

SIM8905A-R2_User Manual_ V1.00

Compliance Information:

FCC Compliance Statement: This device complies with Part 15 of the FCC Rules . Operation is subject to the following two conditions: 1. This device may not cause harmful interference, and 2. This device must accept any interference received, including interference that may cause undesired operation. This device must accept any interference received, including interference that may cause undesired operation. Product that is a radio transmitter is labeled with FCC ID.

FCC Caution:

- (1)Exposure to Radio Frequency Radiation. This equipment must be installed and operated in accordance with provided instructions and the antenna(s) used for this transmitter must be installed to provide a separation distance of at least 20 cm from all persons and must not be collocated or operating in conjunction with any other antenna or transmitter. End-users and installers must be provided with antenna installation instructions and transmitter operating conditions for satisfying RF exposure compliance.
- (2)Any changes or modifications not expressly approved by the grantee of this device could void the user's authority to operate the equipment.
- (3) This Transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.
- (4) Changes or modifications to this unit not expressly approved by the party responsible for compliance could void the user authority to operate the equipment.
- (5) the modules FCC ID is not visible when installed in the host, if the host is marketed so that end users do not have straight forward commonly used methods for access to remove the module so that the FCC ID of the module is visible; then an additional permanent label referring to the enclosed module: Contains Transmitter Module FCC ID: 2AJYU-8PSA303 or Contains FCC ID: 2AJYU-8PSA303.

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

List the FCC rules that are applicable to the modular transmitter. These are the rules that specifically establish the bands of operation, the power, spurious emissions, and operating fundamental frequencies. DO NOT list compliance to unintentional-radiator rules (Part 15 Subpart B) since that is not a condition of a module grant that is extended to a host manufacturer. See also Section 2.10 below concerning the need to notify host manufacturers that further testing is required

The following statement must be included with all versions of this document supplied to an OEM or integrator, but should not be distributed to the end user.

This device is intended for OEM integrator only.

Please See the full Grant of Equipment document for other restrictions.

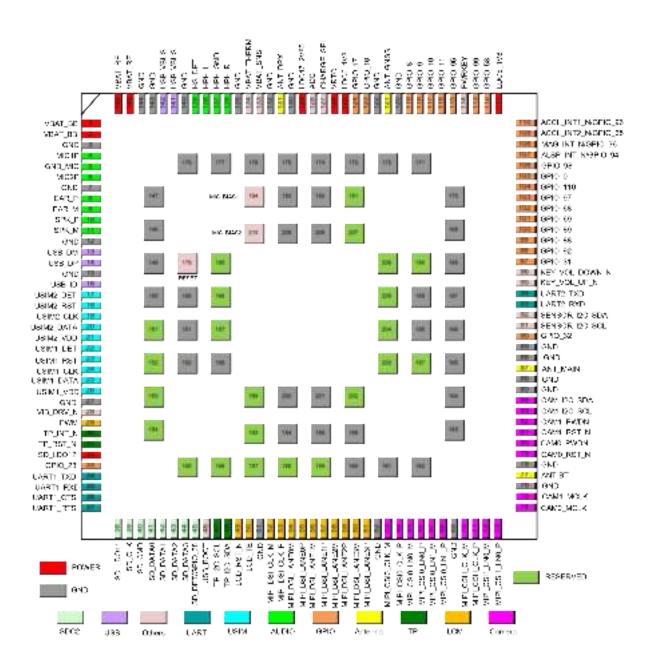
1. SIM8905A-R2 Description

1.1. Summarize

SIM8905A-R2 is a smart module, which is based on Qualcomm MSM8909 platform. It includes base-band, memory, RF front end and required circuitry to support LTE-FDD&TDD.

1.2. Feature

Feature	Implementation
	Quad ARM Cortex-A7 cores up to 1.1 GHz
Application Processor	32 kB L1, 512 kB L2 cache
	ARMv7 32-bit architecture
Memory	8Gb LPDDR3 up to 533Mhz;
	8GB eMMC NAND flash
External memory via SD	SD3.0; Support SD flash devices up to 32GB
Operating System	Android OS 5.x/7.x/8.x
Power supply	3.4V ~4.4V


Charge management	Integrated 1.44 A linear charger for single-cell lithium-ion batteries			
Display	4-lane MIPI_DSI, 1.5Gbps each HD(720P), 60fps			
Camera	Primary camera: 2-lane MIPI_CSI, 8MP Secondary camera: 1-lane MIPI_CSI, 5MP			
Video performance	Encode: H.264 BP/MP –720p, 30fps MPEG-4 SP / H.263 P0 –WVGA, 30fps VP8 –WVGA, 30fps Decode: H.264 BP/MP/HP – 1080p, 30 fps MPEG-4 SP/ASP – 1080p, 30 fps DivX 4x/5x/6x – 1080p, 30 fps H.263 P0 – WVGA, 30 fps VP8 – 1080p, 30 fps (HEVC) H.265 MP 8 bit – 1080p, 30 fps			
Audio	Two inputs that support single-ended configurations Three outputs: earpiece, stereo headphones, and mono class-D speaker driver Voice codec support: G711; Raw PCM; QCELP; EVRC, -B, -WB; AMR-NB, -WB; GSM-EFR, -FR, -HR; Audio codec support: MP3; AAC+, eAAC; AMR-NB, -WB, G.711, WMA 9/10 Pro			
USIM card	Dual cards dual standby			
Frequency bands	 EGSM900/DCS1800 WCDMA: Band1/8 CDMA2000 1X/EVDO BC0 TD-SCDMA: B34/B39 LTE-FDD B1/B3/B8 LTE-TDD: B38/B39/B40/B41 [1] 			
Transmitting power	GSM/GPRS:			

Transmission rate	 GPRS Class B, multi-slot class 33 operation, coding scheme: CS1-4, DL maximum speed: 107kbps; UL maximum speed: 85.6kbps EDGE multi-slot class 33 operation, coding scheme: MSC1-9, DL maximum speed: 296kbps; UL maximum speed: 236.8kbps TD-SCDMA 2.8Mbps(DL) 2.2Mbps(UL) CDMA DORA 3.1Mbps(DL) 1.8Mbps(UL) UMTS R99 speed: 384 kbps DL/UL DC-HSDPA Category 24 - 42.2 Mbps, HSUPA Category 6 - 11.5 Mbps LTE Category 4 - 150 Mbps (DL) LTE Category 4 - 50 Mbps (UL) 				
Bluetooth	Specification: V2.1+EDR , 3.0+HS, V4.0 BLE Tx power levels: Class 1 & 2				
Wi-Fi/WAPI	Support SoftAP Function, 802.11 b/g/n Encryption: WFA WPA/WPA2 Qos: WFA WMM , WMM PS RF performance: 11b power 17 dBm, EVM≤35% 11g power 15dBm, EVM<-25dB 11n power 12 dBm, EVM<-27dB Wi-Fi bands: SIM8905: 2.4GHz SIM8905A/SIM8905E: 2.4GHz/5GHz				
GNSS	Receiver type: GPS,GLONASS,BEIDOU Sensitivity: Tracking & Navigation: -160dBm Reacquisition: -156dBm Cold Start: -148dBm TTFF@-130dBm: hot start <5s warm start <15s cold start <35s CNo: 39dB/Hz@-130dBm				
Temperature range	Operating temperature: $-30^{\circ}\text{C} \sim +75^{\circ}\text{C}$ Storage temperature: $-40^{\circ}\text{C} \sim +90^{\circ}\text{C}$				
Physical dimension	Dimension: 40.5*40.5*2.8mm Weight: 10.6g				

