

RADIO TEST REPORT FCC ID: 2AOWK-5006AF1

Product: Mobile Phone

Trade Mark: ulefone

Model No.: GQ5006

Family Model: Armor 26 Ultra, Armor 26T Ultra, Armor 26, Armor 26T, Armor 26 Lite, Armor 26 Pro, Armor 26T Pro, Armor 26s, Armor 26s Pro Report No.: S24032502707001

Issue Date: May 09, 2024

Prepared for

Shenzhen Gotron Electronic CO.,LTD.

7B01, Building A, Block 1, Anhongji Tianyao Plaza, Longhua District, Shenzhen City, Guangdong Province China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

I

TABLE OF CONTENTS

1 TE	ST RESULT CERTIFICATION	3
2 SU	MMARY OF TEST RESULTS	4
3 FA	CILITIES AND ACCREDITATIONS	5
3.1 3.2 3.3	FACILITIES LABORATORY ACCREDITATIONS AND LISTINGS MEASUREMENT UNCERTAINTY	5
4 GE	NERAL DESCRIPTION OF EUT	6
5 DE	SCRIPTION OF TEST MODES	8
6 SE	ГUP OF EQUIPMENT UNDER TEST	9
6.1 6.2 6.3	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM SUPPORT EQUIPMENT EQUIPMENTS LIST FOR ALL TEST ITEMS	9 10
7 TE	ST REQUIREMENTS	
7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11	CONDUCTED EMISSIONS TEST RADIATED SPURIOUS EMISSION NUMBER OF HOPPING CHANNEL HOPPING CHANNEL SEPARATION MEASUREMENT AVERAGE TIME OF OCCUPANCY (DWELL TIME) 20DB BANDWIDTH TEST PEAK OUTPUT POWER CONDUCTED BAND EDGE MEASUREMENT. SPURIOUS RF CONDUCTED EMISSION ANTENNA APPLICATION FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS	13 25 26 27 29 30 31 32 33 34
8 TE	ST RESULTS	35
8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9	DWELL TIME MAXIMUM CONDUCTED OUTPUT POWER -20DB BANDWIDTH OCCUPIED CHANNEL BANDWIDTH CARRIER FREQUENCIES SEPARATION NUMBER OF HOPPING CHANNEL BAND EDGE BAND EDGE (HOPPING) CONDUCTED RF SPURIOUS EMISSION	45 51 63 69 72 79

1 TEST RESULT CERTIFICATION

[
Applicant's name:	Shenzhen Gotron Electronic CO.,LTD.
Address:	7B01, Building A, Block 1, Anhongji Tianyao Plaza, Longhua District, Shenzhen City, Guangdong Province China
Manufacturer's Name::	Shenzhen Gotron Electronic CO.,LTD.
Address:	7B01, Building A, Block 1, Anhongji Tianyao Plaza, Longhua District, Shenzhen City, Guangdong Province China
Product description	
Product name:	Mobile Phone
Model and/or type reference:	GQ5006
Family Model:	Armor 26 Ultra, Armor 26T Ultra, Armor 26, Armor 26T, Armor 26 Lite, Armor 26 Pro, Armor 26T Pro, Armor 26s, Armor 26s Pro
Sample number	S240325027006
Date of Test	Mar 25, 2024 ~ May 09, 2024

Measurement Procedure Used:

APPLICABLE STANDARDS

STANDARD/ TEST PROCEDURE	TEST RESULT
FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C ANSI C63.10-2013	Complied

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Prepared By: Allen Liu Reviewed By: Aaron Cheng Approved By: Allen Liu Allen Liu And Cheng By: Allen Liu A Alex Li (Project Engineer) (Supervisor) (Manager)

FCC Part15 (15.247), Subpart C			
Standard Section	Test Item	Verdict	Remark
15.207	Conducted Emission	PASS	
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS	
15.247(a)(1)	Hopping Channel Separation	PASS	
15.247(b)(1)	Peak Output Power	PASS	
15.247(a)(iii)	Number of Hopping Frequency	PASS	
15.247(a)(iii)	Dwell Time	PASS	
15.247(a)(1)	Bandwidth	PASS	
15.247 (d)	Band Edge Emission	PASS	
15.247 (d)	Spurious RF Conducted Emission	PASS	
15.203	Antenna Requirement	PASS	

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	: The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm	: Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification		
Equipment	Mobile Phone	
Trade Mark	ulefone	
FCC ID	2AOWK-5006AF1	
Model No.	GQ5006	
Family Model	Armor 26 Ultra, Armor 26T Ultra, Armor 26, Armor 26T, Armor 26 Lite, Armor 26 Pro, Armor 26T Pro, Armor 26s, Armor 26s Pro	
Model Difference	All models are the same circuit and RF module, except the Model Name.	
Operating Frequency	2402MHz~2480MHz	
Modulation	GFSK, π/4-DQPSK, 8-DPSK	
Number of Channels	79 Channels	
Antenna Type	LDS Antenna	
Antenna Gain	3.18 dBi	
Adapter	Model: HJ-PD120W-US Input: 100-240V~50/60Hz 1.8A Output: 5.0V3.0A 15.0W OR 9.0V3.0A 27.0W OR 12.0V3.0A 36.0W OR 15.0V3.0A 45.0W OR 20.0V5.0A 100.0W MAX PPS: 3.6V-20.0V6.0A 120.0W MAX	
Battery	DC 7.74V, 7800mAh	
Power supply	DC 7.74V from battery or DC 5V from adapter	
HW Version	N/A	
SW Version	N/A	

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Note 2: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

		Certificate #4298.01		
Revision History				
Report No.	Version	Description	Issued Date	
S24032502707001	Rev.01	Initial issue of report	May 09, 2024	

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation; 2Mbps for π /4-DQPSK modulation; 3Mbps for 8-DPSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2403
39	2441
40	2442
77	2479
78	2480

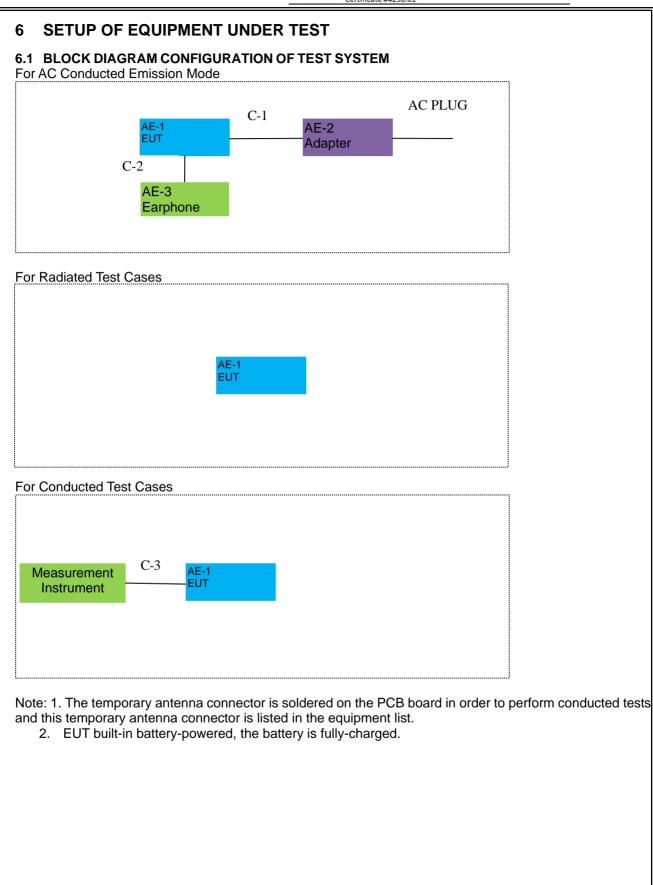
Note: fc=2402MHz+k×1MHz k=0 to 78

The following summary table is showing all test modes to demonstrate in compliance with the standard.

For AC Conducted Emission				
Final Test Mode	Final Test Mode Description			
Mode 1	normal link mode			

Note: AC power line Conducted Emission was tested under maximum output power.

For Radiated Test Cases		
Final Test Mode	Description	
Mode 1	normal link mode	
Mode 2	CH00(2402MHz)	
Mode 3	CH39(2441MHz)	
Mode 4	CH78(2480MHz)	


Note: For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

For Conducted Test Cases		
Final Test Mode	Description	
Mode 2	CH00(2402MHz)	
Mode 3	CH39(2441MHz)	
Mode 4	CH78(2480MHz)	
Mode 5	Hopping mode	

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
AE-1	Mobile Phone	GQ5006	N/A	EUT
AE-2	Adapter	HJ-PD120W-US	N/A	Peripherals
AE-3	Earphone	N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	YES	NO	1.0m
C-2	Earphone Cable	NO	NO	1.2m
C-3	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

laula		cst equipment					-
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2024.03.12	2025.03.11	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2023.05.29	2024.05.28	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2024.03.12	2025.03.11	1 year
4	Test Receiver	R&S	ESPI7	101318	2024.03.12	2025.03.11	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2024.03.11	2025.03.10	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2023.05.06	2026.05.05	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2024.03.12	2025.03.11	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2023.05.29	2024.05.28	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2023.05.29	2024.05.28	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2023.05.29	2024.05.28	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2023.05.29	2024.05.28	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2023.05.06	2026.05.05	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2023.05.06	2026.05.05	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	Filter	TRILTHIC	2400MHz	29	2023.05.29	2024.05.28	1 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Co	AC Conduction Test equipment						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2024.03.12	2025.03.11	1 year
2	LISN	R&S	ENV216	101313	2024.03.12	2025.03.11	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2024.03.12	2025.03.11	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2023.05.06	2026.05.05	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2023.05.06	2026.05.05	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2023.05.06	2026.05.05	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2023.05.06	2026.05.05	3 year

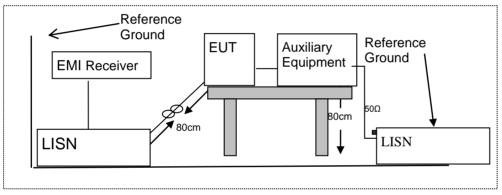
Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)


7.1.2 Conformance Limit

	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	

Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
 - 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Test Configuration

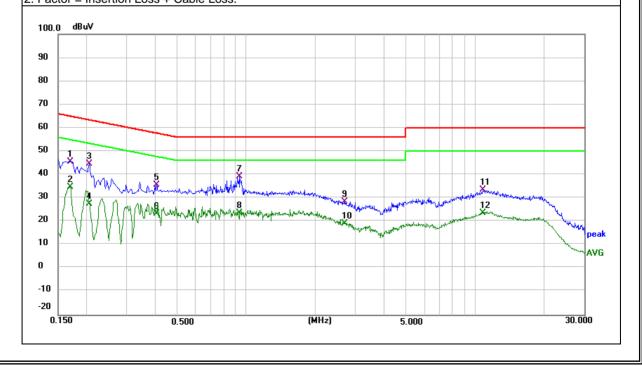
7.1.4 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable
 may be terminated, if required, using the correct terminating impedance. The overall length shall not
 exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

7.1.5 Test Results

Pass


7.1.6 Test Results

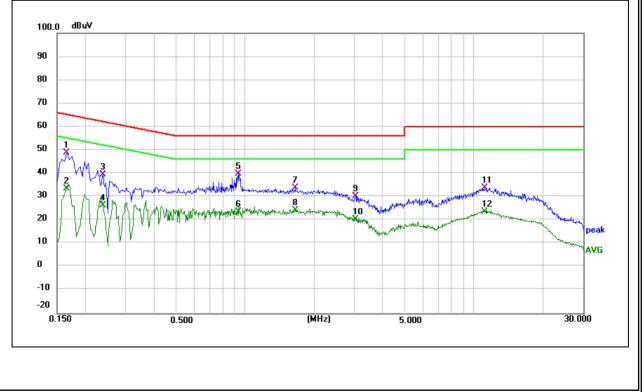
EUT:	Mobile Phone	Model Name :	GQ5006
Temperature:	22 ℃	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Bomeria
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	- Remark
0.1700	35.60	9.97	45.57	64.96	-19.39	QP
0.1700	24.91	9.97	34.88	54.96	-20.08	AVG
0.2060	34.45	10.06	44.51	63.37	-18.86	QP
0.2060	17.44	10.06	27.50	53.37	-25.87	AVG
0.4060	25.24	10.47	35.71	57.73	-22.02	QP
0.4060	12.85	10.47	23.32	47.73	-24.41	AVG
0.9380	27.79	11.54	39.33	56.00	-16.67	QP
0.9380	12.05	11.54	23.59	46.00	-22.41	AVG
2.6940	18.69	9.67	28.36	56.00	-27.64	QP
2.6940	9.44	9.67	19.11	46.00	-26.89	AVG
10.8180	23.76	9.69	33.45	60.00	-26.55	QP
10.8180	14.10	9.69	23.79	50.00	-26.21	AVG

Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.

