

FCC ID: 2AAPK3642A

Page 1 of 37

FCC Test Report

Applicant Shenzhen Kingsun Enterprises Co., Ltd.

25/F, CEC Information Building, Xinwen Rd., **Address**

Shenzhen, Guangdong, China

5-IN-1LED SPEAKER CHARGER WIALARM Product Name

CLOCK

Nov. 05, 2024 **Report Date**

Shenzhen Anbotek Compliance Laboratory Limited

Anbotek

Product Product * Approved *

FCC ID: 2AAPK3642A

Contents

1. General Information	dag				A	6
1.1. Client Information	ring Test		, 100 00 00 00 00 00 00 00 00 00 00 00 00			6 7 8 8 10
2 Antenna requirement	pole, V	lek.	Aupotek	Anbox	-ok	abotek
2.1 Conclusion	Ambolek	Ano	4 ,000	iek Vup	900 P	-19
3 Conducted Emission at AC nower lin	o sabotek	Anbolo		potek.	Anbolo	1/
3.1. EUT Operation	ne	,6.	**************************************	Auto o tek		14 14 15
4. Occupied Bandwidth	upotek 1	upos	**************************************	Kupok	, Yun	17
4.1. EUT Operation4.2. Test Setup4.3. Test Data	And Hall	Anbow Anbow		79.07g/r		17 18 18
5. Maximum Conducted Output Power	10010	غې	poje.	YUm YUM		19
5.1. EUT Operation	, A 10	, walk		Wall of the		19 19
6. Channel Separation	hpore	Nu. Crek	Aupole	And		21
6.1. EUT Operation6.2. Test Setup6.3. Test Data		Ano Anbo		All State		21 21
7. Number of Hopping Frequencies	k Anbor		7.018k	hupoten	Anu	22
7.1. EUT Operation7.2. Test Setup7.3. Test Data	erek er	. Annotes		k 1801er	log Vupo	22 22 22
8. Dwell Time		Anbor		19400	upo _{fe} ,	23
8.1. EUT Operation 8.2. Test Setup 8.3. Test Data	1000	, day	July 1	Pipology Pipology	Anbolek Anbolek	24 24
9. Emissions in non-restricted frequence	cy bands	potek.	Anbore		, , , , , , , , , , , , , , , , , , ,	25
7.1. EUT Operation 7.2. Test Setup 7.3. Test Data 8. Dwell Time 8.1. EUT Operation 8.2. Test Setup 8.3. Test Data 9. Emissions in non-restricted frequence 9.1. EUT Operation 9.2. Test Setup 9.3. Test Data 10. Band edge emissions (Radiated) 10.1. EUT Operation 10.2. Test Setup	Walek			iorek Pub	Augorek Stoy	26 26
10. Band edge emissions (Radiated)	P., Polek	Ant	01 ₀₁	Un.	Anbotok	27
10.1. EUT Operation 10.2. Test Setup	2007	16 _K			Vojo da ₄	27 27

otek

Anbolek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

nbotek

Anbotek

Anbotek

otek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbe

Report No.: 182512C400313101

Page 3 of 37

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbolek

Anbotek

Anbotek

Anbotek

Anbotek

FCC ID: 2AAPK3642A

Anbotek

Anbotek

Anbotek

Anbotek

Anborek

Anbotek

10.3. Test Data	FCC ID: 2AAPK3	642A	rek Yupo	28
11. Emissions in frequency ba	ands (below 1GHz)	B. Wolek	Tupoge, Vun	
11.2. Test Setup	And other And other	Ann	Vinore _k V	29 30 31
12. Emissions in frequency ba	ands (above 1GHz)	0, 6, 600	4 Anboles	33
12.2. Test Setup	100 100 100 100 100 100 100 100 100 100	Wooley Aug		33 33 34
APPENDIX I TEST SETUP APPENDIX II EXTERNAL F APPENDIX III INTERNAL F	PHOTOGRAPH	K Kupojeji	46/5	37 37 37

Anbotek

Anbotek

Anbotek

Page 4 of 37

FCC ID: 2AAPK3642A

TEST REPORT

Applicant

Shenzhen Kingsun Enterprises Co., Ltd.

Manufacturer

: Shenzhen Kingsun Enterprises Co., Ltd.

Product Name

: 5-IN-1LED SPEAKER CHARGER WIALARM CLOCK

Model No.

: SM-62674, MA-3642-A

Trade Mark

N/A

.

Rating(s)

Input: 9V= 3A

WPT Output: 15W Max

Battery Capacity: DC 3.7V, 1200mAh

47 CFR Part 15.247

Test Standard(s)

ANSI C63.10-2020

KDB 558074 D01 15.247 Meas Guidance v05r02

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with above listed standard(s) requirements. This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Receipt:

Jun. 26, 2024

Date of Test:

Jun. 26, 2024 to Aug. 06, 2024

Prepared By:

(TuTu Hong)

Approved & Authorized Signer:

(Kingkong Jin)

Anbol

Anbotek

Anborek

Anbotek

otek

Anborek

Anbotek

Anbotek

Anbotek

Anbotek

nbotek

Anbotek

otek

Anbotek

Anborek

Anbotek

Anbotek Report No.: 182512C400313101

FCC ID: 2AAPK3642A **Revision History** Page 5 of 37

Anbotek

Anbolek

Anbotek

Anbotek

otek

Anbotek

Anbolek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

A You	upotek Aupotek Aupotek	Revision History	Anbotek Anbotek A
rek	Report Version	Description	Issued Date
uporek	Anborek R00 Anboo	Original Issue.	Nov. 05, 2024
Anb	rek Vupoten Vupotek	Aupotek Aupon	Aupotek Aupote Viek Vup.
	upotek Aupon Otek Aupote	K Aupotes, Aug	Aupotek Aupo

Anbotek

Anbolek

Anbotek

Anbotek

Shenzhen Anbotek Compliance Laboratory Limited

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Report No.: 182512C400313101 Page 6 of 37

FCC ID: 2AAPK3642A

1. General Information

1.1. Client Information

WO		10 All 10
Applicant	:	Shenzhen Kingsun Enterprises Co., Ltd.
Address	:	25/F, CEC Information Building, Xinwen Rd., Shenzhen, Guangdong, China
Manufacturer	:	Shenzhen Kingsun Enterprises Co., Ltd.
Address	:	25/F, CEC Information Building, Xinwen Rd., Shenzhen, Guangdong, China
Factory	:	Shenzhen Kingsun Enterprises Co., Ltd.
Address	:	25/F, CEC Information Building, Xinwen Rd., Shenzhen, Guangdong, China

1.2. Description of Device (EUT)

The state of the s	D.	A NO. A.
Product Name	:	5-IN-1LED SPEAKER CHARGER WIALARM CLOCK
Model No.	:	SM-62674, MA-3642-A (Note: All samples are the same except the model number, so we prepare "SM-62674" for test only.)
Trade Mark	:	N/A Andotek Andor Andotek Andotek Andotek
Test Power Supply	:	AC 120V/60Hz for adapter; DC 3.7V Battery inside
Test Sample No.	:	1-2-1(Normal Sample), 1-2-2(Engineering Sample)
Adapter	:	N/A Nek Anbotek Anbotek Anbotek Anbotek Anbotek
RF Specification		
Operation Frequency	:	2402MHz to 2480MHz
Number of Channel	:	79 Anbotek Anbotek Anbotek Anbotek Anbotek
Modulation Type	:	GFSK, π/4 DQPSK, 8DPSK
Antenna Type	:	PCB Antenna
Antenna Gain(Peak)	:	-0.58dBi