1.3. Pin

1.4. Picture

Figure 1: Top and Bottom view of SIM8905A-R2

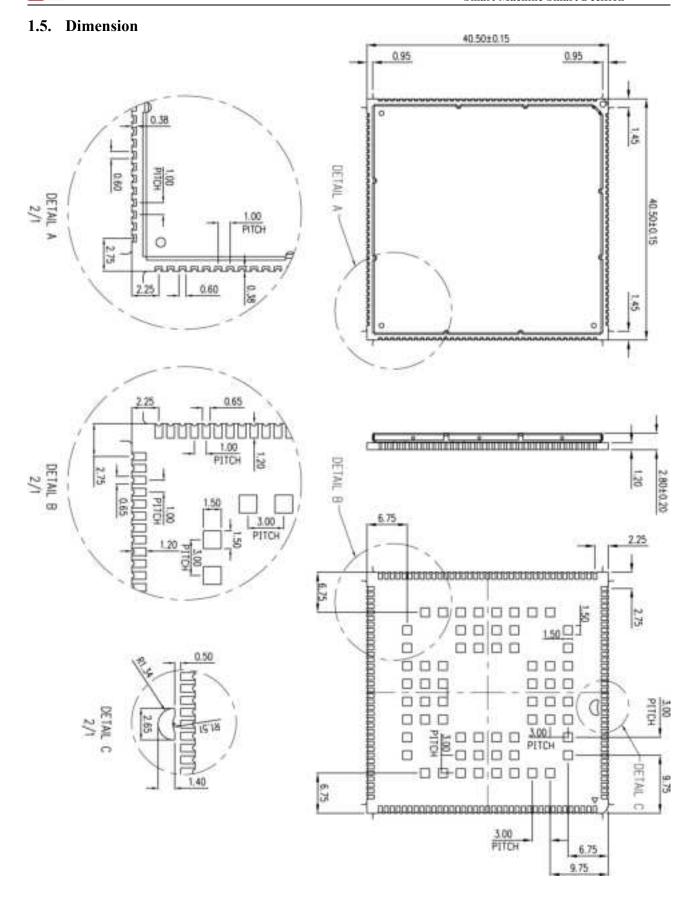


Figure 2: Dimension

2. Interface Application

Power Supply

The power supply pins of SIM8905A-R2 include VBAT_RF and VBAT_BB. VBAT_RF directly supplies the power to RF PA; VBAT_BB supplies the power to the base-band system. The power supply of SIM8905A-R2 ranges from 3.4V to 4.4V, and 3.9V is recommended. It must be able to provide sufficient current up to 3A for the high-power transmitting.

If the DC input voltage is +5V and customers do not care about the power efficiency, a high-current low-dropout regulator is recommended. Figure 4 is the reference design.

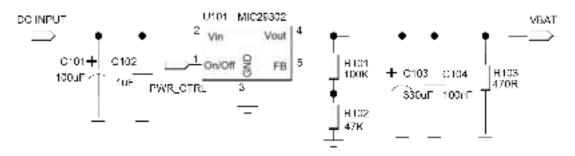


Figure 4: LDO power supply reference circuit

Note: To ensure a proper behavior of the regulator under light load, an extra minimum load (R103 in Figure 4) is required, because the current SIM8905A-R2 consumed is very small in sleep mode and power off mode. For more details about minimum load, please refer to specification of MIC29302.

To increase power efficiency, the switching mode DC-DC converter is preferable, especially when DC input voltage is quite high. The following figure is the reference design, and it is recommended to reserve a proper ferrite bead (FB101 in Figure 5) in series for EMI suppression.

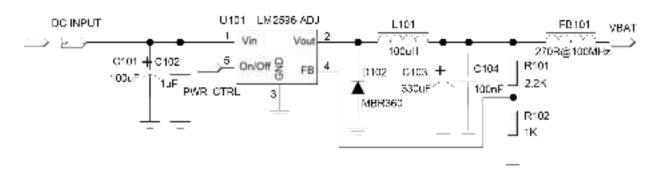


Figure 5: DC-DC power supply reference circuit

For battery-powered application, the 3.7V lithium battery can be connected to SIM8905A-R2 VBAT pins directly, but other types of battery must be used carefully, since their maximum voltage may rise over the absolute maximum voltage of the module. When battery is used, the total impedance between battery and VBAT pins should be less than $150 \text{m}\Omega$.

In any case mentioned above, at the VBAT input pins side, please take Figure 6 as a reference:

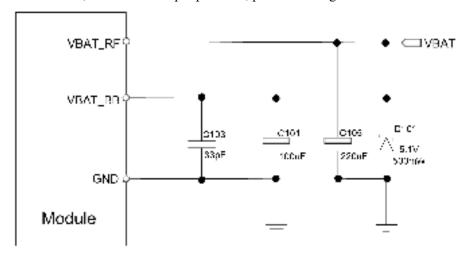


Figure 6: VBAT input reference circuit

Where C101 is a 100uF tantalum capacitor with low ESR; C105 is a 220uF tantalum capacitor with low ESR; 33pF and 10pF capacitors are used for eliminating the high frequency interference; 5.1V/500mW zener diode can protect the module against voltage surge.

All of these components should be placed as close to VBAT pins as possible.

Table 5: Recommended zener diode

	Vendor	Part number	Power(watts)	Packages
1	On semi	MMSZ5231BT1G	500mW	SOD123
2	Prisemi	PZ3D4V2H	500mW	SOD323
3	Vishay	MMSZ4689-V	500mW	SOD123
4	Crownpo	CDZ55C5V1SM	500mW	0805

Power on/off

Power on

Users can power on SIM8905A-R2 by pulling down the PWRKEY pin for more than 2 second then release. This pin is already pulled up to 1.8V internally, so external pull up is not necessary. Reference circuits are shown as below:

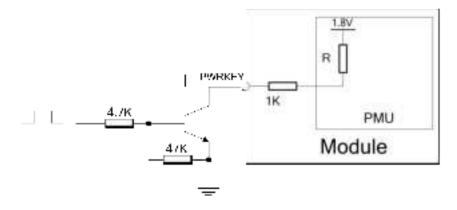


Figure 7: Powered on/down module using transistor

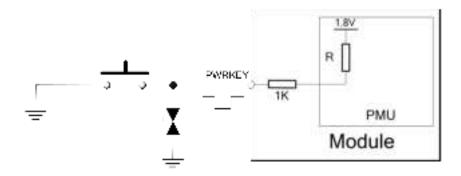


Figure 8: Powered on/down module using button

The power on sequence is illustrated in Figure 9

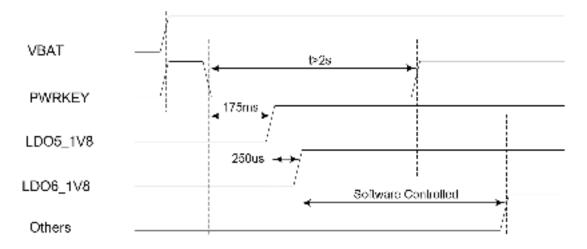


Figure9: Timing of power on module

Power off

Users can power off SIM8905A-R2 by pulling down the PWRKEY pin for more than 8 seconds.