NTEK 北测[®]


EUT:	Mobile Phone	Model Name :	GQ5006
Temperature:	25 ℃	Relative Humidity:	62%
Pressure:	1010hPa	Phase :	N
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Demerik
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1650	38.99	9.97	48.96	65.21	-16.25	QP
0.1650	23.61	9.97	33.58	55.21	-21.63	AVG
0.2380	29.29	10.12	39.41	62.17	-22.76	QP
0.2380	16.18	10.12	26.30	52.17	-25.87	AVG
0.9380	28.30	11.54	39.84	56.00	-16.16	QP
0.9380	12.05	11.54	23.59	46.00	-22.41	AVG
1.6460	21.02	12.96	33.98	56.00	-22.02	QP
1.6460	11.20	12.96	24.16	46.00	-21.84	AVG
3.0300	20.63	9.67	30.30	56.00	-25.70	QP
3.0300	10.79	9.67	20.46	46.00	-25.54	AVG
11.1459	24.23	9.69	33.92	60.00	-26.08	QP
11.1459	14.03	9.69	23.72	50.00	-26.28	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

MHz	MHz	MHz	GHz	
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15	
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46	
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75	
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5	
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2	
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5	
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7	
6.26775-6.26825	123-138	2200-2300	14.47-14.5	
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2	
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4	
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12	
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0	
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8	
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5	
12.57675-12.57725	322-335.4	3600-4400	(2)	
13.36-13.41				

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Froguopov(MHz)	Class B (dBuV/m) (at 3M)		
Frequency(MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Remark :1. Emission level in dBuV/m=20 log (uV/m)

Measurement was performed at an antenna to the closed point of EUT distance of meters.
 For Frequency 9kHz~30MHz:

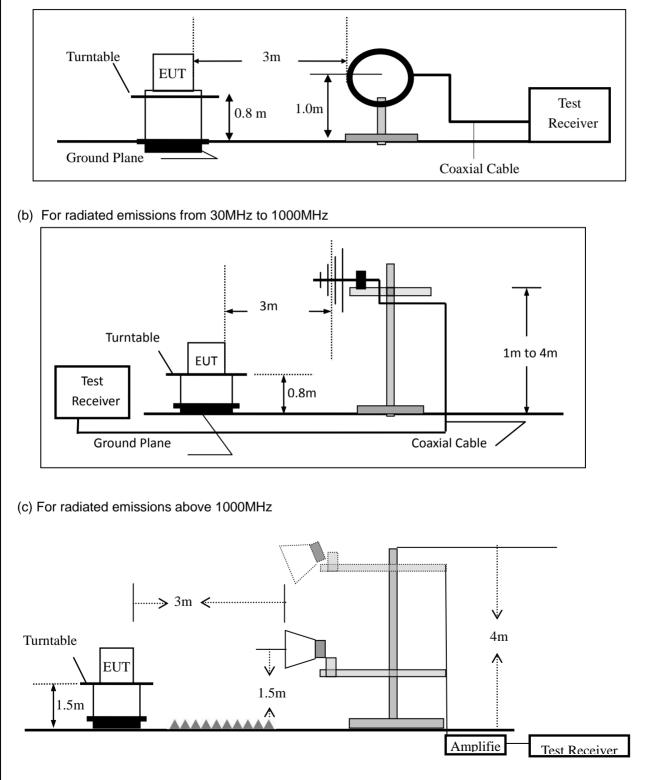
Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.



7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting			
Attenuation	Auto			
Start Frequency	1000 MHz			
Stop Frequency	10th carrier harmonic			
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1 MHz for Average			

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos.
 - Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:								
Frequency Band (MHz)	d (MHz) Function Resolution bandwidth		Video Bandwidth					
30 to 1000	QP	120 kHz	300 kHz					
Ab 200	Peak		1 MHz					
Above 1000	Average	1 MHz	1 MHz					

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

EUT:	Mobile Phone	Model No.:	GQ5006
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

Freq.	Ant.Pol.	Emission Level(dBuV/m)		Limit 3	m(dBuV/m)	Over(dB) PK AV		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

105.6415

300.3672

457.5073

948.7610

-20.79

-19.96

-16.97

-8.00

QP

QP

QP

QP

Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was report as below: EUT: Mobile Phone GQ5006 Model Name : Temperature: **25°**℃ 55% **Relative Humidity:** Test Mode: Mode 3 GFSK Pressure: 1010hPa DC 7.74V Test Voltage : Emission Meter Frequency Factor Limits Margin Polar Reading Level Remark (H/V) (MHz) (dBuV) (dB) (dBuV/m) (dBuV/m) (dB) V 33.0950 5.84 24.63 30.47 40.00 -9.53 QP QP V 43.9658 6.28 18.61 24.89 40.00 -15.11

22.71

26.04

29.03

38.00

43.50

46.00

46.00

46.00

∨ Remark:

V

V

V

Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit

18.00

20.15

24.26


31.28

4.71

5.89

4.77

6.72

NTEK 北测[®]

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
Н	34.0363	6.27	24.10	30.37	40.00	-9.63	QP
Н	84.7020	5.14	15.89	21.03	40.00	-18.97	QP
Н	98.4865	5.51	17.43	22.94	43.50	-20.56	QP
Н	150.5377	5.36	18.36	23.72	43.50	-19.78	QP
Н	490.7445	6.88	24.78	31.66	46.00	-14.34	QP
Н	651.9415	7.22	27.23	34.45	46.00	-11.55	QP
80.0	n Level= Meter dBuV/m						
70							
60							
50 -							
40 -						6	Harmen
30 🙀	1 milwhadill	3	4		5 alperture of the second second	and with a strand	···
20	1	when the addition of the stand	_{peleopheneliserinetinetinet}	Mary Mary Mary			
10							
0.0							

■ Spurio	 Spurious Emission Above 1GHz (1GHz to 25GHz) 										
EUT:	ſ	Mobile Phone			Model N	lo.:		GQ5006			
Temperatu	re: :	20 °C	1		Relative	Humidity:		48%	.8%		
Test Mode:	, i	Mode	e2/Mode3/	Mode4	Test By:	:		Allen	Liu		
All the mode	ulation m	node	s have bee	en tested,			was	repor	t as below	:	
Frequency	Read Le	evel	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Li	mits	Margin	Remark	Comment
(MHz)	(dBµ\	√)	(dB)	dB/m	(dB)	(dBµV/m)	(dB	µV/m)	(dB)		
				Low Char	nnel (2402 MH	lz)(GFSK)Abo	ove 10	3			
4804.214	62.69	9	5.21	35.59	44.30	59.19	74	4.00	-14.81	Pk	Vertical
4804.214	41.53	3	5.21	35.59	44.30	38.03	54	4.00	-15.97	AV	Vertical
7206.265	60.74	4	6.48	36.27	44.60	58.89	74	4.00	-15.11	Pk	Vertical
7206.265	43.80	0	6.48	36.27	44.60	41.95	54	4.00	-12.05	AV	Vertical
4804.109	60.78	8	5.21	35.55	44.30	57.24	74	4.00	-16.76	Pk	Horizontal
4804.109	42.36	6	5.21	35.55	44.30	38.82	54	4.00	-15.18	AV	Horizontal
7206.224	63.29	9	6.48	36.27	44.52	61.52	74	4.00	-12.48	Pk	Horizontal
7206.224	47.68	8	6.48	36.27	44.52	45.91	54	4.00	-8.09	AV	Horizontal
				Mid Char	nel (2441 MH	z)(GFSK)Abo	ove 1G	6			
4882.396	63.97	7	5.21	35.66	44.20	60.64	74	4.00	-13.36	Pk	Vertical
4882.396	43.1	1	5.21	35.66	44.20	39.78	54	4.00	-14.22	AV	Vertical
7323.241	59.78	8	7.10	36.50	44.43	58.95	74	4.00	-15.05	Pk	Vertical
7323.241	48.39	9	7.10	36.50	44.43	47.56	54	4.00	-6.44	AV	Vertical
4882.108	61.99	9	5.21	35.66	44.20	58.66	74	4.00	-15.34	Pk	Horizontal
4882.108	48.79	9	5.21	35.66	44.20	45.46	54	4.00	-8.54	AV	Horizontal
7323.132	60.76	6	7.10	36.50	44.43	59.93	74	4.00	-14.07	Pk	Horizontal
7323.132	41.35	5	7.10	36.50	44.43	40.52		4.00	-13.48	AV	Horizontal
				High Char	าnel (2480 MH	lz)(GFSK) Ab	ove 10	G			
4960.397	67.33	3	5.21	35.52	44.21	63.85	74	4.00	-10.15	Pk	Vertical
4960.397	43.96	6	5.21	35.52	44.21	40.48	54	4.00	-13.52	AV	Vertical
7440.201	61.55	5	7.10	36.53	44.60	60.58	74	4.00	-13.42	Pk	Vertical
7440.201	45.50	0	7.10	36.53	44.60	44.53	54	4.00	-9.47	AV	Vertical
4960.225	68.17	7	5.21	35.52	44.21	64.69	74	4.00	-9.31	Pk	Horizontal
4960.225	47.34	4	5.21	35.52	44.21	43.86	54	4.00	-10.14	AV	Horizontal
7440.298	60.87	7	7.10	36.53	44.60	59.90	74	4.00	-14.10	Pk	Horizontal
7440.298	44.58	8	7.10	36.53	44.60	43.61	54	4.00	-10.39	AV	Horizontal

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

UT:	S Emission i Mobile Ph			Model N			GQ5006		
emperature	e: 20 ℃			Relative	Humidity:	48%	48%		
est Mode:	Mode2/ N	lode4		Test By	:	Allen	Liu		
All the mod	ulation mode	es have be	en tested			t was repo	ort as belo	w:	
Frequency	Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
			1	Mbps(GFSK)-	Non-hopping				
2310.00	59.02	2.97	27.80	43.80	45.99	74	-28.01	Pk	Horizonta
2310.00	44.53	2.97	27.80	43.80	31.50	54	-22.50	AV	Horizonta
2310.00	59.46	2.97	27.80	43.80	46.43	74	-27.57	Pk	Vertical
2310.00	42.93	2.97	27.80	43.80	29.90	54	-24.10	AV	Vertical
2390.00	59.54	3.14	27.21	43.80	46.09	74	-27.91	Pk	Vertical
2390.00	42.62	3.14	27.21	43.80	29.17	54	-24.83	AV	Vertical
2390.00	56.23	3.14	27.21	43.80	42.78	74	-31.22	Pk	Horizonta
2390.00	43.26	3.14	27.21	43.80	29.81	54	-24.19	AV	Horizonta
2483.50	59.03	3.58	27.70	44.00	46.31	74	-27.69	Pk	Vertical
2483.50	43.38	3.58	27.70	44.00	30.66	54	-23.34	AV	Vertical
2483.50	60.27	3.58	27.70	44.00	47.55	74	-26.45	Pk	Horizonta
2483.50	42.39	3.58	27.70	44.00	29.67	54	-24.33	AV	Horizonta
			-	1Mbps(GFSI	<)-hopping		-		
2310.00	53.65	2.97	27.80	43.80	40.62	74.00	-33.38	Pk	Vertical
2310.00	42.82	2.97	27.80	43.80	29.79	54.00	-24.21	AV	Vertical
2310.00	52.00	2.97	27.80	43.80	38.97	74.00	-35.03	Pk	Horizonta
2310.00	41.64	2.97	27.80	43.80	28.61	54.00	-25.39	AV	Horizonta
2390.00	51.39	3.14	27.21	43.80	37.94	74.00	-36.06	Pk	Vertical
2390.00	41.37	3.14	27.21	43.80	27.92	54.00	-26.08	AV	Vertical
2390.00	52.68	3.14	27.21	43.80	39.23	74.00	-34.77	Pk	Horizonta
2390.00	44.01	3.14	27.21	43.80	30.56	54.00	-23.44	AV	Horizonta
2483.50	52.89	3.58	27.70	44.00	40.17	74.00	-33.83	Pk	Vertical
2483.50	44.24	3.58	27.70	44.00	31.52	54.00	-22.48	AV	Vertical
2483.50	52.02	3.58	27.70	44.00	39.30	74.00	-34.70	Pk	Horizonta
2483.50	42.33	3.58	27.70	44.00	29.61	54.00	-24.39	AV	Horizonta

Note: (1) All other emissions more than 20dB below the limit.

Spurious	Emission i	n Restricte	d Band 32	60MHz-1	8000MHz					
EUT:	Mobile Phone			Model N	Model No.: GQ5006					
Temperature:	20 ℃	1		Relative	e Humidity	:	48%			
Test Mode:	Mode	e2/ Mode4		Test By	:		Allen	Liu		
All the modu	lation mode	es have be	en tested,	and the w	vorst resu	lt wa	as repo	ort as belo	w:	-
Frequency	Reading Level	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Li	imits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dB	μV/m)	(dB)	Туре	
3260	61.64	4.04	29.57	44.70	50.55		74	-23.45	Pk	Vertical
3260	56.54	4.04	29.57	44.70	45.45		54	-8.55	AV	Vertical
3260	61.14	4.04	29.57	44.70	50.05		74	-23.95	Pk	Horizontal
3260	56.66	4.04	29.57	44.70	45.57		54	-8.43	AV	Horizontal
3332	65.72	4.26	29.87	44.40	55.45		74	-18.55	Pk	Vertical
3332	54.91	4.26	29.87	44.40	44.64		54	-9.36	AV	Vertical
3332	62.28	4.26	29.87	44.40	52.01		74	-21.99	Pk	Horizontal
3332	53.10	4.26	29.87	44.40	42.83		54	-11.17	AV	Horizontal
17797	43.31	10.99	43.95	43.50	54.75		74	-19.25	Pk	Vertical
17797	32.36	10.99	43.95	43.50	43.80		54	-10.20	AV	Vertical
17788	44.23	11.81	43.69	44.60	55.13		74	-18.87	Pk	Horizontal
17788	31.61	11.81	43.69	44.60	42.51		54	-11.49	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

7.3 NUMBER OF HOPPING CHANNEL

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and ANSI C63.10-2013

7.3.2 Conformance Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.3 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = the frequency band of operation RBW : To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.3.6 Test Results

EUT:	Mobile Phone	Model No.:	GQ5006
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode 5(1Mbps)	Test By:	Allen Liu

7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

7.4.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.4.2 Conformance Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = Measurement Bandwidth or Channel Separation

RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.