Remark:

- (1) All of the RF specification are provided by customer.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Page 7 of 37

FCC ID: 2AAPK3642A

1.3. Auxiliary Equipment Used During Test

Title	Manufacturer	Model No.	Serial No.
Xiaomi 33W adapter	Xiaomi	MDY-11-EX	SA62212LA04358J

1.4. Operation channel list

Operation Band:

Operation L	dia	Un	Yas	200	P	200	17.
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
Vun O Vek	2402	20	2422	40 M	2442	60	2462
And	2403	21 Anbo	2423	oo ^{tek} 41	2443	61	2463
2 Anb	2404	otek 22 A	2424	42	2444	62	2464
3 An	2405	23	2425	43	2445	63	2465
hotek 4	2406	24	2426	44 16016	2446	64	2466
Anb 5	2407	25 olek	2427	45	otek 2447 Anb	65	2467
6 potek	2408	26 _{nnb} c	2428	46	2448	66	2468
7 Anbol	2409	27	2429	47	2449	67	2469
tek 8 Ar	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69 _M	2471
10	2412	30	2432	50 Anboli	2452	otek 70 A	2472
And 11 Nek	2413	31. ^{nboto}	2433	rek 51 An	2453	₅₀₁ 71	2473
12	2414	32 And	2434	nbole 52	2454	72	2474
13 Anbo	2415	33	2435	53	2455	73	2475
⁰¹⁰¹ 14	2416	34	2436	54 otek	2456	74	2476
Anbolis	2417	35	2437	55	2457 _M	75	2477
16 tek	2418	36 ,,,,,,,,	2438	56	2458	76	2478
17 _{nb} otek	2419	37	2439	57	2459	Anboton	2479
18 _{Mab}	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461	-Aupote	- Aupo

Report No.: 182512C400313101 Page 8 of 37

FCC ID: 2AAPK3642A

1.5. Description of Test Modes

D.	16. 10. 10. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
Pretest Modes	Descriptions
And TM1 Andotek	Keep the EUT in continuously transmitting mode (non-hopping) with GFSK modulation.
tek AmboTM2 Amboren	Keep the EUT in continuously transmitting mode (non-hopping) with $\pi/4$ DQPSK modulation.
TM3	Keep the EUT in continuously transmitting mode (non-hopping) with 8DPSK modulation.
Andotek TM4 otes An	Keep the EUT in continuously transmitting mode (hopping) with GFSK modulation,.
Anbotek TM5 Anbotek	Keep the EUT in continuously transmitting mode (hopping) with π/4 DQPSK modulation.
TM6	Keep the EUT in continuously transmitting mode (hopping) with 8DPSK modulation.

1.6. Measurement Uncertainty

Parameter	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	3.4dB Anbotek Anbo
Occupied Bandwidth	925Hz
Conducted Output Power	0.76dB
Dwell Time	2% Anbotek Anbotek
Conducted Spurious Emission	1.24dB
Radiated spurious emissions (above 1GHz)	1G-6GHz: 4.78dB; 6G-18GHz: 4.88dB 18G-40GHz: 5.68dB
Radiated emissions (Below 30MHz)	3.53dB
Radiated spurious emissions (30MHz~1GHz)	Horizontal: 3.92dB; Vertical: 4.52dB

The measurement uncertainty and decision risk evaluated according to AB/WI-RF-F-032. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

otek

Anborek

Anbotek

nbotek

Anbotek

Anbotek

otek

Anbotek

Anborek

Anbotek

Anbol

Anbotek

Anbotek Report No.: 182512C400313101

Page 9 of 37

Anbotek

Anbotek

FCC ID: 2AAPK3642A

1.7. Test Summary

Anborek

Anbotek

Anbotek

Test Items	Test Modes	Status
Antenna requirement	our Aun Potek	Anbore P
Conducted Emission at AC power line	Mode1,2,3	AntPrek
Occupied Bandwidth	Mode1,2,3	Rupotek
Maximum Conducted Output Power	Mode1,2,3	ek P Anbo
Channel Separation	Mode4,5,6	hotek P
Number of Hopping Frequencies	Mode4,5,6	Note P
Dwell Time	Mode4,5,6	Prek
Emissions in non-restricted frequency bands	Mode1,2,3,4,5,6	Potek
Band edge emissions (Radiated)	Mode1,2,3	P
Emissions in frequency bands (below 1GHz)	Mode1,2,3	P
Emissions in frequency bands (above 1GHz)	Mode1,2,3	Note P
Note: P: Pass N: N/A, not applicable	Anbotek Anbotek	Anboten

Report No.: 182512C400313101 Page 10 of 37

FCC ID: 2AAPK3642A

1.8. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.:434132

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 434132.

ISED-Registration No.: 8058A

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China.

1.9. Disclaimer

- The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- The test report is invalid if there is any evidence and/or falsification.
- The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
- This document may not be altered or revised in any way unless done so by Anbotek and all revisions are duly noted in the revisions section.
- Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- The authenticity of the information provided by the customer is the responsibility of the customer and the laboratory is not responsible for its authenticity.

The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

FCC ID: 2AAPK3642A

1.10. Test Equipment List

Cond	ucted Emission at A	C power line	nbotek A	nbole	VII.	Anboren
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	2024-01-18	2025-01-17
,bo2.k	Three Phase V- type Artificial Power Network	CYBERTEK	EM5040DT	E215040D T001	2024-01-17	2025-01-16
1300h	Software Name EZ-EMC	Farad Technology	ANB-03A	mbol N/A	Anbore A	Anbotek
4 🕅	EMI Test Receiver	Rohde & Schwarz	ESPI3	100926	2023-10-12	2024-10-11

Occupied Bandwidth

Maximum Conducted Output Power

Channel Separation

Number of Hopping Frequencies

Dwell Time

Emissions in non-restricted frequency bands

	CICITO III II CII I COLIICA	a nequently wanted	46.	611.	20.	200
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1 otek	Constant Temperature Humidity Chamber	ZHONGJIAN	ZJ- KHWS80B	N/A	2023-10-16	2024-10-15
2 tel	DC Power Supply	IVYTECH	IV3605	1804D360 510	2023-10-20	2024-10-19
3 Anb	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102150	2024-05-06	2025-05-05
4	MXA Spectrum Analysis	KEYSIGHT	N9020A	MY505318 23	2024-02-22	2025-02-21
* 5	Oscilloscope	Tektronix	MDO3012	C020298	2023-10-12	2024-10-11
006	MXG RF Vector Signal Generator	Agilent Agilent	N5182A	MY474206 47	2024-02-04	2025-02-03

	edge emissions (Ra sions in frequency ba		Inpotek A	upotek	Anbotek	Aupolek
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
_e ¥ 1	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	2024-01-23	2025-01-22
2×	EMI Preamplifier	SKET Electronic	LNPA- 0118G-45	SKET-PA- 002	2024-01-17	2025-01-16
3 _{ot}	Double Ridged Horn Antenna	SCHWARZBECK	BBHA 9120D	02555	2022-10-16	2025-10-15
4	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	Aupolok	Anbo
5	Horn Antenna	A-INFO	LB-180400- KF	J21106062 8	2023-10-12	2024-10-11
10 ¹ 6	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102150	2024-05-06	2025-05-05
inb 2ter	Amplifier	Talent Microwave	TLLA18G40 G-50-30	23022802	2024-05-07	2025-05-06

otek

Anbotek

Anborek

Anbotek

Anbotek

Anbotek

nbotek

Aupolek

otek

Anbotek

Anbolek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Report No.: 182512C400313101