VRTC

VRTC is the power supply for RTC circuit and charger output for coin cell or backup battery. If RTC support is

needed when the battery is removed, a qualified coin cell or keep-alive capacitor is required on the VRTC pin. When VBAT is present and valid, coin cell charging is enabled through software control and powered from VBAT.

Reference circuits are shown as below:

Keep-alive capacitor:

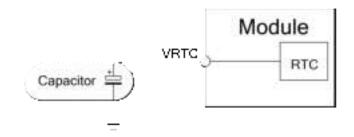


Figure 10: Keep-alive capacitor

Non-rechargeable battery:

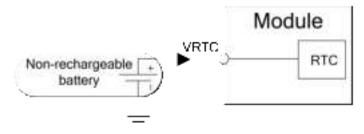


Figure 11: Non-rechargeable battery

Rechargeable battery:

Figure 12: Rechargeable battery

VRTC typical voltage is 3.0V, and the current consumption is about 5uA when VBAT is absence. For electrical characteristics, please refer to Table 23: VRTC characteristic.

Output Power Management

Table 6: Output power management summary

Pin Name	Pin#	Specified range (V)	Rated current (mA)	Expected use
LDO5_1V8	111	1.8	50	Force USB boot
LDO6_1V8	125	1.8	200	Display, camera, sensors
SD_LDO11	38	2.95	600	SD/MMC card
SD_LDO12	32	1.8/2.95	50	For SD signals pull-up

USIM1_VDD	26	1.8/2.95	50	USIM 1
USIM2_VDD	21	1.8/2.95	50	USIM 2
LDO17_2V85	129	2.85	420	Display, camera, sensors

USB Interface

SIM8905A-R2 provides one High-speed USB 2.0 interface, used for software upgrading, debugging, charging, etc.

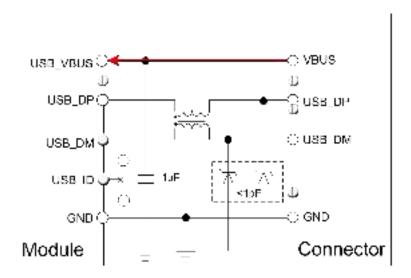


Figure 13: USB reference circuit

In addition, SIM8905A-R2 supports OTG function, but external 5V power supply is required.

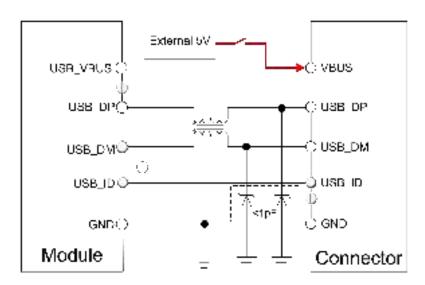


Figure 14: USB_OTG reference circuit

Linear Battery Charger

SIM8905A-R2 module integrates a 1.44A linear battery charger for single-cell lithium-ion batteries.

Charging Control

Battery charging is controlled by a PMIC state-machine. The first step in the automated charging process determines if trickle charging is needed. Charging of a severely depleted battery must begin with trickle charging to limit the current, avoid pulling VDD down, and protect the battery from more charging current than it can handle. Once a minimum battery voltage is established using trickle charging, constant-current charging is enabled to charge the battery quickly – this mode is sometimes called fast charging. Once the battery approaches its target voltage, the charge is completed using constant-voltage charging.

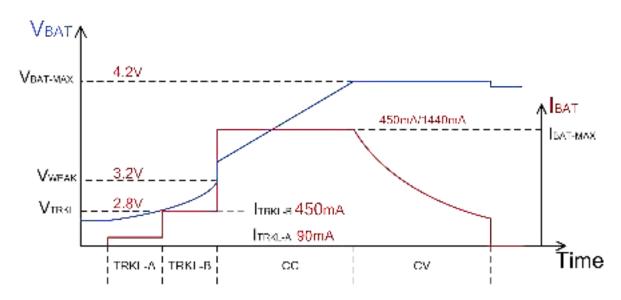


Figure 15: Charging control diagram

Table 7: Linear battery charger performance specifications

Parameter	Comments	Min	Тур	Max	Units
I _{TRKL-A}	Trickle-A Charging current	81	90	99	mA
I _{TRKL-B}	Trickle-B Charging current	405	450	495	mA
V_{TRKL}	Trickle-B threshold voltage range Programmable, 15.62 mV steps	2.5	2.796	2.984	V
V_{WEAK}	Weak battery threshold range Programmable, 18.75 mV steps	3.0	3.206	3.581	V
V_{BAT_MAX}	Maximum battery voltage Programmable, 25 mV steps	4	4.2	4.775	V
I_{BAT_MAX}	Fast charging current range Programmable, 90mA steps	90		1440	mA

VBAT_SNS

VBAT SNS is used for battery voltage sensing, the typical input range is 2.5V~4.5V.

UART/SPI/I2C

SIM8905A-R2 provides several sets of GPIOs which are available as BLSP (BAM-enabled low-speed peripheral) interfaces that can be configured to support various interface combinations, as shown in the following table. The

operation voltage is 1.8V

Table 8: UART/SPI/I2C functional assignments

Pin Name	Pin#	Expected or Default Function	Alternative Function 1	Alternative Function 2
UART2_TXD	94	BLSP1_UART_TX	BLSP1_SPI_MOSI	
UART2_RXD	93	BLSP1_UART_RX	BLSP1_SPI_MISO	
SENSOR_I2C_SDA	92	BLSP1_I2C_SDA	BLSP1_SPI_CS_N	BLSP1_UART_CTS
SENSOR_I2C_SCL	91	BLSP1_I2C_SCL	BLSP1_SPI_CLK	BLSP1_UART_RTS
GPIO_8	119	GPIO	BLSP6_SPI_MOSI	
GPIO_9	118	GPIO	BLSP6_SPI_MISO	
GPIO_10	117	GPIO	BLSP6_SPI_CS_N	BLSP6_I2C_SDA
GPIO_11	116	GPIO	BLSP6_SPI_CLK	BLSP6_I2C_SCL
GPIO_16	123	GPIO	BLSP5_SPI_MOSI	
GPIO_17	124	GPIO	BLSP5_SPI_MISO	
TP_I2C_SDA	48	BLSP5_I2C_SDA	BLSP5_SPI_CS_N	
TP_I2C_SCL	47	BLSP5_I2C_SCL	BLSP5_SPI_CLK	
UART1_TXD	34	BLSP2_UART_TX	BLSP2_SPI_MOSI	
UART1_RXD	35	BLSP2_UART_RX	BLSP2_SPI_MISO	
UART1_CTS	36	BLSP2_UART_CTS	BLSP2_SPI_CS_N	BLSP2_I2C_SDA
UART1_RTS	37	BLSP2_UART_RTS	BLSP2_SPI_CLK	BLSP2_I2C_SCL
CAM_I2C_SDA	84	BLSP3_I2C_SDA		
CAM_I2C_SCL	83	BLSP3_I2C_SCL		

Note:

- 1. UART: can be used as a diagnostic port, up to 4 Mbps;
- 2. I2C: supports master-only mode; up to 3.4 MHz, 2.2Kohm pull-up resistors are needed externally;
- 3. SPI: supports master-only mode; up to 52 MHz.

