENT LIST	23
11. MEASUREMENT UNCERTAINTY	24
12. CONDUCTED POWER MEASUREMENT	27
13. TEST RESULTS	30
13.1. SAR TEST RESULTS SUMMARY	30
APPENDIX A. SAR SYSTEM CHECK DATA	35
APPENDIX B. SAR MEASUREMENT DATA	41
APPENDIX C. TEST SETUP PHOTOGRAPHS	55
APPENDIX D. CALIBRATION DATA	57

Page 5 of 57

1. SUMMARY OF MAXIMUM SAR VALUE

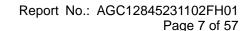
The maximum results of Specific Absorption Rate (SAR) found during testing for EUT are as follows:

	Highest Repor	Highest Reported 1g-SAR(W/kg)			
Frequency Band	Body-worn(witl	Body-worn(with 0mm separation)			
	antenna1	antenna2	— (W/kg)		
2.4 GHz WIFI	0.157	0.141			
5.2 GHz WIFI	0.334	0.326	1.6		
5.8 GHz WIFI	0.294	0.361			
SAR Test Result		PASS			

This device is compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6W/kg) specified in IEEE Std. 1528:2013; FCC 47CFR § 2.1093; IEEE/ANSI C95.1:2005 and the following specific FCC Test Procedures:

- KDB 447498 D01 General RF Exposure Guidance v06
- KDB 865664 D01 SAR Measurement 100MHz to 6GHz v01r04
- KDB 248227 D01 802 11 Wi-Fi SAR v02r02

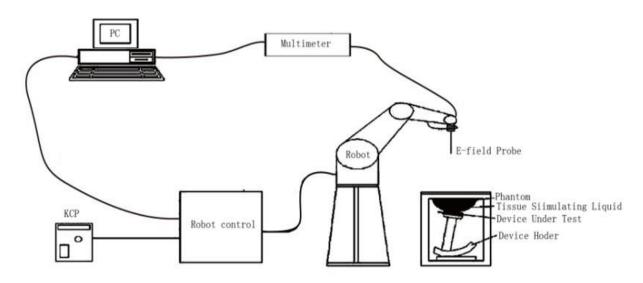
Page 6 of 57


2. GENERAL INFORMATION

2.1. EUT Description

General Information				
Product Designation	FJD Trion P1 LiDAR Scanner			
Test Model	P1			
Hardware Version	V1.4			
Software Version	V1.0.5			
Device Category	Portable			
RF Exposure Environment	Uncontrolled			
Antenna Type	FPC			
2.4GHz WIFI				
Operation Frequency	2412~2462MHz			
Modulation	802.11b:(DQPSK, DBPSK, CCK) DSSS 802.11g/n:(64-QAM,16-QAM, QPSK, BPSK) OFDM 802.11ax:(1024-QAM,256-QAM,64-QAM,16-QAM,QPSK,BPSK)OFDMA			
Max. Average Power (dBm)	antenna 1: 15.33dBm; antenna 2: 15.78dBm; MIMO: 17.28dBm;			
Antenna Gain	-1.61dBi			
5GHz WIFI				
Operation Frequency	5.180 GHz-5.240GHz; 5745MHz-5825MHz			
Modulation	802.11a/n:(64-QAM, 16-QAM, QPSK, BPSK) OFDM 802.11ac :(256-QAM, 64-QAM, 16-QAM, QPSK, BPSK) OFDM 802.11ax:(1024-QAM,256-QAM, 64-QAM, 16-QAM, QPSK, BPSK) OFDMA			
Max. Average EIRP Power (dBm)	antenna 1: 12.88dBm; antenna 2: 12.37dBm; MIMO: 17.28dBm;			
Antenna Gain	2.56dBi			
Power Supply	DC 10.8V, 3A			

Note: 1. The sample used for testing is end product.


2. The test sample has no any deviation to the test method of standard mentioned in page 1.

3. SAR MEASUREMENT SYSTEM

3.1. The SATIMO system used for performing compliance tests consists of following items

The COMOSAR system for performing compliance tests consists of the following items:

- The PC. It controls most of the bench devices and stores measurement data. A computer running WinXP and the Opensar software.
- The E-Field probe. The probe is a 3-axis system made of 3 distinct dipoles. Each dipole returns a voltage in function of the ambient electric field.
- · The Keithley multimeter measures each probe dipole voltages.
- The SAM phantom simulates a human head. The measurement of the electric field is made inside the phantom.
- The liquids simulate the dielectric properties of the human head tissues.
- The network emulator controls the mobile phone under test.
- The validation dipoles are used to measure a reference SAR. They are used to periodically check the bench to make sure that there is no drift of the system characteristics over time.
- •The phantom, the device holder and other accessories according to the targeted measurement.

3.2. COMOSAR E-Field Probe

The SAR measurement is conducted with the dosimetric probe manufactured by SATIMO. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. SATIMO conducts the probe calibration in compliance with international and national standards (e.g. IEEE1528 etc.)Under ISO17025.The calibration data are in Appendix D.

Isotropic E-Field Probe Specification

Model	SSE2	
Manufacture	MVG	
Identification No.	2023-EPGO-414	
Frequency	0.15GHz-7.5GHz Linearity:±0.09dB(0.15GHz-7.5GHz)	
Dynamic Range	0.01W/kg-100W/kg Linearity:±0.09dB	
Dimensions	Overall length:330mm Length of individual dipoles:24.5mm Maximum external diameter:8mm Probe Tip external diameter:2.55mm Distance between dipoles/ probe extremity:12.7mm	
Application	High precision dosimetric measurement (e.g., very strong gradient fields). Only compliance testing for frequencies up 30%.	probe which enables

3.3. Robot

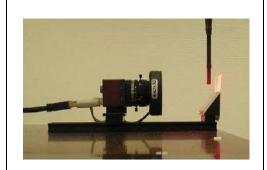
The COMOSAR system uses the KUKA robot from SATIMO SA (France). For the 6-axis controller COMOSAR system, the KUKA robot controller version from SATIMO is used.

The XL robot series have many features that are important for our application:

- ☐ High precision (repeatability 0.02 mm)
- ☐ High reliability (industrial design)
- ☐ Jerk-free straight movements
- ☐ Low ELF interference (the closed metallic

construction shields against motor control fields)

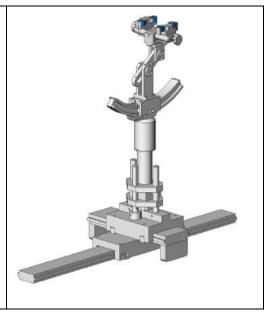
□ 6-axis controller



3.4. Video Positioning System

The video positioning system is used in OpenSAR to check the probe. Which is composed of a camera, LED, mirror and mechanical parts. The camera is piloted by the main computer with firewire link. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.

The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.



3.5. Device Holder

The COMOSAR device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles. The COMOSAR device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity

 $\epsilon r=3$ and loss tangent $\delta=0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Page 10 of 57

3.6. SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

□ Left head

☐ Right head

☐ Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

Report No.: AGC12845231102FH01 Page 11 of 57

4. SAR MEASUREMENT PROCEDURE

4.1. Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and occupational/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element(dv) of given mass density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg) SAR can be obtained using either of the following equations:

$$SAR = \frac{\sigma E^2}{\rho}$$

$$SAR = c_h \frac{dT}{dt}\Big|_{t=0}$$

Where

SAR is the specific absorption rate in watts per kilogram;
E is the r.m.s. value of the electric field strength in the tissue in volts per meter;

σ is the conductivity of the tissue in siemens per metre;
 ρ is the density of the tissue in kilograms per cubic metre;

c_h is the heat capacity of the tissue in joules per kilogram and Kelvin;

 $\frac{dT}{dt}$ | t = 0 is the initial time derivative of temperature in the tissue in kelvins per second

Page 12 of 57

4.2. SAR Measurement Procedure

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurement are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface is 2.7mm This distance cannot be smaller than the distance os sensor calibration points to probe tip as `defined in the probe properties,

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in SATIMO software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in db) is specified in the standards for compliance testing. For example, a 2db range is required in IEEE Standard 1528 standards, whereby 3db is a requirement when compliance is assessed in accordance with the ARIB standard (Japan) If one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximum are detected, the number of Zoom Scan has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100MHz to 6GHz

	≤ 3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	½·δ·ln(2) ± 0.5 mm	
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°	
	≤2 GHz: ≤15 mm 2 – 3 GHz: ≤12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm	
Maximum area scan spatial resolution: Δx _{Area} , Δy _{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the abothe measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device.		

Step 3: Zoom Scan

Zoom Scan are used to assess the peak spatial SAR value within a cubic average volume containing 1g abd 10g of simulated tissue. The Zoom Scan measures points(refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1g and 10g and displays these values next to the job's label.

Page 13 of 57

Zoom Scan Parameters extracted from KDB865664 d01 SAR Measurement 100MHz to 6GHz

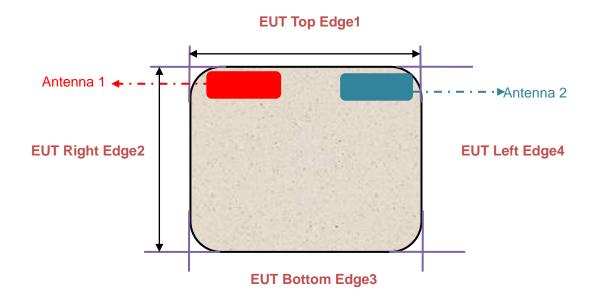
Maximum zoom scan s	patial reso	lution: Δx _{Zoom} , Δy _{Zoom}	≤ 2 GHz: ≤ 8 mm 2 – 3 GHz: ≤ 5 mm*	3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*
Maximum zoom scan spatial resolution, normal to phantom surface	uniform grid: $\Delta z_{Zoom}(n)$		≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm
	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
	grid $\Delta z_{Zoom}(n>1)$: between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$		
Minimum zoom scan volume	m zoom scan x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

Step 4: Power Drift Measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the same settings. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

^{*} When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.