FCC ID: 2AAPK3642A

Page 12 of 37

Anbotek

Anbotek

Anborek

Anbotek

ltem	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Da
1 ^{An}	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	2024-01-23	2025-01-2
2	Pre-amplifier	SONOMA	310N	186860	2024-01-17	2025-01-1
3	Bilog Broadband Antenna	Schwarzbeck	VULB9163	345	2022-10-23	2025-10-2
4	Loop Antenna (9K- 30M)	Schwarzbeck	FMZB1519 B	00053	2023-10-12	2024-10-1
5	EMI Test Software EZ-EMC	SHURPLE	_{Lib} oteN/A	N/A	Am anboyek	Aupolok

Anbolek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Report No.: 182512C400313101 Page 13 of 37

FCC ID: 2AAPK3642A

2. Antenna requirement

Test Requirement:

Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

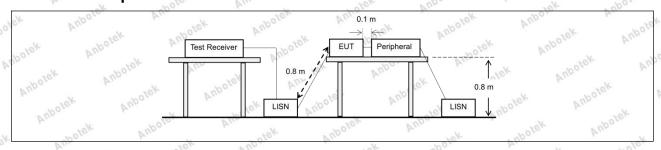
Anbotek

2.1. Conclusion

The antenna is a PCB antenna which permanently attached, and the best case gain of the antenna is -0.58dBi. It complies with the standard requirement.

Report No.: 182512C400313101 Page 14 of 37

FCC ID: 2AAPK3642A

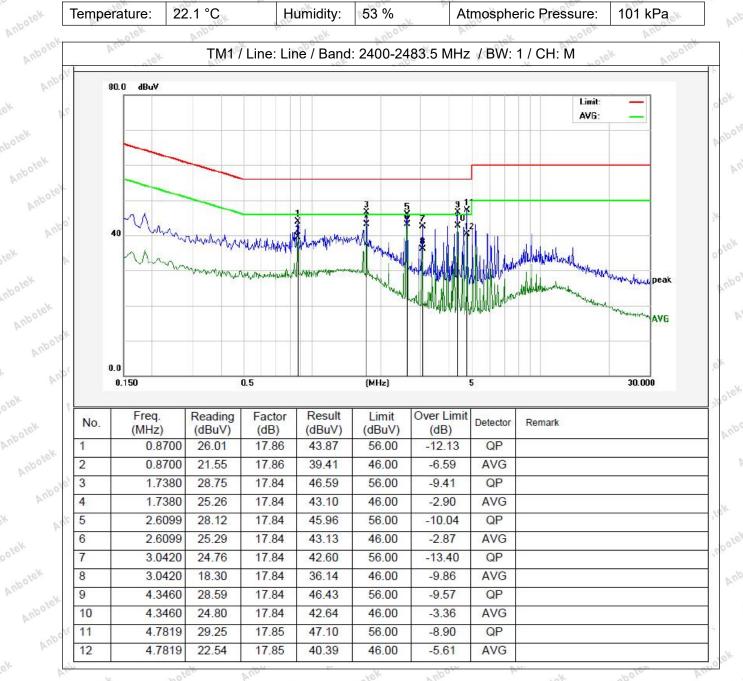

3. Conducted Emission at AC power line

Test Requirement:	Refer to 47 CFR 15.207(a), Exception, for an intentional radiator public utility (AC) power line, the result back onto the AC power line on an band 150 kHz to 30 MHz, shall not measured using a 50 µH/50 ohms (LISN).	that is designed to be con radio frequency voltage that ny frequency or frequencient of exceed the limits in the f	nected to the at is conducted es, within the collowing table, as
Tubs OK Spokek	Frequency of emission (MHz)	Conducted limit (dBµV)	abotel An
Aupore Am	Thotek And	Quasi-peak	Average
_ tek noot	0.15-0.5	66 to 56*	56 to 46*
Test Limit:	0.5-5	56 aboles And	46
Polek Vi	5-30	60 rek 1000	50
VI.,	*Decreases with the logarithm of t	the frequency.	hotek Anbore
Test Method:	ANSI C63.10-2020 section 6.2	otek Aupole A	"Otek Aupol
Procedure:	Refer to ANSI C63.10-2020 section line conducted emissions from un		od for ac power-

3.1. EUT Operation

Operating Envi	ronment:	Anco	upolek	Aupore	Protek	Aupolen
Test mode:	hopping) with 2: TX-π/4-DQF (non-hopping) 3: TX-8DPSK	Non-Hopping): k GFSK modulatio PSK (Non-Hopp with π/4 DQPS (Non-Hopping): 8DPSK modulat	on. ing): Keep the K modulation. Keep the EU	EUT in contin	uously transmit	tting mode

3.2. Test Setup

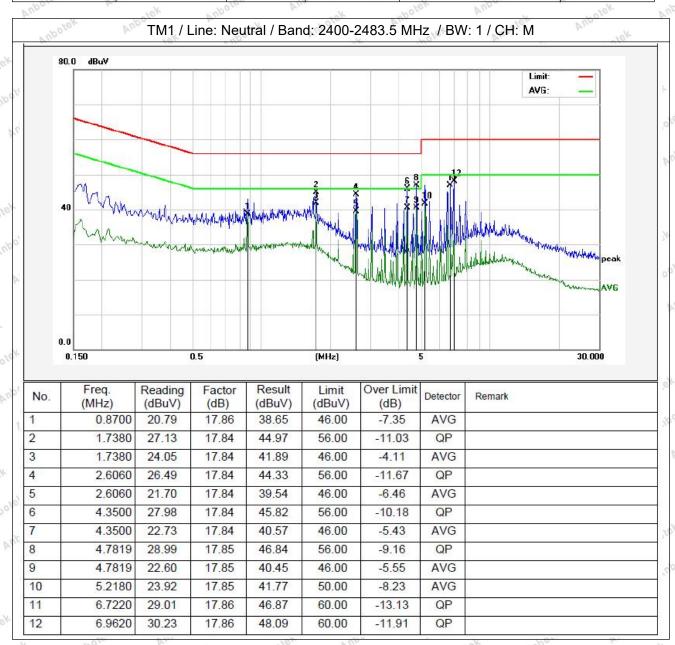

3.3. Test Data

Report No.: 182512C400313101

FCC ID: 2AAPK3642A

Page 15 of 37

otek Aupor Aupor Aupor Aupor



Report No.: 182512C400313101 Page 16 of 37

FCC ID: 2AAPK3642A

53 % Temperature: 22.1 °C Humidity: Atmospheric Pressure: 101 kPa

Note:Only record the worst data in the report.