Secure Digital Interface

SIM8905A-R2 provides one 4-bit secure digital interface, which supports the following standards:

- SD Specifications Part 1 Physical Layer Specification Version 3.00
- Part A2 SD Host Controller Standard Specification Version 3.00
- Part E1 SDIO Specification Version 3.00

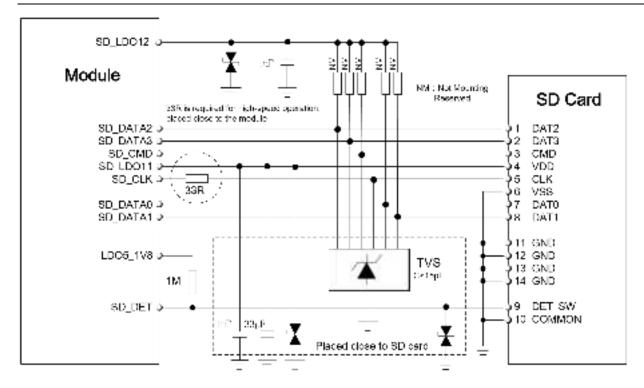


Figure 17: SD card reference circuit

Display Interface

SIM8905A-R2 provides a 4-lane MIPI_DSI, with 1.5 Gbps per lane high-speed mode bandwidth, to support 720p HD display.

PWM is used as PWM control for external WLED driver.

Table 9: Display interface pin definitions

Pin Name	Pin#	Type	Description
PWM	29	О	PWM control for external WLED driver
LCD_RST_N	49	О	LCD reset
LCD_TE	50	I	LCD tear effect
MIPI_DSI_CLK_M	52	0	
MIPI_DSI_CLK_P	53	О	
MIPI DSI LANE0M	54	О	
MIPI_DSI_LANE0P	55	О	
MIPI_DSI_LANE1M	56	О	MIPI display serial interface
MIPI_DSI_LANE1P	57	О	
MIPI DSI LANE2M	58	О	
MIPI DSI LANE2P	59	О	
MIPI_DSI_LANE3M	60	О	
MIPI_DSI_LANE3P	61	O	

If only 2-lane MIPI DSI is needed, just leave LANE2 and LANE3 floating.

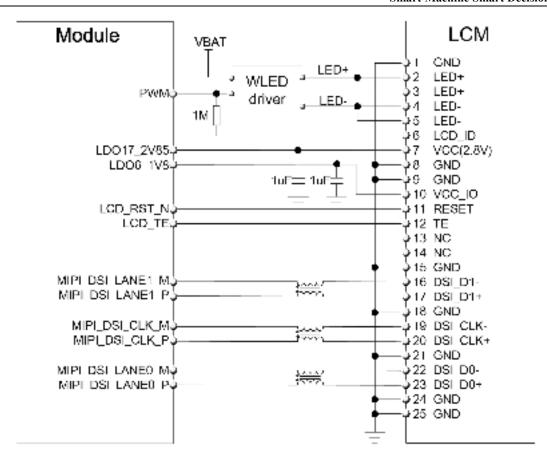


Figure 18: Display reference circuit

Touch Screen Interface

Table 10: Touch screen interface pin definitions

Pin Name	Pin#	Type	Description
TP_I2C_SDA	48	I/O	Touch screen I2C data
TP_I2C_SCL	47	0	Touch screen I2C clock
TP_INT_N	30	I	Touch screen interrupt
TP_RST_N	31	О	Touch screen reset

Note:

1. TP_I2C: supports master-only mode; 2.2Kohm pull-up resistors are needed externally;

Camera Interface

SIM8905A-R2 supports two cameras: 2-lane MIPI_CSI primary camera up to 8MP resolution and 1-lane MIPI_CSI secondary camera up to 5MP resolution.

Table 11: Camera interface pin definitions

Pin Name	Pin#	Type	Description
----------	------	------	-------------

MIPI_CSI0_CLK_M	63	Ι	
MIPI_CSI0_CLK_P	64	I	
MIPI_CSI0_LN0_M	65	I	D
MIPI_CSI0_LN0_P	66	I	Primary camera serial interface
MIPI_CSI0_LN1_M	67	I	
MIPI_CSI0_LN1_P	68	I	
MIPI_CSI1_CLK_M	70	I	
MIPI_CSI1_CLK_P	71	I	
MIPI_CSI1_LN0_M	72	I	Secondary camera serial interface
MIPI_CSI1_LN0_P	73	I	
CAM0_MCLK	74	О	Primary Camera master clock
CAM1_MCLK	75	О	Secondary Camera master clock
CAM0_RST_N	79	О	Primary Camera reset
CAM0_PWDN	80	О	Primary Camera power down
CAM1_RST_N	81	О	Secondary Camera reset
CAM1_PWDN	82	О	Secondary Camera power down
CAM_I2C_SCL	83	О	Camera I2C clock
CAM_I2C_SDA	84	I/O	Camera I2C data

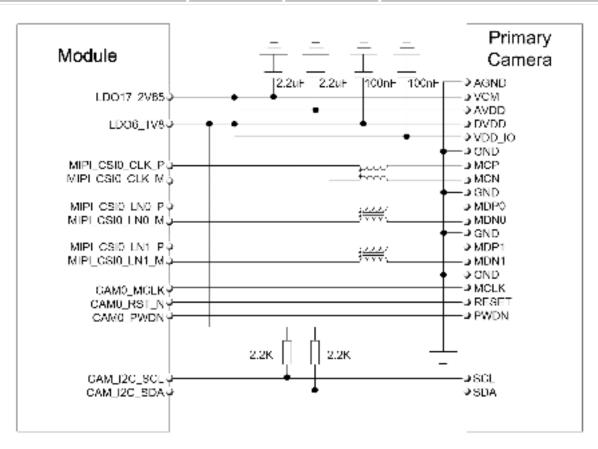


Figure 19: Primary camera reference circuit

Audio

SIM8905A-R2 provides two microphone inputs and three outputs including earpiece, stereo headphones, and mono class-D speaker driver.