4.3. RF Exposure Conditions

Test Configuration and setting:

The device is a FJD Trion P1 LiDAR Scanner which support 2.4GHz & 5G Wifi; And share one antenna. For SAR testing, the EUT is configured with the WLAN continuous TX tool through qualcomm software.

Antenna Location: (the back view)

Page 15 of 57

5. TISSUE SIMULATING LIQUID

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15cm. For head SAR testing the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15cm For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in 5.2

5.1. The composition of the tissue simulating liquid

Ingredient (% Weight) requency MHz)	Water	Nacl	Polysorbate 20	DGBE	1,2- Propanediol	Triton X-100	Diethylen glycol monohex ylether
2450 Head	71.88	0.16	0.0	7.99	0.0	19.97	0.0
5000 Head	65.52	0.0	0.0	0.0	0.0	17.24	17.24

5.2. Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in IEEE 1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in IEEE 1528.

Target Frequency	h	ead	b	oody
(MHz)	εr	σ (S/m)	εr	σ (S/m)
300	45.3	0.87	45.3	0.87
450	43.5	0.87	43.5	0.87
835	41.5	0.90	41.5	0.90
900	41.5	0.97	41.5	0.97
1450	40.5	1.20	40.5	1.20
1800 – 2000	40.0	1.40	40.0	1.40
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	38.5	2.40
5200	36.0	4.66	49.0	5.30
5300	35.9	4.76	48.9	5.42
5600	35.5	5.07	48.5	5.77
5800	35.3	5.27	48.2	6.00

($\epsilon r = relative permittivity$, $\sigma = conductivity and <math>\rho = 1000 \text{ kg/m3}$)

Page 16 of 57

5.3. Tissue Calibration Result

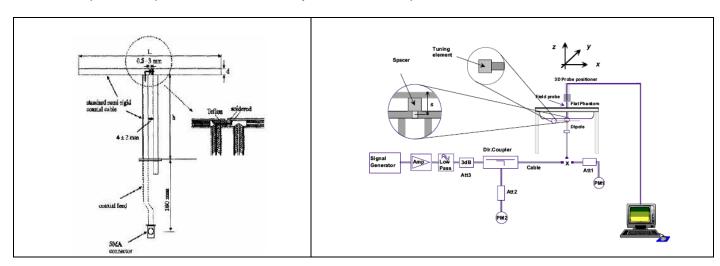
The dielectric parameters of the liquids were verified prior to the SAR evaluation using SATIMO Dielectric Probe Kit and R&S Network Analyzer ZVL6.

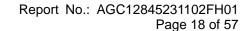
210.001.101	Tissue Stimulant Measurement for 2450MHz								
	Fr.	Dielectric Par	ameters (±5%)	Tissue					
	(MHz)	εr 39.2(37.24-41.16)	δ[s/m] 1.80(1.71-1.89)	Temp [°C]	Test time				
Head	2412	40.91	1.81						
	2437	40.32	1.82	19.9	Jan. 02,				
	2450	38.99	1.83	19.9	2024				
	2462	38.66	1.87						

	Tissue Stimulant Measurement for 5200MHz								
	Fr.	Dielectric Parameters (±5%)							
Lload	(MHz)	εr 36(34.2-37.8)	δ[s/m] 4.66(4.43-4.89)	Temp [°C]	Test time				
Head	5180	37.69	4.61		L				
	5200	36.17	4.63	20.9	Jan. 03, 2024				
	5240	35.19	4.67		2024				

	Tissue Stimulant Measurement for 5800MHz											
	Fr.	Dielectric Par	Tissue									
	(MHz)	εr 35.3(33.535-37.065)	δ[s/m] 5.27(5.0065-5.5335)	Temp [°C]	Test time							
Head	5745	36.91	5.16									
	5785	36.62	5.19	21.1	Jan. 04,							
	5800	36.37	5.21	21.1	2024							
	5825	35.61	5.23									

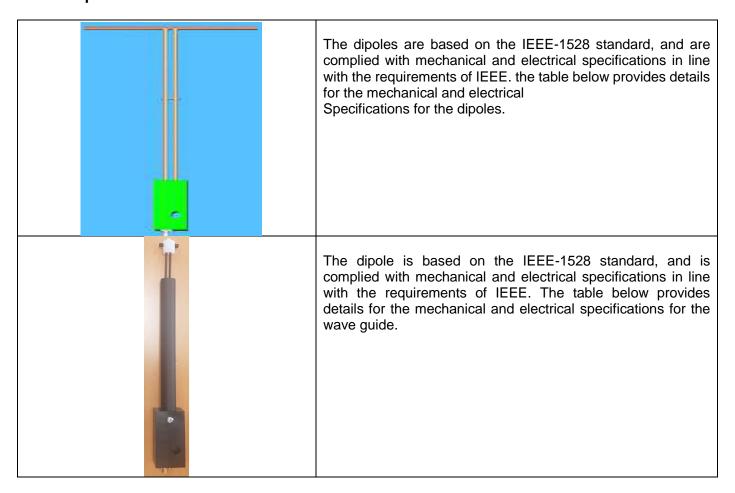
Page 17 of 57


6. SAR SYSTEM CHECK PROCEDURE


6.1. SAR System Check Procedures

SAR system check is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are remeasured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

Each SATIMO system is equipped with one or more system check kits. These units, together with the predefined measurement procedures within the SATIMO software, enable the user to conduct the system check and system validation. System kit includes a dipole, and dipole device holder.


The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system check setup is shown as below.

6.2. SAR System Check 6.2.1. Dipoles

Frequency	L (mm)	h (mm)	d (mm)
2450MHz	51.5	30.4	3.6
5000MHz	20.6	40.3	3.6

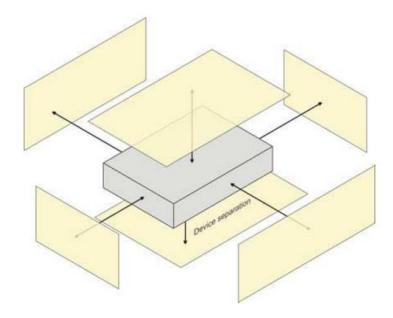
Page 19 of 57

6.2.2. System Check Result

System Per	System Performance Check at 2450MHz & 5200-5800MHz for Head												
Validation Kit: SN 29/15 DIP 2G450-393 & SN 17/22 DIP 5G000-671													
Frequency		get (W/kg)				Reference Result (± 10%)		alized (W/kg)	Tissue Temp.	Test time			
[MHz]	1g	10g	1g	10g	1g	10g	[°Cj						
2450	54.32	24.25	48.888-59.752	21.825-26.675	54.17	24.33	19.9	Jan. 02, 2024					
5200	73.43	21.83	66.087-80.773	19.647-24.013	73.82	21.49	20.9	Jan. 03, 2024					
5800	75.69	22.44	68.121-83.259	20.196-24.684	80.17	22.83	21.1	Jan. 04, 2024					

Note:

(1) We use a CW signal of 18dBm for system check, and then all SAR values are normalized to 1W forward power. The result must be within $\pm 10\%$ of target value


Page 20 of 57

7. EUT TEST POSITION

This EUT was tested in Edge1(Top).

7.1. Body Worn Position

- (1) To position the EUT parallel to the phantom surface.
- (2) To adjust the EUT parallel to the flat phantom.
- (3) To adjust the distance between the EUT surface and the flat phantom to 0mm.

Page 21 of 57

8. SAR EXPOSURE LIMITS

Limits for General Population/Uncontrolled Exposure (W/kg)

	3111-37
Type Exposure	Uncontrolled Environment Limit (W/kg)
Spatial Peak SAR (1 g cube tissue for brain or body)	1.60
Spatial Average SAR (Whole body)	0.08
Spatial Peak SAR (Limbs)	4.0

Page 22 of 57

9. TEST FACILITY

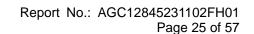
Test Site	Attestation of Global Compliance (Shenzhen) Co., Ltd
Location	1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Designation Number	CN1259
FCC Test Firm Registration Number	975832
A2LA Cert. No.	5054.02
Description	Attestation of Global Compliance(Shenzhen) Co., Ltd is accredited by A2LA

Page 23 of 57

10. TEST EQUIPMENT LIST

Equipment description	Manufacturer/ Model	Identification No.	Software version	Current calibration date	Next calibration date
SAR Probe	MVG	2023-EPGO-414	N/A	May 31, 2023	May 30, 2024
Phantom	SATIMO	SN_4511_SAM90	N/A	Validated. No cal required.	Validated. No cal required.
Liquid	SATIMO	N/A	N/A	Validated. No cal required.	Validated. No cal required.
Multimeter	Keithley 2000	1350784	N/A	Jun. 02, 2023	Jun. 01, 2024
SAR Software	SATIMO-OpenSAR	N/A	OpenSAR V4_02_32	N/A	N/A
Dipole	SATIMO SID2450	SN 29/15 DIP 2G450-393	N/A	Apr. 28,2022	Apr. 27,2025
Dipole	SID5000	SN 17/22 DIP 5G000-671	N/A	Apr. 28,2022	Apr. 27, 2025
Signal Generator	Agilent-E4438C	US41461365	V5.03	Jun. 01, 2023	May 31, 2024
EXA Signal Analyzer	Agilent / N9010A	MY53470504	N/A	Jun. 01, 2023	May 31, 2024
Network Analyzer	Rhode & Schwarz ZVL6	SN101443	3.2	Sep. 21, 2023	Sep. 20, 2024
Attenuator	Warison /WATT-6SR1211	S/N:WRJ34AYM2F1	N/A	June 07,2023	June 06,2024
Attenuator	Mini-circuits / VAT-10+	31405	N/A	June 07,2023	June 06,2024
Amplifier	AS0104-55_55	1004793	N/A	N/A	N/A
Directional Couple	Werlatone/ C5571-10	SN99463	N/A	Mar. 10,2022	Mar. 09,2024
Directional Couple	Werlatone/ C6026-10	SN99482	N/A	Mar. 10,2022	Mar. 09,2024
Power Sensor	NRP-Z21	1137.6000.02	N/A	Sep. 05, 2023	Sep. 04, 2024
Power Sensor	NRP-Z23	100323	N/A	Feb. 15,2023	Feb. 14,2024
Power Viewer	R&S	V2.3.1.0		N/A	N/A
Calibration standard parts for network sub - port	R&S/ ZV-Z132	N/A	V2.3.1.0	Nov. 11, 2023	Nov. 10, 2024

Note: Per KDB 865664 Dipole SAR Validation, AGC Lab has adopted 3 years calibration intervals. On annual basis, every measurement dipole has been evaluated and is in compliance with the following criteria:


- 1. There is no physical damage on the dipole;
- 2. System validation with specific dipole is within 10% of calibrated value;
- 3. Return-loss is within 20% of calibrated measurement;
- 4. Impedance is within 5Ω of calibrated measurement.