Report No.: 182512C400313101 Page 17 of 37

FCC ID: 2AAPK3642A

4. Occupied Bandwidth

Test Requirement:	47 CFR 15.247(a)(1)
Test Limit: "Dotek Anbotek Anbotek Anbotek Anbotek	Refer to 47 CFR 15.215(c), intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.
Test Method:	ANSI C63.10-2020, section 7.8.6, For occupied bandwidth measurements, use the procedure in 6.9.3. Frequency hopping shall be disabled for this test. KDB 558074 D01 15.247 Meas Guidance v05r02
Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth: a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to
otek Anbotek Anbotek	5% of the OBW, and VBW shall be at least three times the RBW, unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.6.2.
Procedure:	d) Step a) through step c) might require iteration to adjust within the specified range.e) Video averaging is not permitted. Where practical, a sample detection and
Anbotek Anbotek	single sweep mode shall be used. Otherwise, peak detection and max-hold mode (until the trace stabilizes) shall be used. f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth. g) If the instrument does not have a 99% power bandwidth function, then the
ek Aupotek Aupo	trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99%
Anbotek Anbotek	power bandwidth is the difference between these two frequencies. h) The occupied bandwidth shall be reported by providing spectral plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

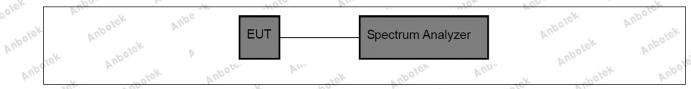
4.1. EUT Operation

Operating Env	fronment:
Test mode:	 TX-GFSK (Non-Hopping): Keep the EUT in continuously transmitting mode (non-hopping) with GFSK modulation. TX-π/4-DQPSK (Non-Hopping): Keep the EUT in continuously transmitting mode (non-hopping) with π/4 DQPSK modulation.
VII.	3: TX-8DPSK (Non-Hopping): Keep the EUT in continuously transmitting mode (non-

Anborek

Anbotek

Report No.: 182512C400313101


Page 18 of 37

Anbotek

FCC ID: 2AAPK3642A

hopping) with 8DPSK modulation.

4.2. Test Setup

4.3. Test Data

	16.1.	LON.		V 40	No.
_ ~/00		403	27	164 145	42
Temperature:	25.5 °C	Humidity:	47 %	Atmospheric Pressure:	101 kPa

Anbotek

Anbotek

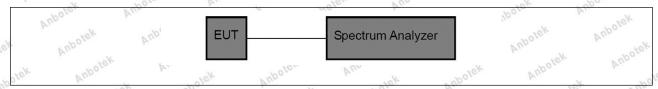
Please Refer to Appendix for Details.

Anbotek

Anborek

Report No.: 182512C400313101 Page 19 of 33

FCC ID: 2AAPK3642A


5. Maximum Conducted Output Power

Test Requirement:	47 CFR 15.247(b)(1)
Test Limit:	Refer to 47 CFR 15.247(b)(1), For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
Test Method:	ANSI C63.10-2020, section 7.8.5 KDB 558074 D01 15.247 Meas Guidance v05r02
otek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. Frequency hopping shall be disabled for this test. Use the following spectrum analyzer settings: a) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel. b) RBW > 20 dB bandwidth of the emission being measured. c) VBW ≥ RBW. d) Sweep: No faster than coupled (auto) time. e) Detector function: Peak.
Procedure:	f) Trace: Max-hold. g) Allow trace to stabilize.
Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	 h) Use the marker-to-peak function to set the marker to the peak of the emission. i) The indicated level is the peak output power, after any corrections for external attenuators and cables. j) A spectral plot of the test results and setup description shall be included in the test report. NOTE—A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.

5.1. EUT Operation

Operating Envir	onment:	Aup	hotek	Anbor	K Wolek	Anbore
Test mode:	hopping) with 2: TX-π/4-D (non-hoppin 3: TX-8DPS	th GFSK modu QPSK (Non-Hog) with π/4 DQ	lation. opping): Keep PSK modulating): Keep the	the EUT in	continuously	nitting mode (non- transmitting mode mitting mode (non-

5.2. Test Setup

5.3. Test Data

Tempe	erature: 25.5 °C	Humidity:	47 %	Atmospheric Pressure:	101 kPa	
-------	------------------	-----------	------	-----------------------	---------	--

Shenzhen Anbotek Compliance Laboratory Limited

Anbotek

Page 20 of 37 Report No.: 182512C400313101 Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

FCC ID: 2AAPK3642A

Anbotek

Please Refer to Appendix for Details.

Anbotek

Anborek

Anbotek

Shenzhen Anbotek Compliance Laboratory Limited

Anbotek

Anbotek

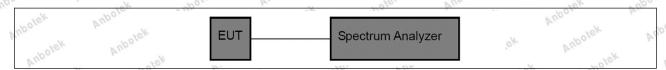
Hotline 400-003-0500 www.anbotek.com

Anbotek

Anbolek

Anbotek

FCC ID: 2AAPK3642A


6. Channel Separation

700	70 A.
Test Requirement:	47 CFR 15.247(a)(1)
Test Limit:	Refer to 47 CFR 15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Test Method:	ANSI C63.10-2020, section 7.8.2 KDB 558074 D01 15.247 Meas Guidance v05r02
Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Wide enough to capture the peaks of two adjacent channels. b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel. c) Video (or average) bandwidth (VBW) ≥ RBW.
Procedure:	d) Sweep: No faster than coupled (auto) time. e) Detector function: Peak. f) Trace: Max-hold. g) Allow the trace to stabilize.
Anbotek Anbotek	Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A spectral plot of the data shall be included in the test report.

6.1. EUT Operation

Operating Envir	onment: 📈	Ann	upotek	Aupo	hotek	Anbor
Test mode:	4: TX-GFSK (Hop with GFSK modu 5: TX-π/4-DQPS (hopping) with π/ 6: TX-8DPSK (How with 8DPSK mod	ilation,. K (Hopping): Ke /4 DQPSK modu opping): Keep th	ep the EUT in lation.	continuously	transmitting mod	de

6.2. Test Setup

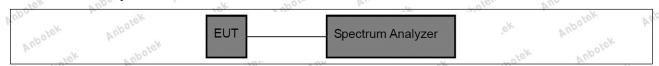
6.3. Test Data

Ve	Temperature:	25.5 °C	Humidity:	47 %	Atmospheric Pressure:	101 kPa
	. V.	~o,	by.	The.	VIII	16 200

Please Refer to Appendix for Details.

Report No.: 182512C400313101 Page 22 of 37

FCC ID: 2AAPK3642A


7. Number of Hopping Frequencies

Test Requirement:	47 CFR 15.247(a)(1)(iii)
Test Limit:	Refer to 47 CFR 15.247(a)(1)(iii), Fequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Method:	ANSI C63.10-2020, section 7.8.3 KDB 558074 D01 15.247 Meas Guidance v05r02
Anbotek	The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: The frequency band of operation. Depending on the number of channels the device supports, it could be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen. b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. c) VBW ≥ RBW. d) Sweep: No faster than coupled (auto) time. e) Detector function: Peak. f) Trace: Max-hold. g) Allow the trace to stabilize. It might prove necessary to break the span up into subranges to show clearly all of the hopping frequencies. Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of hopping channels. A spectral plot of the data shall be included in the test report.

7.1. EUT Operation

Operating Envi	ronment: Anbores Anbores Anbores Anbores Anbores
Test mode:	 4: TX-GFSK (Hopping): Keep the EUT in continuously transmitting mode (hopping) with GFSK modulation,. 5: TX-π/4-DQPSK (Hopping): Keep the EUT in continuously transmitting mode (hopping) with π/4 DQPSK modulation. 6: TX-8DPSK (Hopping): Keep the EUT in continuously transmitting mode (hopping) with 8DPSK modulation.

7.2. Test Setup

7.3. Test Data

Temperature: 25.5 °C	Humidity: 47 %	Atmospheric Pressure: 101 kPa
----------------------	----------------	-------------------------------

Please Refer to Appendix for Details.