VBW ≥ RBW Sweep = auto

Detector function = peak Trace = max hold

7.4.6 Test Results

EUT:	Mobile Phone	Model No.:	GQ5006
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and ANSI C63.10-2013

7.5.2 Conformance Limit

The average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel RBW \geq 1MHz VBW \geq RBW Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold Measure the maximum time duration of one single pulse. Set the EUT for DH5, DH3 and DH1 packet transmitting. Measure the maximum time duration of one single pulse.

7.5.6 **Test Results**

EUT:	Mobile Phone	Model No.:	GQ5006
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

Test data reference attachment.

Note:

A Period Time = (channel number)*0.4

DH1 Dwell time: Reading * (1600/2)*31.6/(channel number) DH3 Dwell time: Reading * (1600/4)*31.6/(channel number) DH5 Dwell time: Reading * (1600/6)*31.6/(channel number)

For Example:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4 x 79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- 2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

7.6 20DB BANDWIDTH TEST

7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.6.2 Conformance Limit

No limit requirement.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.6.6 Test Results

EUT:	Mobile Phone	Model No.:	GQ5006
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.7 PEAK OUTPUT POWER

7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and ANSI C63.10-2013

7.7.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

 $RBW \ge the 20 dB$ bandwidth of the emission being measured

 $VBW \ge RBW$

Sweep = auto

Detector function = peak Trace = max hold

7.7.6 Test Results

EUT:	Mobile Phone	Model No.:	GQ5006
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.8 CONDUCTED BAND EDGE MEASUREMENT

7.8.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013

7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW = 100KHz

VBW = 300KHz

Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.8.6 Test Results

EUT:	Mobile Phone	Model No.:	GQ5006
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2 /Mode4/ Mode 5	Test By:	GQ5006 48% Allen Liu

7.9 SPURIOUS RF CONDUCTED EMISSION

7.9.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013.

7.9.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.9.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.9.4 Test Setup

Please refer to Section 6.1 of this test report.

7.9.5 Test Procedure

Establish an emission level by using the following procedure:

a) Set the center frequency and span to encompass frequency range to be measured.

- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level.

Then the limit shall be attenuated by at least 20 dB relative to the maximum amplitude level in 100 kHz.

7.9.6 Test Results

Remark: The measurement frequency range is from 30MHzHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

7.10 ANTENNA APPLICATION

7.10.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.10.2 Result

The EUT antenna is permanent attached LDS antenna (Gain: 3.18dBi). It comply with the standard requirement.

7.11 FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS 7.11.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

7.11.2 Frequency Hopping System

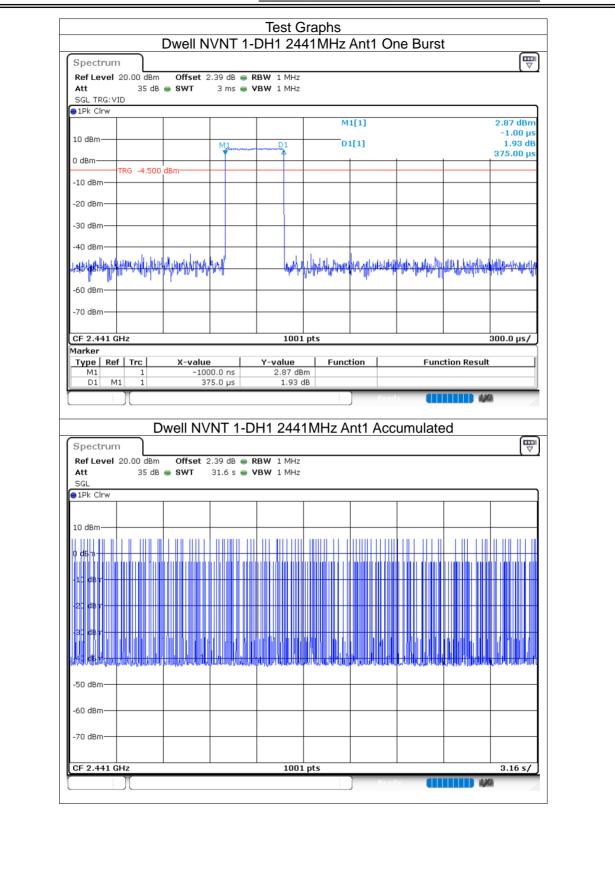
This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule. This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each: centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock. Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for FCC Part 15.247 rule.

7.11.3 EUT Pseudorandom Frequency Hopping Sequence

Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.


8 TEST RESULTS

8.1 DWELL TIME

Condition	Mode	Frequency	Antenna	Pulse	Total	Burst	Period	Limit	Verdict
		(MHz)		Time	Dwell	Count	Time	(ms)	
				(ms)	Time		(ms)		
					(ms)				
NVNT	1-DH1	2441	Ant1	0.375	42.75	114	31600	400	Pass
NVNT	1-DH3	2441	Ant1	1.63	89.65	55	31600	400	Pass
NVNT	1-DH5	2441	Ant1	2.88	270.72	94	31600	400	Pass
NVNT	2-DH1	2441	Ant1	0.381	41.91	110	31600	400	Pass
NVNT	2-DH3	2441	Ant1	1.635	103.005	63	31600	400	Pass
NVNT	2-DH5	2441	Ant1	2.888	251.256	87	31600	400	Pass
NVNT	3-DH1	2441	Ant1	0.384	45.312	118	31600	400	Pass
NVNT	3-DH3	2441	Ant1	1.63	96.17	59	31600	400	Pass
NVNT	3-DH5	2441	Ant1	2.888	103.968	36	31600	400	Pass

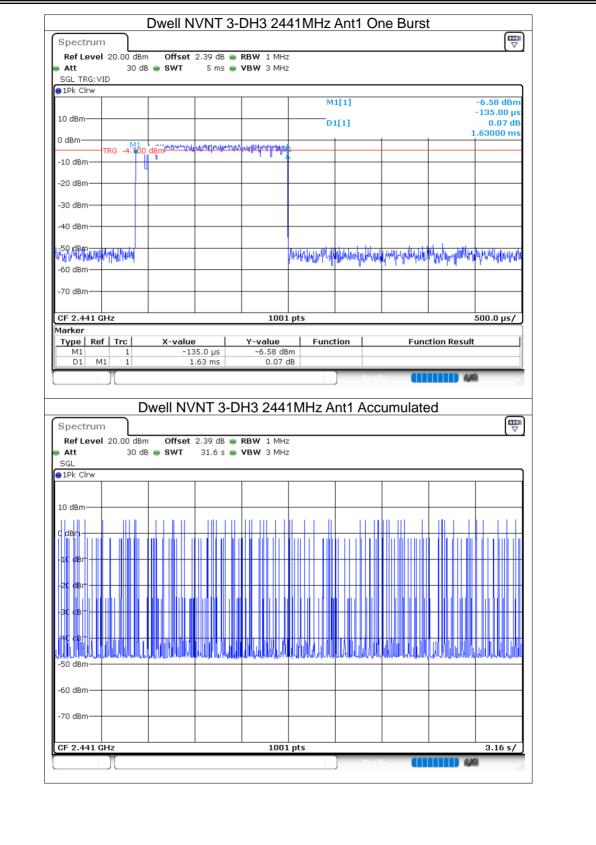
10 dBm 01 D1	SGL TRG: VID 1Pk Clrw			1		-				E 40 - D
0 dBm 100 dBm 10000 ms -10 dBm 100 dBm 10000 ms -20 dBm 100 dBm 100 dBm -30 dBm 100 dBm 100 dBm -40 dBm 100 dBm 100 dBm -50 dBm 100 dBm 100 dBm -70 dBm 100 dBm 100 dBm -70 dBm 100 dBm 100 dBm -70 dBm 100 dBm 100 dBm Type [Ref Trc X-value Y-value Function Result M1 1 1.63 ms -0.03 dB 100 dBm 0 dBm 0ffset 2.39 dB RBW 1 MHz Att 35 dB SWT 31.6 s YBW 1 MHz 50 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm -30 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm -30 dBm 10 dBm	10 dBm	1							0.0	0000000 s
-10 dBm RG -13.100 dBm A A A A A A A A A A A A A A A A A A A							1[1]		1	
TK6 -13.100 dbm -13.100 dbm -13.100 dbm -20 dbm -20 dbm -20 dbm -20 dbm -20 dbm -30 dbm -20 dbm -20 dbm -20 dbm -20 dbm -20 dbm -40 dbm -20 dbm -20 dbm -20 dbm -20 dbm -20 dbm -20 dbm -40 dbm -20 dbm	-10 dBm									
-30 dBm -40 dBm -40 dBm -40 dBm -70	TRG -1	3.100 d	Bm							
-40 dBm										
-60 dBm										
-70 dBm Image: constraint of the second		wanja				hand	aparahayangan	underführungebol	udaphtroughted	HILMANNI (HAMANNI) H
CF 2.441 GHz 1001 pts 500.0 µs/ Marker Type Ref Trc X-value Y-value Function Function Result M1 1 0.0 s 5.42 dBm -0.03 dB -0.03 dB -0.03 dB D1 M1 1 1.63 ms -0.03 dB <	-60 dBm									
Marker Type Ref Trc X-value Y-value Function Function Result M1 1 0.0 s 5.42 dBm	-70 dBm									
M1 1 0.0 s 5.42 dBm D1 M1 1 1.63 ms -0.03 dB Dwell NVNT 1-DH3 2441MHz Ant1 Accumulated Image: Comparison of the second se	CF 2.441 GHz				100	1 pts				500.0 μs/
M1 1 0.0 s 5.42 dBm D1 M1 1 1.63 ms -0.03 dB Dwell NVNT 1-DH3 2441MHz Ant1 Accumulated Image: Comparison of the second se			X-valu	e	Y-value	Fun	ction	Fund	tion Result	
Product Product Dwell NVNT 1-DH3 2441MHz Ant1 Accumulated Spectrum Image: Comparison of the second secon	M1 1			0.0 s	5.42 dB	Bm				
Spectrum Image: Constraint of the second of th							Rea	· (1)		7
0 dBm + + + + + + + + + + + + + + + + + + +	· ·						Ant1 Acc	cumulate	ed	
0 dBm 	Ref Level 20.00 d Att 35 SGL	dBm	Offset	2.39 dB 🧉	RBW 1 MHz		Ant1 Acc		ed	
-10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	Ref Level 20.00 of Att 35 SGL PIPk Cirw	dBm	Offset	2.39 dB 🧉	RBW 1 MHz		Ant1 Acc		ed	
-20 dBm 	Ref Level 20.00 of Att 35 SGL PIPk Cirw	dBm	Offset	2.39 dB 🧉	RBW 1 MHz		Ant1 Acc		ed	
-50 dBm -60 dBm	Ref Level 20.00 d Att 35 SGL 10 dBm	dBm	Offset	2.39 dB 🧉	RBW 1 MHz					
-50 dBm	Ref Level 20.00 L Att 35 SGL 10 dBm 10 dBm 10 dBm	dBm	Offset	2.39 dB 🧉	RBW 1 MHz				ed	
-50 dBm	Ref Level 20,000 Att 35 SGL 10 dBm 10 dBm 10 dBm	dBm	Offset	2.39 dB 🧉	RBW 1 MHz					
-60 dBm	Ref Level 20,000 € Att 35 SGL 10 ● 1Pk Clrw 10 10 dBm 10 -10 cBm 10	dBm	Offset	2.39 dB 🧉	RBW 1 MHz				ed	
	Ref Level 20,000 G Att 35 SGL 35 10 dBm 35 10 dBm 35 -10 cBm 35 -20 cBm 30 cBm	dBm 5 dB •	Offset SWT	2.39 dB = 31.6 s =	RBW 1 MHz VBW 1 MHz					
	Ref Level 20,000 € Att 35 SGL 10 ● 1Pk Clrw 10 10 dBm 10 -10 cBm 10 -20 cBm 10 +30 cBm 10	dBm 5 dB •	Offset SWT	2.39 dB = 31.6 s =	RBW 1 MHz VBW 1 MHz					
-/U UBIT	Ref Level 20,000 € Att 35 SGL 9 ● 1Pk Clrw 10 10 dBm 10 -10 cBm 10 -20 cBm 10 -30 cBm 10 -50 dBm -50 dBm	dBm 5 dB •	Offset SWT	2.39 dB = 31.6 s =	RBW 1 MHz VBW 1 MHz					
	Ref Level 20.00 G Att 35 SGL 10 10 dBm 10 10 dBm 10 -10 cBm 10 -20 cBm 10 -30 cBm 10 -50 dBm -60 dBm	dBm 5 dB •	Offset SWT	2.39 dB = 31.6 s =	RBW 1 MHz VBW 1 MHz					
CF 2.441 GHz 1001 pts 3.16 s/ Ready ####################################	Ref Level 20.00 G Att 35 SGL 10 10 dBm 10 10 dBm 10 -10 cBm 10 -20 cBm 10 -30 cBm 10 -50 dBm -60 dBm	dBm 5 dB •	Offset SWT	2.39 dB = 31.6 s =	RBW 1 MHz VBW 1 MHz					
	ef Level 20.00 0 tt 35 GL .Pk Clrw dBm dBm dBm 0 cBm 0 cBm 0 cBm 0 cBm 0 cBm 0 cBm	dBm 5 dB •	Offset SWT	2.39 dB = 31.6 s =	RBW 1 MHz VBW 1 MHz					