Page 24 of 57

11. MEASUREMENT UNCERTAINTY

11. MEASUREMENT UNCERTAINTY SATIMO Uncertainty- 2023-EPGO-414										
M	ه easurement ر					10 gram.				
Uncertainty Component	Sec.	Tol (+- %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+-%)	10g Ui (+-%)	vi	
Measurement System		(1 70)	_ Diot.	ı			(1 70)	(1 70)	1	
Probe calibration	E.2.1	7.000	N	1	1	1	7.000	7.000	∞	
Axial Isotropy	E.2.2	1.695	R	1.732	0.707	0.707	0.692	0.692	∞	
Hemispherical Isotropy	E.2.2	1.695	R	1.732	0.707	0.707	0.692	0.692	∞	
Boundary effect	E.2.3	1.000	R	1.732	1	1	0.577	0.577	∞	
Linearity	E.2.4	2.250	R	1.732	1	1	1.299	1.299	∞	
System detection limits	E.2.4	1.000	R	1.732	1	1	0.577	0.577	∞	
Modulation response	E2.5	3.000	R	1.732	1	1	1.732	1.732	∞	
Readout Electronics	E.2.6	0.021	N	1	1	1	0.021	0.021	∞	
Response Time	E.2.7	0.000	R	1.732	1	1	0.000	0.000	∞	
Integration Time	E.2.8	1.400	R	1.732	1	1	0.808	0.808	∞	
RF ambient conditions-Noise	E.6.1	3.000	R	1.732	1	1	1.732	1.732	∞	
RF ambient conditions-reflections	E.6.1	3.000	R	1.732	1	1	1.732	1.732	∞	
Probe positioner mechanical tolerance	E.6.2	1.400	R	1.732	1	1	0.808	0.808	∞	
Probe positioning with respect to phantom shell	E.6.3	1.400	R	1.732	1	1	0.808	0.808	∞	
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	2.300	R	1.732	1	1	1.328	1.328	∞	
Test sample Related										
Test sample positioning	E.4.2	2.6	N	1	1	1	2.60	2.60	∞	
Device holder uncertainty	E.4.1	3	N	1	1	1	3.00	3.00	∞	
Output power variation—SAR drift measurement	E.2.9	5	R	1.732	1	1	2.89	2.89	8	
SAR scaling	E.6.5	5	R	1.732	1	1	2.89	2.89	8	
Phantom and tissue parameter	's									
Phantom shell uncertainty—shape, thickness, and permittivity	E.3.1	4	R	1.732	1	1	2.309	2.309	8	
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	1	1	0.84	1.900	1.596	∞	
Liquid conductivity measurement	E.3.3	4	N	1	0.78	0.71	3.120	2.840	М	
Liquid permittivity measurement	E.3.3	5	N	1	0.23	0.26	1.150	1.300	М	
Liquid conductivity—temperature uncertainty	E.3.4	2.5	R	1.732	0.78	0.71	1.126	1.025	∞	
Liquid permittivity—temperature uncertainty	E.3.4	2.5	R	1.732	0.23	0.26	0.332	0.375	∞	
Combined Standard Uncertainty			RSS				10.616	10.432		
Expanded Uncertainty (95% Confidence interval)			K=2				21.232	20.865		

•		SATIMO Uno				- / 40						
System	System Validation uncertainty for DUT averaged over 1 gram / 10 gram. Tol Prob. Div. Ci (10) Ci (10) 1g Ui 10g Ui vi											
Uncertainty Component	Sec.	(+- %)	Dist.	Div.	Ci (1g)	Ci (10g)	(+-%)	(+-%)	Vİ			
Measurement System												
Probe calibration	E.2.1	7.000	N	1	1	1	7.000	7.000	∞			
Axial Isotropy	E.2.2	1.695	R	1.732	1.000	1.000	0.979	0.979	8			
Hemispherical Isotropy	E.2.2	1.695	R	1.732	0.000	0.000	0.000	0.000	8			
Boundary effect	E.2.3	1.000	R	1.732	1.000	1.000	0.577	0.577	8			
Linearity	E.2.4	2.250	R	1.732	1.000	1.000	1.299	1.299	8			
System detection limits	E.2.4	1.000	R	1.732	1.000	1.000	0.577	0.577	∞			
Modulation response	E2.5	3.000	R	1.732	0.000	0.000	0.000	0.000	∞			
Readout Electronics	E.2.6	0.021	N	1.000	1.000	1.000	0.021	0.021	∞			
Response Time	E.2.7	0.000	R	1.732	0.000	0.000	0.000	0.000	∞			
Integration Time	E.2.8	1.400	R	1.732	0.000	0.000	0.000	0.000	∞			
RF ambient conditions-Noise	E.6.1	3.000	R	1.732	1.000	1.000	1.732	1.732	∞			
RF ambient conditions-reflections	E.6.1	3.000	R	1.732	1.000	1.000	1.732	1.732	∞			
Probe positioner mechanical tolerance	E.6.2	1.400	R	1.732	1.000	1.000	0.808	0.808	∞			
Probe positioning with respect to phantom shell	E.6.3	1.400	R	1.732	1.000	1.000	0.808	0.808	8			
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	2.300	R	1.732	1.000	1.000	1.328	1.328	8			
System validation source												
Deviation of experimental dipole from numerical dipole	E.6.4	5	N	1	1	1	5	5	∞			
Input power and SAR drift measurement	8,6.6.4	5	R	1.732	1	1	2.887	2.887	8			
Dipole axis to liquid distance	8,E.6.6	2	R	1.732	1	1	1.155	1.155	∞			
Phantom and set-up												
Phantom shell uncertainty—shape, thickness, and permittivity	E.3.1	4	R	1.732	1	1	2.309	2.309	∞			
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	1	1	0.84	1.9	1.596	∞			
Liquid conductivity (temperature uncertainty)	E.3.3	4	N	1	0.78	0.71	3.12	2.84	∞			
Liquid conductivity (measured)	E.3.3	5	N	1	0.23	0.26	1.15	1.3	М			
Liquid permittivity (temperature uncertainty)	E.3.4	2.5	R	1.732	0.78	0.71	1.126	1.025	×			
Liquid permittivity (measured)	E.3.4	2.5	R	1.732	0.23	0.26	0.332	0.375	М			
Combined Standard Uncertainty			RSS				10.572	10.387				
Expanded Uncertainty (95% Confidence interval)			K=2				21.143	20.775				

	S	SATIMO Und	certainty-	2023-EPG	O-414						
System Check uncertainty for DUT averaged over 1 gram / 10 gram.											
Uncertainty Component	Sec.	Tol (+- %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+-%)	10g Ui (+-%)	vi		
Measurement System											
Probe calibration drift	E.2.1.3	0.5	N	1	1	1	0.5	0.5	∞		
Axial Isotropy	E.2.2	1.695	R	√3	0	0	0	0	∞		
Hemispherical Isotropy	E.2.2	1.695	R	√3	0	0	0	0	∞		
Boundary effect	E.2.3	1.000	R	$\sqrt{3}$	0	0	0	0	∞		
Linearity	E.2.4	2.250	R	√3	0	0	0	0	∞		
System detection limits	E.2.4	1	R	√3	0	0	0	0	∞		
Modulation response	E2.5	3	R	√3	0	0	0	0	∞		
Readout Electronics	E.2.6	0.021	N	√3	0	0	0	0	∞		
Response Time	E.2.7	0	R	√3	0	0	0	0	∞		
Integration Time	E.2.8	1.4	R	√3	0	0	0	0	∞		
RF ambient conditions-Noise	E.6.1	3	R	√3	0	0	0	0	∞		
RF ambient	E.6.1	3	R	√3	0	0	0	0	∞		
Probe positioner mechanical	E.6.2	1.4	R	√3	1	1	0.81	0.81	∞		
tolerance Probe positioning with respect							0.0.	0.0.			
to phantom shell	E.6.3	1.4	R	√3	1	1	0.81	0.81	∞		
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	2.3	R	√3	0	0	0	0.00	8		
System check source (dipole)											
Deviation of experimental dipoles	E.6.4	2	N	1	1	1	2	2	∞		
Input power and SAR drift measurement	8,6.6.4	5	R	√3	1	1	2.89	2.89	∞		
Dipole axis to liquid distance	8,E.6.6	2	R	$\sqrt{3}$	1	1	1.15	1.15	∞		
Phantom and tissue parameter	'S					I			ı		
Phantom shell uncertainty—shape, thickness, and permittivity	E.3.1	4	R	√3	1	1	2.31	2.31	∞		
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	1.000	1	0.84	1.90	1.60	∞		
Liquid conductivity measurement	E.3.3	4	N	1.000	0.78	0.71	3.12	2.84	∞		
Liquid permittivity measurement	E.3.3	5	N	1.000	0.23	0.26	1.15	1.30	М		
Liquid conductivity—temperature uncertainty	E.3.4	2.5	R	√3	0.78	0.71	1.13	1.02	∞		
Liquid permittivity—temperature uncertainty	E.3.4	2.5	R	√3	0.23	0.26	0.33	0.38	М		
Combined Standard Uncertainty			RSS				5.562	5.203			
Expanded Uncertainty (95% Confidence interval)			K=2				11.124	10.406			