Table 12: Audio interface pin definitions

Pin Name	Pin#	Type	Description
EAR_P	8	O	Earpiece output, positive
EAR_M	9	O	Earpiece output, negative
HPH_R	136	O	Headphone output, right channel
HPH_GND	137	I	Headphone ground reference
HPH_L	138	O	Headphone output, left channel
HS_DET	139	I	Headset detection
GND_MIC	5	P	Microphone input 2 ground reference
MIC2P	6	I	Microphone input 2, positive
MIC1P	4	I	Microphone input 1, positive
SPK_M	11	O	Speaker driver output, negative
SPK_P	10	O	Speaker driver output, positive
MIC_BIAS1	194	O	Microphone bias 1
MIC_BIAS2	210	O	Microphone bias 2

Microphone

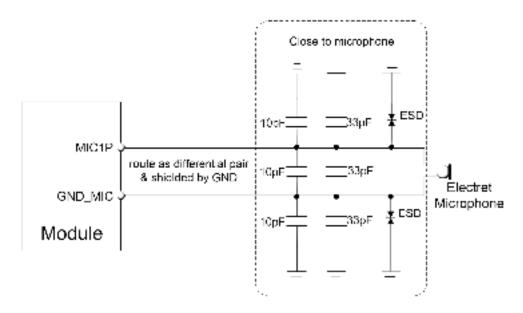


Figure 20: Microphone reference circuit

Note:

1. Internal MIC_BIAS pull-up is used to reduce BOM cost and PCB routing.

2. Single-ended capless input is the only supported configuration, but differential routing is recommended.

Table 13: Analog microphone input performance

Parameter	Test conditions	Min	Тур	Max	Units
Microphone amplifier ga	in = 0 dB (minimum gain)				
Input referred noise	Single-ended, A-weighted, capless	-	19.3	25.1	μVrms
Signal-to-noise ratio	Single-ended, A-weighted, capless	92.0	94.0	-	dB
THD+N ratio	f = 1.02 kHz; single-ended input; 200 Hz to	-	-86.0	-70.0	dB
Analog input = -1 dBV	20 kHz bandwidth; capless				
Microphone amplifier ga	in = 6 dB				
Input referred noise	Single-ended, A-weighted, capless	-	5.9	7.1	μVrms
Signal-to-noise ratio	Single-ended, A-weighted, capless	91.0	92.5	-	dB
THD+N ratio	f = 1.02 kHz; single-ended input;	-	-85.0	-70	dB
Analog input = -1 dBV	200 Hz to 20 kHz bandwidth; capless				
Microphone amplifier ga	in = 24 dB (maximum gain)				
Input referred noise	Single-ended, A-weighted, capless	-	3.4	4.2	μVrms
Signal-to-noise ratio	Single-ended, A-weighted, capless	84.2	85.4	-	dB
THD+N ratio	f = 1.02 kHz; single-ended input;	-	-82.4	-76.0	dB
Analog input = -1 dBV	200 Hz to 20 kHz bandwidth; capless				
General requirements					
Full-scale input voltage	Single-ended 1 kHz input. Input signal	-0.5	0	0.5	dBV
Tun-scare input voltage	level required to get 0 dBFS digital output				
Input impedance					
Capless input		1.0	-	-	$M\Omega$
Input disabled		3.0	-	-	ΜΩ
Input capacitance	Capless input	-	-	15	pF

Headset

Stereo class-AB headphone supports 16 Ω , 32 Ω , and up to 50 K Ω loads. Its typical output power at 1.02 KHz and THD + N \leq 1% is:

21.5 mW with 16 Ω loads, 0 dBFS and -4.5 dB gain

 $30.8\ mW$ with $32\ \Omega$ loads, $0\ dBFS$ and $0\ dB$ gain

A $100 \text{K}\Omega$ pull-down resistor is integrated at HPH_L pin, which could be used for mechanical insertion or removal detection through HS DET pin. Figure 22 shows the reference circuit for normally-closed (NC) type headset jack.

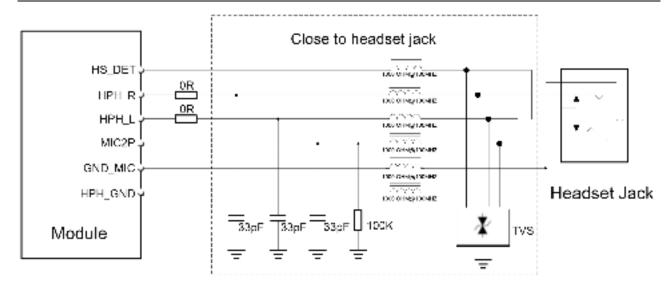


Figure 21: Headset reference circuit

Note:

- 1. SIM8905A-R2 also supports NO/NC type headset jack with detect pin on HPH L or GND.
- 2. HPH has a negative swing and requires a bi-directional TVS diode.

Table 14: Headphone output performance specifications

Parameter	Test conditions	Min	Тур	Max	Units
Output power	16 Ω load f = 1.02 kHz, 0 dB FS; VDD_CP* = 1.95 V	15.6	21.5	25.5	mW
	32 Ω load f = 1.02 kHz, 0 dB FS; VDD_CP* = 1.95 V	27.0	30.8	32.0	mW
Full-scale	16 Ω load f = 1.02 kHz, 0 dB FS; VDD_CP* = 1.95 V	0.50	0.59	0.64	Vrms
output Voltage	32 Ω load f = 1.02 kHz, 0 dB FS; VDD_CP* = 1.95 V	0.96	0.99	1.00	Vrms
Output load		13.0	16/32	-	Ω
Disabled output impedance	Measured externally, with amplifier disabled	1.0	-	-	ΜΩ

Note: The VDD_CP is internal Voltage of module.

Earpiece

Class AB earpiece driver supports 10.67 Ω , 16 Ω , 32 Ω , and up to 50 K Ω loads. Its typical output power at 1.02 KHz, 6 dB gain, and THD + N \leq 1% is:

119 mW with 32 Ω loads

243 mW with 16 Ω loads

320 mW with 10.67 Ω loads

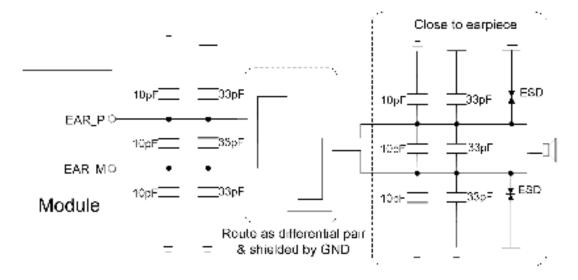


Figure 22: Earpiece reference circuit

Table 15: Earpiece output performance specifications

Parameter	Test conditions	Min	Тур	Max	Units
Output power	32 Ω load f = 1.02 kHz, 6 dB gain THD+N < 1%	120.0	124.5	-	mW
Output power	16 Ω load f = 1.02 kHz, 6 dB gain THD+N < 1%	235.0	243.0	-	mW
Full-scale	6 dB gain mode f = 1.02 kHz	1.8	2.0	2.1	Vrms
output Voltage	1.5 dB gain mode f = 1.02 kHz	1.0	1.2	1.3	Vrms
Output load		10.7	32	-	Ω
Disabled output impedance	Measured externally, amplifier disabled	1.0	-	-	ΜΩ

Speaker

Class-D mono differential loud speaker driver supports 4 Ω and 8 Ω loads. The driver is powered from VBAT, and does not support external 5 V Boost Option. Its typical output power at 1.02 KHz, 12 dB gain, and THD + N \leq 1% is:

950 mW with 8 Ω loads, VDD_SPKR=VBAT= 4.2 V 692 mW with 8 Ω loads, VDD_SPKR=VBAT= 3.6 V 1063 mW with 4 Ω loads, VDD_SPKR=VBAT= 3.6 V