Page 23 of 37

FCC ID: 2AAPK3642A

8. Dwell Time

Toot Poquiroment	47 CED 15 247(a)(1)(iii)
Test Requirement:	47 CFR 15.247(a)(1)(iii)
Test Limit:	Refer to 47 CFR 15.247(a)(1)(iii), Fequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels
otek Anbotek	employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Method:	ANSI C63.10-2020, section 7.8.4 KDB 558074 D01 15.247 Meas Guidance v05r02
bolek And	The dwell time per hop on a channel is the time from the start of the first
All	transmission to the end of the last transmission for that hop. If the device has
otek Aupor	a single transmission per hop then the dwell time is the duration of that
ok spotek	transmission. If the device has a multiple transmissions per hop then the dwell time is measured from the start of the first transmission to the end of
upole, Au	the last transmission.
Polek Aupore	uic iast tialisillissiuli.
And K Note	The time of occupancy is the total time that the device dwells on a channel
Vupore. Vun	over an observation period specified in the regulatory requirement. To
r. stek Vu	determine the time of occupancy the spectrum analyzer will be configured to
Anbo	measure both the dwell time per hop and the number of times the device
ek abotek	transmits on a specific channel in a given period.
or VI.	anbotek And ak hotek Anbo k atek An
Polek Aupor	The EUT shall have its hopping function enabled. Compliance with the
And ok shotek	requirements shall be made with the minimum and with the maximum
Aupole, Vin	number of channels enabled. If the dwell time per channel does not vary with
rotek Anbo	the number of channels than compliance with the requirements may be
And	based on the minimum number of channels. If the device supports different dwell times per channel (example Bluetooth devices can dwell on a channel
k upoter A	for 1, 3 or 5 time slots) then measurements can be limited to the longest
, otek	dwell time with the minimum number of channels.
Procedure:	awan tinia with the minimum number of chambers
rek vupoter	Use the following spectrum analyzer settings to determine the dwell time per
Aupo, W. Olek	hop: Anbote Anbotek Anbotek
Polek Vupo	Totak Anbore All tak aboten And
Vun	a) Span: Zero span, centered on a hopping channel.
Auporg	b) RBW shall be ≤ channel spacing and where possible RBW should be
k hotek b	set >> 1 / T, where T is the expected transmission time per hop.
And	c) Sweep time: Set so that the start of the first transmission and end of the
otek Anbore	last transmission for the hop are clearly captured. Setting the sweep time to
'po cek	be slightly longer than the hopping period per channel (hopping period = 1/hopping rate) should achieve this.
abotek And	d) Use a video trigger, where possible with a trigger delay, so that the start of
w stek vupote	the transmission is clearly observed. The trigger level might need adjustment
Anbo	to reduce the chance of triggering when the system hops on an adjacent
abolek Anb	channel.
V.,	e) Detector function: Peak.
Kek Wupor	f) Trace: Clear-write, single sweep.
ok hotek	g) Place markers at the start of the first transmission on the channel and at
upole Aug	the end of the last transmission. The dwell time per hop is the time between
rotek Aupore	these two markers.
Aug. K Mote	To determine the number of bear as a label and in the small term of bear at the small terms.
abole And	To determine the number of hops on a channel in the regulatory observation

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: 182512C400313101 Page 24 of 37

FCC ID: 2AAPK3642A

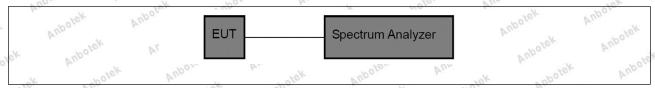
period repeat the measurement using a longer sweep time. When the device uses a single hopping sequence the period of measurement should be sufficient to capture at least 2 hops. When the device uses a dynamic hopping sequence, or the sequence varies, the period of measurement may need to capture multiple hops to better determine the average time of occupancy. Count the number of hops on the channel across the sweep time.

The average number of hops on the same channel within the regulatory observation period is calculated from the number of hops on the channel divided by the spectrum analyzer sweep time multiplied by the regulatory observation period. For example, if three hops are counted with an analyzer sweep time of 500 ms and the regulatory observation period is 10 s, then the number of hops in that ten seconds is 3 / 0.5 × 10, or 60 hops.

The average time of occupancy is calculated by multiplying the dwell time per hop by the number of hops in the observation period.

8.1. EUT Operation

Operating Environment:


4: TX-GFSK (Hopping): Keep the EUT in continuously transmitting mode (hopping) with GFSK modulation,.

Test mode:

5: TX-π/4-DQPSK (Hopping): Keep the EUT in continuously transmitting mode (hopping) with $\pi/4$ DQPSK modulation.

6: TX-8DPSK (Hopping): Keep the EUT in continuously transmitting mode (hopping) with 8DPSK modulation.

8.2. Test Setup

8.3. Test Data

Temperature:	25.5 °C	Humidity:	47 %	Atmospheric Pressure:	101 kPa
--------------	---------	-----------	------	-----------------------	---------

Please Refer to Appendix for Details.

Page 25 of 37

FCC ID: 2AAPK3642A

9. Emissions in non-restricted frequency bands

VUPO.	Thops, My	Aup	e/-
Test Requirement:	47 CFR 15.247(d), 15.209, 15.205	potek Aupor	
Test Limit: Anbotek Anbotek Anbotek	Refer to 47 CFR 15.247(d), In any 100 kHz band band in which the spread spectrum or digitally m is operating, the radio frequency power that is pradiator shall be at least 20 dB below that in the the band that contains the highest level of the de either an RF conducted or a radiated measurem demonstrates compliance with the peak conduct transmitter complies with the conducted power li	nodulated intentional randuced by the intention 100 kHz bandwidth we sired power, based on the transted power limits. If the limits based on the use	adiator onal ithin n smitter
Anbotek Anbos	RMS averaging over a time interval, as permitted this section, the attenuation required under this printer instead of 20 dB. Attenuation below the general 15.209(a) is not required.	paragraph shall be 30	
Test Method:	ANSI C63.10-2020 section 7.8.7 KDB 558074 D01 15.247 Meas Guidance v05r0	2 And Andotek	AT
Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	7.8.7.1 General considerations To demonstrate compliance with the relative out- requirements conducted spurious emissions sha transmit frequencies, per 5.5 and 5.6, and at the Frequency hopping shall be disabled for this test measurements at the allocated band-edges which hopping enabled.	all be measured for the maximum transmit po t with the exception of	owers.
Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	Connect the primary antenna port through an att analyzer input; in the results, account for all loss wireless device output and the spectrum analyze testing shall span 30 MHz to 10 times the operatibe done in a single sweep or, to aid resolution, a The resolution bandwidth shall be 100 kHz, vide coupled sweep time with a peak detector.	es between the unlice er. The frequency rang ting frequency and this across a number of sw	nsed ge of s may eeps.
Procedure:	The limit is based on the highest in-band level actually using the same instrument settings (resolution be bandwidth of 300 kHz, and a coupled sweep time help clearly demonstrate compliance a display lift required offset (typically 20 dB) below the highest highest in-band level is not clearly identified in the measurements a separate spectral plot showing provided.	andwidth of 100 kHz, e with a peak detector ne may be set at the st in-band level. Where out-of-band	video). To e the
Anbotek	When conducted measurements cannot be mad integrated, non-removable antenna) radiated measurements cannot be mad integrated, non-removable antenna) radiated measurements cannot be mad integrated, non-removable antenna) radiated measuring the resolution and video bandwidth setting described above. The field strength limit for spur restricted-bands shall then be set at the required below the highest in-band level. Radiated measurement procedures described in exception that the resolution bandwidth shall be 300 kHz, and a coupled sweep time with a peak wider measurement bandwidths are acceptable emissions provided that the peak detector is use	easurements shall be used by ower channel and means and peak detector actions emissions outsided offset (typically 20 desurements will follow the 100 kHz, video bandwidetector. Note that use for measuring the sput.	used. asuring as e of 3) e vidth e of rious

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: 182512C400313101 Page 26 of 37

FCC ID: 2AAPK3642A

value of spurious emissions are compared to the highest in-band level measured with the 100 kHz / 300 kHz bandwidth settings to determine compliance.