Att SGL TRG:\ 1Pk Clrw		e swt		RBW 1 MHz VBW 1 MHz					
10 dBm	M1					1[1]		0.0	5.46 dBm 0000000 s
0 dBm	TRG -4.500	dBm			U.	1[1]		2	-0.63 dB .88000 ms
-10 dBm—	11.00								
-20 dBm									
-40 dBm	. In				lateration of the				
	40M			100 Yu	wtilintriefpelee	warftrand and	MUMPHANAAAA	HUnghan Warden	owner the sector
-60 dBm—									
CF 2.441	GHz			1001	L pts				800.0 µs/
Marker Type Re M1	1	X-value	0.0 s	Y-value 5.46 de		tion	Fund	tion Result	
D1 M		2.	.88 ms	-0.63	dB) Read	· (11		
	Г	well NV	NT 1-D	H5 244	1MHz A	nt1 Acc	umulate	h	
Ref Level Att SGL PIPk Clrw	20.00 dBm 35 dB			RBW 1 MHz VBW 1 MHz					
10 dBm									
0 dBm -10 sBm -20 sBm									
-10 =3n -20 =3n						- 1 1 1 1 1 1 1 1 1 1	1		
-10 53h -20 53h -30 53h -40 56H									
-10 53 h -20 53 h -30 53 h -30 58 h -50 dBm									
-10 = 3 -20 = 3 -30 = 3 -30 = 3 -50 dBm -60 dBm	GHz								3.16 s/

●1Pk Clrw					м	1[1]			-6.81 dBm
10 dBm						1[1]			-136.00 μs 0.34 dB
0 dBm		M1							381.00 µs
-10 dBm	TRG -5.600	dBm		4					
-20 dBm—			000						
-30 dBm									
-40 dBm									
				han while	heralish		t the second		hali na
-60 dBm	. I. It. offer A	100 00 m vol		, 001 -0.0.0	an Is I	· · · · · ·	. It off a to	tol . It or o	
-70 dBm—									
CF 2.441 (Marker				1001					300.0 μs/
Type Re	1		36.0 µs	<u>Y-value</u> -6.81 dB		tion	Fund	tion Result	
D1 N	11 1	38	31.0 µs	0.34 (18	Read			2
)			///
	D	well NV	'NT 2-D	H1 244 ⁻	1MHz A	nt1 Acc	umulate	ed	
<pre>// // // // // // // // // // // // //</pre>									
Spectrur		Offcot 2		DUW 1 MU7					
Ref Level Att	20.00 dBm		2.39 dB 👄 R 31.6 s 👄 V						
Ref Level	20.00 dBm								
Ref Level Att SGL 1Pk Clrw	20.00 dBm								
Ref Level Att SGL 1Pk Clrw	20.00 dBm								
Ref Level Att SGL 1Pk Clrw	20.00 dBm								
Ref Level Att SGL 1Pk Clrw	20.00 dBm								
Ref Level Att SGL 1Pk Clrw	20.00 dBm								
Ref Level Att SGL 1Pk Clrw 10 dBm 0 dBm 10 dBm 20 dBm	20.00 dBm 35 dB	• SWT							
Ref Level Att SGL 1Pk Clrw 10 dBm 10 dBm 10 zer	20.00 dBm 35 dB	• SWT							
Ref Level Att SGL 1Pk Clrw 10 dBm 10 dBm 10 zer 20 zer 20 zer 21 zer	20.00 dBm 35 dB	• SWT		/BW 1 MHz					
Ref Level Att SGL 1Pk Clrw 10 dBm 10 dBm 10 zer 20 zer 20 zer 21 zer	20.00 dBm 35 dB	• SWT	31.6 5 • • •	/BW 1 MHz					
Ref Level Att SGL ● 1Pk CIrw 10 dBm 	20.00 dBm 35 dB	• SWT	31.6 5 • • •	/BW 1 MHz					
Ref Level Att SGL 1Pk Clrw 10 dBm 10 dBm 10 zBm 20 zBm 20 zBm 20 zBm -50 dBm -60 dBm	20.00 dBm 35 dB	• SWT	31.6 5 • • •	/BW 1 MHz					
Ref Level Att SGL 1Pk Clrw 10 dBm 10 dBm 10 dEm 10 z E 20	20.00 dBm 35 dB	• SWT	31.6 5 • • •	/BW 1 MHz					
Ref Level Att SGL 1Pk Clrw 10 dBm 10 dBm 10 zBm 20 zBm 20 zBm 20 zBm -50 dBm -60 dBm	20.00 dBm 35 dB	• SWT	31.6 5 • • •	/BW 1 MHz					3.16 5/

⊜1Pk Clrw	ID				м	1[1]			2.35 dBm
10 dBm								0.0	0000000 s
0 dBm	M	1 Englowinger	-	and a particular second		1[1]		1	-4.85 dB L.63500 ms
-10 dBm	TRG -5.500	dBm							
-20 dBm-									
-30 dBm									
-40 dBm	Waa ahaa d				haled a detail	lul estatum	home where	Jeropannialatha	deline all talds and
	a a ana aktida				- Hatellia Dilla	oollew, soo det oo	mili v Afh. Mil	<u> 190 - Hill Alland</u>	non laration in the sound
-60 dBm									
-70 dBm									
CF 2.441 (GHz			1001	pts				500.0 μs/
Marker Type Re		X-value		Y-value	Func	tion	Fund	tion Result	:
M1 D1 M	1 11 1	1.	0.0 s 635 ms	2.35 dB -4.85 d					
] Read	v a		
	П			H3 244	1МН7 Д	nt1 Acc	umulate	d	
Spectrun Ref Level			2.39 dB 🖷 F						
	n 20.00 dBm		2.39 dB 👄 F						
Ref Level Att SGL	n 20.00 dBm	Offset 2	2.39 dB 👄 F	RBW 1 MHz					
Ref Level Att SGL 1Pk Clrw 10 dBm	n 20.00 dBm	Offset 2	2.39 dB 👄 F	RBW 1 MHz					
Ref Level Att SGL 1Pk Clrw	n 20.00 dBm	Offset 2	2.39 dB 👄 F	RBW 1 MHz					
Ref Level Att SGL 1Pk Clrw 10 dBm	n 20.00 dBm	Offset 2	2.39 dB 👄 F	RBW 1 MHz					
Ref Level Att SGL IPk Clrw 10 dBm	n 20.00 dBm	Offset 2	2.39 dB 👄 F	RBW 1 MHz					
Ref Level Att SGL 1Pk Clrw 10 dBm	n 20.00 dBm 35 dB	Offset 2	2.39 dB • F 31.6 s • V	RBW 1 MHz /BW 1 MHz					
Ref Level Att SGL ● 1Pk Clrw 10 dBm -10 dBm -20 dBm -20 dBm -32 dBm	n 20.00 dBm 35 dB	Offset :	2.39 dB • F 31.6 s • V	RBW 1 MHz /BW 1 MHz					
Ref Level Att SGL ● 1Pk Clrw 10 dBm -10 dBm -20 dBm -20 dBm -31 dBm -31 dBm -31 dBm	n 20.00 dBm 35 dB	Offset :	2.39 dB • F 31.6 s • V	RBW 1 MHz /BW 1 MHz					
Ref Level Att SGL ● 1Pk Clrw 10 dBm -10 dBm -20 dBm -20 dBm -32 dBm	n 20.00 dBm 35 dB	Offset :	2.39 dB • F 31.6 s • V	RBW 1 MHz /BW 1 MHz					
Ref Level Att SGL ● 1Pk Clrw 10 dBm -10 dBm -20 dBm -20 dBm -31 dBm -31 dBm	n 20.00 dBm 35 dB	Offset :	2.39 dB • F 31.6 s • V	RBW 1 MHz /BW 1 MHz					
Ref Level Att SGL ● 1Pk Clrw 10 dBm -10 dBm -20 dBm -31 dBm -31 dBm -50 dBm	n 20.00 dBm 35 dB	Offset :	2.39 dB • F 31.6 s • V	RBW 1 MHz /BW 1 MHz					
Ref Level Att SGL ● 1Pk Clrw 10 dBm -10 dBm -20 dBm -31 dBm -31 dBm -50 dBm -60 dBm	n 20.00 dBm 35 dB	Offset :	2.39 dB • F 31.6 s • V	RBW 1 MHz /BW 1 MHz					
Ref Level Att SGL ● 1Pk Clrw 10 dBm -10 dBm -20 dBm -31 dBm -31 dBm -50 dBm -60 dBm	n 20.00 dBm 35 dB	Offset :	2.39 dB • F 31.6 s • V	RBW 1 MHz /BW 1 MHz					3.16 5/

●1Pk Clrw				1					7.00.40
10 dBm						1[1]			-7.00 dBm -136.00 µs
					D	1[1]		2	3.33 dB .88800 ms
-10 dBm-	11 ынылы ы.ә. ▼RG -5.500	iales որեսերեր dBm	manum	pay months					
-20 dBm-									
-30 dBm									
-40 dBm									
				ju.]u	anter many that	undul undur	all, fallyad rap op	Warpady Jay All	with way of the
-60 dBm									
-70 dBm									
CF 2.441 G Marker	iHz			100:	1 pts				800.0 µs/
Type Re M1	f Trc	X-value -13	: :6.0 µs	Y-value -7.00 dB	Func 3m	tion	Fund	tion Result	
D1 M	1 1	2.8	388 ms	3.33	dB				2
									- In
	D	well NV	NT 2-D	H5 244	1MHz A	nt1 Acc	umulate	ed	
Spectrun									
	20.00 dBm 35 dB			RBW 1 MHz VBW 1 MHz					
Att									
Att SGL 1Pk Clrw									
SGL 91Pk Clrw									
SGL									
SGL 91Pk Clrw									
SGL • 1Pk Clrw 10 dBm									
SGL 1Pk Clrw 10 dBm									
SGL 1Pk Clrw 10 dBm									
SGL									
SGL 1Pk Clrw 10 dBm -10 dBm -10 dBm -20 dBm -20 dBm									
SGL 1Pk Clrw 10 dBm									
SGL 1Pk Clrw 10 dBm -10 dBm -10 dBm -20 dBm									
SGL 10 dBm 10 dBm 1									
SGL 1Pk Clrw 10 dBm -10 dBm -10 dBm -20 dBm -20 dBm -50 dBm									
SGL									3.16 s/

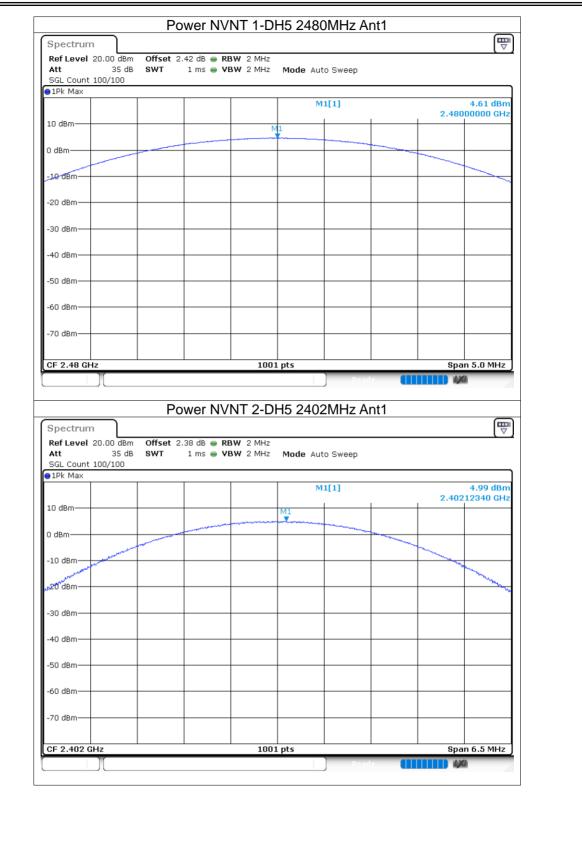


				M	1[1]			1.06 dBm
10 dBm		M1		Di	l[1]			-1.00 μs 0.84 dB
0 dBm		Parlet	hummen Q1					384.00 µs
-10 dBm	.400 dBm							
-20 dBm								
-30 dBm								
-40 dBm								
wale water when the second states of the second sta	rith the second of the second	NИ		hter the second s		uuuuuu	ntransfer the	of the product of the second
-60 dBm							· ·	
-70 dBm								
CF 2.441 GHz Marker			1001	pts				300.0 µs/
Type Ref Trc M1 1	X-value -100	9)0.0 ns	Y-value 1.06 dBr	Funct	tion	Func	tion Result	
D1 M1 1		34.0 µs	0.84 d					74
					, Read			
	Dwell NV	'NT 3-DI	H1 2441	MHz A	nt1 Acc	umulate	ed	
Spectrum Ref Level 20.00 d	Bm Offset :	2.39 dB 👄 RI	BW 1 MHz					
Att 35 SGL	dB 😑 SWT	31.6 s 👄 V I	BW 1 MHz					
●1Pk Clrw								
10 dBm								
-10 CPL								
-20 d6r								
-EDICB(************************************	ال المسالم والمرال الموال الموال المعار	pultum murb	uuuuuuuuuvuuu	hindra hanara				uuuuuu
-20 c6r APASCantrasson	1							
-50 dBm								
-50 dBm								
-50 dBm			1001	pts				3.16 s/