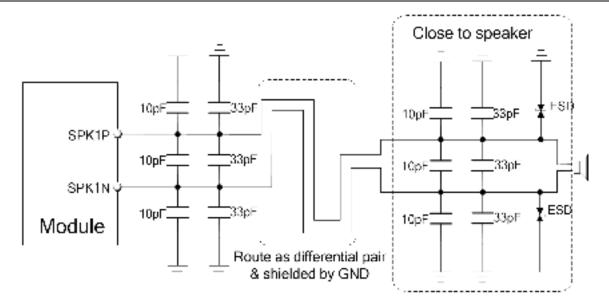


Figure 23: Speaker reference circuit

Table 16: speaker driver output performance specifications

Parameter	Test conditions	Min	Тур	Max	Units
	15 $\mu H + 8 \Omega + 15 \mu H$, $Vdd = 3.6 V$	584	631	-	mW
Output power (Pout) (f = 1 kHz, gain = 12 dB,	15 $\mu H + 4 \Omega + 15 \mu H$, $Vdd = 3.6 V$	862	953	-	mW
$THD+N \leq 1\%$	$15 \mu H + 8 \Omega + 15 \mu H$, $Vdd = 3.8 V$	662	710	-	mW
	$15 \mu H + 8 \Omega + 15 \mu H$, $Vdd = 4.2 V$	819	879	-	mW
	1 W Pout, VDD_SPKR = 4.2 V	-	-85.0	-75.0	dB
THD+N	$800 \text{ mW Pout, VDD_SPKR} = 4.2 \text{ V}$	-	-75.0	-45.0	dB
(1 kHz)	600 mW Pout, VDD_SPKR = 3.8 V	-	-75.0	-70.0	dB
	500 mW Pout, VDD_SPKR = 3.6 V	-	-76.0	-71.0	dB
Efficiency	500 mW Pout, 15 μH + 8 Ω + 15 μH	82.0	84.0	-	%
(Vdd = 3.7 V)	1 W Pout, 15 μ H + 4 Ω + 15 μ H	73.0	78.0	-	%
output impedance	Disabled	25	-	-	kΩ
Shutdown	current	-	0.1	1.0	μΑ
Turn on time		-	0.2	10.0	ms

Microphone bias

SIM8905A-R2 provides two microphone bias outputs: MIC_BIAS1 and MIC_BIAS2.

The microphone bias cannot be used for ECM-type microphone. MIC_BIAS1 and MIC_BIAS2 could be used for External MEMS microphone as power supply.

The microphone bias output performance specifications are shown in the following table:

Table 17: Microphone bias output performance specifications

Parameter	Test conditions	Min	Tvp	Max	Units

Output voltage	No load	1.60	-	2.85	V
Output voltage error	No load	-3.00	0.00	3.00	%
Output current	2 microphone loads of 1.0 to 1.5 mA each	2.0	3.0	-	mA
Output switch to ground	On resistance	-	-	20	Ω
Output switch to ground	Sink current	2.0	-	-	mA
Output noise	0.1 μF bypass	0.0	2.0	4.0	μVrms
	at 20 Hz	80	-	-	dB
nann n	at 200 Hz to 1 kHz	80	-	-	dB
PSRR- Power supply rejection ratio	at 5 kHz	80	-	-	dB
·	at 10 kHz	80	-	-	dB
	at 20 kHz	75	-	-	dB
Output capacitor value [2]	External bypass mode [1]	0.1	0.1	0.5	μF

USIM Interface

SIM8905A-R2 supports dual cards dual standby, and card presence detection.

Note: The standard software provided by SIMCom only supports single USIM1 card configuration.

Table 18: USIM interface pin definitions

Pin Name	Pin#	Type	Description
USIM2_DET	17	I	USIM2 presence detection
USIM2_RST	18	O	USIM2 reset
USIM2_CLK	19	O	USIM2 clock
USIM2_DAT	20	I/O	USIM2 data
USIM2_VDD	21	P	LDO 15 output for USIM2, 1.8V/2.95V
USIM1 DET	22	I	USIM1 presence detection
USIM1 RST	23	O	USIM1 reset
USIM1_CLK	24	O	USIM1 clock
USIM1_DAT	25	I/O	USIM1 data
USIM1_VDD	26	P	LDO 14 output for USIM1, 1.8V/2.95V

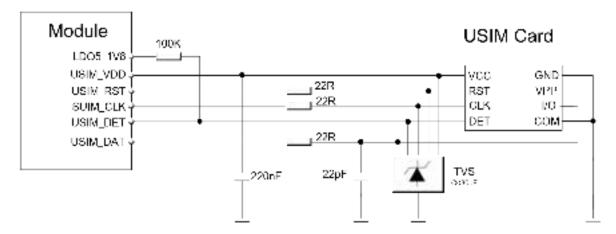


Figure 24: USIM card reference circuit

Note:

USIM_DAT has been pulled up with a 10kohm resistor to USIM_VDD in module. A 220nF shut capacitor on USIM_VDD is used to reduce interference.

ADC

SIM8905A-R2 provides one 16bits ADC. Its performance parameters are shown as the following table.

Table 19: ADC performance parameters

Parameter	Comments	Min	Тур	Max	Unit
Input voltage range	Programmable	0.1	-	1.7	V
		0.3	-	4.5	
Resolution		-	16	-	bits
Analog input bandwidth		-	100	-	kHz
Sample rate	XO/8	-	2.4	-	MHz
INL	15-bit output	-	-	±8	LSB
DNL	15-bit output	-	-	±4	LSB
Offset error	Relative to full-scale	-	-	±1	%
Gain error	Relative to full-scale	-	-	±1	%

Vibrator

SIM8905A-R2 supports silent incoming-call alarms with its vibration motor driver. The vibration driver is a programmable voltage output that is referenced to VBAT; when off, its output voltage is VBAT. The motor is connected between VBAT and the VIB_DRV_N pin. The programmable motor voltage ranges from 1.2 to 3.1 V in 100 mV steps.

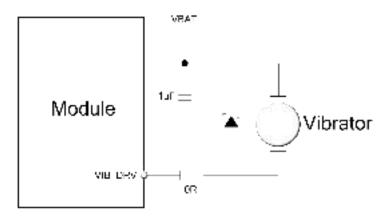


Figure 25: Vibrator reference circuit

Antenna Interface

SIM8905A-R2 provides two antenna interfaces including MAIN antenna and DRX antenna. To ensure good RF performance, users should meet the following requirements:

- Keep the RF traces at 50Ω .
- Maintain a complete and continuous reference ground plane from antenna pin to the RF connector.
- The RF traces should be away from any other noisy traces.
- Keep the RF traces as short as possible.