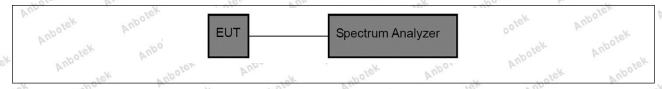
7.8.7.2 Band-edges

Compliance with a relative limit at the band-edges (e.g., -20 dBc) shall be made on the lowest and on the highest channels with frequency hopping disabled and repeated with frequency hopping enabled. For the latter test the hopping sequence shall include the lowest and highest channels.

For measurements with the hopping disabled the analyzer screen shall clearly show compliance with the requirement within 10 MHz of the allocated band-edge.

For measurements with the hopping enabled the analyzer screen shall clearly show compliance with the requirement within 10 MHz of both of the allocated band-edges. This could require separate spectral plots for each band-edge.

9.1. EUT Operation


Operating Environment:

- 1: TX-GFSK (Non-Hopping): Keep the EUT in continuously transmitting mode (non-hopping) with GFSK modulation.
- 2: TX- π /4-DQPSK (Non-Hopping): Keep the EUT in continuously transmitting mode (non-hopping) with π /4 DQPSK modulation.
- 3: TX-8DPSK (Non-Hopping): Keep the EUT in continuously transmitting mode (non-hopping) with 8DPSK modulation.

Test mode:

- 4: TX-GFSK (Hopping): Keep the EUT in continuously transmitting mode (hopping) with GFSK modulation..
- 5: TX- π /4-DQPSK (Hopping): Keep the EUT in continuously transmitting mode (hopping) with π /4 DQPSK modulation.
- 6: TX-8DPSK (Hopping): Keep the EUT in continuously transmitting mode (hopping) with 8DPSK modulation.

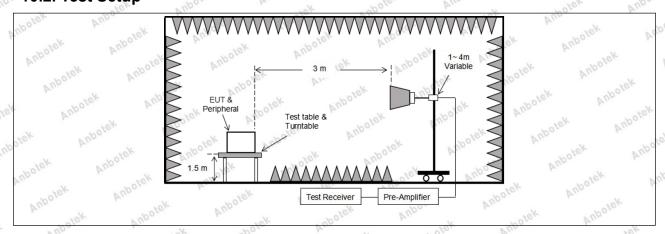
9.2. Test Setup

9.3. Test Data

Temperature: 25.5 °C Humidity: 47 % Atmospheric Pressure: 101 kPa	P.
---	----

Please Refer to Appendix for Details.

FCC ID: 2AAPK3642A


10. Band edge emissions (Radiated)

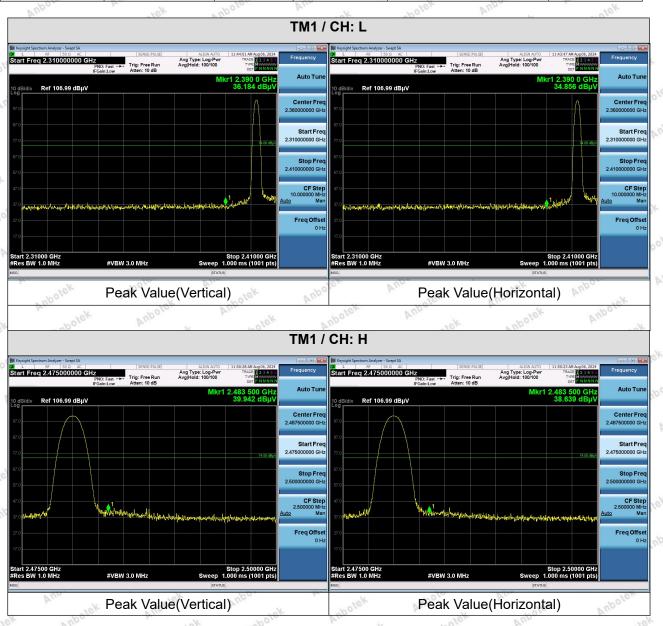
0,1	LP.	
Frequency (MHz)	Field strength	Measurement
tek upoter	(microvolts/meter)	distance
Aupo, W. Hok	Wholes Wus	(meters)
LO VA		300
V VAU		30
	W- W-	30
		3
V		3
	U 1/2 1/2	3
7.0	VU _D	200, b.
intentional radiators apprai	ragraph (g), lundamental emissi	ons from
		ou diffuel office.
		and edges.
	ed on measurements employing	an average
detector.	Aup	Aupor A.
		botek
KDB 558074 D01 15.247 M	leas Guidance v05r02	VIII
ANSI C63.10-2020 section	6.10.5.2	k Anbor
	restricted bands, as defined radiated emission limits special Frequency (MHz) 0.009-0.490 0.490-1.705 1.705-30.0 30-88 88-216 216-960 Above 960 ** Except as provided in paintentional radiators operatifrequency bands 54-72 MH However, operation within the sections of this part, e.g., § In the emission table above The emission limits shown employing a CISPR quasify 90 kHz, 110–490 kHz and a these three bands are based detector. ANSI C63.10-2020 section KDB 558074 D01 15.247 M	(microvolts/meter) 0.009-0.490 2400/F(kHz) 0.490-1.705 24000/F(kHz) 1.705-30.0 30 30-88 100 ** 88-216 216-960 200 ** Above 960 ** Except as provided in paragraph (g), fundamental emissi intentional radiators operating under this section shall not be frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or However, operation within these frequency bands is permitt sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the back three bands are based on measurements employing these three bands are based on measurements employing

10.1. EUT Operation

Operating Envir	ronment:	Pur Potek	Aupolek	Aupo	vupotek	Aupor
Test mode:	1: TX-GFSK (Non- hopping) with GFS 2: TX-π/4-DQPSK (non-hopping) with 3: TX-8DPSK (No- hopping) with 8DF	SK modulation. ((Non-Hopping) n π/4 DQPSK m n-Hopping): Kee	: Keep the El odulation. ep the EUT in	JT in continuous	ly transmitting	mode

10.2. Test Setup

Shenzhen Anbotek Compliance Laboratory Limited



FCC ID: 2AAPK3642A

Page 28 of 37

10.3. Test Data

25.5 °C 47 % Atmospheric Pressure: 101 kPa Temperature: Humidity:

Remark:

- 1. During the test, pre-scan all modes, the report only record the worse case mode.
 - 2. When the PK measure result value is less than the AVG limit value, the AV measure result values test not applicable.

Page 29 of 37 Report No.: 182512C400313101

FCC ID: 2AAPK3642A

11. Emissions in frequency bands (below 1GHz)

Anbotek Anbotek	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
otok Anbo	0.009-0.490	2400/F(kHz)	300
stek Aupoles	0.490-1.705	24000/F(kHz)	30 More
Aupo. Vel	1.705-30.0	30 Andrew	30
abolek Anbo	30-88	100 **	3 And
Ar. rek vup	88-216	150 **	3
Anbo	216-960 Above 960	200 **	3
Anbotek Anbotek Anbotek Anbotek	sections of this part, e.g., § In the emission table above The emission limits shown employing a CISPR quasi- 90 kHz, 110–490 kHz and	these frequency bands is permitted 15.231 and 15.241. The tighter limit applies at the begin in the above table are based on peak detector except for the frequency above 1000 MHz. Radiated emisted on measurements employing	oand edges. measurements uency bands 9- sion limits in
Vic.	ANSI C63.10-2020 section	20 4 107	V.