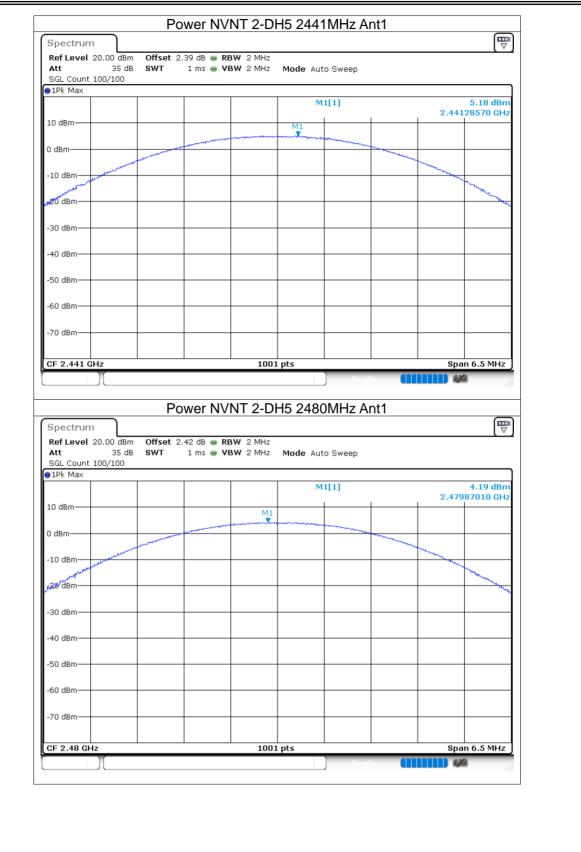
					M	1[1]			-6.89 dBm
10 dBm					D	1[1]			-136.00 μs -1.50 dB
0 dBm	11	Mar Manager	hored all lange of the second s	ulannyahadi Ali				:	2.88800 ms
-10 dBm	RG -5.000	dBm							
-20 dBm—									
-30 dBm									
-40 dBm					www.	an ka ka ka ka ka ka	la di di di di si	فاعتلد أعاعالمة	ndlet a sta
	ļ			L L	arthonor his des	A Harderserver	Mikoda nadim a i	ilotako IIAN	andadatha
-60 dBm									
-70 dBm									
CF 2.441 0	Hz			10	D1 pts				800.0 µs/
Marker Type Re		X-value		Y-value -6.89		tion	Fund	tion Result	
M1 D1 M			36.0 µs 388 ms	-0.89					
						Read			
	D	well NV	'NT 3-D	H5 244	41MHz A	nt1 Acc	umulate	ed	
			-						
Spectrun			-						
	1 20.00 dBm		2.39 dB 🕳 R 31.6 s 👄 V						
Ref Level	1 20.00 dBm	Offset 2	2.39 dB 👄 R						
Ref Level Att SGL	1 20.00 dBm	Offset 2	2.39 dB 👄 R						
Ref Level Att SGL	1 20.00 dBm	Offset 2	2.39 dB 👄 R						
Ref Level Att SGL 1Pk Clrw	1 20.00 dBm	Offset 2	2.39 dB 👄 R						
Ref Level Att SGL 1Pk Clrw 10 dBm	1 20.00 dBm	Offset 2	2.39 dB 👄 R						
Ref Level Att SGL IPk Clrw 10 dBm	1 20.00 dBm	Offset 2	2.39 dB 👄 R						
Ref Level Att SGL 1Pk Clrw 0 dBm -10 dBm -20 dBm	20.00 dBm 35 dB	Offset 2	2.39 dB 👄 R	VBW 1 MH					
Ref Level Att SGL 1Pk Clrw 10 dBm -10 dBm	20.00 dBm 35 dB	Offset 2	2.39 dB • R 31.6 s • V	VBW 1 MH					
Ref Level Att SGL 1Pk Clrw 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm	20.00 dBm 35 dB	Offset 2 SWT	2.39 dB • R 31.6 s • V						
Ref Level Att SGL 1Pk Clrw 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm	20.00 dBm 35 dB	Offset 2 SWT	2.39 dB R 31.6 s V						
Ref Level Att SGL ● 1Pk CIrw 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -49 dBm	20.00 dBm 35 dB	Offset 2 SWT	2.39 dB R 31.6 s V						
Ref Level Att SGL ● 1Pk CIrw 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm	20.00 dBm 35 dB	Offset 2 SWT	2.39 dB R 31.6 s V						
Ref Level Att SGL ● 1Pk Clrw 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	20.00 dBm 35 dB	Offset 2 SWT	2.39 dB R 31.6 s V						
Ref Level Att SGL ● 1Pk Clrw 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -60 dBm	20.00 dBm 35 dB	Offset 2 SWT	2.39 dB R 31.6 s V						3.16 s/

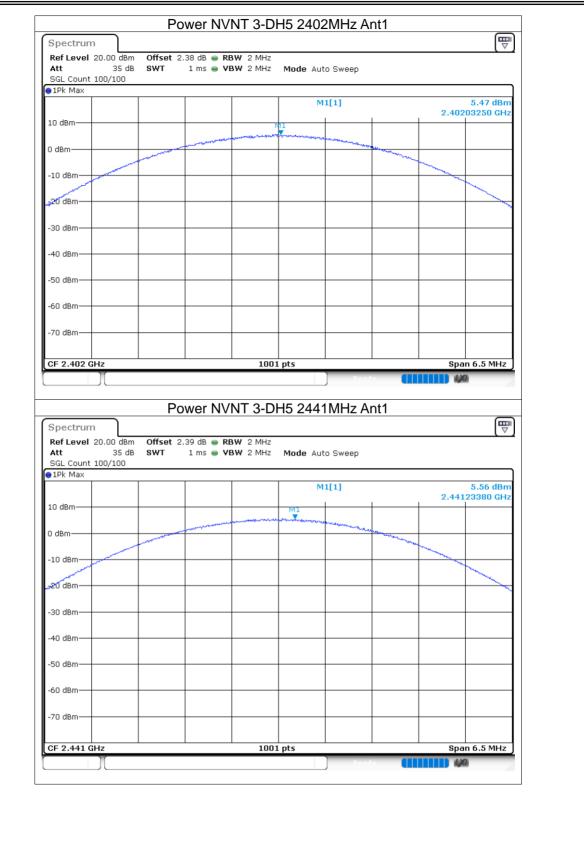
8.2 MAXIMUM CONDUCTED OUTPUT POWER

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	Ant1	5.44	21	Pass
NVNT	1-DH5	2441	Ant1	5.75	21	Pass
NVNT	1-DH5	2480	Ant1	4.61	21	Pass
NVNT	2-DH5	2402	Ant1	4.99	21	Pass
NVNT	2-DH5	2441	Ant1	5.18	21	Pass
NVNT	2-DH5	2480	Ant1	4.19	21	Pass
NVNT	3-DH5	2402	Ant1	5.47	21	Pass
NVNT	3-DH5	2441	Ant1	5.56	21	Pass
NVNT	3-DH5	2480	Ant1	4.61	21	Pass

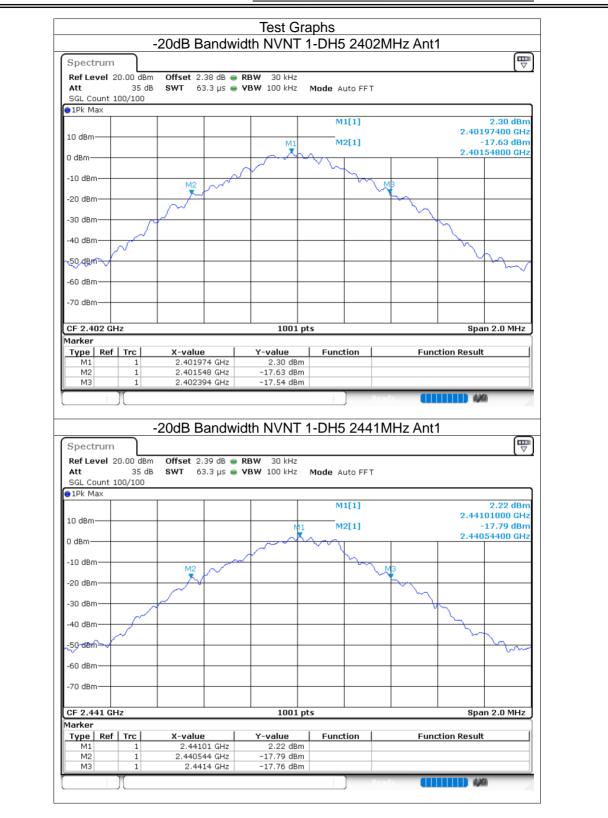


Spectrum	Powe		H5 2402MHz	ANU		E
Ref Level 20.00 dBm Att 35 dB		B 👄 RBW 2 MHz Is 👄 VBW 2 MHz	Mode Auto Sweep	1		[♥]
SGL Count 100/100 1Pk Max						
IFK MAA			M1[1]			5.44 dBm
10 dBm		N	1		2.4020	0000 GHz
			· · · · · · · · · · · · · · · · · · ·			
0 dBm						
-10 dBm						
-20 dBm						
-30 dBm						
-40 dBm						
-50 dBm						
-60 dBm						
-70 dBm						
CF 2.402 GHz		100:				5.0 MHz
Spectrum	Powe	r NVNT 1-D	H5 2441MHz	Ant1		(The second seco
Ref Level 20.00 dBm Att 35 dB	Offset 2.39 d	B 🕳 RBW 2 MHz	H5 2441MHz Mode Auto Sweep			
Ref Level 20.00 dBm Att 35 dB SGL Count 100/100	Offset 2.39 d	B 🕳 RBW 2 MHz				
Ref Level 20.00 dBm Att 35 dB SGL Count 100/100	Offset 2.39 d	B 🕳 RBW 2 MHz				5.75 dBm
Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 IPk Max IPk Max IPk Max	Offset 2.39 d	B 🕳 RBW 2 MHz	Mode Auto Sweep			
Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max 10 dBm	Offset 2.39 d	B • RBW 2 MHz s • VBW 2 MHz	Mode Auto Sweep			5.75 dBm
Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max 10 dBm	Offset 2.39 d	B • RBW 2 MHz s • VBW 2 MHz	Mode Auto Sweep			5.75 dBm
Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max 10 dBm	Offset 2.39 d	B • RBW 2 MHz s • VBW 2 MHz	Mode Auto Sweep			5.75 dBm
Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max 10 dBm 10 dBm 10 dBm	Offset 2.39 d	B • RBW 2 MHz s • VBW 2 MHz	Mode Auto Sweep			5.75 dBm
Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max 100 dBm 10 dBm	Offset 2.39 d	B • RBW 2 MHz s • VBW 2 MHz	Mode Auto Sweep			5.75 dBm
Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max 100 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm	Offset 2.39 d	B • RBW 2 MHz s • VBW 2 MHz	Mode Auto Sweep			5.75 dBm
Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 IPk Max 100 dBm 10 dBm	Offset 2.39 d	B • RBW 2 MHz s • VBW 2 MHz	Mode Auto Sweep			5.75 dBm
Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 IPk Max 100 dBm 10 dBm	Offset 2.39 d	B • RBW 2 MHz s • VBW 2 MHz	Mode Auto Sweep			5.75 dBm
Att 35 dB <u>SGL Count 100/100</u> 1Pk Max 10 dBm 0 dBm	Offset 2.39 d	B • RBW 2 MHz s • VBW 2 MHz	Mode Auto Sweep			5.75 dBm
Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 IPk Max 100 10 dBm 0 10 dBm -0 -20 dBm	Offset 2.39 d	B • RBW 2 MHz s • VBW 2 MHz	Mode Auto Sweep		2.4409	5.75 dBm