MAIN Antenna reference circuit

The recommended circuit is shown as below:

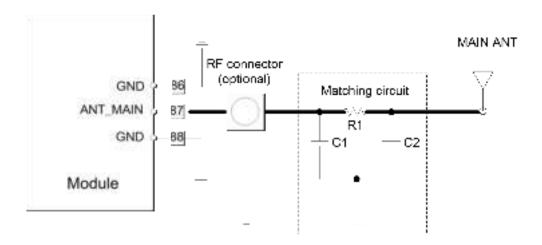


Figure 26: MAIN antenna recommended circuit

R1, C1 and C2 are antenna matching components in Figure 27, the value of these components are determined according to the antenna tuning results. By default, R1 is 0Ω , C1 and C2 are reserved. The RF connector in Figure 27 is used to ensure the accuracy and convenience of the conduction testing, so SIMCOM suggest keeping it. If considering Low-Cost BOM, user can cancel the connector.

DRX Antenna reference circuit

The recommended circuit is shown as below:

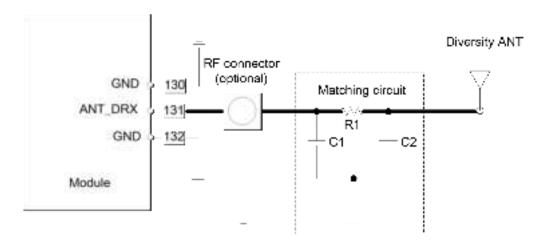


Figure 27: DRX antenna recommended circuit

R1, C1 and C2 are antenna matching components in Figure 28, the value of these components are determined according to the antenna tuning results. By default, R1 is 0Ω , C1 and C2 are reserved. The RF connector in Figure 28 is used to ensure the accuracy and convenience of the conduction testing, so SIMCOM suggest keeping it. If considering Low-Cost BOM, user can cancel the connector.

PCB Layout

This section provides PCB layout guidelines for SIM8905A-R2 users to ensure their production against lots of issues, and achieve the optimum performance.

Stack-up Options

At least, 4-layer through-hole PCB should be chosen for good impedance control and signal shielding.

General Placement Guidelines

- Locate SIM8905A-R2 module in the center of PCB, rather than in the corner.
- Digital devices and traces should not be placed near sensitive signals like RF and clock.
- Keep SPKR and MIC away from sensitive RF lines.

Table 20: Length of MIPI traces inside the module

Pin#	Net Name	Length(mm)
52	MIPI_DSI_CLK_M	8.08
53	MIPI_DSI_CLK_P	9.03
54	MIPI_DSI_LANE0M	9.04
55	MIPI_DSI_LANE0P	8.73
56	MIPI_DSI_LANE1M	9.29
57	MIPI_DSI_LANE1P	9.10
58	MIPI_DSI_LANE2M	8.69
59	MIPI_DSI_LANE2P	8.95
60	MIPI_DSI_LANE3M	9.10
61	MIPI_DSI_LANE3P	9.85
63	MIPI_CSI0_CLK_M	14.04
64	MIPI_CSI0_CLK_P	13.79
65	MIPI_CSI0_LN0_M	13.27
66	MIPI_CSI0_LN0_P	13.23
67	MIPI_CSI0_LN1_M	13.96
68	MIPI_CSI0_LN1_P	14.49
70	MIPI_CSI1_CLK_M	17.21
71	MIPI_CSI1_CLK_P	17.69
72	MIPI_CSI1_LN0_M	16.34
73	MIPI_CSI1_LN0_P	17.25

USB

- 90 Ω differential, \pm 10% trace impedance
- Differential data pair matching < 6.6 mm (50 ps)
- External components should be located near the USB connector.
- Should be routed away from sensitive circuits and signals.
- If there are test points, place them on the trace to keep branches as short as possible
- If USB connector is used as the charger input, USB_VBUS node must be routed to the module using extremely wide traces or sub planes.

Refer to the following table for the length of USB traces inside the module.

Table 21: Length of USB traces inside the module

Pin#	Net Name	Length(mm)
13	USB_DM	30.58
14	USB_DP	30.22

SDC Signal

- Protect other sensitive signals/circuits from SDC corruption.
- Protect SDC signals from noisy signals (clocks, SMPS, etc.).
- Up to 200 MHz clock rate
- 50 Ω nominal, $\pm 10\%$ trace impedance
- CLK to DATA/CMD length matching < 1 mm
- $30-35 \Omega$ termination resistor on clock lines near the module
- Total routing length < 50 mm recommended
- Spacing to all other signals = 2x line width
- Bus capacitance < 15 pF

Refer to the following table for the length of SD traces inside the module.

Table 22: Length of SD traces inside the module

Pin#	Net Name	Length(mm)
39	SD_CLK	14.24
40	SD_CMD	15.19
41	SD_DATA0	14.87
42	SD_DATA1	13.63
43	SD_DATA2	12.90
44	SD_DATA3	13.05

Audio

Analog input

- 4 to 5 mil trace widths; 4 to 5 mil spacing between traces
- Differential route for MIC1P with GND MIC and MIC2P with GND MIC;
- Isolate from noise sources, such as antenna, RF signals, SMPS, clocks, and other digital signals with fast transients

Analog output

- Coplanar ground fill on both sides (of traces or pair as appropriate); in between ground planes grounds above and below
- Isolate from noise sources such as antenna, RF signals, SMPS, clocks, and other digital signals with fast transients.
- EAR output signal route as differential pair with 10 mil trace widths.
- SPK output signals route as differential pair with 20 mil trace widths with 8 Ω load and 25 mil trace widths with 4 Ω load
- HPH output signals not a differential pair; 10 mil trace widths for HPH_L and HPH_R; 15 mil trace widths for HPH GND
- Connect HPH_GND to the ground pin of the jack connector and route HPH_GND in between HPH_L and HPH_R for best crosstalk minimization

Electrical and Reliability

Absolute Maximum Ratings

Absolute maximum ratings reflect the stress levels that, if exceeded, may cause permanent damage to the device. Functionality and reliability are only guaranteed within the operating conditions.

Table 23: Absolute maximum ratings

Parameter	Min	Max	Unit
VBAT	-0.3	5	V
VBUS	-0.3	7	V
VRTC	-	3.5	V

Temperature Range

Table 24: Temperature range

Parameter	Min	Тур	Max	Unit
Operating temperature	-25		+75	$^{\circ}\! \mathbb{C}$
Storage temperature	-40		+90	$^{\circ}\!\mathrm{C}$

Operating Voltage

Table 25: Operating voltage

Parameter	Min	Тур	Max	Unit
VBAT	3.4	3.9	4.4	V
VBUS	4.35	5	5.5	V
VRTC	2.0	3.0	3.25	V

Digital-logic Characteristics

Table 26: 1.8 V digital I/O characteristics

Parameter	Description	Min	Тур	Max	Unit
V_{IH}	High-level input voltage	1.17	-	-	V
V_{IL}	Low-level input voltage	-	-	0.63	V
V_{OH}	High-level output voltage	1.35	-	-	V
V_{OL}	Low-level output voltage	-	-	0.45	V

Table 27: USIM interface characteristics (USIM_VDD=1.8V/2.95V)

Parameter	Description	Min	Тур	Max	Unit
V_{IH}	High-level input voltage	0.7* USIM_VDD	-	USIM_VDD+0.3	V
$V_{\rm IL}$	Low-level input voltage	-0.3	-	0.2* USIM_VDD	V
V_{OH}	High-level output voltage	0.8*USIM_VDD	-	USIM_VDD	V
V_{OL}	Low-level output voltage	0	-	0.4	V