Page 27 of 57

12. CONDUCTED POWER MEASUREMENT

2.4GHz WIFI- antenna 1

Mode	Data Rate (Mbps)	Channel	Frequency(MHz)	Average Power (dBm)
		1	2412	13.89
802.11b	1	6	2437	13.23
		11	2462	13.01
		1	2412	15.33
802.11g 6	6	6	2437	14.69
		11	2462	14.47
		1	2412	14.28
802.11n20	MCS0	6	2437	13.56
		11	2462	13.69
		1	2412	13.89
802.11ax20	MCS0	6	2437	13.23
		11	2462	13.01

2.4GHz WIFI- antenna 2

Mode	Data Rate (Mbps)	Channel	Frequency(MHz)	Average Power (dBm)
		1	2412	15.71
802.11b	1	6	2437	15.72
		11	2462	15.78
802.11g 6		1	2412	13.96
	6	6	2437	13.78
		11	2462	13.55
		1	2412	14.26
802.11n20	MCS0	6	2437	14.18
		11	2462	13.89
802.11ax20		1	2412	13.59
	MCS0	6	2437	13.52
		11	2462	13.29

2.4GHz WIFI- MIMO

Mode	Data Rate (Mbps)	Channel	Frequency(MHz)	Average Power (dBm)
		1	2412	17.28
802.11n20	MCS0	6	2437	16.89
		11	2462	16.80
		1	2412	16.75
802.11ax20	(20 MCS0	6	2437	16.39
		11	2462	16.16

Page 28 of 57

5GHz WIFI

Dond Page 1	Mada	Channal	Francisco (MIII-)	Average EIRP Power (dBm			
Band	Mode	Channel	Frequency (MHz)	Antenna 1	Antenna2	MIMO	
		36	5180	12.88	12.37	N/A	
	802.11a20	40	5200	12.51	12.04	N/A	
		48	5240	12.09	11.58	N/A	
		36	5180	12.58	12.26	15.43	
	802.11n20	40	5200	12.57	11.92	15.27	
		48	5240	12.06	11.18	14.65	
	802.11n40	38	5190	11.83	11.95	14.90	
		46	5230	11.41	11.48	14.46	
	802.11ac20	36	5180	11.43	11.29	14.37	
5200		40	5200	11.12	11.18	14.16	
3200		48	5240	10.75	10.30	13.54	
	802.11ac40	38	5190	10.26	9.79	13.04	
	002.11ac40	46	5230	9.78	9.31	12.56	
	802.11ac80	42	5210	9.82	9.42	12.63	
		36	5180	10.22	10.10	13.17	
	802.11ax20	40	5200	9.91	10.00	12.97	
		48	5240	9.39	9.56	12.49	
[802.11ax40	38	5190	9.30	9.43	12.38	
	002.118X4U	46	5230	8.85	8.82	11.85	
	802.11ax80	42	5210	8.69	8.76	11.74	

Page 29 of 57

Donal	Mode	Channel	F(N411-)	Average EIRP Power (dBm)			
Band		Channel	Frequency (MHz)	Antenna 1	Antenna2	MIMO	
		149	5745	11.12	11.43	N/A	
	802.11a20	157	5785	10.74	11.18	N/A	
		165	5825	10.16	10.52	N/A	
		149	5745	10.51	10.70	13.62	
	802.11n20	157	5785	10.19	10.31	13.26	
		165	5825	9.58	10.19	12.91	
	802.11n40	151	5755	10.16	10.33	13.26	
		159	5795	9.89	9.86	12.89	
	802.11ac20	149	5745	10.20	10.24	13.23	
5800		157	5785	9.89	9.97	12.94	
0000		165	5825	9.17	9.27	12.23	
	802.11ac40	151	5755	8.46	8.58	11.53	
		159	5795	8.08	8.05	11.08	
	802.11ac80	155	5775	8.08	8.04	11.07	
		149	5745	9.63	9.85	12.75	
	802.11ax20	157	5785	9.22	9.41	12.33	
		165	5825	8.78	8.87	11.84	
	802.11ax40	151	5755	8.37	8.53	11.46	
	002.118X40	159	5795	7.84	7.95	10.91	
	802.11ax80	155	5775	7.69	7.69	10.70	

Page 30 of 57

13. TEST RESULTS

13.1. SAR Test Results Summary 13.1.1. Test position and configuration

- 1. The EUT is a FJD Trion P1 LiDAR Scanner. According to customer requirements, Lab use the head liquid with a separation of 0mm at flat phantom to test the Edge1 closest to the antenna;
- 3. For SAR testing, the device was controlled by software to test at reference fixed frequency points.

13.1.2. Operation Mode

- 1. Per KDB 447498 D01 v06 ,for each exposure position, if the highest 1-g SAR is \leq 0.8 W/kg, testing for low and high channel is optional.
- 2. Per KDB 865664 D01 v01r04,for each frequency band, if the measured SAR is ≥0.8W/kg, testing for repeated SAR measurement is required, that the highest measured SAR is only to be tested. When the SAR results are near the limit, the following procedures are required for each device to verify these types of SAR measurement related variation concerns by repeating the highest measured SAR configuration in each frequency band.
 - (1) When the original highest measured SAR is ≥0.8W/kg, repeat that measurement once.
 - (2) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is >1.20 or when the original or repeated measurement is ≥1.45 W/kg.
 - (3) Perform a third repeated measurement only if the original, first and second repeated measurement is ≥1.5 W/kg and ratio of largest to smallest SAR for the original, first and second measurement is ≥ 1.20.
- 3. Per KDB 248227 D01 v02r02 Chapter 5.2.2,when SAR measurement is required for 2.4GHz 802.11g/n OFDM configurations, the measurement and test reducing procedures for OFDM are applied. SAR is not required for the following 2.4 GHz OFDM conditions.
 - (1) When KDB Publication 447498 D01 SAR test exclusion applies to the OFDM configuration.
 - (2) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is≤1.2 W/kg,
- 4. Per KDB 248227 D01 v02r02 Chapter 5.3.4, SAR measurement requirements for the remaining 802.11 transmission mode configurations that have not been tested in the initial test configuration are determined separately for each standalone and aggregated frequency band, in each exposure condition, according to the maximum output power specified for production units. The initial test position procedure is applied to next to the ear, UMPC mini-tablet and hotspot mode configurations. When the same maximum output power is specified for multiple transmission modes, the procedures in 5.3.2 are applied to determine the test configuration. Additional power measurements may be required to determine if SAR measurements are required for subsequent highest output power channels in a subsequent test configuration. The subsequent test configuration and SAR measurement procedures are described in the following.
 - (1) When SAR test exclusion provisions of KDB Publication 447498 D01 are applicable and SAR measurement is not required for the initial test configuration, SAR is also not required for the next highest maximum output power transmission mode subsequent test configuration(s) in that frequency band or aggregated band and exposure configuration.
 - (2) When the highest reported SAR for the initial test configuration (when applicable, include subsequent highest output channels), according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test configuration specified

Page 31 of 57

maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that subsequent test configuration.

- (3) When the specified maximum output power is same for both UNII 1 and UNII 2A,begin SAR measuremengs in UNII 2A with the channel with the highest measured output power. If the report SAR for UNII 2A is <1.2W/kg,SAR is nor required for UNII 1;otherwise treat the remaining bands separately and test them independently for SAR.
- (4) When the specified maximum output power different between UNII 1 and UNII 2A,begin SAR with the band that has the higher specified maximum output. If the highest reported SAR for the band with the highest specified power is ≤1.2W/kg,testing for the band with the lower specicied output power is not required;otherwise test is remaining separately for SAR;
- 5. Maximum Scaling SAR in order to calculate the Maximum SAR values to test under the standard Peak Power, Calculation method is as follows: Maximum Scaling SAR =tested SAR (Max.) ×[maximum turn-up power (mw)/ maximum measurement output power(mw)]

Page 32 of 57

13.1.3. SAR Test Results Summary

SAR MEASUREMENT									
Depth of Liquid (cm):	Rela	Relative Humidity (%): 48.7							
Product: FJD Trion P	1 LiDAR Sca	anner							
Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±5%)	SAR (1g) (W/kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/kg)	Limit W/kg
Test Mode: 2.4GHz-802.11b-antenna1									
Edge 1 (Top)	DTS	1	2412	-0.12	0.122	14.00	13.89	0.125	1.6
Edge 1 (Top)	DTS	6	2437	0.16	0.115	14.00	13.23	0.137	1.6
Edge 1 (Top)	DTS	11	2462	-0.33	0.125	14.00	13.01	0.157	1.6
Test Mode: 2.4GHz-802.11b-antenna2									
Edge 1 (Top)	DTS	1	2412	0.18	0.129	16.00	15.71	0.138	1.6
Edge 1 (Top)	DTS	6	2437	-0.26	0.132	16.00	15.72	0.141	1.6
Edge 1 (Top)	DTS	11	2462	0.17	0.128	16.00	15.78	0.135	1.6

Note:

- When the 1-g SAR is ≤ 0.8W/kg, testing for low and high channel is optional.
- The test separation of all above table(body part) is 0mm.
- Plots are only shown for the bold markered worst case SAR results.