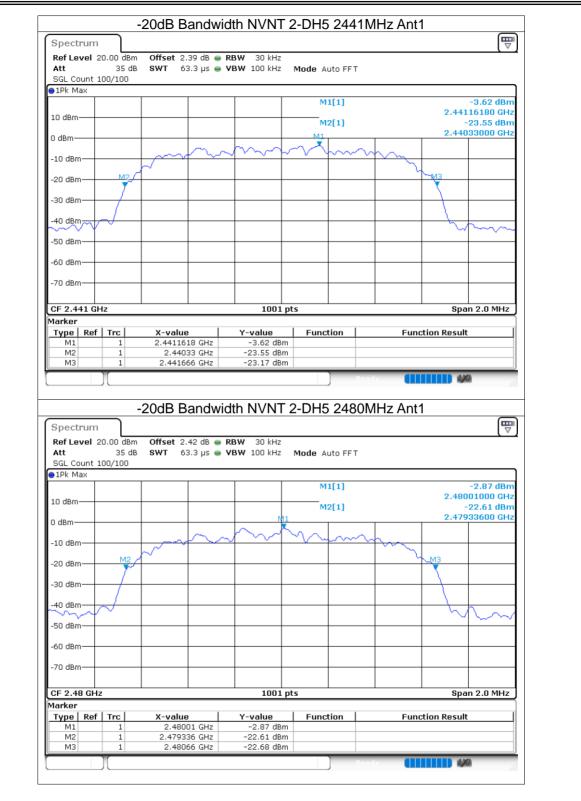


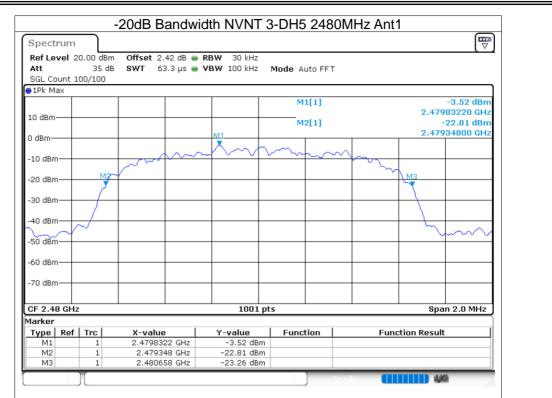
Spectrum								
Ref Level 20.		2.42 dB 👄 RB						
Att SGL Count 100	35 dB SWT	1 ms 👄 VB	W 2 MHz	Mode Auto	Sweep			
1Pk Max	,7100							
				M1	[1]			4.61 dBm
10 dBm							2.480	00000 GHz
			M1					
0 dBm		and the state of t	and some of the second states	and the second second	manenter			
o abiii	and the second sec					the way and the transmission		
-10 dBm	and a second sec						and the second second	
And the second second								
-20 dBm								
-30 dBm								
-40 dBm								
-50 dBm								
-60 dBm								
-70 dBm								
-/0 ubiii								
CF 2.48 GHz			1001	pts			Spa	n 6.5 MHz

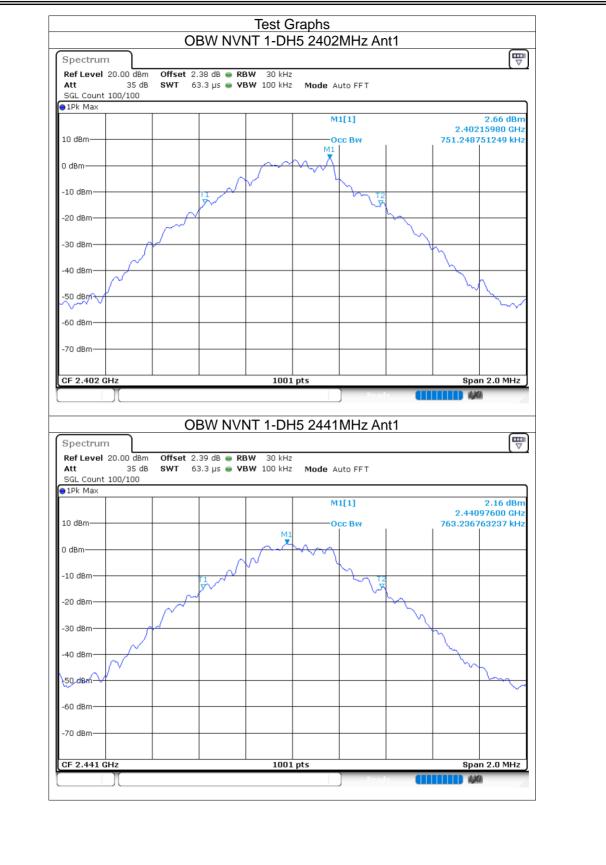


8.3 -20DB BANDWIDTH

Condition	Mode	Frequency (MHz)	Antenna	-20 dB Bandwidth (MHz)	Verdict
NVNT	1-DH5	2402	Ant1	0.846	Pass
NVNT	1-DH5	2441	Ant1	0.856	Pass
NVNT	1-DH5	2480	Ant1	0.856	Pass
NVNT	2-DH5	2402	Ant1	1.33	Pass
NVNT	2-DH5	2441	Ant1	1.336	Pass
NVNT	2-DH5	2480	Ant1	1.324	Pass
NVNT	3-DH5	2402	Ant1	1.304	Pass
NVNT	3-DH5	2441	Ant1	1.324	Pass
NVNT	3-DH5	2480	Ant1	1.31	Pass



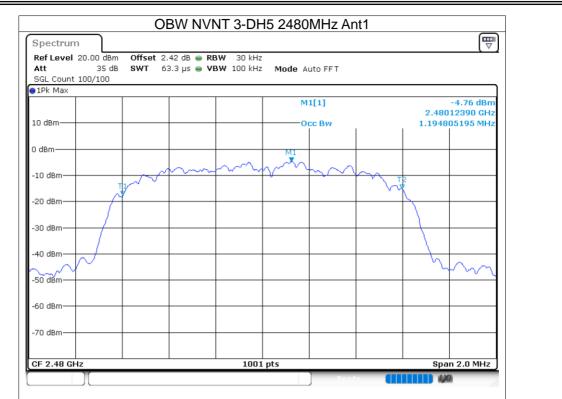


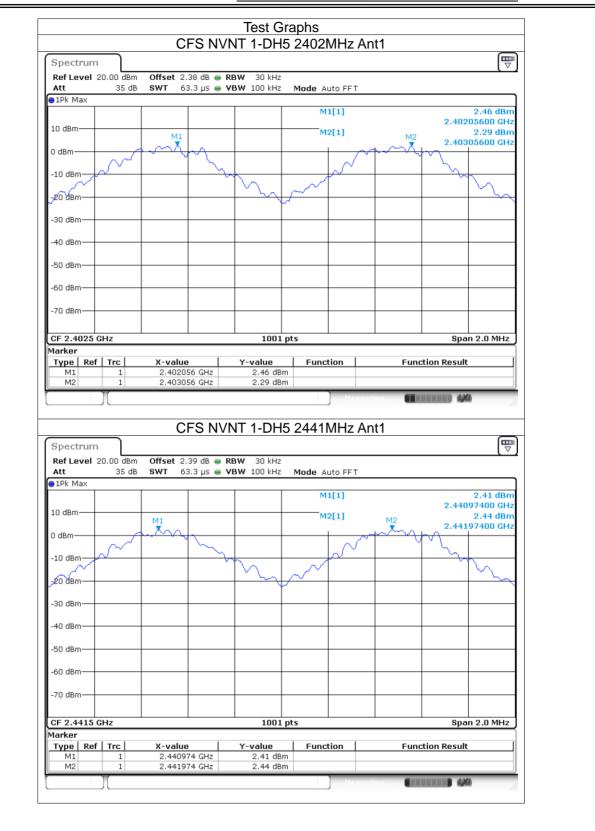


8.4 OCCUPIED CHANNEL BANDWIDTH

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	1-DH5	2402	Ant1	0.751
NVNT	1-DH5	2441	Ant1	0.763
NVNT	1-DH5	2480	Ant1	0.759
NVNT	2-DH5	2402	Ant1	1.185
NVNT	2-DH5	2441	Ant1	1.181
NVNT	2-DH5	2480	Ant1	1.189
NVNT	3-DH5	2402	Ant1	1.187
NVNT	3-DH5	2441	Ant1	1.189
NVNT	3-DH5	2480	Ant1	1.195

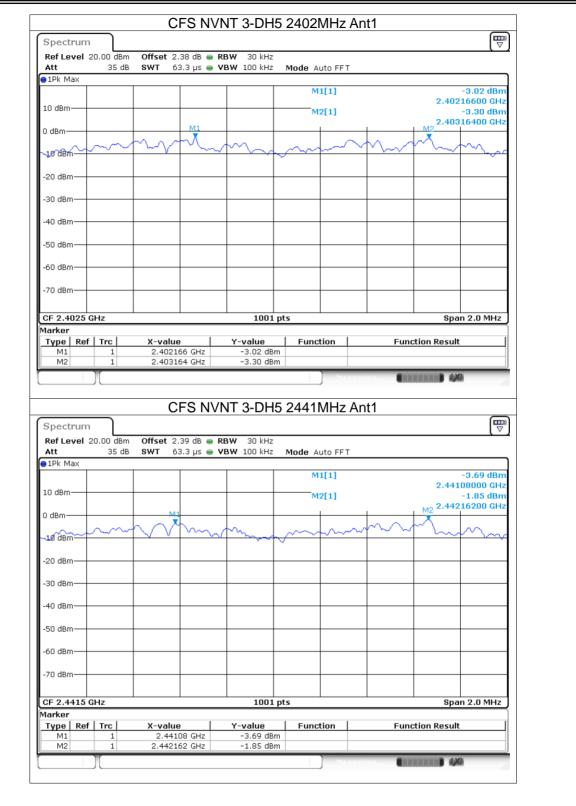


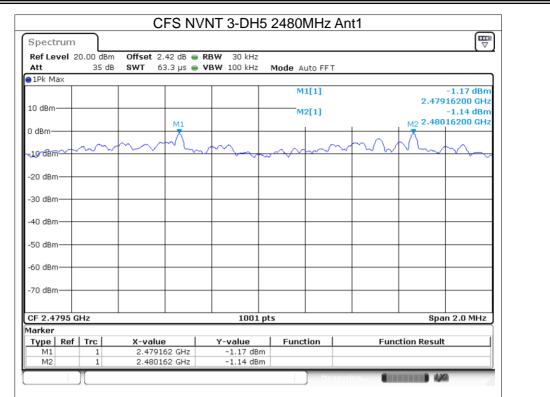


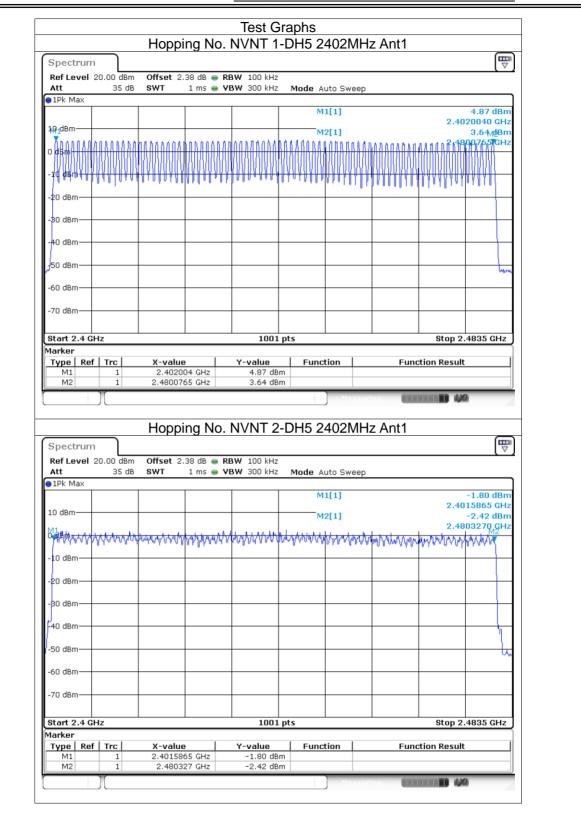


8.5 CARRI	er Fri	EQUENC	IES SEPARA	TION			
Condition	Mode	Antenna	Hopping Freq1 (MHz)	Hopping Freq2 (MHz)	HFS (MHz)	Limit (MHz)	Verdict
NVNT	1-DH5	Ant1	2402.056	2403.056	1	0.564	Pass
NVNT	1-DH5	Ant1	2440.974	2441.974	1	0.571	Pass
NVNT	1-DH5	Ant1	2478.974	2480.056	1.082	0.571	Pass
NVNT	2-DH5	Ant1	2402.162	2403.162	1	0.887	Pass
NVNT	2-DH5	Ant1	2441.162	2442.166	1.004	0.891	Pass
NVNT	2-DH5	Ant1	2479.012	2480.012	1	0.883	Pass
NVNT	3-DH5	Ant1	2402.166	2403.164	0.998	0.869	Pass
NVNT	3-DH5	Ant1	2441.08	2442.162	1.082	0.883	Pass
NVNT	3-DH5	Ant1	2479.162	2480.162	1	0.873	Pass









8.6 NUMBER OF HOPPING CHANNEL

Condition	Mode	Antenna	Hopping Number	Limit	Verdict
NVNT	1-DH5	Ant1	79	15	Pass
NVNT	2-DH5	Ant1	79	15	Pass
NVNT	3-DH5	Ant1	79	15	Pass

Spectrum									▽
Ref Level 🔅			_	BW 100 kHz					
Att	35 dE	B SWT	1 ms 😑 🎙	'BW 300 kHz	Mode A	uto Sweep			
)1Pk Max									
					м	1[1]			-0.84 dBm
10 dBm —						0[1]		2.40	16700 GHz
					IN I	2[1]		2 40	-2.44 dBm 04105 GHz
M1 OrdBm 1		ton a law	Rate & Links	Axad. a. an	and the states	Laws II.			M2
Marthan	WWWWWWWWW	htter garres	proposition	ሲከልለ እቍ ያለየወለ	1) Manuar	htele staal	yanyivawani	Ուհուհետոհ	NYANYA
-10 dBm								P* *	
-20 dBm									
-80 dBm							+		
40 dBm		+ +					+		L L
									۲ ۲
-50 dBm									l.
co do -									
-60 dBm									
-70 dBm									
-/0 ubiii									
Start 2.4 GI	lz			1001	pts			Stop 2.	4835 GHz
larker									
	Trc	X-value		Y-value	Func	tion	Fund	tion Result	
M1 M2	1	2.4016		-0.84 dB -2.44 dB					