11.1. EUT Operation

	Operating En	viro	onment:	hotek	Aupore	VII.	Anbotek	AUDO
The state of the s	Test mode:	Aug	1: TX-GFSK (Non-hopping) with GFS 2: TX-π/4-DQPSK (non-hopping) with 3: TX-8DPSK (Nor-hopping) with 8DP	K modulation. (Non-Hopping): π/4 DQPSK mand the Modulation (No. 1) (No	: Keep the E odulation. ep the EUT ir	UT in continuou	usly transmitting	mode

Anborek

Anbotek

Anbotek

Anbotek

11.2. Test Setup

Anbotek

Anbotek

Report No.: 182512C400313101

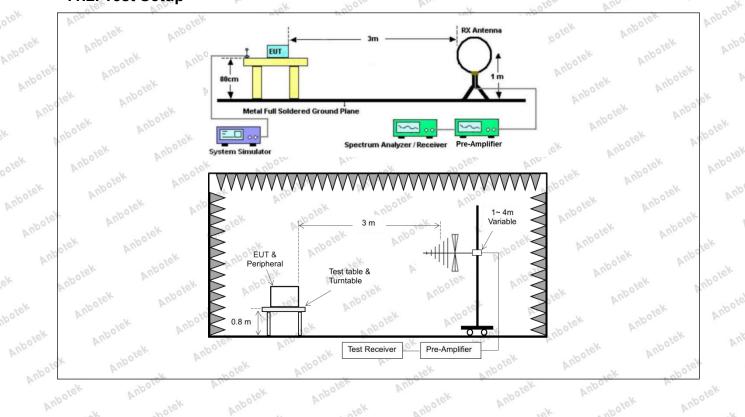
FCC ID: 2AAPK3642A

Page 30 of 37

Anbotek

Anbotek

Anbotek


Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

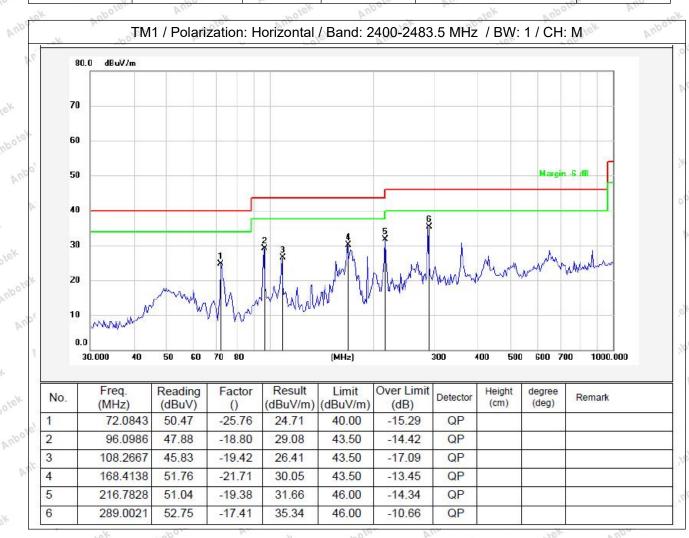
Anbotek

Shenzhen Anbotek Compliance Laboratory Limited

Anbotek

Anbotek

Anbotek


FCC ID: 2AAPK3642A

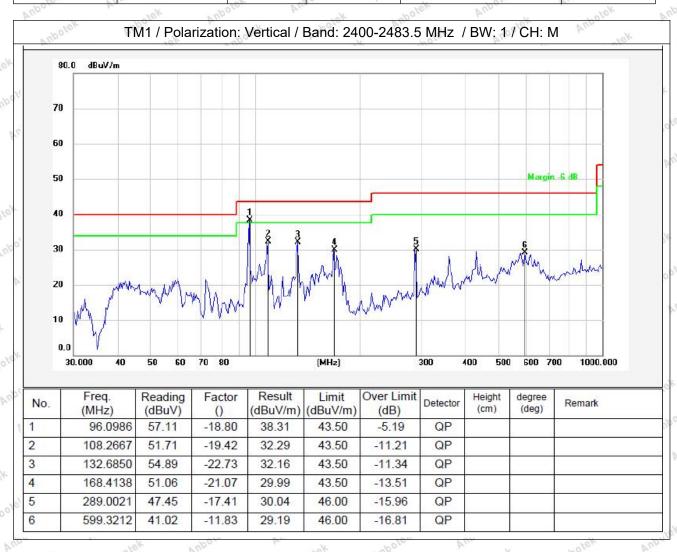
Page 31 of 37

11.3. Test Data

The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Temperature: 24.2 °C Humidity: 54 % Atmospheric Pressure: 101 kPa

Shenzhen Anbotek Compliance Laboratory Limited



Report No.: 182512C400313101 Page 32 of 37

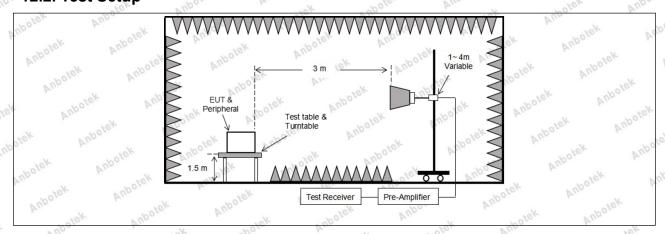
FCC ID: 2AAPK3642A

Temperature: 24.2 °C Humidity: 54 % Atmospheric Pressure: 101 kPa

Note:Only record the worst data in the report.

Report No.: 182512C400313101 Page 33 of 37

FCC ID: 2AAPK3642A


12. Emissions in frequency bands (above 1GHz)

VUD.	7001 A.	roter Pur	-40X
- stek napoles		ons which fall in the restricted ba	
Test Requirement:		omply with the radiated emission	limits specified
K Solek Anbo	in § 15.209(a)(see § 15.205	ō(c)).`	Se Aur
All	Frequency (MHz)	Field strength	Measurement
Nek Aupora	, ok upoler	(microvolts/meter)	distance
"Otek	Aupolo A. Hok	abole And	(meters)
abover And	0.009-0.490	2400/F(kHz)	300
VIEW PUPOLE	0.490-1.705	24000/F(kHz)	30 0000
Aupo, B. Stek	1.705-30.0	30 Mark August	30
botek Anbo	30-88	100 **	3 Anbe
Ame tok ab	88-216	150 **	3 aboter
Anbore Am	216-960	200 **	3
- Volek	Above 960	500	3 tek Aupo
Test Limit:	** Except as provided in pa	ragraph (g), fundamental emissi	ons from
rek pupole.		ng under this section shall not b	
Anbo. Lek		z, 76-88 MHz, 174-216 MHz or	
botek Anbo		hese frequency bands is permitt	ed under other
All Toke	sections of this part, e.g., §		, upote,
Anbore Am		e, the tighter limit applies at the b	
"Otek An		in the above table are based on	4/0
Anb K		peak detector except for the freq above 1000 MHz. Radiated emis	
rek vipoter	No.	ed on measurements employing	-10-
upo, K. Siek	detector.	d on measurements employing	an average
Popor	Pox Pos	201 rek alpotek	Ann
Test Method:	ANSI C63.10-2020 section KDB 558074 D01 15.247 M		Anbore
Procedure:	ANSI C63.10-2020 section	ok wole All	k Aupotok