Page 33 of 57

SAR MEASURE	MENT							
Depth of Liquid (c	Relative Humidity (%): 58.2							
Product: FJD Tric	n P1 LiDAR So	canner						
Position	Ch.	Fr. (MHz)	Power Drift (<±5%)	SAR (1g) (W/kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/kg)	Limit (W/kg)
Test Mode: 5.2Gl	Hz-802.11a20-	antenna1						
Edge 1 (Top)	36	5180	-0.35	0.257	13.00	12.88	0.264	1.6
Edge 1 (Top)	40	5200	-0.28	0.248	13.00	12.51	0.278	1.6
Edge 1 (Top)	48	5240	0.16	0.271	13.00	12.09	0.334	1.6
Test Mode: 5.2Gl		antenna2						
Edge 1 (Top)	36	5180	-0.36	0.253	12.50	12.37	0.261	1.6
Edge 1 (Top)	40	5200	0.20	0.256	12.50	12.04	0.285	1.6
Edge 1 (Top)	48	5240	-0.12	0.264	12.50	11.58	0.326	1.6

Note:

- When the 1-g SAR is \leq 0.8W/kg, testing for low and high channel is optional.
- The test separation of all above table(body part) is 0mm.
- Plots are only shown for the bold markered worst case SAR results

Page 34 of 57

SAR MEASURE	MENT							
Depth of Liquid (d	Relative Hur	Relative Humidity (%): 59.4						
Product: FJD Tric	on P1 LiDAR So	canner						
Position	Ch.	Fr. (MHz)	Power Drift (<±5%)	SAR (1g) (W/kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/kg)	Limit (W/kg)
Test Mode: 5.8GHz-802.11a20-antenna 1								
Edge 1 (Top)	149	5745	-0.38	0.226	11.50	11.12	0.247	1.6
Edge 1 (Top)	157	5785	-0.09	0.217	11.50	10.74	0.258	1.6
Edge 1 (Top)	165	5825	0.01	0.216	11.50	10.16	0.294	1.6
Test Mode: 5.8Gl	Hz-802.11a20-	antenna 2						
Edge 1 (Top)	149	5745	-0.06	0.277	11.50	11.43	0.282	1.6
Edge 1 (Top)	157	5785	-0.15	0.275	11.50	11.18	0.296	1.6
Edge 1 (Top)	165	5825	0.24	0.288	11.50	10.52	0.361	1.6

Note:

- When the 1-g SAR is \leq 0.8W/kg, testing for low and high channel is optional.
- The test separation of all above table(body part) is 0mm.
- Plots are only shown for the bold markered worst case SAR results

Page 35 of 57

APPENDIX A. SAR SYSTEM CHECK DATA

Test Laboratory: AGC Lab Date: Jan. 02, 2024

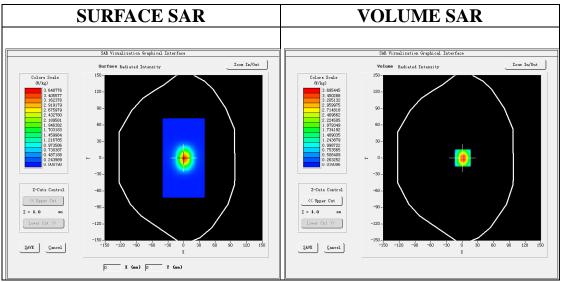
System Check Head 2450 MHz DUT: Dipole 2450 MHz Type: SID 2450

Communication System: CW; Communication System Band: D2450 (2450.0 MHz); Duty Cycle: 1:1; Conv.F=2.29 Frequency: 2450 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.83$ mho/m; $\epsilon r = 38.99$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

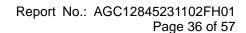
Ambient temperature (°C): 20.3, Liquid temperature (°C): 19.9

SATIMO Configuration:

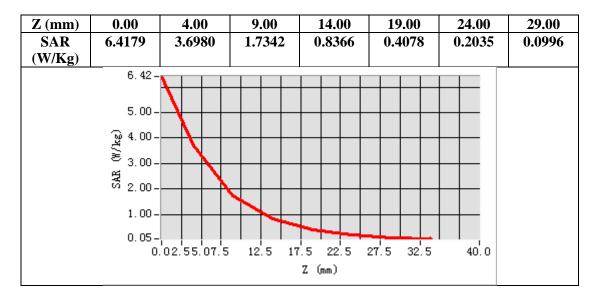

Probe: SSE2; Calibrated: May 31, 2023; Serial No.: 2023-EPGO-414

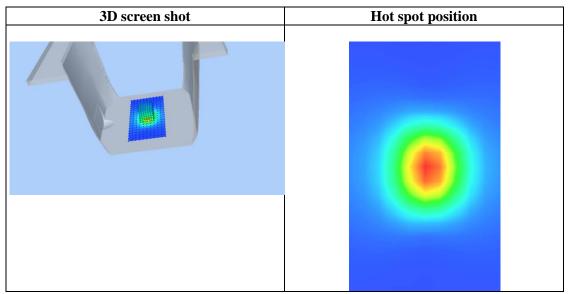
• Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM twin phantom


• Measurement SW: OpenSAR V4_02_35

Configuration/System Check 2450 MHz Head/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 2450 MHz Head/Zoom Scan: Measurement grid: dx=5mm,dy=5mm, dz=5mm




Maximum location: X=1.00, Y=0.00 SAR Peak: 6.40 W/kg

SAR 10g (W/Kg)	1.534887
SAR 1g (W/Kg)	3.417593

Date: Jan. 03, 2024

Page 37 of 57

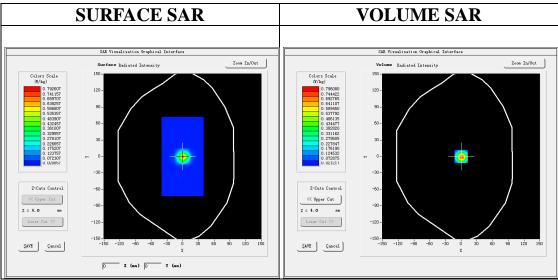
Test Laboratory: AGC Lab System Check Head 5200 MHz DUT: Dipole 5000MHz Type: SID5000

Communication System: CW; Communication System Band: D5000 (5000.0 MHz); Duty Cycle: 1:1; Conv.F=1.35 Frequency: 5200 MHz; Medium parameters used: f = 5200 MHz; $\sigma = 4.63$ mho/m; $\epsilon r = 36.17$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

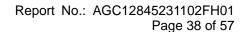
Ambient temperature (°C): 21.2, Liquid temperature (°C): 20.9

SATIMO Configuration:

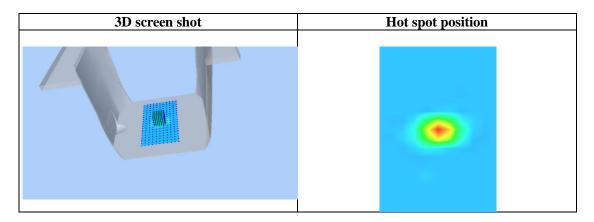

Probe: SSE2; Calibrated: May 31, 2023; Serial No.: 2023-EPGO-414

• Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom


• Measurement SW: OpenSAR V4_02_35

Configuration/System Check 5200 MHz Head/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 5200 MHz Head/Zoom Scan: Measurement grid: dx=4mm,dy=4mm, dz=2mm


Maximum location: X=0.00, Y=0.00 SAR Peak: 2.23 W/kg

SAR 10g (W/Kg)	0.214934
SAR 1g (W/Kg)	0.738241

Z	0.00	4.00	6.00	8.00	10.00	12.00	14.00	16.00	18.00	20.00	22.00	24.00
(mm)												
	2.2593	0.7982	0.3997	0.1813	0.0837	0.0361	0.0271	0.0213	0.0234	0.0234	0.0234	0.0234
(W/K												
g)												
		2.3-	\									
		2.0-	\rightarrow			\vdash	+					
		1.5·	N									
		동 1.0-	1									
		A. 1.0.		V								
		0.5										
					1	L						
		0.0		4 6		0 12	14 16	10 00	22 :	24 06		
			0 2	4 6	8 1			18 20	J 22 1	24 26		
						Z (nm)					

Date: Jan. 04, 2024

Page 39 of 57

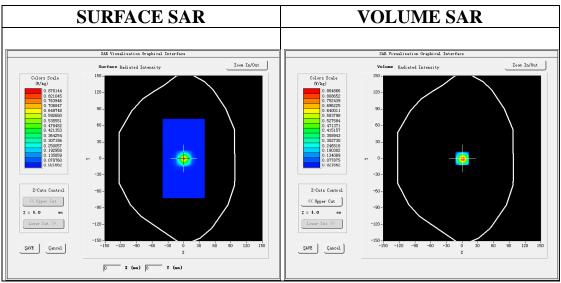
Test Laboratory: AGC Lab System Check Head 5800 MHz DUT: Dipole 5000MHz Type: SID5000

Communication System: CW; Communication System Band: D5000 (5000.0 MHz); Duty Cycle: 1:1; Conv.F=1.41 Frequency: 5800 MHz; Medium parameters used: f = 5800 MHz; $\sigma = 5.21$ mho/m; $\epsilon r = 36.37$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

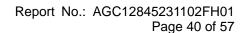
Ambient temperature (°C): 21.3, Liquid temperature (°C): 21.1

SATIMO Configuration:

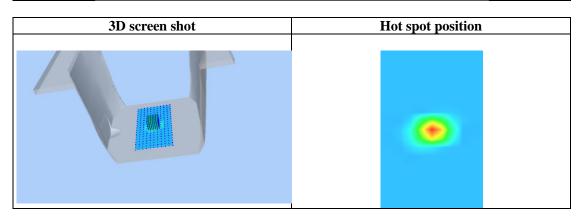

Probe: SSE2; Calibrated: May 31, 2023; Serial No.: 2023-EPGO-414

• Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom


• Measurement SW: OpenSAR V4_02_35

Configuration/System Check 5800 MHz Head/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 5800 MHz Head/Zoom Scan: Measurement grid: dx=4mm,dy=4mm, dz=2mm