8.7 BAND EDGE

./								
	Condition	Mode	Frequency (MHz)	Antenna	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
	NVNT	1-DH5	2402	Ant1	No-Hopping	-55.22	-20	Pass
	NVNT	1-DH5	2480	Ant1	No-Hopping	-56.85	-20	Pass
	NVNT	2-DH5	2402	Ant1	No-Hopping	-49.38	-20	Pass
	NVNT	2-DH5	2480	Ant1	No-Hopping	-53.13	-20	Pass
	NVNT	3-DH5	2402	Ant1	No-Hopping	-52.04	-20	Pass
	NVNT	3-DH5	2480	Ant1	No-Hopping	-52.77	-20	Pass

Spectrum	d Edge N							E
Ref Level 20.00 de	dB SWT 18			Mode A	uto FFT			(^v)
SGL Count 100/100								
●1Pk Max								
				M	1[1]		2.402	4.97 dBm 215980 GHz
10 dBm				M1				
				~~				
0 dBm								
-10 dBm								
-20 dBm								
-30 dBm			1/	-+				
-40 dBm			┦──┤					
-50 dBm					5			
		\sim			\sim	An anna	ama	mm
-60 dBm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		+			~~~~~	vw v	~~~
-70 dBm								
, o dbiii								
	1 1						- Pro-	
Band E	dge NVN	T 1-DH	1001 15 2402M) Poor t <mark>1 No-H</mark> i	opping l	W	on
Band E			15 2402M	1Hz Ant) Pead 1 No-H	opping l	W	a //
Band E Spectrum Ref Level 20.00 df Att 35		.38 dB 😑	15 2402N RBW 100 kHz	1Hz Ant		opping l	W	n
Band E Spectrum Ref Level 20.00 df Att 35 SGL Count 100/100	om Offset 2	.38 dB 😑	15 2402N RBW 100 kHz	1Hz Ant		opping l	W	n
Band E Spectrum Ref Level 20.00 df Att 35 SGL Count 100/100	om Offset 2	.38 dB 😑	15 2402N RBW 100 kHz	1Hz Ant		opping l	Emissic	200 (₩) 4.72 dBm
Band E Spectrum Ref Level 20.00 df Att 35 SGL Count 100/100 PIPk Max	om Offset 2	.38 dB 😑	15 2402N RBW 100 kHz	1Hz Ant Mode /	Auto FFT 1[1]	opping I	Emissic 2.401	000 (₩ 4.72 dBm 195000 GH2
Band E Spectrum Ref Level 20.00 df Att 35 SGL Count 100/100 1Pk Max 10 dBm	om Offset 2	.38 dB 😑	15 2402N RBW 100 kHz	1Hz Ant Mode /	Auto FFT	opping l	Emissic 2.401	200 (₩) 4.72 dBm
Band E Spectrum Ref Level 20.00 df Att 35 SGL Count 100/100 1Pk Max 10 dBm	om Offset 2	.38 dB 😑	15 2402N RBW 100 kHz	1Hz Ant Mode /	Auto FFT 1[1]	opping l	Emissic 2.401	4.72 dBm 95000, GHz 52.744 Bm
Band E Spectrum Ref Level 20.00 df Att 35 SGL Count 100/100 IPk Max 10 dBm -10 dBm -10 dBm	om Offset 2 dB SWT 22	.38 dB 😑	15 2402N RBW 100 kHz	1Hz Ant Mode /	Auto FFT 1[1]	opping I	Emissic 2.401	4.72 dBm 95000, GHz 52.744 Bm
Band E Spectrum Ref Level 20.00 df Att 35 SGL Count 100/100 IPk Max 10 dBm -10 dBm -10 dBm	om Offset 2 dB SWT 22	.38 dB 😑	15 2402N RBW 100 kHz	1Hz Ant Mode /	Auto FFT 1[1]	opping I	Emissic 2.401	4.72 dBm 95000, GHz 52.744 Bm
Band E Spectrum Ref Level 20.00 df Att 35 SGL Count 100/100 IPk Max 10 dBm -10 dBm -20 dBm	om Offset 2 dB SWT 22	.38 dB 😑	15 2402N RBW 100 kHz	1Hz Ant Mode /	Auto FFT 1[1]		Emissic 2.401	4.72 dBm 95000, GHz 52.744 Bm
Band E Spectrum Ref Level 20.00 dE Att 35 SGL Count 100/100 IPk Max 10 dBm -10 dBm -20 dBm -30 dBm	om Offset 2 dB SWT 22	.38 dB 😑	I5 2402N RBW 100 kHz VBW 300 kHz	1Hz Ant Mode /	Auto FFT 1[1]		Emissic 2.401	4.72 dBm 95000, GHz 52.744 Bm
Band E Spectrum Ref Level 20.00 df Att 35 SGL Count 100/100 IPk Max 10 dBm -10 dBm -20 dBm -30 dBm	Sm Offset 2 dB SWT 22	.38 dB ● 7.5 μs ●	HS 2402N RBW 100 kHz VBW 300 kHz M4	1Hz Ant	Auto FFT 1[1] 2[1]		2.400	000000 GH2 → 172 dBm 195000, GH2 → 52.744 Bm 000000 GH2 → 100000 GH2 → 1000000 GH2 → 10000000 GH2 → 100000000 GH2 → 100000000 GH2 → 100000000 GH2 → 10000000 GH2 → 100000000 GH2 → 100000000 GH2 → 1000000000 GH2 → 1000000000 GH2 → 10000000000 GH2 → 1000000000000000000000000000000000000
Spectrum Ref Level 20.00 db Att 35 SGL Count 100/100 IPk Max 10 dbm 0 0 dbm -0 -0 -20 dbm -11 -15.0 -30 dbm -40 dbm	om Offset 2 dB SWT 22	.38 dB ● 7.5 μs ●	HS 2402N RBW 100 kHz VBW 300 kHz M4	1Hz Ant Mode /	Auto FFT 1[1] 2[1]		2.400	000000 GH2 → 172 dBm 195000, GH2 → 52.744 Bm 000000 GH2 → 100000 GH2 → 1000000 GH2 → 10000000 GH2 → 100000000 GH2 → 100000000 GH2 → 100000000 GH2 → 10000000 GH2 → 100000000 GH2 → 100000000 GH2 → 1000000000 GH2 → 1000000000 GH2 → 10000000000 GH2 → 1000000000000000000000000000000000000
Band E Spectrum Ref Level 20.00 df Att 35 SGL Count 100/100 IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Sm Offset 2 dB SWT 22	.38 dB ● 7.5 μs ●	HS 2402N RBW 100 kHz VBW 300 kHz M4	1Hz Ant	Auto FFT 1[1] 2[1]		2.400	000000 GH2 → 172 dBm 195000, GH2 → 52.744 Bm 000000 GH2 → 100000 GH2 → 1000000 GH2 → 10000000 GH2 → 100000000 GH2 → 100000000 GH2 → 100000000 GH2 → 10000000 GH2 → 100000000 GH2 → 100000000 GH2 → 1000000000 GH2 → 1000000000 GH2 → 10000000000 GH2 → 1000000000000000000000000000000000000
Band E Spectrum Ref Level 20.00 dB SGL Count 100/100 IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	Sm Offset 2 dB SWT 22	.38 dB ● 7.5 μs ●	H5 2402N	1Hz Ant Mode / M	Auto FFT 1[1] 2[1]		2.401 2.400	4.72 dBm 95000 GHz 52.74 dBm 000000 GHz 1000000 GHz 1000000 GHz 1000000 GHz 1000000 GHz 1000000 GHz 1000000 GHz 1000000 GHz 1000000 GHz
Band E Spectrum Ref Level 20.00 df Att 35 SGL Count 100/100 IPk Max 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm -70 dBm -70 dBm	Sm Offset 2 dB SWT 22	.38 dB ● 7.5 μs ●	HS 2402N RBW 100 kHz VBW 300 kHz M4	1Hz Ant Mode / M	Auto FFT 1[1] 2[1]		2.401 2.400	000000 GH2 → 172 dBm 195000, GH2 → 52.744 Bm 000000 GH2 → 100000 GH2 → 1000000 GH2 → 10000000 GH2 → 100000000 GH2 → 10000000 GH2 → 100000000 GH2 → 100000000 GH2 → 100000000 GH2 → 100000000 GH2 → 1000000000 GH2 → 1000000000 GH2 → 10000000000 GH2 → 1000000000000000000000000000000000000
Band E Spectrum Ref Level 20.00 df Att 35: SGL Count 100/100 ID dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm Start 2.306 GHz Marker Type Ref	Sm Offset 2 dB SWT 22	.38 dB ● 7.5 µs ●	H5 2402N	1Hz Ani Mode م س س باراید الس pts	Auto FFT	ւստել Ալսիս չայքիլ հեր	2.401 2.400	00 4.72 dBm 95000, GH2 -52.744 Bm 000000 GH2 -52.744 Bm -52.744 Bm -52
Band E Spectrum Ref Level 20.00 df Att 35 SGL Count 100/100 IPK Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm	m Offset 2 dB SWT 22	.38 dB ● 7.5 µs ●	H5 2402M	1Hz An1	Auto FFT	ւստել Ալսիս չայքիլ հեր	Emissic 2.401 2.400	00 4.72 dBm 95000, GH2 -52.744 Bm 000000 GH2 -52.744 Bm -52.744 Bm -52
Band E Spectrum Ref Level 20.00 df Att 35 SGL Count 100/100 IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm Start 2.306 GHz Marker Type Ref Trc M1	Sim Offset 2 dB SWT 22	.38 dB ● 7.5 µs ●	IS 2402N RBW 100 kHz VBW 300 kHz 300 kHz M4 M4 <td>1Hz An1 Mode / M M M M M M M M M</td> <td>Auto FFT</td> <td>ւստել Ալսիս չայքիլ հեր</td> <td>Emissic 2.401 2.400</td> <td>00 4.72 dBm 95000, GH2 -52.744 Bm 000000 GH2 -52.744 Bm -52.744 Bm -52</td>	1Hz An1 Mode / M M M M M M M M M	Auto FFT	ւստել Ալսիս չայքիլ հեր	Emissic 2.401 2.400	00 4.72 dBm 95000, GH2 -52.744 Bm 000000 GH2 -52.744 Bm -52.744 Bm -52