12.1. EUT Operation

Operating Envir	onment:	Pur Potek	Aupoles	Aug	Vupolek	Aupor
Test mode:	1: TX-GFSK (Nor hopping) with GF 2: TX-π/4-DQPSk (non-hopping) wit 3: TX-8DPSK (No hopping) with 8DI	SK modulation. K (Non-Hopping) h π/4 DQPSK m n-Hopping): Kee	: Keep the El odulation. ep the EUT in	JT in continuous	ly transmitting) mode

12.2. Test Setup

Shenzhen Anbotek Compliance Laboratory Limited

Anbotek

Anbotek

Anbotek

Anbotek

Report No.: 182512C400313101

Page 34 of 37

FCC ID: 2AAPK3642A

12.3. Test Data

Temperature: 22.4 °C 50 % 101 kPa Humidity: Atmospheric Pressure:

_	And	16/4	vupo,	b.	"pole"	Ans	- otek
				ГМ1 / CH: L			
Ρ	eak value:						
	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
	4804.00	30.88	15.27	46.15	74.00	-27.85	Vertical
A	7206.00	31.41	18.09	49.50	74.00	-24.50	Vertical
	9608.00	33.50	23.76	57.26	74.00	-16.74	Vertical
	12010.00	Aupo*	upotek	Aupore.	74.00	Anboren	Vertical
V	14412.00	AMOOR	All Stek	Vupolek	74.00	, notek	Vertical
0	4804.00	30.94	15.27	46.21	74.00	-27.79	Horizontal
10'	7206.00	32.95	18.09	51.04	74.00	-22.96	Horizontal
	9608.00	29.82	23.76	53.58	74.00	-20.42	Horizontal
1	12010.00	* upolek*	Anbo ok	Potek	74.00	P. Polek	Horizontal
	14412.00	notek	Aupolek	VIII	74.00	Augo	Horizontal
Α	requency	Reading	Factor	Result	Limit	Over Limit	polarization
07	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
	4804.00	20.26	15.27	35.53	54.00	-18.47	Vertical
	7206.00	20.44	18.09	38.53	54.00	-15.47	Vertical
	9608.00	22.52	23.76	46.28	54.00	-7.72	Vertical
	12010.00	Vup*	Vupolek	Aupo	54.00	Anboro	Vertical
VE	14412.00	Anbore	K Kotel	Anbore	54.00	ok anbore	Vertical
0,5	4804.00	19.29	15.27	34.56	54.00	-19.44	Horizontal
20	7206.00	22.01	18.09	40.10	54.00	-13.90	Horizontal
	9608.00	19.13	23.76	42.89	54.00	-11.11	Horizontal
	12010.00	Aupotor	Aupor	hotek	54.00	" Notek	Horizontal
	14412.00	*otek	Anborek	V.	54.00	Aupos	Horizontal

Shenzhen Anbotek Compliance Laboratory Limited

Anbotek

Anbotek

Anbotek

14646.00

Anbotek Report No.: 182512C400313101

Page 35 of 37

		1	ГМ1 / CH: M			
Peak value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarizatio
4882.00	30.90	15.42	46.32	74.00	-27.68	Vertical
7323.00	31.26	18.02	49.28	74.00	-24.72	Vertical
9764.00	32.51	23.80	56.31	74.00	-17.69	Vertical
12205.00	ofer * Vue	19 Yes	Potek Aug	74.00	hotek Ar	Vertical
14646.00	abotek * A	400, 4	Potek	74.00	ur Jek	Vertical
4882.00	30.64	15.42	46.06	74.00	-27.94	Horizontal
7323.00	32.94	18.02	50.96	74.00	-23.04	Horizontal
9764.00	29.52	23.80	53.32	74.00	-20.68	Horizontal
12205.00	k * Wholes	And	ek nbok	74.00	x 20	Horizontal
14646.00	* *	otek Aupo	- P	74.00	Ole Vien	Horizontal
Average value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization
4882.00	19.99	15.42	35.41	54.00	-18.59	Vertical
7323.00	20.54	18.02	38.56	54.00	-15.44	Vertical
9764.00	22.38	23.80	46.18	54.00	otek -7.82 Anb	Vertical
12205.00	hotek * Ant	Jose Min	Clek V.	54.00	100	Vertical
14646.00	*	Aupoten	'up.	54.00	Anbor	Vertical
4882.00	19.20	15.42	34.62	54.00	-19.38	Horizontal
7323.00	21.57	18.02	39.59	54.00	-14.41	Horizontal
9764.00	19.64	23.80	43.44	54.00	-10.56	Horizontal
12205.00	*	A Aupolo	b.	54.00	YUR YUR	Horizontal
12200.00	No.	100		10 - 11 - 11.		10

Horizontal

54.00

Page 36 of 37

FCC ID: 2AAPK3642A

Ve. Vinnig	B.	FCC ID: 2	2AAPK3642/	4 . hol	ek Aupo	V-
		•	TM1 / CH: H			
Peak value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	31.17	15.58	46.75	74.00	-27.25	Vertical
7440.00	31.27	17.93	49.20	74.00	-24.80	Vertical
9920.00	33.06	23.83	56.89	74.00	-17.11 nbo	Vertical
12400.00	otek * Anbo	, p.	otek Ant	74.00	16/4	Vertical
14880.00	Mek *	upoter Ar	, ex	74.00	100	Vertical
4960.00	30.71	15.58	46.29	74.00	-27.71	Horizontal
7440.00	32.97	17.93	50.90	74.00	-23.10	Horizontal
9920.00	30.20	23.83	54.03	74.00	-19.97	Horizontal
12400.00	* * botek	Aupole	P. O.	74.00	And	Horizontal
14880.00	*	rek Anbo	ien Vup	74.00	otek Wupe	Horizontal
Average value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization
4960.00	21.11	15.58	36.69	54.00	-17.31	Vertical
7440.00	21.55	17.93	39.48	54.00	-14.52	Vertical
9920.00	22.93	23.83	46.76	54.00	-7.24	Vertical
12400.00	h. * 191	Olek Vup,	V	54.00	Joje VIII	Vertical
14880.00	* *	"otek	Inpole A	54.00	nbotek	Vertical
4960.00	20.64	15.58	36.22	54.00	-17.78	Horizontal
7440.00	22.94	17.93	40.87	54.00	-13.13	Horizontal
9920.00	19.54	23.83	43.37	54.00	-10.63	Horizontal
12400.00	*1400	st con	V Vupor	54.00	ek Aupore	Horizontal
14880 00	tek * Vupo,	Pr.	dn Yar	54 00	V .	Horizontal

Remark:

- 1. Result =Reading + Factor
- 2. "*" means the test results were attenuated more than 20dB below the permissible limits, so the results don't record in the report.
- 3. Only the worst case is recorded in the report.

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Report No.: 182512C400313101

Page 37 of 37

Anbotek

FCC ID: 2AAPK3642A

APPENDIX I -- TEST SETUP PHOTOGRAPH

Anborek

Please refer to separated files Appendix I -- Test Setup Photograph RF(BT)

APPENDIX II -- EXTERNAL PHOTOGRAPH

Please refer to separated files Appendix II -- External Photograph

APPENDIX III -- INTERNAL PHOTOGRAPH

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Please refer to separated files Appendix III -- Internal Photograph

Anbotek End of Report -

Anbotek

Anbotek