Table 28: SD interface characteristics (SD_LDO11 =1.8V)

Parameter	Description	Min	Тур	Max	Unit
V_{IH}	High-level input voltage	1.27	-	2	V
V_{IL}	Low-level input voltage	-0.3	-	0.58	V
V_{OH}	High-level output voltage	1.4	-	-	V
V_{OL}	Low-level output voltage	0	-	0.45	V

Table 29: SD interface characteristics (SD_LDO11 =2.95V)

Parameter	Description	Min	Тур	Max	Unit
V_{IH}	High-level input voltage	0.625* SD_LDO11	-	SD_LDO11+0.3	V
$V_{\rm IL}$	Low-level input voltage	-0.3	-	0.25* SD_LDO11	V
V_{OH}	High-level output voltage	0.75* SD_LDO11	-	SD_LDO11	V
V_{OL}	Low-level output voltage	0	-	0.125* SD_LDO11	V

PWRKEY Characteristics

Table 30: PWRKEY characteristics

Parameters	Description	Min	Тур	Max	Unit
V_{IH}	High-level input voltage	1.4	-	-	V
V_{IL}	Low-level input voltage	-	-	0.6	V

VRTC Characteristics

Table 31: VRTC characteristic

Parameter	Description	Min	Тур	Max	Unit
VRTC-IN	VRTC input voltage	2.0	3.0	3.25	V
I _{RTC-IN}	VRTC current consumption	-	5	10	uA
VRTC-OUT	VRTC output voltage	2.5	3.1	3.2	V
I _{RTC-OUT}	VRTC output current	-		2	mA

Current Consumption (VBAT=3.9V)

Table 32: Current consumption

Parameter	Conditions	Min	Тур	Max	Unit
Leakage current	Off mode		20		uA
	Flight mode		1.22		mA
	GSM:				
	BS-PA-MFRMS=9		1.65		mA
~ "	BS-PA-MFRMS=5		1.85		mA
Standby current	BS-PA-MFRMS=2		3.00		mA
	WCDMA, DRX=8		2.48		mA
	LTE-FDD, standby 1.28s		2.11		mA
	LTE-TDD, standby 1.28s		2.56		mA
Peak current				3.0	A

Electro-Static Discharge

Electrostatic discharge (ESD) occurs naturally in laboratory and factory environments. An established

high-voltage potential is always at risk of discharging to a lower potential. If this discharge path is through a semiconductor device, it may result in destructive damage.

SIM8905A-R2 must be handled according to the ESD Association standard: ANSI/ESD S20.20-1999, Protection of Electrical and Electronic Parts, Assemblies, and Equipment.

Table 33: ESD performance parameters (Temperature: 25°C, Humidity: 45%)

Pin	Contact discharge	Air discharge
VBAT	±5KV	$\pm 10 \mathrm{KV}$
GND	±5KV	±12KV
Antenna	±5KV	±10KV
PWRKEY	±4KV	±6KV

Module Operating Frequencies

Table 34: Module operating frequencies

Frequency	Receive	Transmit	Physical channel
LTE B2	1930-1990 MHz	1850-1910 MHz	TX: 18600-19199 RX: 600-1199
LTE B4	2110-2155 MHz	1710-1755 MHz	TX: 19950-20399 RX: 1950-2399
LTE B5	869-894 MHz	824-849MHz	TX: 20400-20649 RX: 2400-2649
LTE B7	2620-2690 MHz	2500-2570 MHz	TX: 20750-21449 RX: 2750-3449
LTE B12	729-746MHz	699-716MHz	TX: 23010-23179 RX: 5010-5179
LTE B13	746-756MHz	777-787MHz	TX: 23180-23279 RX: 5180-5279
LTE B17	734-746MHz	704-716MHz	TX: 23730-23849 RX: 5730-5849
LTE B25	1850-1915MHz	1930-1995MHz	TX: 26040-26689 RX:8040-8689
LTE B26	859-894MHz	814-849MHz	TX: 26690-27039 RX: 8690-9039
LTE B41	2555-2655 MHz	2555-2655MHz	40240-41240

Module Output power

Table 35: Conducted transmission power

Frequency	Power	Min.
LTE-FDD B2	23dBm +/-2.7dB	<-40dBm
LTE-FDD B4	23dBm +/-2.7dB	<-40dBm
LTE-FDD B5	23dBm +/-2.7dB	<-40dBm
LTE-FDD B7	23dBm +/-2.7dB	<-40dBm
LTE-FDD B12	23dBm +/-2.7dB	<-40dBm
LTE-FDD B13	23dBm +/-2.7dB	<-40dBm
LTE-FDD B17	23dBm +/-2.7dB	<-40dBm
LTE-FDD B25	23dBm +/-2.7dB	<-40dBm
LTE-FDD B26	23dBm +/-2.7dB	<-40dBm
LTE-TDD B41	23dBm +/-2.7dB	<-40dBm

Module Receiving Sensitivity

Table 37: Reference sensitivity QPSk PREFSENS (LTE)

E-UTRA Band number	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	Duplex mode
2	-102.7	-99.7	-98	-95	-93.2	-92	FDD
4	-104.7	-101.7	-100	-97	-95.2	-94	FDD
5	-103.2	-100.2	-98	-95			FDD
7	-	-	-98	-95	-93.2	-92	FDD
12	-101.7	-98.7	-97	-94	-	-	FDD
13	-	-	-97	-94	-	-	FDD
17	-	-	-97	-94	-	-	FDD
25	-101.2	-98.2	-96.5	-93.5	-91.7	-90.5	FDD
26	-102.7	-99.7	-97.5	-94.5	-92.7		FDD

Carlo Millery					SII	iart Maciline Sil	iart Decision
41	-	-	-99	-96	-94.2	-93	TDD

Table 38: WIFI main RF Characteristics

Transmission performance				
	802.11B	802.11G	802.11N	
Output power	17	15	12	dBm
EVM	20%	<-25	<-27	dB
Receiving performance				
	802.11B	802.11G	802.11N	
Receiving sensitivity	-89	-74.5	-72.5	dBm

Table 39: BT Main RF Characteristics

Transmission performance				
	DH5	2DH5	3DH5	
Output power	9	7	7	dBm
Receiving performance				
	DH5	2DH5	3DH5	
Receiving sensitivity	-90	-80	-80	dBm

ANT maximum gain

Dipole antenna is used for the module test. Customers can choose the antenna based on the size of the terminal product, as long as the maximum gain requirements are as follows

BAND	ANT maximum gain(dBi)
LTE B2	11
LTE B4	6
LTE B5	7. 5
LTE B7	11
LTE B8	7.5
LTE B12	7.5
LTE B13	7.5
LTE B17	7.5
LTE B25	6
LTE B26	7.5
LTE B41	11
wifi	5
BT	5

Contact us:

Shanghai SIMCom Wireless Solutions Co.,Ltd.

Address:

Building 3, No.289 Linhong Road, ChangNing District, Shanghai, China

Tel: + 86 21 3157 5100 Fax: +86 21 3157 5200

URL: http://www.simcom.com/