Spectrum								
Ref Level 20.00 de			BW 100 kHz					
Att 35 SGL Count 100/100	dB SWT 18	. э µз 🛑 🗸	ow 300 KHz	: Mode A	uto FFT			
●1Pk Max								
				м	1[1]			4.21 dBn
10 dBm					L		2.480	15980 GH:
TO OBIL				M1				
0 dBm				M				
-10 dBm								
-20 dBm				\vdash				
			1/					
-30 dBm			1					
40 dBm				\				
-40 dBm		1			Ν			
-50 dBm-7		لىر			7			
Man .	mm	\sim			w~	m	h	mm.
-60 dBm	· ~ · ·					× • ·	0.27	4 - N
-70 dBm								
CF 2.48 GHz			1001	l pts	1		Spa	n 8.0 MHz
					<u> </u>			
Band E	dge NVN	T 1-DH	15 24801	MHz Ant	J Pead	opping	Emissic	
Spectrum Ref Level 20.00 de	3m Offset 2	.42 dB 😑 I	RBW 100 kH	Iz		opping	Emissic	on (Type
Spectrum Ref Level 20.00 de	3m Offset 2 dB SWT 22	.42 dB 😑 I	RBW 100 kH	Iz		opping	Emissic	
Spectrum Ref Level 20.00 dt Att 35	3m Offset 2 dB SWT 22	.42 dB 😑 I	RBW 100 kH	iz iz Mode .	Auto FFT	opping	Emissic	
Spectrum Ref Level 20.00 db Att 35 SGL Count 100/100 1Pk Max	3m Offset 2 dB SWT 22	.42 dB 😑 I	RBW 100 kH	iz iz Mode .		opping		
Spectrum Ref Level 20.00 dt Att 35 SGL Count 100/100	3m Offset 2 dB SWT 22	.42 dB 😑 I	RBW 100 kH	Iz Iz Mode . M	Auto FFT	opping	2.475	3.96 dBn 95000 GH; 54.57 dBn
Spectrum Ref Level 20.00 db Att 35 SGL Count 100/100 91Pk Max	3m Offset 2 dB SWT 22	.42 dB 😑 I	RBW 100 kH	Iz Iz Mode . M	Auto FFT	opping	2.475	3.96 dBn 95000 GH:
Spectrum Ref Level 20.00 db Att 35 SGL Count 100/100 INH Max 101dbm 0 dbm	3m Offset 2 dB SWT 22	.42 dB 😑 I	RBW 100 kH	Iz Iz Mode . M	Auto FFT	opping	2.475	3.96 dBn 95000 GH; 54.57 dBn
Spectrum Ref Level 20.00 df Att 35 SGL Count 100/100 1Pk Max 10,dBm -10 dBm -10 dBm -10,dBm	Bm Offset 2 dB SWT 22	.42 dB 😑 I	RBW 100 kH	Iz Iz Mode . M	Auto FFT	opping	2.475	3.96 dBn 95000 GH; 54.57 dBn
Spectrum Ref Level 20.00 db Att 35 SGL Count 100/100 INH Max 101dbm 0 dbm	Bm Offset 2 dB SWT 22	.42 dB 😑 I	RBW 100 kH	Iz Iz Mode . M	Auto FFT	opping	2.475	3.96 dBn 95000 GH; 54.57 dBn
Spectrum Ref Level 20.00 df Att 35 SGL Count 100/100 1Pk Max 10,dBm -10 dBm -10 dBm -10,dBm	Bm Offset 2 dB SWT 22	.42 dB 😑 I	RBW 100 kH	Iz Iz Mode . M	Auto FFT	opping	2.475	3.96 dBn 95000 GH; 54.57 dBn
Spectrum Ref Level 20.00 df Att 35 SGL Count 100/100 IPk Max 10;dBm 0 dBm -10 dBm -20 dBm -30 dBm	Bm Offset 2 dB SWT 22	.42 dB 😑 I	RBW 100 kH	Iz Iz Mode . M	Auto FFT		2.475	3.96 dBn 95000 GH; 54.57 dBn
Spectrum Ref Level 20.00 df Att 35 SGL Count 100/100	am Offset 2 dB SWT 22	.42 dB 😑 I	RBW 100 kH	Iz Iz Mode . M	Auto FFT	opping	2.475	3.96 dBn 95000 GH; 54.57 dBn
Spectrum Ref Level 20.00 df Att 35 SGL Count 100/100 1Pk Max 10,dBm -10 dBm -20 dBm -30 dBm -40 dBm -40 dBm -50 dBm	3m Offset 2 dB SWT 22	.42 dB ● 1 7.5 μs ● 1	RBW 100 kH	iz Mode . Mode . M	Auto FFT 1[1] 2[1]		2.479	3.96 dBn 995000 GH: 54.57 dBn 50000 GH:
Spectrum Ref Level 20.00 df Att 35 SGL Count 100/100 IPk Max 10;dBm 0 dBm -10 dBm -20 cBm -30 cBm -40 dBm -50 dBm	3m Offset 2 dB SWT 22	.42 dB ● 1 7.5 μs ● 1	RBW 100 kH	iz Mode . Mode . M	Auto FFT 1[1] 2[1]		2.479	3.96 dBn 995000 GH: 54.57 dBn 50000 GH:
Spectrum Ref Level 20.00 df Att 35 SGL Count 100/100 IPk Max 10/dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	3m Offset 2 dB SWT 22	.42 dB ● 1 7.5 μs ● 1	RBW 100 kH	iz Mode . Mode . M	Auto FFT 1[1] 2[1]		2.479	3.96 dBn 995000 GH: 54.57 dBn 50000 GH:
Spectrum Ref Level 20.00 df Att 35 SGL Count 100/100 IPk Max 10;dBm 0 dBm -10 dBm -20 cBm -30 cBm -40 dBm -50 dBm	3m Offset 2 dB SWT 22	.42 dB ● 1 7.5 μs ● 1	RBW 100 kH	iz Mode . Mode . M	Auto FFT 1[1] 2[1]		2.479	3.96 dBn 995000 GH: 54.57 dBn 50000 GH:
Spectrum Ref Level 20.00 df Att 35 SGL Count 100/100 ● 1Pk Max 10,dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm	3m Offset 2 dB SWT 22	.42 dB ● 1 7.5 μs ● 1	RBW 100 kH VBW 300 kH	iz Mode . Μ Μ Μ	Auto FFT 1[1] 2[1]		2.479 2.483	3.96 dBn 95000 GH: 54.57 dBn 50000 GH:
Spectrum Ref Level 20.00 df Att 35 SGL Count 100/100 IDidgm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm	3m Offset 2 dB SWT 22	.42 dB ● 1 7.5 μs ● 1	RBW 100 kH	iz Mode . Μ Μ Μ	Auto FFT 1[1] 2[1]		2.479 2.483	3.96 dBn 995000 GH: 54.57 dBn 50000 GH:
Spectrum Ref Level 20.00 df Att 35 SGL Count 100/100 ● 1Pk Max 10,dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm	3m Offset 2 dB SWT 22	.42 dB 1.5 μs 1 1.5 μs 1 1.5 μs 1.5 μ	RBW 100 kH VBW 300 kH	iz Mode . Μ Μ Μ	Auto FFT		2.479 2.483	3.96 dBn 95000 GH: 54.57 dBn 50000 GH: 50000 GH: 2.576 GHz
Spectrum Ref Level 20.00 df Att 35 SGL Count 100/100 I Pik Max 10/dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm Start 2.476 GHz Marker Type Ref Trc M1	3m Offset 2 dB SWT 22 788 dBm 1 788 dBm 1 M4 M2 1 M3 1 1 M3 1 1 M3 1 1 M3 1 1	.42 dB ● 1 7.5 μs ● 1 	RBW 100 kH VBW 300 kH	iz Mode . ۲۰۰۰ Μ	Auto FFT		2.475 2.483	3.96 dBn 95000 GH: 54.57 dBn 50000 GH: 50000 GH: 2.576 GHz
Spectrum Ref Level 20.00 df Att 35 SGL Count 100/100 ● 1Pk Max 10µd@m 0 dfm -10 dBm -20 dBm -30 cBm -40 dBm -50 dBm -70 dBm -70 dBm Start 2.476 GHz Marker Type Ref Trc	Am Offset 2 dB SWT 22 788 dBm 788 dBm	.42 dB ● 1 7.5 μs ● 1 	RBW 100 kH	iz kz Mode . Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ	Auto FFT		2.475 2.483	3.96 dBn 95000 GH: 54.57 dBn 50000 GH: 50000 GH: 2.576 GHz
Spectrum Ref Level 20.00 df Att 35 SGL Count 100/100 IPk Max 10/dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -50 dBm -70 dBm Start 2.476 GHz Marker Type M1 M2 1	3m Offset 2 dB SWT 22 ////////////////////////////////////	.42 dB ● 1 7.5 μs ● 1 	RBW 100 kH VBW 300 kH	اند اند اند اند اند اند اند اند	Auto FFT		2.475 2.483	3.96 dBn 95000 GH: 54.57 dBn 50000 GH: 50000 GH: 2.576 GHz

PIPk Max M1[1]	
	0.04 dBi
10 dBm	10200800 GH
M1	
0 dBm	
-10 dBm	
-20 dBm-	
-30 dBm	
-40 dBm	
-50 dBm	
-60 dBm	
-70 dBm	
	Pape 0.0 MU
Band Edge NVNT 2-DH5 2402MHz Ant1 No-Hopping Emiss	Bion
Band Edge NVNT 2-DH5 2402MHz Ant1 No-Hopping Emiss Spectrum Ref Level 20.00 dBm Offset 2.38 dB • RBW 100 kHz Att 35 dB SWT 227.5 µs • VBW 300 kHz Mode Auto FFT SGL Count 100/100	sion
Band Edge NVNT 2-DH5 2402MHz Ant1 No-Hopping Emiss Spectrum Ref Level 20.00 dBm Offset 2.38 dB • RBW 100 kHz Att 35 dB SWT 227.5 μs • VBW 300 kHz SGL Count 100/100 • PRW 100 kHz • IPk Max	sion
Band Edge NVNT 2-DH5 2402MHz Ant1 No-Hopping Emiss Spectrum Ref Level 20.00 dBm Offset 2.38 dB • RBW 100 kHz Att 35 dB SWT 227.5 µs • VBW 300 kHz SGL Count 100/100 • IPk Max 10 dBm • M1[1]	2.04 dBr
Band Edge NVNT 2-DH5 2402MHz Ant1 No-Hopping Emiss Spectrum Ref Level 20.00 dBm Offset 2.38 dB RBW 100 kHz Att 35 dB SWT 227.5 µs VBW 300 kHz Mode Auto FFT SGL Count 100/100 10 dBm M1[1] 2.4	sion
Band Edge NVNT 2-DH5 2402MHz Ant1 No-Hopping Emiss Spectrum Ref Level 20.00 dBm Offset 2.38 dB • RBW 100 kHz Att 35 dB SWT 227.5 µs • VBW 300 kHz Mode Auto FFT SGL Count 100/100 • IPk Max M1[1] 10 dBm M1[1] 2.4	2.04 dBi 40215000 GH -51.70 MB i
Band Edge NVNT 2-DH5 2402MHz Ant1 No-Hopping Emiss Spectrum Ref Level 20.00 dBm Offset 2.38 dB • RBW 100 kHz Att 35 dB \$WT 227.5 µs • VBW 300 kHz Mode Auto FFT SGL Count 100/100 • VBW 300 kHz Mode Auto FFT • 1Pk Max	2.04 dBi 40215000 GH -51.70 MB i
Band Edge NVNT 2-DH5 2402MHz Ant1 No-Hopping Emiss Spectrum Ref Level 20.00 dBm Offset 2.38 dB • RBW 100 kHz Att 35 dB SWT 227.5 µs • VBW 300 kHz Mode Auto FFT SGL Count 100/100 • IPk Max M1[1] 10 dBm	2.04 dBi 40215000 GH -51.70 MB i
Band Edge NVNT 2-DH5 2402MHz Ant1 No-Hopping Emiss Spectrum Ref Level 20.00 dBm Offset 2.38 dB • RBW 100 kHz Att 35 dB SWT 227.5 µs • VBW 300 kHz Mode Auto FFT SGL Count 100/100 • IPk Max 10 dBm	2.04 dBi 40215000 GH -51.70 MB i
Band Edge NVNT 2-DH5 2402MHz Ant1 No-Hopping Emiss Spectrum Ref Level 20.00 dBm Offset 2.38 dB RBW 100 kHz Att 35 dB SWT 227.5 µs VBW 300 kHz Mode Auto FFT SGL Count 100/100 Image: Count 100/100 Image: Count 100/100 I D dBm Image: Count 100/100 Image: Count 100/100 I D dBm Image: Count 100/100 Image: Count 100/100 I D dBm Image: Count 100/100 Image: Count 100/100 I D dBm Image: Count 100/100 Image: Count 100/100 I D dBm Image: Count 100/100 Image: Count 100/100 I D dBm Image: Count 100/100 Image: Count 100/100 I D dBm Image: Count 100/100 Image: Count 100/100 I D dBm Image: Count 100/100 Image: Count 100/100 I D dBm Image: Count 100/100 Image: Count 100/100 I D dBm Image: Count 100/100 Image: Count 100/100 I D dBm Image: Count 100/100 Image: Count 100/100 I D dBm Image: Count 100/100 Image: Count 100/100 I D dBm Image: Count 100/100 Image: Count 100/100 <	2.04 dBi 40215000 GH -51.70 MB i
Bendix Band Edge NVNT 2-DH5 2402MHz Ant1 No-Hopping Emiss Spectrum Ref Level 20.00 dBm Offset 2.38 dB RBW 100 kHz Att 35 dB SWT 227.5 µs VBW 300 kHz Mode Auto FFT SGL Count 100/100 Image: Count 100/100 M1[1] I 0 dBm M1[1] 2.4 I 0 dBm M2[1] 2.4 -10 dBm M2[1] 2.4 -30 dBm M4 M4 -50 dBm M4 M4	2.04 dB 10215000 GH -51.704B 10000000 GH
Bendt Band Edge NVNT 2-DH5 2402MHz Ant1 No-Hopping Emiss Spectrum Ref Level 20.00 dBm Offset 2.38 dB • RBW 100 kHz Att 35 dB SWT 227.5 µS • VBW 300 kHz Mode Auto FFT GL Count 100/100 • IPK Max M1[1] 10 dBm M2[1] -20 dBm D1 -19.963 dBm -30 dBm M4 -50 dBm M4 -60 dBm M4	2.04 dB 10215000 GH -51.704B 10000000 GH
Band Edge NVNT 2-DH5 2402MHz Ant1 No-Hopping Emiss Spectrum Ref Level 20.00 dBm Offset 2.38 dB RBW 100 kHz Att 35 dB SWT 227.5 µs VBW 300 kHz Mode Auto FFT SGL Count 100/100 I D dBm M1[1] 2.4 M2[1] 0 dBm M2[1] -10 dBm M4 -30 dBm M4 -50 dBm M4	2.04 dB 10215000 GH -51.704B 10000000 GH
Bendy Band Edge NVNT 2-DH5 2402MHz Ant1 No-Hopping Emiss Spectrum Ref Level 20.00 dBm Offset 2.38 dB • RBW 100 kHz Att 35 dB SWT 227.5 µs VBW 300 kHz Mode Auto FFT SGL Count 100/100 • PPK Max M1[1] 2.4 10 dBm	2.04 dB 10215000 GH -51.704B 10000000 GH
Rentr Band Edge NVNT 2-DH5 2402MHz Ant1 No-Hopping Emiss Spectrum Ref Level 20.00 dBm Offset 2.38 dB RBW 100 kHz Matter Side Count 100/100 Image: Side Count 100/100 Imag	2.04 dBi 10215000 GH
Band Edge NVNT 2-DH5 2402MHz Ant1 No-Hopping Emiss Spectrum Ref Level 20.00 dBm Offset 2.38 dB • RBW 100 kHz Att 35 dB SWT 227.5 µS • VBW 300 kHz Mode Auto FFT SGL Count 100/100 • VBW 300 kHz • 1Pk Max M1[1] 0 dBm	2.04 dBi 10215000 GH