Maximum location: X=0.00, Y=0.00 SAR Peak: 2.41 W/kg

SAR 10g (W/Kg)	0.228345
SAR 1g (W/Kg)	0.801739

Z	0.00	4.00	6.00	8.00	10.00	12.00	14.00	16.00	18.00	20.00	22.00	24.00
(mm)												
	2.4267	0.8638	0.4324	0.2043	0.0922	0.0394	0.0271	0.0235	0.0239	0.0218	0.0239	0.0239
(W/K												
g)												
		2.4	\									
		2.0-										
		2.0-										
		િ 1.5-										
		(2) 1.5- €										
			· ·	\setminus								
		포 1.0·										
		0.5										
		0.5										
		0.0-				-						
			ο'n	4 6	8 1	0 12	14 16	18 2	0 22 3	24 26		
						Z (n	nm)					

Date: Jan. 02, 2024

Page 41 of 57

APPENDIX B. SAR MEASUREMENT DATA

2.4GHz 802.11b-antenna1 Test Laboratory: AGC Lab 802.11b High- Edge1

DUT: FJD Trion P1 LiDAR Scanner; Type: P1

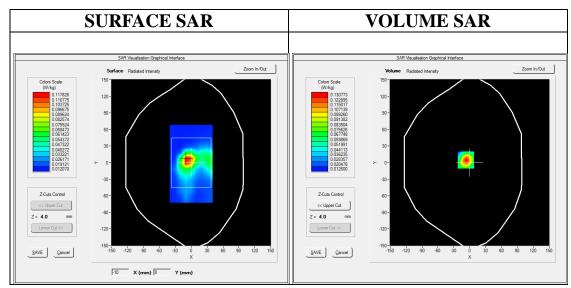
Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Conv.F=2.29; Frequency: 2462 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.87 \text{mho/m}$; $\epsilon = 38.66$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature (°C):20.3, Liquid temperature (°C): 19.9

SATIMO Configuration:

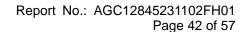
Probe: SSE2; Calibrated: May 31, 2023; Serial No.: 2023-EPGO-414

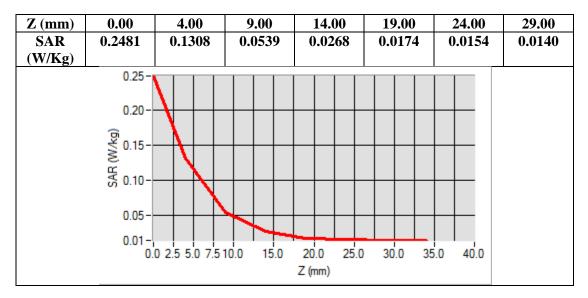

Sensor-Surface: 4mm (Mechanical Surface Detection)

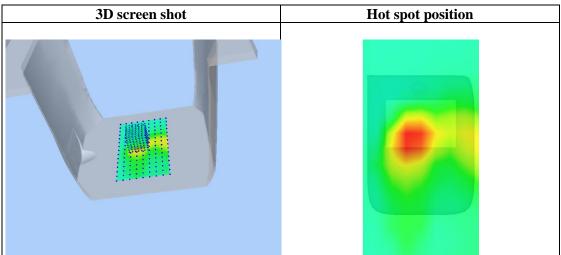
· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_35

Configuration/802.11b High - Edge1 /Area Scan: Measurement grid: dx=8mm, dy=8mm **Configuration/802.11b High - Edge1 /Zoom Scan:** Measurement grid: dx=5mm, dy=5mm, dz=5mm;


Area Scan	surf_sam_plan.txt, h= 5.00 mm						
ZoomScan	7x7x7,dx=5mm dy=5mm dz=5mm						
Phantom	SAM twin phantom						
Device Position	Edge1						
Band	2450MHz						
Channels	High						
Signal	Crest factor: 1.0						


Maximum location: X=-7.00, Y=5.00 SAR Peak: 0.24 W/kg


SAR 10g (W/Kg)	0.057810
SAR 1g (W/Kg)	0.124593

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Date: Jan. 02, 2024

Page 43 of 57

2.4GHz 802.11b-antenna2 Test Laboratory: AGC Lab

802.11b Mid- Edge1

DUT: FJD Trion P1 LiDAR Scanner; Type: P1

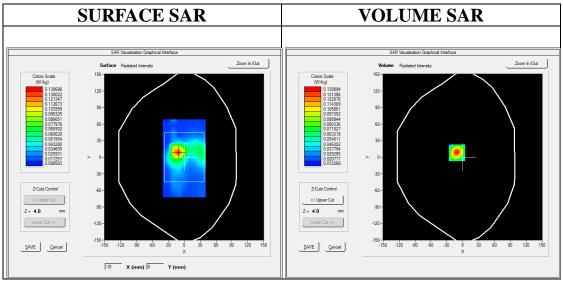
Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Conv.F=2.29; Frequency: 2437 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.82 \text{mho/m}$; $\epsilon = 40.32$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature (°C):20.3, Liquid temperature (°C): 19.9

SATIMO Configuration:

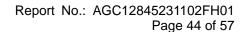
Probe: SSE2; Calibrated: May 31, 2023; Serial No.: 2023-EPGO-414

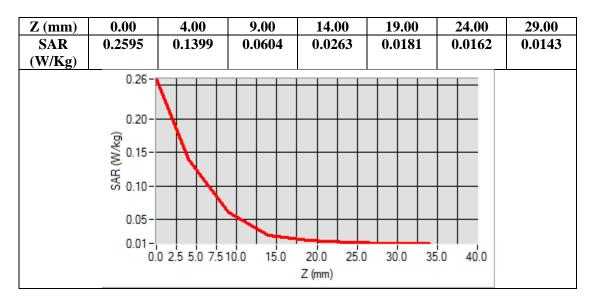

• Sensor-Surface: 4mm (Mechanical Surface Detection)

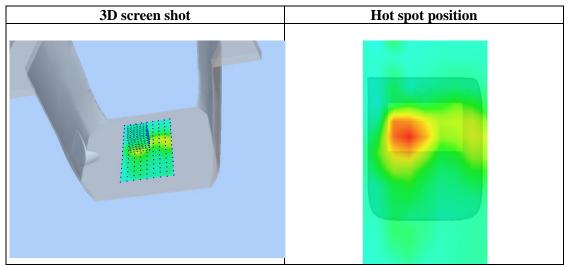
· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_35

Configuration/802.11b Mid- Edge1 /Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/802.11b Mid- Edge1 /Zoom Scan: Measurement grid: dx=5mm, dy=5mm, dz=5mm;


Area Scan	surf_sam_plan.txt, h= 5.00 mm						
ZoomScan	7x7x7,dx=5mm dy=5mm dz=5mm						
Phantom	SAM twin phantom						
Device Position	Edge1						
Band	2450MHz						
Channels	Middle						
Signal	Crest factor: 1.0						


Maximum location: X=-11.00, Y=8.00 SAR Peak: 0.26 W/kg


	8
SAR 10g (W/Kg)	0.060854
SAR 1g (W/Kg)	0.132063

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Date: Jan. 03, 2024

Page 45 of 57

5.2GHz 802.11a20- antenna1 Test Laboratory: AGC Lab 802.11a20 CH48-Edge1

DUT: FJD Trion P1 LiDAR Scanner; Type: P1

Communication System: Wi-Fi; Communication System Band: 802.11a20; Duty Cycle: 1:1; Conv.F=1.35; Frequency: 5240MHz; Medium parameters used: f = 5200~MHz; $\sigma = 4.67mho/m$; $\epsilon = 35.19$; $\rho = 1000~kg/m^3$;

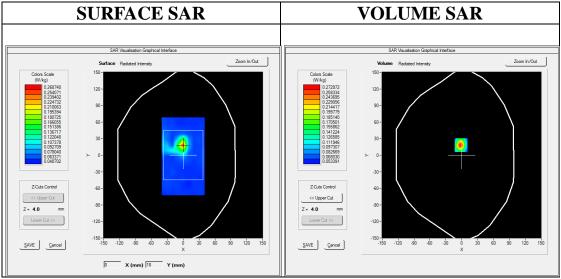
Phantom section: Flat Section

Ambient temperature (°C): 21.2, Liquid temperature (°C): 20.9

SATIMO Configuration:

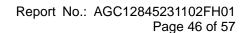
Probe: SSE2; Calibrated: May 31, 2023; Serial No.: 2023-EPGO-414

• Sensor-Surface: 4mm (Mechanical Surface Detection)


· Phantom: SAM twin phantom

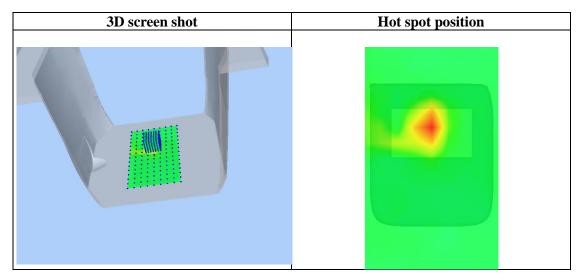
Measurement SW: OpenSAR V4_02_35

Configuration/802.11a20 CH48- Edge1 /Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/802.11a20 CH48- Edge1 /Zoom Scan: Measurement grid: dx=4mm, dy=4mm, dz=2mm


comiguration/302.11a20 CH46- Euge 1/200m Scan. Measurement gnd. dx=4mm,dy=4mm, dz=2mm

Area Scan	sam_direct_droit2_surf8mm.txt						
ZoomScan	7x7x12 dx=4mm dy=4mm dz=2mm						
Phantom	Validation plane						
Device Position	Edge1						
Band	5200MHz						
Channels	CH48						
Signal	Crest factor: 1.0						

Maximum location: X=-1.00, Y=18.00 SAR Peak: 0.71 W/kg


Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

SAR 1g (W/Kg)	0.270745
DAIL IS (W/ILS)	0.270743

\mathbf{Z}	0.00	4.00	6.00	8.00	10.00	12.00	14.00	16.00	18.00	20.00	22.00	24.00
(mm)												
SAR	0.730	0.273	0.153	0.087	0.072	0.061	0.057	0.057	0.059	0.059	0.057	0.057
(W/K	6	0	1	5	8	8	3	2	7	6	0	6
g)												
		0.7-										•
			$\overline{}$									
		0.6-	\perp	\perp			\perp					
			N									
		© 0.5-										
		≥ n4-	\									
		E O.A	1									
		SAR 0.3-		1								
		0.2										
		0.2-										
			\vdash				+					
		0.1-				10	1 1	10 0				
			0 2	4 6	8 1		14 16	18 2	0 22	24 26		
	Z (mm)											

Date: Jan. 03, 2024

Page 47 of 57

5.2GHz 802.11a20- antenna2 Test Laboratory: AGC Lab 802.11a20 CH48-Edge1

DUT: FJD Trion P1 LiDAR Scanner; Type: P1

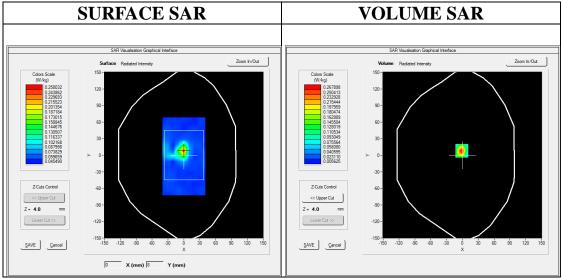
Communication System: Wi-Fi; Communication System Band: 802.11a20; Duty Cycle: 1:1; Conv.F=1.35; Frequency: 5240MHz; Medium parameters used: f = 5200 MHz; $\sigma = 4.67 \text{mho/m}$; $\epsilon = 35.19$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature (°C): 21.2, Liquid temperature (°C): 20.9

SATIMO Configuration:

Probe: SSE2; Calibrated: May 31, 2023; Serial No.: 2023-EPGO-414


• Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

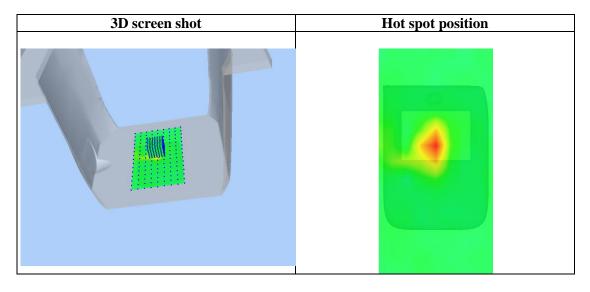
Measurement SW: OpenSAR V4_02_35

Configuration/802.11a20 CH48- Edge1 /Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/802.11a20 CH48- Edge1 /Zoom Scan: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Area Scan	sam_direct_droit2_surf8mm.txt
ZoomScan	7x7x12 dx=4mm dy=4mm dz=2mm
Phantom	Validation plane
Device Position	Edge1
Band	5200MHz
Channels	CH48
Signal	Crest factor: 1.0

Maximum location: X=-1.00, Y=8.00 SAR Peak: 0.70 W/kg

	0
SAR 10g (W/Kg)	0.113089


Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

SAR 1g (W/Kg)	0.263698
Dilli is (Wills)	0.203070

0.00	4.00	6.00	8.00	10.00	12.00	14.00	16.00	18.00	20.00	22.00	24.00
0.717	0.267	0.145	0.086	0.066	0.057	0.053	0.055	0.058	0.052	0.059	0.057
4	9	9	0	4	2	4	4	4	5	6	4
	0.7-					+ +		-			
	0.0	\mathbf{A}									
		l N									
	⊕ 0.5−	$-\lambda$	+ +			+					
	₹ 04-	-									
	2 0.4	1	VI I								
	S 0.3-		\ 								
	0.2-		\rightarrow			++					
			1 1								
	0.1-			-				_			
			4 6	8 1	0 12	14 16	18 20	0 22	24 26		
					Z (m	m)					
	0.717	0.717	0.717 0.267 0.145 9 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.	0.717 0.267 0.145 0.086 0 0 0 0 0 0 0 0 0	0.717 0.267 0.145 0.086 0.066 4	0.717 0.267 0.145 0.086 0.066 0.057 2 0.5 0.	0.717 0.267 0.145 0.086 0.066 0.057 0.053 4 0.066 0.057 0.053 4 0.066 0.057 0.053 4 0.066 0.057 0.053 4 0.057 0.055	0.717 0.267 0.145 0.086 0.066 0.057 0.053 0.055 4 0.057 0.053 0.055 4 0.057 0.053 0.055 4 0.055 0.	0.717 0.267 0.145 0.086 0.066 0.057 0.053 0.058 4 4 4 4 4 4 4 4 4	0.717 0.267 0.145 0.086 0.066 0.057 0.053 0.055 0.058 0.052 0.066 0.066 0.057 0.053 0.055 0.058 0.052 0.052	0.717 0.267 0.145 0.086 0.066 0.057 0.053 0.055 0.058 0.052 0.059 6

Date: Jan. 04, 2024

Page 49 of 57

5.8GHz-802.11a20-antenna 1 Test Laboratory: AGC Lab 802.11a20 Low-Edge1

DUT: FJD Trion P1 LiDAR Scanner; Type: P1

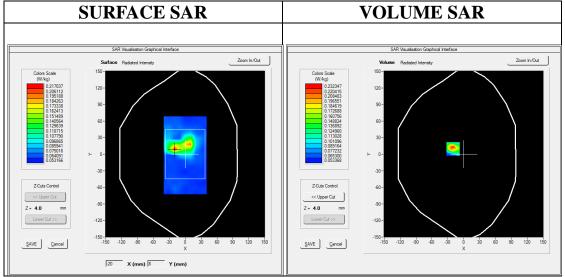
Communication System: Wi-Fi; Communication System Band: 802.11a20; Duty Cycle: 1:1; Conv.F=1.41; Frequency: 5745MHz; Medium parameters used: f = 5800 MHz; $\sigma = 5.16 \text{mho/m}$; $\epsilon = 36.91$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature (°C): 21.3, Liquid temperature (°C): 21.1

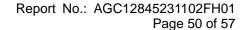
SATIMO Configuration:

Probe: SSE2; Calibrated: May 31, 2023; Serial No.: 2023-EPGO-414


• Sensor-Surface: 4mm (Mechanical Surface Detection)

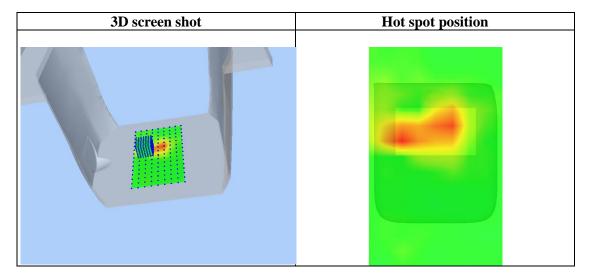
· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_35


Configuration/ 802.11a20 Low - Edge1 /Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/ 802.11a20 Low - Edge1 /Zoom Scan: Measurement grid: dx=4mm,dy=4mm, dz=2mm

Area Scan	sam_direct_droit2_surf8mm.txt	
ZoomScan	7x7x12 dx=4mm dy=4mm dz=2mm	
Phantom	Validation plane	
Device Position	Edge1	
Band	5800MHz	
Channels	Low	
Signal	Crest factor: 1.0	

Maximum location: X=-20.00, Y=9.00 SAR Peak: 0.70 W/kg


Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

SAR 1g (W/k	(g) 0.225909

Z (mm)	0.00	4.00	6.00	8.00	10.00	12.00	14.00	16.00	18.00	20.00	22.00	24.00
SAR	0.745	0.232	0.058	0.063	0.056	0.060	0.060	0.059	0.059	0.061	0.061	0.063
(W/K	4	3	7	6	1	4	5	2	0	7	1	7
g)												
		0.7-	\									
			T									
		0.6-	l N	\top			\top					
		® 0.5- № 0.4-	\	+			+			+		
		€ 0.4-	-	+			++					
		SAR 0.3-	1	VI I								
		O U.3-		$\overline{}$								
		0.2-		\wedge	_		++					
				$+$ \downarrow			+					
		0.1-	0 2	4 6	8 1	0 12	14 16	18 2	0 22	24 26		
	_		U Z	+ 0	0 1	U 12 Z (m		10 2	u 22 .	24 20		

Page 51 of 57

Test Laboratory: AGC Lab Date: Jan. 04, 2024

802.11a20 High-Edge1

DUT: FJD Trion P1 LiDAR Scanner; Type: P1

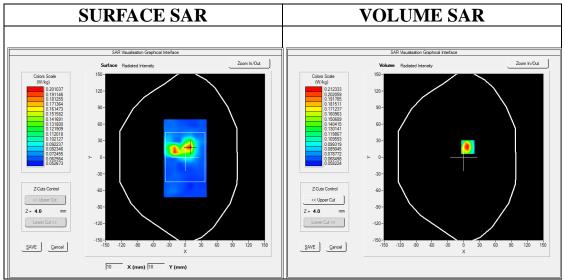
Communication System: Wi-Fi; Communication System Band: 802.11a20; Duty Cycle: 1:1; Conv.F=1.41; Frequency: 5825MHz; Medium parameters used: f = 5800 MHz; $\sigma = 5.23\text{mho/m}$; $\epsilon = 35.61$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature (°C): 21.3, Liquid temperature (°C): 21.1

SATIMO Configuration:

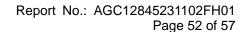
Probe: SSE2; Calibrated: May 31, 2023; Serial No.: 2023-EPGO-414

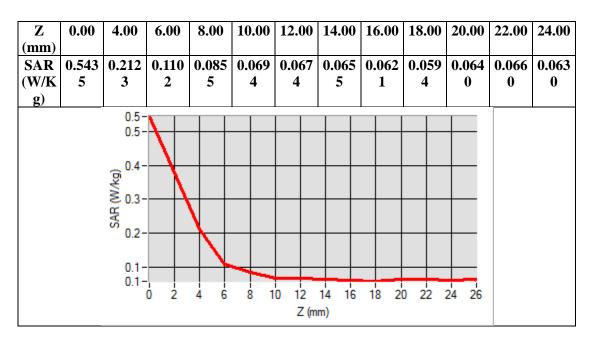

• Sensor-Surface: 4mm (Mechanical Surface Detection)

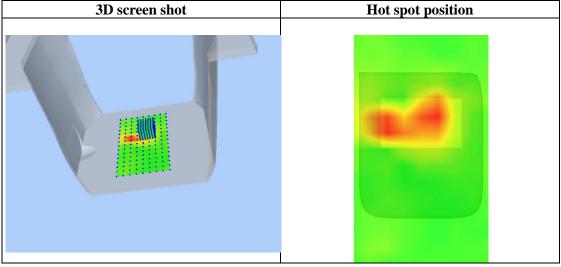
· Phantom: SAM twin phantom

• Measurement SW: OpenSAR V4_02_35

Configuration/ 802.11a20 High - Edge1 /Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/ 802.11a20 High - Edge1 /Zoom Scan: Measurement grid: dx=4mm,dy=4mm, dz=2mm


Area Scan	sam_direct_droit2_surf8mm.txt
ZoomScan	7x7x12 dx=4mm dy=4mm dz=2mm
Phantom	Validation plane
Device Position	Edge1
Band	5800MHz
Channels	High
Signal	Crest factor: 1.0


Maximum location: X=8.00, Y=18.00 SAR Peak: 0.54 W/kg


	<u> </u>
SAR 10g (W/Kg)	0.110882
SAR 1g (W/Kg)	0.216026

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Date: Jan. 04, 2024

Page 53 of 57

5.8GHz-802.11a20-antenna 2 Test Laboratory: AGC Lab 802.11a20 High-Edge1

DUT: FJD Trion P1 LiDAR Scanner; Type: P1

Communication System: Wi-Fi; Communication System Band: 802.11a20; Duty Cycle: 1:1; Conv.F=1.41; Frequency: 5825MHz; Medium parameters used: f = 5800 MHz; $\sigma = 5.23\text{mho/m}$; $\epsilon = 35.61$; $\rho = 1000 \text{ kg/m}^3$;

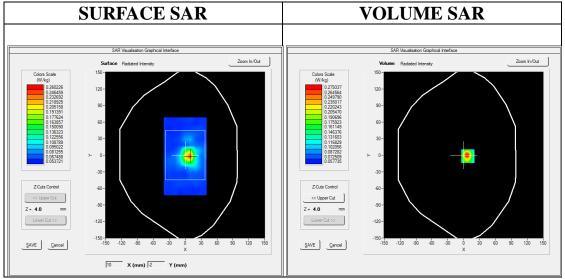
Phantom section: Flat Section

Ambient temperature (°C): 21.3, Liquid temperature (°C): 21.1

SATIMO Configuration:

Probe: SSE2; Calibrated: May 31, 2023; Serial No.: 2023-EPGO-414

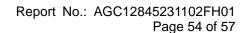
• Sensor-Surface: 4mm (Mechanical Surface Detection)


· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_35

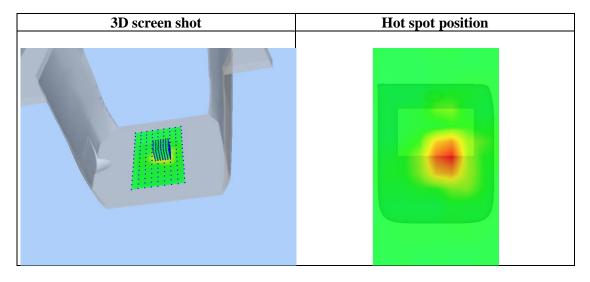
Configuration/ 802.11a20 High - Edge1 /Area Scan: Measurement grid: dx=8mm, dy=8mm

Configuration/ 802.11a20 High - Edge1 /Zoom Scan: Measurement grid: dx=4mm,dy=4mm, dz=2mm


Area Scan	sam_direct_droit2_surf8mm.txt	
ZoomScan	7x7x12 dx=4mm dy=4mm dz=2mm	
Phantom	Validation plane	
Device Position	Edge1	
Band	5800MHz	
Channels	High	
Signal	Crest factor: 1.0	

Maximum location: X=8.00, Y=-2.00 SAR Peak: 0.79 W/kg

	<u> </u>
SAR 10g (W/Kg)	0.131745


Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

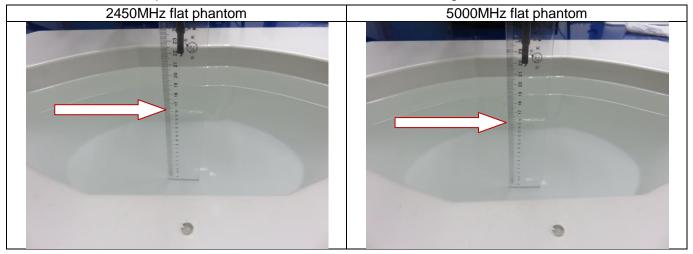
SAR 1g (W/Kg)	0.287865
Dill is (V/IIS)	0.207008

Z	0.00	4.00	6.00	8.00	10.00	12.00	14.00	16.00	18.00	20.00	22.00	24.00
(mm)			0.400	0.000		005	0.05=	0.0.5	0.011	0.05	0.054	0.055
SAR	0.792	0.279	0.109	0.088	0.078	0.067	0.067	0.062	0.061	0.065	0.064	0.066
(W/K	0	3	5	6	6	0	0	7	4	3	7	1
g)												
		0.8-	N							1		
		0.7-	\									
			\									
		0.6-	\vdash	+	_		++	+	+	_		
		SAR (W/kg) 0.5-0.0 0.3-	\perp									
		8.0.0	I									
		<u>~</u> 0.4-					+					
		ა 0.3−		lack			+	-	-	_		
				\mathbf{N}								
		0.2-										
		0.1		+ +	-		$\pm +$					
		0.1-	0 2	4 6	8 1	0 12	14 16	18 2	0 22	24 26		
			u Z	+ 0	0 1			10 2	u 22 .	24 20		
Z (mm)												

Page 55 of 57

APPENDIX C. TEST SETUP PHOTOGRAPHS

Edge 1 (Top) 0mm



Page 56 of 57

DEPTH OF THE LIQUID IN THE PHANTOM—ZOOM IN

Note: The position used in the measurement were according to IEEE Std. 1528:2013

Page 57 of 57

APPENDIX D. CALIBRATION DATA

Refer to Attached files.

----END OF REPORT----

Conditions of Issuance of Test Reports

- 1. All samples and goods are accepted by the Attestation of Global Compliance (Shenzhen) Co., Ltd (the "Company") solely for testing and reporting in accordance with the following terms and conditions. The company provides its services on the basis that such terms and conditions constitute express agreement between the company and any person, firm or company requesting its services (the "Clients").
- 2. Any report issued by Company as a result of this application for testing services (the "Report") shall be issued in confidence to the Clients and the Report will be strictly treated as such by the Company. It may not be reproduced either in its entirety or in part and it may not be used for advertising or other unauthorized purposes without the written consent of the Company. The Clients to whom the Report is issued may, however, show or send it, or a certified copy thereof prepared by the Company to its customer, supplier or other persons directly concerned. The Company will not, without the consent of the Clients, enter into any discussion or correspondence with any third party concerning the contents of the Report, unless required by the relevant governmental authorities, laws or court orders.
- 3. The Company shall not be called or be liable to be called to give evidence or testimony on the Report in a court of law without its prior written consent, unless required by the relevant governmental authorities, laws or court orders.
- 4. In the event of the improper use of the report as determined by the Company, the Company reserves the right to withdraw it, and to adopt any other additional remedies which may be appropriate.
- 5. Samples submitted for testing are accepted on the understanding that the Report issued cannot form the basis of, or be the instrument for, any legal action against the Company.
- 6. The Company will not be liable for or accept responsibility for any loss or damage however arising from the use of information contained in any of its Reports or in any communication whatsoever about its said tests or investigations.
- 7.Clients wishing to use the Report in court proceedings or arbitration shall inform the Company to that effect prior to submitting the sample for testing.
- 8. The Company is not responsible for recalling the electronic version of the original report when any revision is made to them. The Client assumes the responsibility to providing the revised version to any interested party who uses them.
- 9. Subject to the variable length of retention time for test data and report stored hereinto as otherwise specifically required by individual accreditation authorities, the Company will only keep the supporting test data and information of the test report for a period of six years. The data and information will be disposed of after the aforementioned retention period has elapsed. Under no circumstances shall we provide any data and information which has been disposed of after retention period. Under no circumstances shall we be liable for damage of any kind, including (but not limited to) compensatory damages, lost profits, lost data, or any form of special, incidental, indirect, consequential or punitive damages of any kind, whether based on breach of contract of warranty, tort (including negligence), product liability or otherwise, even if we are informed in advance of the possibility of such damages.